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Abstract 
We introduce a persistent functional language called 
PFL which adapts functional programming to the 
area of deductive databases, much as logic-based 
deductive database languages adapt logic program- 
ming. PFL inherits the advantages of functional pro- 
gramming languages, including higher-order func- 
tions, static type checking, lazy evaluation, and sup- 
port for user-defined types and constants. However, 
PFL allows functions to be defined incrementally by 
the insertion and deletion of equations, and stores 
these equations in the database. PFL also supports a 
class of extensionally defined updateable functions 
called selectors which allow the storage of arbitrarily 
nested values. Further functions can be written over 
selectors which act as derivation rules and which are 
“invertible” in the sense that they simulate predi- 
cates. We begin the paper by motivating the 
development of PFL. We review the respective 
advantages of functional and logic programming, 
particularly with respect to database modelling and 
manipulation, and we compare PFL with other func- 
tional database languages. We describe the salient 
features of the language and examine its expressive- 
ness with respect to data modelling, computation and 
updates. We also describe the implementation of 
PFL concentrating in particular on the storage and 
retrieval of its persistent data. 

I. Introduction 
Deductive databases have been the focus of much 
research during the past decade or so. Broadly speak- 
ing, deductive databases couple a conventional database 
with a knowledge base, the knowledge base consisting 
of a set of rules and an inference engine. Gcncrally, 
deductive database researchers have assumed that rules 
are expressed as logic formulae and that the inference 
engine is a tirst order logic theorem prover [Gal84, 
Gra88a, Cer90, Chi90, Hor901. More recently, the lim- 
itations of this approach with respect to both data 
modelling and computation have led to a number of 
extensions to first order logic being proposed, including 
sets [Abi88a], types and object identifiers [Abi89, 
DBP89], higher-order syntactic features [Che89] and 
functions [Gru89]. None the less, knowledge represen- 
tation techniques other than first order logic are possi- 
ble, for example frames or production rules, and we 
believe they deserve further consideration as candidate 
paradigms for deductive databases. In particular we are 
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investigating the use of rules expressed as equations 
and an inference engine which is a functional evaluuror 
[Pey87]. Our knowledge base can thus be viewed as a, 
production rule system with goal-driven problem solv- 
ing. 

We describe in this paper a functional language 
called PFL which adapts functional programming to the 
area of deductive databases, much as logic-based 
deductive database languages adapt logic programming. 
Thus, PFL has features in common both with logic- 
based deductive database languages, and with func- 
tional programming languages. 

In common with logic-based deductive database 
languages, PFL supports 
l the persistence of both factual and procedural infor- 

mation, 
l recursive data structures such as trees and graphs, 
l the definition and storage of rules which enable Ihc 

derivation of furlher information from f’actual data, 
In addition, PFL supports default rules, which allow the 
graceful handling of missing and incomplete informa- 
tion, and update procedures which maintain the seman- 
tic integrity of the factual data. 

In common with functional programming languages, 
PFL supports higher-order functions and user-defined 
types. However, unlike conventional functional 
languages, PFL allows functions to be defined incre- 
mentally by the insertion and deletion of equations, and 
maintains these equations in a repository on secondary 
storage. Thus, much larger volumes of information can 
be handled while achieving comparable query perfor- 
mance by caching the most frequently used cquations 
([Sma90] gives performance figures). 

PFL supersedes functional query languages such as 
FQL [Bun821 and GENESIS [Bat881 in which only 
cxtcnsionally dcIined functions can be stored. PFL also 
improves on the implementations of DAPLEX [Smi83, 
Ku186, Gra88b] since these have extended the func- 
tional data model [Shi81] with non-functional computa- 
tion, thereby introducing an impedance mismatch, 
whereas in PFL all querying is purely functional. Also, 
languages based on the functional data model can 
represent only binary relationships (by single-argument 
f’un&ons and their inverses) and an n-ary relationship 
must be modelled by an entity type participating in n 
binary relationships. Reconstructing the n-ary relation- 
ship for the purposes of querying requires these binary 
relationships to be joined and can be prohibitively 
expensive. In contrast, PFL supports n-ary rclation- 
ships directly. 
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A forerunner of PFL was the functional database 
language FDL [pou90] which integrates functional pro- 
gramming with the functional data model. PFL 
improves upon FDL by supporting nary relations 
rather than just binary ones. PFL also infers the types 
of functions incrementally in the face of equation inscr- 
lions and deletions whereas in FDL function types are 
declared by the user and are static. Finally, PFL’s 
query evaluator has several optimisations which give 
PFL enhanced query performance, comparable to that 
of contemporary functional programming languages. 

A number of other database systems have also incor- 
porated functions [Ban87, Day87, Bee88, Hei but 
they have all assumed that intentionally defined func- 
tions are coded in some external programming language 
rather than stored in the database. Finally, several data- 
base programming languages do support the persistence 
of functions on secondary storage [Alb85, Car85, 
Mor89]. However, unlike PFL, these languages do not 
allow the incremental update of functions, only their 
deletion and complete redefinition. 

Since a key feature of PFL is its foundation on func- 
tional as opposed to logic programming, we conclude 
this introductory section by reviewing the advantages of 
each paradigm, particularly with respect to database 
modelling and manipulation. 

