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Abstract

We introduce a persistent functional language called
PFL which adapts functional programming to the
area of deductive databases, much as logic-based
deductive database languages adapt logic program-
ming. PFL inherits the advantages of functional pro-
gramming languages, including higher-order func-
tions, static type checking, lazy evaluation, and sup-
port for user-defined types and constants. However,
PFL allows functions to be defined incrementally by
the insertion and deletion of equations, and stores
these equations in the database. PFL also supports a
class of extensionally defined updateable functions
called selectors which allow the storage of arbitrarily
nested values. Further functions can be written over
selectors which act as derivation rules and which are
"invertible" in the sense that they simulate predi-
cates. We begin the paper by motivatling the
development of PFL. We review the respeclive
advantages of functional and logic programming,
particularly with respect to database modelling and
manipulation, and we compare PFL with other func-
tional database languages. We describe the salient
features of the language and examine its expressive-
ness with respect to data modelling, computation and
updates. We also describe the implementation of
PFL concentrating in particular on the storage and
retrieval of its persistent data.

1. Introduction

Deductive databases have been the focus of much
research during the past decade or so. Broadly speak-
ing, deductive databases couple a conventional databasce
with a knowledge base, the knowledge base consisting
of a set of rules and an inference engine. Generally,
deductive database researchers have assumed that rules
are expressed as logic formulae and that the inference
cngine is a first order logic theorem prover [Gal84,
Gra88a, Cer90, Chi90, Hor90]. More recently, the lim-
itations of this approach with respect to both data
modelling and computation have led to a number of
extensions to first order logic being proposed, including
sets [Abi88a), types and object identifiers {Abi89,
DBP89], higher-order syntactic features [Che89] and
functions [Gru89]. None the less, knowledge represen-
tation techniques other than first order logic are possi-
ble, for example frames or production rules, and we
believe they deserve further consideration as candidate
paradigms for deductive databases. In particular we are
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investigating the use of rules expressed as equations
and an inference engine which is a functional evaluator
[Pey87]). Our knowledge base can thus be viewed as a.
production rule system with goal-driven problem solv-
ing.

We describe in this paper a functional language
called PFL which adapts functional programming to the
area of deductive databases, much as logic-based
deductive database languages adapt logic programming.
Thus, PFL has features in common both with logic-
based deductive database languages, and with func-
tional programming languages.

In common with logic-based deductive database
languages, PFL supports
¢ the persistence of both factual and procedural infor-

mation,
¢ recursive data structures such as trees and graphs,
¢ the definition and storage of rules which enable the

derivation of further information from factual data,
In addition, PFL supports default rules, which allow the
graceful handling of missing and incomplete informa-
tion, and update procedures which maintain the seman-
tic integrity of the factual data.

In common with functional programming languages,
PFL supports higher-order functions and user-defined
types. However, unlike conventional functional
languages, PFL allows functions to be defined incre-
mentally by the insertion and deletion of equations, and
maintains these equations in a repository on secondary
storage. Thus, much larger volumes of information can
be handled while achieving comparable query perfor-
mance by caching the most frequently used equations
(ISma90] gives performance figures).

PFL supersedes functional query languages such as
FQL [Bun82] and GENESIS [Bat88] in which only
cxlensionally defined functions can be stored. PFL aiso
improves on the implementations of DAPLEX [Smi83,
Kul86, Gra88b] since these have extended the func-
tional data model [Shi81] with non-functional computa-
tion, thereby introducing an impedance mismatch,
whereas in PFL all querying is purely functional. Also,
languages based on the functional data model can
represent only binary relationships (by single-argument
functions and their inverses) and an n-ary relationship
must be modelled by an entity type participating in n
binary relationships. Reconstructing the n-ary relation-
ship for the purposes of querying requires these binary
relationships to be joined and can be prohibitively
expensive. In contrast, PFL supports n-ary relation-
ships directly.
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A forerunner of PFLL was the functional database
language FDL [Pou90] which integrates functional pro-
gramming with the functional data model. PFL
improves upon FDL by supporting n-ary relations
rather than just binary ones. PFL also infers the types
of functions incrementally in the face of equation inscr-
tions and deletions whereas in FDL function types are
declared by the user and are static. Finally, PFL’s
query evaluator has several optimisations which give
PFL enhanced query performance, comparable to that
of contemporary functional programming languages.

A number of other database systems have also incor-
porated functions [Ban87, Day87, Bee88, Hei88] but
they have all assumed that intentionally defined func-
tions are coded in some external programming language
rather than stored in the database. Finally, several data-
base programming languages do support the persistence
of functions on secondary storage [AIb8S, Car85,
Mor89]. However, unlike PFL, these languages do not
allow the incremental update of functions, only their
deletion and compiete redefinition.

Since a key feature of PFL is its foundation on func-
tional as opposed to logic programming, we conclude
this introductory section by reviewing the advantages of
each paradigm, particularly with respect to database
modelling and manipulation.

The main advantage of logic programming is that,
unlike functions, predicates can (at least theoretically)
be used with any number of their arguments uninstan-
tiated. This makes logic programs more versatile than
functional ones. Also, in the context of deductive data-
bases, facts and derivation rules are often expressed
more naturally in terms of single predicates than in
terms of functions and their inverses. Despite this fact,
our premise is that the advantages of functional pro-
gramming which we outline below make it worth
evaluating as a foundation for deductive databases.
Also, as we will see in Sections 2 and 3, PFL supports a
class of extensionally defined updateable funclions
which simulate extensional predicates and which go
much of the way to restoring the flexibility of relational
programming.

The most obvious advantage of functional program-
ming is that it is higher order and so all expressions are
first class objects. Higher order functions can be writ-
ten which "abstract out” recursion patterns over recur-
sive data structures. These functions can then be used
10 write more concise programs which do not include
explicit recursion. Consider, for example, the higher-
order functions map and fold defined by the follow-
ing equations’ :

map f [ ] (1

map f (x:y) (fx):(map { y)

foldfend [] end

foldfend (x:y) =fx(foldfendy)
map and fold can be used to define further functions
which increment a list of numbers by a constant, sum a
list of numbers, append two lists, concatenate a list of
lists, test whether a list of booleans contains at least one
True value, and test for the membership of an element
inalist! :

incr ¢ x

sum x

=map ((+) ¢) x
=fold (+) 0 x
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append x y =fold () y x

concat x = fold (append) [ ] x
or_list x = fold (or) False x
member x ¢ = or_list (map ((==) ¢) x)

A very useful high-level query construct supported
by most functional languages is the list abstraction
[Pey87], {e | q1; qa; ... 3qq], which may be read as "the
list of values e such that ¢y and q, and ... and q,".
Each q; may be either a generator p; « 1;, read as "the
pattern p; is matched against each element in the list [,
in turn”, or a boolean-valued expression which must be
satisfied. List abstractions are only syntactic sugar and
can be translated into a series of higher-order function
applications (see [Pey87] for details). For example, the
expression

{salary x X employees; (age x) > 50]
is equivalent to the expression

map salary (filter (A x.((age x) > 50)) employees)

A second feature of functional languages is their use
of pattern-matching rather than unification for parame-
ter passing. Deterministic computations can thus be
expressed more succinctly since there is no need to
communicate intermediate results via common vari-
ables. Also, the deterministic semantics of functional
evaluation can be exploited for the representation of
default rules. For example, given the following func-
tion :

tax_code Jim = "336A"
tax_code x = "307L"
the query tax_code Sue evaluates to "307L"

while the query tax_code Jim evaluates to
"336A". In contrast, first order logic is monotonic and
so default knowledge must be represented extra-
logically in logic-based languages.

Lastly, most modern functional languages are typed.
They provide a set of built-in types, and facilities for
the definition of new types and constants. Any expres-
sion has a unique type which can be inferred at
compile-time by a unification-based lype checker
[Car84], provided the type is finite. Such a type
checker is especially useful in a database environment
since it can be used both as a special-purpose integrity
enforcer (equations are only inserted if they are
correctly typed) and also to avoid running potentially
expensive queries which are incorrectly typed and
which may ultimately yield no useful information, Car-
delli [Car88a) describes how type checking can be
exicnded to support multiple inheritance of functions
via type inclusion, and his work forms a promising
foundation for integrating functional and object-
oriented database languages. In faimess, we note that a
number of type checking techniques have also been
proposed for logic programming languages, for exam-
ple [Myc84, Xu89], although these have yet 10 find
their way into working systems.

! We use PFL’s syntax in all our examples of functions.
In this syntax, [ } is an empty list, (xty) is a list with
head x and tail y, = is used for definitions and == for
equality . Whenever binary infix operators such as +, :
and == need to be used prefix, they are enclosed in
round brackets.
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The layout of the rest of this paper is as follows. In
Section 2 we introduce PFL. We describe its type sys-
tem and its support of user-defined types and constants.
We discuss the incremental update and type-checking
of function definitions. We introduce a class of exten-
sionally defined updateable functions called selectors
which are "invertible" in the sense that they simulate
predicates. We show how functions can be written
which draw inferences from selectors and which are
also invertible. Finally, we discuss the update of selec-
tors. In Section 3 we address PFL's expressiveness
with respect to data modelling, computation, and
updates. In particular, in 3.2 we compare PFL’s class
of invertible functions with Datalog and we show how
any stratified Datalog IDB predicate can be simulated
by a PFL function, subject to the proviso that there
exists a pre-determined order of firing the rules which
define the predicate. In Section 4 we discuss PFL’s
implementation, showing how all of PFL’s persistent
data is stored in a database consisting of two files,a B*
tree and an extendible hash file. We conclude in Sec-
tion 5 with a summary of our contributions and direc-
tions of further research.

2. Overview of PFL

PFL is a polymorphic, statically typed, persistent func-
tional language. It provides a set of built-in types, and
facilities for the definition of new types and constants.
Its functions are defined incrementally by the insertion
and deletion of equations. The types of functions are
inferred incrementally in the face of such updates.
PFL’s bulk data is stored in a class of functions which
we call selector functions or selectors. Selectors store
and return lists of values. Although these values may
be arbitrarily nested, by convention we call them
"tuples”. Similarly, we call the list of values stored in a
selector a "relation”. As we will see below, selectors go
much of the way to providing the flexibility of rela-
tional programming.

Selectors are updated by two built-in functions,
include and exclude, which insert and delete
tuples into their associated relations. Both functions
operate by side effect although between updates selec-
tors remain deterministic. Hence, queries which do not
invoke include or exclude are purely functional
and have no side effects. Conversely, queries which do
invoke include or exclude will have side effects
and so will tend to be written in a procedural style.