The main advantage of logic programming is that, 
unlike functions, predicates can (at least theoretically) 
be used with any number of their arguments uninstan- 
tiated. This makes logic programs more versatile than 
functional ones. AJso, in the context of deductive data- 
bases, facts and derivation rules are often expressed 
more naturally in terms of single predicates than in 
terms of functions and their inverses. Despite this fact, 
our premise is that the advantages of functional pro- 
gramming which we outline below make it worth 
evaluating as a foundation for deductive databases. 
Also, as we will see in Sections 2 and 3, PFL supports a 
class of extensionally defined updatable functions 
which simulate extensional predicates and which go 
much of the way to restoring the flexibility of relational 
programming. 

The most obvious advantage of functional program- 
ming is that it is higher order and so all expressions are 
first class objects. Higher order functions can be writ- 
ten which “abstract out” recursion pattcms over recur- 
sive data structures. These functions can then bc used 
to write more concise programs which do not include 
explicit recursion. Consider, for example, the higher- 
order functions map and fold defined by the follow- 
ing equations’ : 

mapfil =[I 
map f (x:y) = (f x):(map f y) 
fold fend [ ] = end 
fold fend (x:y) = f x (fold fend y) 

map and fold can be used to define further functions 
which increment a list of numbers by a constant, sum a 
list of numbers, append two lists, concatenate a list of 
lists, test whether a list of booleans contains at least one 
True value, and test for the membership of an element 
in a list’ : 

incr c x = map ((+) c) x 
sum x = fold (+) 0 x 
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append x y = fold (:) y x 
concat x = fold (append) [ ] x 
or list x 
member x c 

= fold (or) False x 
= or-list (map ((==) c) x) 

A very useful high-level query construct supported 
by most functional languages is the list abstrucrion 
Pcy871, Ie I 41; q2; . . . ;q,], which may be read as “the 
list of values e such that ql and q2 and .., and qn”, 
Each qi may be either a generator pi c lit read as “the 
pattern pi is matched against each element in the list Ii 
in turn”, or a boolean-valued expression which must be 
satisfied. List abstractions are only syntactic sugar and 
can be translated into a series of higher-order function 
applications (see IPey87] for details). For example, the 
expression 

[salary x I x c employees; (age x) > 501 
is equivalent to the expression 

map salary (filter (hx.((age x) > 50)) employees) 
A second feature of functional languages is their use 

of pattern-matching rather than unification for parame- 
ter passing. Deterministic computations can thus be 
expressed more succinctly since there is no need to 
communicate intermediate results via common vari- 
ablcs. Also, the dctcrministic semantics of functional 
evaluation can be exploited for the representation of 
default rules. For example, given the following func- 
tion : 

tax code Jim = “33tjA” 
tax-code x = “307L” 

the query tax-code Sue evaluates to “307L” 
while the query tax-code Jim evaluates to 
“336A”. In contrast, first order logic is monotonic and 
so default knowledge must be represented extra- 
logically in logic-based languages. 

Lastly, most modem functional languages are typed. 
They provide a set of built-in types, and facilities for 
the definition of new types and constants, Any expres- 
sion has a unique type which can be inferred at 
compile-time by a unification-based type checker 
[Car84], provided the type is finite. Such a type 
checker is especially useful in a database environment 
since it can be used both as a special-purpose integrity 
enforcer (equations are only inserted if they are 
correctly typed) and also to avoid running potentially 
expensive queries which are incorrectly typed and 
which may ultimately yield no useful information. Car- 
dclli (Car88aJ dcscribcs how type checking can be 
extended to support multiple inheritance of functions 
via type inclusion, and his work forms a promising 
foundation for integrating functional and object- 
oriented database languages. In fairness, we note that a 
number of type checking techniques have also been 
proposed for logic programming languages, for exam- 
ple [Myc84, Xu89], although these have yet to find 
their way into working systems. 

’ We use PFL’s syntax in all our examples of functions. 
In this syntax, [ ] is an empty list, (x:y) is a list with 
head x and tail y, = is used for definitions and == for 
equality , Whenever binary infix operators such as +, : 
and == need to be used prefix, they are enclosed in 
round brackets. 
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The layout of the rest of this paper is as follows. In 
Section 2 we introduce PFL. We describe its type sys- 
tem and its support of user-defined types and constants. 
We discuss the incremental update and type-checking 
of function definitions. We introduce a class of exten- 
sionally defined updateable functions called selectors 
which are “invertible” in the sense that they simulate 
predicates. We show how functions can be written 
which draw inferences from selectors and which are 
also invertible. Finally, we discuss the update of selec- 
tors. In Section 3 we address PFL’s expressiveness 
with respect to data modelling, computation, and 
updates. In particular, in 3.2 we compare PFL’s class 
of invertible functions with Datalog and we show how 
any stratified Datalog IDB predicate can be simulated 
by a PFL function, subject to the proviso that there 
exists a pre-determined order of firing the rules which 
define the predicate. In Section 4 we discuss PFL’s 
implementation, showing how all of PFL’s persistent 
data is stored in a database consisting of two files, a B+ 
tree and an extendible hash file. We conclude in Set- 
tion 5 with a summary of our contributions and dircc- 
tions of further research. 

2. Overview of PFL 
PFL is a polymorphic, statically typed, persistent func- 
tional language. It provides a set of built-in types, and 
facilities for the definition of new types and constants. 
Its functions are defined incrementally by the ins&on 
and deletion of equations. The types of functions are 
inferred incrementally in the face of such updales. 
PFL’s bulk data is stored in a class of functions which 
we call selector functions or selectors. Selectors store 
and return lists of values. Although these values may 
be arbitrarily nested, by convention we call them 
“tuples”. Similarly, we call the list of values stored in a 
selector a “relation”. As we will see below, selectors go 
much of the way to providing the flexibility of rela- 
tional programming. 