We describe selectors in greater detail in 2.3, In 2.4
we discuss PFL's evaluation semantics. In 2.5 we dis-
cuss functions which draw inferences from selectors
and in 2.6 we discuss update procedures.

2.1 PFL’s Type System

PFL's type system comprises three layers c.f. [Car88b]:

¢ The metalevel type Type which is the set of all
types.

s The object-level types, both built-in and user-
declared. These are also regarded as metalevel
values of type Type.

o The values of each object-level type.
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The built-in types are Str, Num and Char which are ini-
tially populated by strings, integers and characters.
New constants, whether object-level or metalevel, are
declared using the command :
declare <constant> :: <type>

These constanis are termed constructor functions or
constructors in  functional programming parlance
[Pey87) since they construct values of the indicated
type. For example, we can declare person, boolean, list,
and product types by the following statements? :

declare Person :: Type

declare Bool:: Type

declare List:: a—Type

declare Prodl :: a—Type

declare Prod2:: a—b—Type

declare Prod3:: a—b-—sc—-Type ..
and we can declare (object-level) constructors for these
types?:

declare Jim::  Person

declare Sue::  Person

declare True:: Bool

declare False:: Bool

declare Nil:: Lista

declare Cons:: a—(List a)—(List a)

declare Single :: a—(Prodl a)

declare Pair:: a—b—(Prod2ab)

declare Triple :: a—b—c—(Prod3abc)...
Thus, Person is a type, Prod2 s t is a type, for any types
s and t, Jim is a value of type Person, and Pair u v is a
value of type Prod2 s t, where u is a value of type s and
v is a value of type L. Zero-argument types such as Per-
son above can be viewed as object types and construc-
tors such as Jim and Sue above can be viewed as object
identifiers. It is also possible to declare constructors for
use as null values. For example, the following con-
structors can be used in the place of any value :

declare Any ::a

declare None :: a

New constructors can be declared at any time during
the lifetime of a database. Only one declaration can
exist for a given constructor, although constructors can
be deleted and re-declared. A constructor can only be
deleted if there are no references to it (we describe how
this is verified in Section 4).

2.2

Functions are defined by means of equations which are
inserted using the syntax

define <lhs> = <expr>
and deleted using the syntax

delete <lhs>
Equations have unique left hand sides so if the right
hand side of an equation needs to be modified the equa-
tion must be deleted and re-inserted. For example, the
following statements result in the expected definition
for the 3-ary function if:

Functions

2 In PFL, identifiers starting with an uppercase letter are
constructors (either metalevel or object-level) and
identifiers starting with a lowercase letter are variables
(again, either metalevel or object-level).
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define if Truex y =x

define if False x y = x

delete if False x y

define if Falsexy =y

Unlike constructors, functions do not have 10 be
declared before they are used : if no equations exist for
an identifier it is assumed to have an unconstrained
type. Thus, programs can be developed "top-down" by
using identifiers before they are defined. However, the
user is free to predeclare the type of a function if he so
wishes and this acts as an extra aid to writing correct
programs,

Whenever a new equation, e, is specified for a func-
tion, f, the type checker infers a type, 1(¢), from e for f.
The type t(e) is unified with the existing type for f, 7(f).
If this unification fails, the equation is rejected. Other-
wise if 7(f) has become more specific, a message to that
effect is displayed and any equations which contain f in
their right hand side are also type checked again (we
explain in Section 4 how these equations are located).
A cascade of type checking is thus set off. Such a cas-
cade always terminates since PFL functions have finite
types and a finite type can only become more specific a
finite number of times. For example, given the built-in
function + of type Num—Num—Num and the hitherto
unused identifiers incr and map, the statement

define incr ¢ = map ((+) ¢)
gives the message incr::Num—a.
the statement

define mapf[]=([]
gives the message

map a—(b]—>[c]

incr :: Num—(al->[(b]
and finally the statement

define map f (x:y) = (f x):(map f y)
gives the message

map (a—b)—>{a]—>[b]

incr :: Num—>[Num]—>[Num]?>.

Whenever an equation e defining a function f is
deleted, the type of f is re-inferred from its remaining
equations (since the deletion of e may have made this
type less specific). If t(f) has indeed changed, any
equations which reference f are also type checked again
similarly, For example, given the functions incr and
map above, the statement

delete map f{ ]
gives no message. Subsequently, the statement

delete map f (x:y)
gives the message map: :a,
finally the statement

delete incrc
gives the message incr::a. When all the equatons
defining a function have been deleted, the function is
left with an unconstrained type (the metalevel variable a
in the above messages) and so can be redefined as a

Subsequently,

incr: :Num—a, and

? Lists and tuples occur so commonly in PFL that we
provide a shorthand notation for them. We use | ] in-
stead of Nil, (:) instead of Cons, [al,...,aN] instead of
al:(... :(aN:[]), {a} instead of Single a, {a,b} instead of
Pair a b, {a,b,c} instead of Triple a b ¢, and so on. Simi-
larly at the meta level we use [a] instead of List a, {a}
instead of Prodl a, {a,b} instead of Prod2 a b, and so on.
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completely different function.

Our incremental type-checking of functions is simi-
lar 1o that proposed for FQL [Nik85] in that we main-
tin a dependency graph. However, our approach
differs from that of [Nik85] in that our dependency
graph records which equations reference each function
as opposed to which functions reference each function,
and our type-checking occurs on an equation as
opposed 1o on a function level. This is in keeping with
the incremental nature of PFL, where functions are
updated by the insertion and deletion of equations
rather than by their complete redefinition.

2.3 Selector Functions

Selector functions are declared by a statement of the
form :

selector <name> :: <type> —» [<type>]
where <type> is a first-order type. A newly declared
sclector, f, may be assumed to be defined by the follow-
ing equation :

fx= ly | y & relation; matches x y]

where relation = { ]
Here, the argument x acts as a search pattern. Each of
its components is either a constant or the "wildcard"
constructor Any (we declared it in 2.1 above). The
function matches compares x with each element y
drawn from the list relation and returns True or
False according to whether x matches y. Thus, the
selector returns a list of the wples which match x, in the
order they are encountered in relation. As we
describe in greater detail in Section 4, the relations
associated with selectors are stored and retrieved using
an extendible hashing scheme [Enb88]. Hence, the
efficiency of evaluating a query £ x is directly related
to the proportion of specified components appearing in
the search pattern x.

Updates 1o a selector result in relation expand-
ing or contracting. The inclusion of a tuple is achieved
by the built-in polymorphic function include :: (a—[a})
—a—Bool which takes a selector and a tuple and
returns False if the tuple is already present in rela-
tion, otherwise it returns True and updates rela-~
tion by side effect. The new tuple is inserted into an
arbitrary position. However, this position remains fixed
and so the updated selector will be deterministic, The
exclusion of tuples is accomplished similarly by the
built-in function exclude :: (a—{a})-»a—Bool which
takes as arguments a selector and a search pattern,
deletes the tuples matching the pattern from rela-
tion, and returns True or False according to whether
any tuples have been deleted. If no tuples remain in
relation, the scleclor is left with an unconstrained
type and can be redefined as a completely new function.

Consider, for example, the following selectors which
record the class of Person objects, and the personal
details of each person (address and date of birth),
respectively :

selector people :: Person — [Person)

selector pdetails 7 {Person,Str,{Num,Num,Num}}

- [ {Person,Str, {Num,Num,Num} }]
Assuming that Jim, Sue and Bob are constructors of
type Person, the following queries all return True :
include people Jim
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include people Sue

include people Bob

include pdetails {Jim,"10 Sunset Bvd",{12,10,55})

include pdetails {Sue,"10 Sunset Bvd",(25,10,23})

include pdetails {Bob,"10 Sunset Bvd",(18,8,25} )
and the selector definitions which result are as follows,
up to a permutation of the elements in their associated
relations :

people x = [y | y « relation; matches x y)

where relation = [Bob,Sue,Jim]

pdetails x = [y | y « relation; matches x y]
where relation =
{{Jim,"10 Sunset Bvd",{12,10,55} ),
{Sue,"10 Sunset Bvd",{25,10,23}},
{Bob,"10 Sunset Bvd",{18,8,25} }1
The following query then returns False since it is look-
ing to delete the details of everyone born in September
and there are no tuples which match :
exclude pdetails {Any,Any,{Any9,Any})
Finally, the following queries return the lists [Bob, Sue,
Jim], { ] and ([{Jim, "10 Sunset Bvd", {12,10,55)},
{Sue, "10 Sunset Bvd", {25,10,23} }], respectively :
people Any
people Fred
pdetails {Any,Any,{Any,10,Any} )

2.4 Semantics of Query Evaluation

PFL queries are evaluated by the standard technique of
graph reduction [Pey87] employed by most functional
programming languages. Essentially, this repeatedly
selects and rewrites applications of functions or con-
structors until no further simplification of the query is
possible. We diverge somewhat from implementations
of other functional languages since our functions are
stored and retrieved as individual equations, rather than
as whole definitions, and since we incorporate selectors.

So we outline PFL’s evaluation semantics below.

In PFL, an application of an n-ary function or con-
structor to n arguments, f a, ... a,, is evaluated as fol-
lows :

o If f is a constructor, the arguments a, ... a, are recur-
sively evaluated in turn, to the expressions a’y ...a’,
say, and the application is replaced by fa’y .. a",.

o If fis a built-in function, the built-in code for f is
executed (this may call for the evaluation of one or
more of the a;) and the application is replaced by the
result.

o If f is a selector, the application is of the form f a;.
In this case, a, is evaluated, to a’; say, and the
application is replaced by a list of the tuples from the
relation associated with f which matcha’,.

¢ Finally, if f is any other function, the application is
replaced by the right hand side of an equation, after
any variables in the equation have been substituted
by the corresponding arguments. The equation is
selected by applying a left-to-right, best-fit pattem-
matching algorithm {Pou90] : the equations defining
the function f are compared with each of the argu-
ments a,,...,a, and at each a; only those equations
which contain the most specific match for this argu-
ment are considered for a;,;. This algorithm
guarantees that at most one equation is left after a,
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has been matched. There may of course be no equa-
tions left, in which case the query is aborted with an
error message. We describe the implementation of
this pattern-matching algorithm in Section 4.
As 10 the order in which function applications are
selected for rewriting, we chose the left-most, outer-
most application each time. This is called normal order
reduction [Pey87] and has the desirable effect of delay-
ing the evaluation of function arguments until such time
as their value needs to be known, either to match
against a function definition or a relation, or to compute
a built-in function.