Selectors are updated by two built-in functions, 
include and exclude, which insert and delete 
tuples into their associated relations. Both functions 
operate by side effect although between updates selec- 
tors remain deterministic. Hence, queries which do not 
invoke include or exclude are purely functional 
and have no side effects. Conversely, queries which do 
invoke include or exclude will have side effects 
and so will tend to be written in a procedural style. 

We describe selectors in greater detail in 2.3. In 2.4 
we discuss PFL’s evaluation semantics. In 2.5 we dis- 
cuss functions which draw inferences from selectors 
and in 2.6 we discuss update procedures. 

2.1 PFL’s Type System 

PFL’s type system comprises three layers c.f. [Car88bl: 
l The metalevel type Type which is the set of all 

types. 
l The object-level types, both built-in and user- 

declared. These are also regarded as melalevel 
values of type Type. 

l The values of each object-level type. 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

493 

The built-in types are Str, Num and Char which are ini- 
tially populated by strings, integers and characters. 
New constants, whether object-level or metalevel, are 
declared using the command : 

declare <conslarD :: <type> 
These constants are termed constructor funcrions or 
conswuclors in functional programming parlance 
[Pey87] since they construct values of the indicated 
type. For example, we can declare person, boolean, list, 
and product types by the following statements2 : 

declare Person :: Type 
declare Boo1 :: Type 
declare List :: a+Type 
declare Prod1 :: a+Type 
declare Prod2 :: a-+b+Type 
declare Prod3 :: a+b+c-+Type . . . 

and we can declare (object-level) constructors for these 
types2: 

declare Jim :: Person 
declare Sue :: Person 
declare True :: Boo1 
declare False :: Boo1 
declare Nil :: List a 
declare Cons :: a+List a)-+(List a) 
declare Single :: a+(Prodl a) 
declare Pair :: a+b+(Prod2 a b) 
declare Triple :: a+b+-+(Prod3 a b c) . . . 

Thus, Person is a type, Prod2 s t is a type, for any types 
s and t, Jim is a value of type Person, and Pair u v is a 
value of tyw Prod2 s t, where u is a value of type s and 
v is a value of type t. Zero-argument types such as Per- 
son above can be viewed as object types and construc- 
tors such as Jim and Sue above can be viewed as object 
identifiers. It is also possible to declare constructors for 
use as null values. For example, the following con- 
structors can be used in the place of any value : 

declare Any :: a 
declare None :: a 
New constructors can be declared at any time during 

the lifetime of a database. Only one de&ration can 
exist for a given constructor, although constructors can 
be deleted and re-declared. A constructor can only be 
deleted if there are no references to it (we describe how 
this is verified in Section 4). 

2.2 Functions 

Functions are defined by means of equations which are 
inserted using the syntax 

define clhs> = cexpr> 
and deleted using the syntax 

delete clhs> 
Equations have unique left hand sides so if the right 
hand side of an equation needs to be modified the equa- 
tion must be deleted and re-inserted. For example, the 
following statements result in the expected definition 
for the 3-ary function if : 

2 In PFL, identifiers starting with an uppercase letter are 
constructors (either metalevel or object-level) and 
identifieis starting with a lowercase letter are variables 
(again. either metalevel or object-level). 
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define ifTruexy=x 
define if False x y = x 
delete if False x y 
define if False x y = y 
Unlike constructors, functions do not have to be 

declared before they are used : if no equations exist for 
an identifier it is assumed to have an unconstrained 
type. Thus, programs can be developed “top-down” by 
using identifiers before they are defined. However, the 
user is free to predeclare the type of a function if he so 
wishes and this acts as an extra aid to writing correct 
programs. 

Whenever a new equation, e, is specified for a func- 
tion, f, the type checker infers a type, z(e), from e for f. 
The type T(e) is unified with the existing type for f, x(f), 
If this unification fails, the equation is rejected. Other- 
wise if 7(f) has become more specitic, a message to that 
effect is displayed and any equations which contain fin 
their right hand side are also type checked again (we 
explain in Section 4 how these equations are located). 
A cascade of type checking is thus set off. Such a cas- 
cade always terminates since PFL functions have finite 
types and a finite type can only become more specific a 
finite number of times. For example, given the built-in 
function + of type Num+Num+Num and the hitherto 
unused identifiers incr and map, the statement 

define incr c = map ((+) c) 
gives the message incr : :Num-+a. Subsequently, 
the statement 

define mapf[]=[] 
gives the message 

map :: a+[bl+[cl 
incr :: Num+[a]+[b] 

and finally the statement 
define map f (x:y) = (f x):(map f y) 

gives the message 
map :: (a-+b) + [al + [bl 
incr :: Num+[Numl-+[Num]3. 
Whenever an equation e defining a function f is 

deleted, the type of f is re-inferred from its remaining 
equations (since the deletion of e may have made this 
type less specific). If 7(f) has indeed changed, any 
equations which reference fare also type checked again 
similarly. For example, given the functions incr and 
map above, the statement 

delete map f [ ] 
gives no message. Subsequently, the statement 

delete map f (x:y) 
gives the message map: : a, incr : :Num+a, and 
finally the statement 

delete incr c 
gives the message incr : : a. When all the equations 
defining a function have been deleted, the function is 
left with an unconstrained type (the metalcvel variable a 
in the above messages) and so can be redefined as a 

’ Lisu and tuples occur so commonly in PFL that we 
provide a shorthand notation for them. We use [ ] in- 
stead of Nil, (:) instead of Cons, [al,...,aNJ instead of 
al:(... :(aN:[ I), (a) instead of Single a, (a,b) instead of 
Pair a b, (a,b,c) instead of Triple a b c, and so on. Simi- 
larly at the meta level we use [a] instead of List a, (a) 
instead of Prod1 a, (a,b) instead of Prod2 a b, and so on. 
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completely different function. 
Our incremental type-checking of functions is simi- 

lar to that proposed for FQL [Nik853 in that we main- 
tain a dependency graph. However, our approach 
differs from that of [Nik85] in that our dependency 
graph records which eyuutions reference each function 
as opposed to which fitmions reference each function, 
and our type-checking occurs on an equation as 
opposed to on a function level. This is in keeping with 
the incremental nature of PFL, where functions are 
updated by the insertion and deletion of equations 
rather than by their complete redefinition. 

2.3 Selector Functions 

Selector functions are declared by a statement of the 
form : 

selector <name> :: <type> -3 [<type>] 
where <type> is a first-order type. A newly declared 
selector, f, may be assumed to be defined by the follow- 
ing equation : 

fx= [y 1 y t- relation; matches x y] 
where relation = [ ] 

Here, the argument x acts as a search pattern. Each of 
its components is either a constant or the “wildcard” 
constructor Any (we declared it in 2.1 above). The 
function matches compares x with each element y 
drawn from the list relation and returns True or 
False according to whelhcr x matches y. Thus, the 
selector returns a list of the tuples which match x, in tile 
order they are encountered in relation. As we 
describe in greater detail in Section 4, the relations 
associated with selectors are stored and retrieved using 
an extendible hashing scheme [Enb88]. Hence, the 
efficiency of evaluating a query f x is directly related 
to the proportion of specified components appearing in 
the search pattern x. 

Updates to a selector result in relation expand- 
ing or contracting. The inclusion of a tuple is achieved 
by the built-in polymorphic function include :: (a-+[a]) 
+a+Bool which takes a selector and a tuple and 
returrs False if the tuple is already present in rela- 
tion, otherwise it returns True and updates rela- 
t ion by side cfftxt. The new tuple is inserted into an 
arbitrary position. However, this position remains fixed 
and so the updated selector will be deterministic, The 
exclusion of tuples is accomplished similarly by the 
built-in function exclude :: (a-+[a])-+a+Bool which 
takes as arguments a selector and a search pattern, 
deletes the tuples matching the pattern from rela- 
t ion, and returns True or False according to whether 
any tuples have been deleted. If no tuples remain in 
relation, the selector is left with an unconstrained 
type and can bc redefined as a completely new function. 

Consider, for example, the following selectors which 
record the class of Person objects, and the personal 
details of each person (address and date of birth), 
respectively : 

selector people :: Person -+ [Person] 
selector pdctails :: (Person,Str,(Num,Num,Num)) 

-+ [(Pcrson,Str,(Num,Num,NumJ)] 
Assuming that Jim, Sue and Bob are constructors of 
type Person, the following queries all return True : 

include people Jim 
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include people Sue 
include people Bob 
include pdetails (Jim,“10 Sunset Bvd”,( 12,10,55) ) 
includepdetails (Sue,“10 Sunset Bvd”,(25,10,23)) 
include pdetails (Bob,“10 Sunset Bvd”,( 18,8,25) ) 

and the selector definitions which result are as follows, 
up to a permutation of the elements in their associated 
relations : 

people x = [y 1 y t relation; matches x y] 
where relation = [Bob,Sue,Jim] 

pdetails x = [y 1 y c relation; matches x y] 
where relation = 

[(Jim,“10 Sunset Bvd”,( 12,10,55)), 
(Sue,“10 Sunset Bvd”,(25,10,23)), 
(Bob,“10 Sunset Bvd”,( 18,8,25))] 

The following query then returns False since it is look- 
ing to delete the details of everyone born in September 
and there are no tuples which match : 

exclude pdetails (Any&y, ( AnyQ,Any ) ) 
Finally, the following queries return the lists [Bob, Sue, 
Jim], [ ] and [(Jim, “10 Sunset Bvd”, (12,10,55)), 
(Sue, “10 Sunset Bvd”, (25,10,23))1, respectively : 

people Any 
people Fred 
pdetails (Any,Any,(Any,lO,Any) ) 

2.4 Semantics of Query Evaluation 

PFL queries are evaluated by the standard technique of 
graph reduction Fey871 employed by most functional 
programming languages. Essentially, this repeatedly 
selects and rewrites applications of functions or con- 
structors until no further simplification of the query is 
possible. We diverge somewhat from implementations 
of other functional languages since our functions are 
stored and retrieved as individual equations, rather than 
as whole definitions, and since we incorporate selectors. 
So we outline PFL’s evaluation semantics below. 