2.5 Making Inferences from Selectors

Sclectors can be used just as any other function when
specifying equations and queries. In particular, func-
tions can be written which make inferences from selec-
tors. To illustrate, we consider a "parts” database which
contains two selectors recording (a) base parts and their
unit cost, and (b) composite parts and their immediate
sub-parts, and the quantity thereof:

selector base :: {Part,Num} - [{Part,Num}]

selector composite :: {Part,Part,Num}

- {{Part,Part, Num}]

In Figure 1 below we give some example functions for
this database. In these examples, we assume the usual
head and tail list functions and also the following
functions for projecting into tuples :

first_of two {x.y} =X
second of two  [x,y} =y
first_of three (x,y,2} =X
second_of three (x,y,z) =Y.

The first function in Figure 1 is a recursive function
cost::Part~sNum which computes the cost of any part :
if x 1s a base part ils cost is obtained from the base
selector, otherwise its cost is obtained by recursively
summing the costs of its immediate sub-parts.

The second function in  Figure 1 s
bom::{ {Part,Part, Num}] which returns a bill of materi-
als i.e. it compules the transitive closure of the com-
posite selector, crealing at most one entry for each
super-part/sub-part pair, and appends the base parts to
the result. We note the use of the keyword where (0
introduce some local equations in this definition. The
functions defined by these equations are accessible only
by each other and by the main equation, This facility to
hide auxiliary functions is a useful modularisation tech-
nique supported by most functional languages.

In the definition of bom, close starts off the tran-
sitive closure computation; tc repeatedly infers new
tuples and adds them to the relation total until no
more new tuples can be inferred; infer performs one
inference step by joining the last increment to total
with composite; add merges the new tuples into
the total relalion; and finally, add_one merges a
single tuple into total making sure that there is only
one entry for each super-part/sub-part pair.

The third equation in Figure 1 defines the function
sub_parts:: {Part,Part) [ {Part,Part}] which computes
an intentional relation containing the transitive closure
of the sub-parts relationship (ignoring quantities). As
in logic-based languages, sub_parts is "fully inver-
tible" in that it can be used to find
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costx=if  (base {x,Any} ==

{sum [(cost sp) * q

bom =
where
close start = tc start start;
tc [] total = total;

add_one[] {p.sp.q) = I[{p.sp.q}1;

sub_parts (x,y} = append
p.sp2) |

[{
i
sub_parts {Any,y} = append Hp,sp] |

Figure 1 :

)

H {p,sp.q} « composite (x,Any,Any}])
(second_of two(head(base {x,Any))))

append (close (composite Any)) [(p,None,None) |

tc incr total = tc (infer incr) (add total (infer incr));
{p.sp.q} ¢ incr; {p2,sp2,q2) < composite {sp,Any,Any}];

inferincr = [{p,sp2,q* q2} |
add total { ] = total;
add total (x:y) = add (add_one total x) y;

add_one ({p,sp.q}:y) (p2.sp2.q2}=if ((p == p2) and (sp == sp2))
({p.sp.q+q2}:y)
({p.sp.q}:(add_oney (p2,5p2,q2}))
p.sp) | (p.sp.q) « composite {x,y,Any}]
{p.sp,q} « composite {x,Any,Any};{p2,sp2} « sub_parts {sp,y}]
(p.sp.q) < composite {Any,y,Any}]
p2.sp} | (p.spa) « composite {Any,y,Any}; {p2,sp2} ¢« sub_parts {Any,p}]

Examples for Section 2.5

{p,c) « base_part Any]

(a)the transitive closure of the sub-parts relationship :
sub_parts (Any,Any)

(b)the sub-parts of a given part p :
map (second_of_two) (sub_parts {p,Any})

(c)the super-parts of a given partq :

map (first_of_two) (sub_parts {Any,q})
(d)whether a part p is a super-part of a part q :

sub_parts (p.q} !=[1].

Of course, the query sub_parts {Any,q} in(c)is
unnecessarily expensive because it results in the
enumeration of composite {Any,Any,Any). A
better definition of sub_parts would also contain the last
equation in Figure 1 which closes composite "left-
wards" rather than "right-wards". The left hand side of
this equation is a more specific match for the query in
case (c), and also in case (a) incidentally, and so this
definition will be selected when evaluating these
queries.

We can draw some important conclusions from the
above examples. Firstly, PFL shares the advantages of
functional programming languages with respect to
deterministic computations such cost and bom.
Secondly, PFL is more expressive than other functional
languages since it supports selectors and “invertible"
functions over them. We examine the expressiveness of
this class of PFL functions in Section 3 below. Lastly,
since PFL is list-based rather than set-based, the queries
in (a) - (d) may return lists which contain duplicate ele-
ments. In general, duplicates can be removed by wrap-
ping the make_set function round list-valued expres-
sions :

make set[]= []

make_set (hit) = hify | y « (make sett); y !=h)

2.6

Since bulk data is stored using selectors, it is important
that PFL provide tools to maintain the semantic
integrity of this data. In fact, our support of the
include and exclude operations as built-in func-
tions means that they can be be embedded within PFL
expressions and can be used to write functions which
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serve as update procedures. The query evaluation
semantics of 2.4 determine the order in which
include and exclude are evaluated and thus
sequence their update effects. PFL update procedures
can enforce a wide varicty of integrity constraints,
including transition, uniqueness and cardinality con-
straints. We illustrate in Figure 2 three update pro-
cedures for the composite selector of 2.5. These
procedures all have type {Part,Part,Num}-s[Bool]. We
note that these update procedures rely on the elements
of lists being evaluated from left to right, in accordance
with the semantics of constructor applications in 2.4,
add_subpart ensures that there is only one tuple for
each part/sub-part pair; update_quantity checks
that the given part/sub-part pair pair exists and updates
its quantity field; and increment_ quantity
checks that the increment passed to it is positive and
that a single tuple remains for the given part/sub-part
pair,

We examine the expressiveness of PFL's updates
further in Section 3 below.