In PFL, an application of an n-ary function or con- 
structor to n arguments, f al ,,, a,,, is evaluated as Ibl- 
lows : 
0 If f is a constructor, the argurnenls a, . . . a, are recur- 

sively evaluated in turn, to the expressions a’l . . . a’, 
say, and the application is replaced by f a’l . . . a’,. 

l If f is a built-in function, the built-in code for f is 
executed (this may call for the evaluation of one or 
more of the ai) and the application is replaced by the 
result. 

l If f is a selector, the application is of the form f a,. 
In this case, al is evaluated, to a’l say, and the 
application is replaced by a list of the tuples from the 
relation associated with f which match a’l. 

l Finally, if f is any other function, the application is 
replaced by the right hand side of an equation, after 
any variables in the equation have been substituled 
by the corresponding arguments. The equation is 
selected by applying a left-to-right, best-fit pattem- 
matching algorithm Epou90] : the equations defining 
the function f are compared with each of the argu- 
ments a I,...,a, and at each a; only those equations 
which contain the most specific match for this argu- 
ment are considered for ai+l. This algorithm 
guarantees that at most one equation is left after a, 

has been matched. There may of course be no equa- 
tions left, in which case the query is aborted with an 
error message. We describe the implementation of 
this pattern-matching algorithm in Section 4. 

As to lhe order in which function applications are 
selected for rewriting, we chose the left-most, outer- 
most application each time. This is called normal order 
reduction [Pey87] and has the desirable effect of delay- 
ing the evaluation of function arguments until such time 
as Lheir value needs Lo be known, either to match 
against a function definition or a relation, or to compute 
a built-in function. 

2.5 Making Inferences from Selectors 

Selectors can be used just as any other function when 
specifying equations and queries. In particular, func- 
tions can be written which make inferences from selcc- 
tars. To illustrate, we consider a “parts” database which 
conlains two selectors recording (a) base parts and their 
unit cost, and (b) composite parts and their immediate 
sub-parts, and the quantity thereof: 

selector base :: (PaMum) + [ (Part,Num)l 
selector composite :: (Part,Part+Num) 

-+ [ (Part,Part+Num) 1 
In Figure 1 below we give some example functions for 
this database. In these examples, we assume the usual 
head and tail list functions and also the following 
functions for projecting into tuples : 

first-of-two (XJ) =x 
second-of-two (x,y) = y 
first-of-three (X,Y,z) =x 
second-of-three (x,y,z) = y . . . 
The first function in Figure 1 is a recursive function 

cost::Part-+Num which computes the cost of any part : 
if x is a base part its cost is obtained from the base 
selector, otherwise ils cost is obtained by recursively 
summing the costs of its immediate sub-parts. 

The second function in Figure 1 is 
bom::[ (Part,Part,Num)] which returns a bill of materi- 
als i.e. it computes the transitive closure of the com- 
posite selector, creating at most one entry for each 
super-part/sub-part pair, and appends the base parts to 
the result. We note the use of the keyword where to 
introduce some local equations in this definition. The 
functions defined by these equations are accessible only 
by each other and by the main equation. This facility to 
hide auxiliary functions is a useful modularisation tech- 
nique supported by most functional languages. 

In the definition of born, close starts off the tran- 
sitive closure computation; tc repeatedly infers new 
tuples and adds them to the relation total until no 
more new tuples can be inferred; infer performs one 
inference step by joining the last increment to total 
with composite; add merges the new tuples into 
the total relation: and finally, add-one merges a 
single tuple into total making sure that there is only 
one entry for each super-part/sub-part pair. 

The third equation in Figure 1 defines the function 
subparts:: (Pa&Part) --+[ (Pa&Part)] which computes 
an intentional relation containing the transitive closure 
of the sub-parts relationship (ignoring quantities). As 
in logic-based languages, subgarts is “fully inver- 
tible” in that it can be used to find 
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cost x = if (base (&Any) == [ > 
(sum [(cost sp) * q (p,sp,q) +- composite (x,Any,Any)]) 
(second-of-two(head(base (x&y)))) 

born = append (close (composite Any)) [ (p,None,None) 1 (p,c) t basegart Any] 
where 
close start =tcstartstaIt; 
tc [] total =total; 
tc incr total = tc (infer incr) (add total (infer incr)); 
infer incr = [(p,sp2,q * 42) I (p,sp,q) t incr; (p2,sp2,q2) t composite 
add total [ ] = total; 
add total (x:y) = add (add-one total x) y; 
add-one [ 1 hw,q) = [(p,sp,qJl; 
add-one (( p,sp,q) :y) (p2,sp2,q2) = if ((p == p2) and (sp == sp2)) 

(wW,W)l; 

subgarts (x,y) = 
((pmql:Wd-one Y WaQ~q2lN 

append [(p,sp) 1 (p,sp,q] +- composite (x,y,.hyJl 

subputs (Any,yl = append 
[(p,sp2) 1 (p,sp,q) + composite Ix,Any,Any);Ip2,sp2] + subparts Isp,y)l 
[(psp) 1 (p,sp,q) + composite (Any,y,Any]l 
[(P2*sP) 1 (P*sP,q) t composite (Any,y,Any); (p2,sp2) t subparts (Any,p)] 

Figure 1 : Examples for Section 2.5 

(a) the transitive closure of the sub-parts relationship : 
subgarts (AI-IY,Av) 

(b)the sub-parts of a given part p : 
map (second-of-two) (subparts (p,Any)) 

(c)the super-parts of a given part q : 
map (fWof_two) (subparts ( Av,q 1) 

(d)whether a part p is a super-part of a part q : 
subgarts (p,qj != [ I. 