3. Expressiveness Issues

3.1 Data Modelling

The ability to declare new types and populate them with
new constants means that object types and object
identifiers are inherent in PFL. Furthermore, arbitrary
composite objects, including recursive objects, can be
modelled. Selectors can be used to represent both
nested object values and n-ary relationships. Functional
properties of objects can be defined by means of func-
tions defined by one or more equations. Finally, default
rules can be formulated as equations which are overid-
den by more specific equations.

3.2 Computation

PFL is computationally complete by virtue of the fact
that functional programming is so. Moreover, a
significant class of PFL. functions is the class of inverti-
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add_subpart {p,sp,q) =
update_quantity {p,sp,q} =
increment_quantity {p,sp,i} =

where

Figure 2 .

if ((composite {p,sp,Any)) == [ ]) [include composite {p,sp,q)] [False]
if ((composite {p,sp,Any}) !=[]) [exclude composite {p,sp,Any},include composite {p,sp,q)] [False]
if (((composite {p,sp,Any}) !={]) and (i > 0)) (update {p,sp,i} (old_q p sp)) [False]

old_qp sp = third_of_three(head(composite {p,sp,Any}));
update {p.sp.i} q = [exclude composite (p,sp,q), include composite {p,sp,q+i)]

Examples for Section 2.6

ble functions i.e. the class of functions which represent
relations. It is useful to compare this sub-language of
PFL with Datalog. Clearly, any Datalog EDB predicate
can be represented by a PFL selector. Also, we give
below a scheme for translating a Datalog rule defining
an IDB predicate to a PFL equation defining an inverti-
ble function. We then extend this scheme to cater for
negative literals. Finally, we indicate when an IDB
predicate defined by a set of Datalog rules can be simu-
lated by a single PFL function (up to duplicate elimina-
tion),

We consider first an IDB predicate, p, which is
defined by a Datalog rule

p@ €« ql@-l)’ oo qn(—n)
where each q; is an EDB, IDB or built-in predicate.
Without loss of generality we can assume that X con-
tains only distinct variables, and we also make the usual
assumption that any variables appearing as arguments
to a built-in predicate will be instantiated by preceding
EDB or IDB predicates [U1I88]. We can express the
above rule by a PFL equation of the form

p(X)=  [(X) | wbei [Any); ...; W « [Any];

13 eney n
where the w; are the variables of the rule which do not
appear in the head, and each Q; is the generator {¥;)
« q; (y;) if q; is an EDB or IDB predicate, or the
boolean expression q; {V;} if q; is a built-in predicate.
Thus, for example, the Datalog rules

anc(X,Y) « par(X,Z), anc(Z,Y)

p X)Y) « r(X,W), s(W,"u"), t("u",Y), < (W,Y)
are expressed by the following PFL equations :

anc {x,y} = [{x.y) | z« [Any]; (x,2) & par {x,2);

{zy) « anc (z,y}]

[{x,y} | we [Anyl; (x,w] &1 (x,w};
{w,"u"} & s (w,"u");

("u"y} et ("u"y); w<y]

We note that the repeated occurrences of variables in
these equations imply no ambiguity of meaning since,
by the semantics of list abstractions, variable bindings
are inherited initially from the left hand side of the
equation or from the first generator with the variable in
its head, and are then overidden by subsequent
occurrences in the heads of generators. We also nole
that the anc function may return duplicate elements,
unlike the anc IDB predicate.

We now extend our translation scheme to Datalog
rules with negative literals in their body, on the assump-
tion that any variable appearing in a negative literal also
appears in a positive literal and that positive literals pre-
cede negative literals in the body. A negative litcral,
-q;(¥;), translates then into the following expression :

p{xy} =
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@i (¥i))==11
For example, the Datalog rules

flies(X) « bird(X), —ostrich(X)

P(X,Y) « r(X,W), s(W,"u"), =t("u",X)
are expressed by the following PFL. equations :

flies (x} = [{x)}{x)e«bird {x); ostrich {x} == []]

p(xy} = [{xy)|we[Any]; {x,w}er {x,w};

{w,"u"}e=s {w,"u"}; t {"u",x} == []]

We observe that PFL equations corresponding 1o
non-stratified Datalog rules may give rise to non-
lerminating computations (c.f, multiple models in Data-
log), for example the PFL equations

ostrich{x}= [{x} | {x}e=bird {x); flies {x} == []]

flies {x} = [{x}|{x)«bird {x}; ostrich {x) == ]
corresponding to

ostrich(x) e bird(x), —flies(x)

flies(x) ¢ bird(x), —ostrich(x)

Thus, our translation scheme is suitable only for
stratified Datalog rules,

Finally, we extend our translation scheme to IDB
predicates which are defined by a number of Datalog
rules. Without loss of generality, we can assume that
these rules are rectified [UlI88] i.e. all have the same
head. We first use the above translation scheme to
obtain one PFL equation per rule, ending up with a set
ol PFL equations with the same left hand side. These
equations are then combined into a single equation by
appending the lists on their right hand side. For exam-
ple, the Datalog rules

anc(X,Y) « par(X,Y)

anc(X,Y) « anc(X,Z), anc(Z,Y)
can be represented by the single PFL equation

anc {x,y} =append [{x,y) | (x,y} &« par {x,y)]

[({xy) | 2 [Any); {x,z) « anc {x,z};

(z,y) « anc {z,y}]
We can make a number of observations here. Firstly,
we note the syntactic similarity between the Datalog
and PFL definitions. Secondly, we note that the order
in which the lists are appended on the right hand side of
the PFL equation is significant : we know from the
definition of append in Section 1 and from the
semantics of query evaluation in 2.4 that the first argu-
ment 10 append will be evaluated before the second
argument and that therefore the first argument
represents the base case of the recursion. Thus, the
alternative equation

anc {x,y} =append [(x,y) | z & [Any);

{x,z} « anc {x,2}; {z,y} & anc {z,y}]
({xy) | (xy) « par (x,y)]
would always yield a non-terminating computation. A
third observation immediately follows : PFL can simu-
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late only IDB predicates whose defining rules can be
fired in a pre-determined sequence. This limitation is
analogous to Prolog’s top-to-bottom scanning of rules.
We conjecture that if PFL were extended with a non-
deterministic function or [Hen80] which arbitrarily
returns one of a number of alternative expressions, it
could simulate all stratified Datalog programs.

3.3 Updates

PFL’s bulk data is stored in selectors, so thus far we
have concentrated on the update of selectors in our
design of PFL. We support the include and
exclude operations as built-in functions which can be
embedded within PFL expressions whereas PFL’s other
update operations (declare identifier, insert or delete
equation) are not so supported. Thus, in our discussion
below we assume a fixed set of types, constants, func-
tions and selectors, and we allow only selectors to be
updated.

We define a database schema to be a set of selector
names, and an instance of a database schema to be a
mapping of each selector name to a definition, Given a
database schema S, we define an updute 10 be a partial
recursive function from I(S) to I(S), where I(S) is the
set of all possible instances of S. It is easy to see that
any such update can be expressed in PFL :

Let s, ... s, be the relation names in S. PFL is com-
putationally complete so given any update, U, a func-
tion, f, can be written which takes the list [s,, ... s,] and
(a)retrieves the old relation associated with each selec-

tor,

(b)computes the new relations to be associated with the
selectors as a list of tuples,
(c)returns the list (s, ,0ld-relation, ,new-relation, }, ...,

{s,.old-relation ,,new-relation, }].

The function f is invoked from a second function g
which effects the update :

g sel-list =

[ {map (exclude s) 0, map (include s) n) |
{s,0,n} « f sel-list]

We observe that, for simplicity, we have not
included the requirement for C-genericity in our
definition of an update above, unlike the treatment in
[Abi88b] say. However, our definition could be
tightened up accordingly.

4. Implementation

PFL has been implemented in C and runs on a variety
of Unix platforms. PFL’s parser translates each input
statement into a graph in main memory before it is
evaluated, in the case of a query, or stored or deleted
otherwise. As we stated in 2.4, PFL’s evaluator uses
the standard technique of graph reduction to evaluate
queries and details of this can be found in [Pey87]. So
in this section we concentrate on the storage of func-
tions, meta data, and selectors. We also describe how
extra "dependency” information is maintained for use
during type checking and deletions.

PFL's functions are stored in a B* tree [Com791.
This stores records of three fields, of which the first two
fields are key fields. Conceptually, the equations
defining each function are merged into a tree, after uni-
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formly renaming the variables of each equation to v0,
vl, v2 ... in the order of their appearance. These trees
are themselves merged into one equations tree which
represents all equations. For example, the equations :
mapf(] =[]
map f (xiy) = (fx):(mapfy)
are stored as shown below, where f is renamed to v0, x
tovl,andytov2:

t]

~===-n2
map v0 /
root------ nf=------ nl
\
----n3----n4--~-nj5
: vl v2

Here, root is the root of the equations tree and each
n; is a unique internal identifier. The leaf nodes n2 and
nS identify the right hand sides of the equations (see
below). Each arc n—"""“m in the equations tree is
stored as one record <n,label,m> in the B tree,

When evaluating a function application, the equa-
tions tree is raversed from left to right and at each node
the arc sclected is the most specific maich for the
current argument, if any, For example, when evaluat-
ing:
map ((+) 1) [)
the rhs identified by n2 is selected, with vO bound to
((+) 1), and when evaluating:

map ((+) 1) [1,2,3]
the rhs identified by n5S is selected, with vO bound to
((+) 1), vl to 1 and v2 to [2,3]. With respect to the
right hand sides of equations, these are stored as a
number of records of the form <leaf-node, count,
instruction>, where instruction recreates a part of
the right hand side and count indicates the sequenc-
ing of these instructions. The right hand side is thus
reconstructed as a main-memory graph by retrieving all
records of the form <leaf-node*,*>, ordering these
records by their second component, and executing their
third components in that order.