Of Course, the query subparts f Any, q) in (c) is 
unnecessarily expensive because it results in the 
enumeration of composite (Any, Any, Any). A 
better definition of subgarts would also contain the last 
equation in Figure 1 which closes composite “left- 
wards” rather than “right-wards”. The left hand side of 
this equation is a more specific match for the query in 
case (c), and also in case (a) incidentally, and so this 
definition will be selected when evaluating these 
queries. 

We can draw some important conclusions from the 
above examples. Firstly, PFL shares the advantages of 
functional programming languages with respect to 
deterministic computations such cost and born. 
Secondly, PFL is more expressive than other functional 
languages since it supports selectors and “invertible” 
functions over them. We examine the expressiveness of 
this class of PFL functions in Section 3 below. Lastly, 
since PFL is list-based rather than set-based, the queries 
in (a) - (d) may return lists which contain duplicate ele- 
ments. In general, duplicates can be removed by wrap- 
ping the make-set function round list-valued expres- 
sions : 

make-set[]= [] 
make-set (h: t) = h:[y 1 y c (make-set t); y != h] 

2.6 Updating Selectors 

Since bulk data is stored using selectors, it is important 
that PFL provide tools to maintain the semantic 
integrity of this data. In fact, our support of the 
include and exclude operations as built-in func- 
tions means that they can be be embedded within PFL. 
expressions and can be used Lo write functions which 

serve as update procedures. The query evaluation 
semantics of 2.4 determine the order in which 
include and exclude are evaluated and thus 
sequence their update effects. PFL update procedures 
can enforce a wide variety of integrity constraints, 
including transition, uniqueness and cardinality con- 
straints. We illustrate in Figure 2 three update pro- 
cedures for the composite selector of 2.5. These 
procedures all have type (Part,F%rt,Num) --+[Bool]. We 
note that these update procedures rely on the elements 
of lists being evaluated from left to right, in accordance 
with the semantics of constructor applications in 2.4. 
add-subpart ensures that there is only one tuple for 
each part/sub-part pair; update quantity checks 
that the given part/sub-part pair pa> exists and updates 
its quantity field; and increment-quantity 
checks that the increment passed to it is positive and 
that a single tuple remains for the given part/sub-part 
pair. 

We examine the expressiveness of PFL’s updates 
further in Section 3 below. 

3. Expressiveness Issues 

3.1 Data Modelling 

The ability to declare new types and populate them with 
new constants means that object types and object 
identifiers are inherent in PFL. Furthermore, arbitrary 
composite objects, including recursive objects, can be 
modelled. Selectors can be used to represent both 
nested object values and nary relationships. Functional 
properties of objects can be defined by means of func- 
tions defined by one or more equations. Finally, default 
rules can be formulated as equations which are overid- 
den by more specific equations. 

3.2 Computation 

PFL is computationally complete by virtue of the fact 
that functional programming is so. Moreover, a 
significant class of PFL functions is the class of inverti- 
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add-subpart hwwl = 
if ((composite (p,sp,Any)) == [ I) [include composite (p,sp,q)) [False] 

update quarW (p4.w) = 
iT ((composite (p,sp,Any )) != [I) [exclude composite (p,sp,Any ) ,include composite (p,sp,q)] [False] 

increment-quantity (p,sp,i) = 
if (((composite (p,sp,Any)) != [ I) and (i > 0)) (update (p,sp,i) (old-q p sp)) [False] 
where 
old-q p sp = third-of-three(head(composite (p,sp,Any))); 
update (p,sp,i) q = [exclude composite (p,sp,q), include composite {p,sp,q+iJ] 

Figure 2 : Examples for Section 2.6 

ble functions i.e. the class of functions which represent 
relations. It is useful to compare this sub-language of 
PFL with Datalog. Clearly, any Datalog EDB predicate 
can be represented by a PFL selector. Also, we give 
below a scheme for translating a Datalog rule defining 
an IDB predicate to a PFL equation defining an inverti- 
ble function. We then extend this scheme to cater for 
negative literals. Finally, we indicate when an IDB 
predicate defined by a set of Datalog rules can be simu- 
lated by a single PFL function (up to duplicate elimina- 
tion). 

We consider first an IDB predicate, p, which is 
defined by a Datalog rule 

PO + qlfil)* ***I %lfi”) 
where each qi is an EDB, IDB or built-in predicate. 
Without loss of generality we can assume that F; con- 
tains only distinct variables, and we also make the usual 
assumption that any variables appearing as arguments 
to a built-in predicate will be instantiated by preceding 
EDB or IDB predicates Tu1188]. We can express the 
above rule by a PFL equation of the form 

P (3 = [F) I Wl + MyI; . . . . w, + MyI; 
QI; . . . ; Qnl 

where the Wl are the variables of the rule which do not 
appear in the head, and each Qi is the generator (yi ) 
c qi (‘j;i ) if qi is an EDB or IDB predicate, or the 
boolean expression qi (71) if qi is a built-in predicate. 
Thus, for example, the Datalog rules 

awxy> +- pwu), anc(ZY) 
p (X,Y) t r(X,W), s(W,“u”), t(“u”,Y), < (W,Y) 

are expressed by the following PFL equations : 
ant (x.yl = [(x,yl I z +- [AnyI; (XJ) t par (x,2); 

(GYI + ant (GYII 
P (XlY] = [(x,yl I w +-- [AnyI; (x,w) + r (x,w); 

(W,“U”) t s (w,“u”); 
(“d’,y) t t (“u”,y); w < y] 

We note that the repeated occurrences of variables in 
these equations imply no ambiguity of meaning since, 
by the semantics of list abstractions, variable bindings 
are inherited initially from the left hand side of the 
equation or from the first generator with the variable in 
its head, and are then overidden by subsequent 
occurrences in the heads of generators. We also note 
that the ant function may return duplicate elements, 
unlike the ant IDB predicate. 

We now extend our translation scheme to Datalog 
rules with negative literals in their body, on the assump- 
tion that any variable appearing in a negative literal also 
appears in a positive literal and that positive literals pre- 
cede negative literals in the body. A negative literal, 
-qi@i)* translates then into the following expression : 

(qi (Yil> == [ 1 
For example, the Datalog rules 

flies(X) t bird(X), *strich(X) 
p(X,Y) t r(X,W), s(W,“u”), +(“u”,X) 

are expressed by the following PFL equations : 
flies (x) = [(x) t (x)+-bird (x); ostrich (x) == [ ]] 
P (x,y] = [(x,Y 11 w+-[AnyI; Ix,wltr Ix,wl; 

(w,V’)+-s (w,“u”); t (“u”,x) == [ ]] 
We observe that PFL equations corresponding to 

non-stratified Datalog rules may give rise to non- 
terminating computations (cf. multiple models in Data- 
log), for example the PFL equations 

ostrich(x)= [(x) 1 (x)+-bird (x); flies (x) == [ ]] 
flies (x) = [(x) 1 (x)tbird (x); ostrich (x) == [ ]] 

corresponding to 
ostrich(x) t bird(x), -,flies(x) 
flies(x) e bird(x), Tostrich(x) 

Thus, our translation scheme is suitable only for 
stratified Datalog rules. 

Finally, we extend our translation scheme to IDB 
predicates which are defined by a number of Datalog 
rules. Without loss of generality, we can assume that 
these rules are rectified yUllS81 i.e. all have the same 
head. We first use the above translation scheme to 
obtain one PFL equation per rule, ending up with a set 
of PFL equations with the same left hand side. These 
equations are then combined into a single equation by 
appending the lists on their right hand side. For exam- 
ple, the Datalog rules 

ancG,Y) + par(X,Y) 
anc(X,Y) t anc(X,Z), anc(Z,Y) 

can be represented by the single PFL equation 
ant (x,yl =append l(x,yl 1 (FYI t-par (x,yll 

[(x,Y) 1 z+- [Awl; (~1 +-am iw); 
(GY) +--am (GYII 

We can make a number of observations here. Firstly, 
we note the syntactic similarity between the DataIog 
and PFL definitions. Secondly, we note that the order 
in which the lists are appended on the right hand side of 
the PFL equation is significant : we know from the 
definition of append in Section 1 and from the 
semantics of query evaluation in 2.4 that the first argu- 
ment to append will be evaluated before the second 
argument and that therefore the first argument 
represents the base case of the recursion. Thus, the 
alternative equation 

am (~1 = append [(x,Y) 1 z +- [AnyI; 
(WI + ant (WI; (GY) +--ant ILYII 

lIX>Y) I (XlYl +-Par (XtY)l 
would always yield a non-terminating computation. A 
third observation immediately follows : PFL can simu- 
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late only IDB predicates whose defining rules can be 
fired in a pre-determined sequence. This limitation is 
analogous to Prolog’s top-to-bottom scanning of rules. 
We conjecture that if PFL were extended with a non- 
deterministic function or [Hen801 which arbitrarily 
returns one of a number of alternative expressions, it 
could simulate all stratified Datalog programs. 

3.3 Updates 
PFL’s bulk data is stored in selectors, so thus’ far we 
have concentrated on the update of selectors in our 
design of PFL. We support the include and 
exclude operations as built-in functions which can be 
embedded within PFL expressions whereas PFL’s other 
update operations (declare identifier, insert or delete 
equation) are not so supported. Thus, in our discussion 
below we assume a fixed set of types, constants, func- 
tions and selectors, and we allow only selectors to be 
updated. 

We define a database schema to be a set of selector 
names, and an instance of a database schema to be a 
mapping of each selector name to a definition. Given a 
database schema S, we define an updufe to be a partial 
recursive function from l(S) to I(S), where l(S) is the 
set of all possible instances of S. It is easy to see that 
any such update can be expressed in PFL : 

Let s1 .., s, be the relation names in S. PFL is com- 
putationally complete so given any update, U, a func- 
tion, f, can be written which takes the list [s t , .,. s,] and 
(a)retrieves the old relation associated with each selec- 

tor, 
(b)computes the new relations to be associated with the 

selectors as a list of tuples, 
(c)returns the list [(s t ,old-relation t new-relation t ) , . . . . 

( s n ,old-relation n ,new-relation ,, ) 1. 
The function f is invoked from a second function g 
which effects the update : 

g sel-list = 
[(map (exclude s) o, map (include s) n) 1 
(s,o,n) t f sel-list] 

We observe that, for simplicity, we have not 
included the requirement for C-genericiry in our 
definition of an update above, unlike the treatment in 
[Abi88b] say. However, our definition could be 
tightened up accordingly. 

4. Implementation 
PFL has been implemented in C and runs on a variety 
of Unix platforms. PFL’s parser translates each input 
statement into a graph in main memory before it is 
evaluated, in the case of a query, or stored or deleted 
otherwise. As we stated in 2.4, PFL’s evaluator uses 
the standard technique of graph reduction to evaluate 
queries and details of this can be found in lPey871. So 
in this section we concentrate on the storage of func- 
tions, mera data, and selectors. We also describe how 
extra “dependency” information is maintained for use 
during type checking and deletions. 