The types of all identifiers (whether constructors,
selectors, or other functions) are stored identically to
equations, in this case in a declarations tree. This tree
is only one arc deep. Each arc is labelled with an
identifier and each right hand side stores the type of that
identifier. These types are retrieved in the same way as
equation right hand sides.

The relations associated with selectors are stored in a
separate extendible hashing file [Enb88]. A key is cal-
culated for each tuple which identifies the page in
which that tuple is to be stored. The key is calculated
by hashing the atomic sub-components of the tuple to
integer values and splicing the results. For example,
the key for the tuple {Jim,10,Bob} is calculated as fol-
lows, under the assumption that an integer comprises 32
bits :

hash (Jim) = X1 oo X132
hash(10) = Y1 Y12
hash (Bob) = Zy Z3p
key ({Jim, 10,Bob}) = x1yi2y - XnYliy
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At any point in time, the hash file will comprise 2
pages, for some i, and the page in which a tuple is
stored is identified by the first i bits of its key. For
example, if i = 4 then the tuple {Jim,10, Bob] is stored
in page X,y 1z;X,.

When retrieving tuples, the search pattern may
include the wildcard value Any. In this case, the search
pattern is hashed to a set of keys which identify a set of
pages to be searched. The specified components of the
search pattern are hashed to integers, as before, but now
a key is generated for every possible integer to which
the unspecified components might have hashed. For
example, the keys identified by the search pattern
{Jim,Any,Bob} are found as follows :

hash(Jim) = X1 X1

hash (Bob) = z, Z3

keys ({Jim, Any,Bob}) = x,0z, X12024
X1071 X3217,32
X1z, X3 liy

Thus, if i = 4, two pages are searched, x,0z;x, and
x;lzyx,.

Our dependency information is also maintained in
the hash file and records the appearance of user-
declared identifiers (functions and constructors) in
declarations, equations and relations.

With respect to functions, for each equation e which
defines a function f, we store a record of the form
<f,defined-by,e>, and for each equation e which refer-
ences a function f, we store a record of the form
<f referenced-by,e>. For example, the second equation
for map gives rise to two dependency records,
<map,defined-by,n5> and <map,referenced-by,nsS>.
We note that dependency records do not conflict with
selector tuples in the hash file since the former contain
the internal  identifiers defined-by or
referenced~by, and the latter do not.

Whenever the insertion or deletion of an equation for
a function f causes the type of f to change, the equations
which reference f are located, and the types of the func-
tions which they define are reinferred. This process
may cause further cascading of type inference, bul will
in any case always terminate (since the database con-
tains only a finite number of functions and only sup-
ports finite types). In our expericnce, little cascading
occurs in practice. We note that since sclectors are first
order, and since tuples are fully evaluated before being
inserted into selectors, no functions appear in selectors
and so selectors do not participate in such cascades.

As with functions, reference information is also
maintained in the hash file which records the appear-
ance of constructors in equations, rclations, and
declarations (for metalevel constructors i.e. types). For
each equation or declaration e which references a con-
structor ¢, a record of the form <c,referenced-by,e> is
stored, and for each selector s which references a con-
structor ¢, a record of the form <c referenced-
by,s,count>. In this second record, the count field is
updated according to tuple insertions and deletions. A
constructor can be deleted only if it appears in no
dependency records. An attempt to delete a constructor
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which is currently "in use" causes a message lo be
displayed detailing the equations and selectors which
reference that constructor.

5.  Conclusions

In this paper we have inroduced a persistent functional
language called PFL which adopts a functional as
opposed to logic-based approach (o deductive data-
bases. The key contributions of the language are its
adaptation of functional programming to the needs of
deductive databases, ils incremental updates and type
checking, and its support of selectors.

PFL has all the expressiveness of a functional pro-
gramming language : higher-order functions, static type
checking, lazy evaluation, and support for user-defined
types and constants. However, PFL also supports
extensionally and intentionally defined relations.
Despite this increased expressiveness, querying remains
purely functional, unless the update functions
in¢lude and exclude are invoked.

Our approach to reconciling the advantages of deter-
ministic computations on the one hand and relational
manipulation of data on the other, is completely in con-
trast to the alternative approach of extending Datalog
with rewrite rules for function symbols, in [Gru89] for
example. Our aim in this paper has been o argue the
case for our functional approach which we believe is at
least as promising as the Datalog-based alternative.

There are of course aspects of PFL which need
further attention. For a starl, our update functions
operate by side effect - of necessity since they acl at the
object level - which makes them quite cumbersome to
specify. An alternative, possibly more atlractive,
approach would be to provide a purely functional
update language at the meta level. Secondly, we do not
at the moment support system-generated identifiers so
the user has to think of a new name for every new
object he introduces : a generate new built-in
function could easily be provided for this purpose. This
function would also be a useful aid in database restruc-
turing, c.f. the generation of object identifiers in
[Abi89], and its invocation could be functionally deter-
mined, c.f. the use of function symbols for this purposc
in (Kif89]. Thirdly, cncoding semantic integrity con-
straints within update methods has the disadvantage
that it is possible 1o specify mutually inconsistent con-
straints, so we arc currently exploring the alternative of
global semantic integrity constraints. Lastly, we are
also considering equipping PFL with a higher-level
"object-oriented” interface.
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