PFL’s functions are stored in a B+ tree [Com79]. 
This stores records of three fields, of which the first two 
fields are key fields. Conceptually, the equations 
defining each function are merged into a tree, after uni- 
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formly renaming the variables of each equation to v0, 
vl, v2 . . . in the order of their appearance. These trees 
are themselves merged into one equations free which 
represents all equations. For example, the equations : 

mapf[l = (1 
map f (x:y) = (f x):(map f y) 

are stored as shown below, where f is renamed to v0, x 
to vl, and y to v2 : 

LJ 
----n2 

map vo / 
root------no------n1 

----n+J----n4----n5 
Vl v2 

Here, root is the root of the equations tree and each 
n, is a unique internal identifier. The leaf nodes n2 and 
n5 identify the right hand sides of the equations (see 
below). Each arc n-+lPbel m in the equations tree is 
stored as one record <n,label,m> in the B+ tree. 

When evaluating a function application, the equa- 
tions tree is traversed from left to right and at each node 
the arc sclectcd is the most specific match for the 
current argument, if any. For example, when evaluat- 
ing: 

map ((+I 1) i I 
the rhs identified by n2 is selected, with v0 bound to 
((+) l), and when evaluating: 

map Cc+> 1) [1,2,31 
the rhs identified by n5 is selected, with v0 bound to 
((+) I), VI to 1 and v2 to [2,3]. With respect to the 
right hand sides of equations, these are stored as a 
number of records of the form <leaf-node, count, 
instruction>, where instruct ion recreates a part of 
the right hand side and count indicates the sequenc- 
ing of these instructions. The right hand side is thus 
reconstructed as a main-memory graph by retrieving all 
records of the form <leaf-node,*,*>, ordering these 
records by their second component, and executing their 
third components in that order. 

The types of ail identifiers (whether constructors, 
selectors, or other functions) are stored identically to 
equations, in this case in a declarations tree. This tree 
is only one arc deep. Each arc is labelled with an 
identifier and each right hand side stores the type of that 
identifier. These types are retrieved in the same way as 
equation right hand sides. 

The relations associated with selectors are stored in a 
separate extendible hashing file [Enb88]. A key is cal- 
culated for each tuple which identifies the page in 
which that tuple is to be stored. The key is calcukted 
by hashing the atomic sub-components of the tuple to 
integer values and splicing the results. For example, 
the key for the tuple (Jim,lO,Bob) is calculated as fol- 
lows, under the assumption that an integer comprises 32 
bits : 

hash(Jim) = X1 . . . X32 

hash(l0) = Yl - ** Y32 
hash(Bob) = z 1 . . . 232 
--------^-----------_____^_______^___ 

key((Jim,lO,BobI) = XlYlzl . . . xj2Y32232 
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At any point in time, the hash file will comprise 2’ 
pages, for some i, and the page in which a tuple is 
stored is identilied by the first i bits of its key. For 
example, if i = 4 then the tuple (Jim,lO, Bob) is stored 
inpagex,y,z,x,. 

When retrieving tuples, the search pattern may 
include the wildcard value Any. In this case, the search 
pattern is hashed to a set of keys which identify a set of 
pages to be searched. The specified components of the 
search pattern are hashed to integers, as before, but now 
a key is generated for every possible integer to which 
the unspecified components might have hashed. For 
example, the keys identified by the search pattern 
(Jim,Any,Bob) are found as follows : 

hash (Jim) = x1 . . . x32 
hash (Bob) = 21 . . . 232 
-------------------_----------------- 

keys({Jim,Any,BobJ) = XlOZl . . * X320%32 
XlOZl . . . X321%32 
: : 

XllZ, . . . X321%32 

Thus, if i = 4, two pages are searched, x ,Ozl x2 and 
x1 lz,xz. 

Our dependency information is also maintained in 
the hash file and records the appearance of user- 
declared identifiers (functions and constructors) in 
declarations, equations and relations. 

With respect to functions, for each equation e which 
defines a function f, we store a record of the form 
<f,defined-by,e>, and for each equation e which refer- 
ences a function f, we store a record of the form 
<f,referenced-by,e>. For example, the second equation 
for map gives rise to two dependency records, 
<map,defmed-by,n5> and <map,referenced-by,n%. 
We note that dependency records do not conflict with 
selector tuples in the hash file since the former contain 
the internal identifiers defined-by or 
referenced-by, and the latter do not. 

Whenever the insertion or deletion of an equation for 
a function f causes the type off to change, the equations 
which reference fare located, and the types of the func- 
tions which fhey define are reinferrcd. This process 
may cause further cascading of type inference, but will 
in any case always terminate (since the database con- 
tains only a finite number of functions and only sup- 
ports finite types). In our experience, little cascading 
occurs in practice. We note that since selectors are first 
order, and since tuples are fully evaluated before being 
inserted into selectors, no functions appear in selectors 
and so selectors do not participate in such cascades. 

As with functions, reference information is also 
maintained in the hash file which records the appear- 
ance of col~struc~ors in equations, relations, and 
declarations (for metalevel constructors i.e. types). For 
each equation or declaration e which references a con- 
structor c, a record of the form <c,referenced-by,e> is 
stored, and for each selector s which references a con- 
structor c, a record of the form <c,refcrenced- 
by,s,count>. In this second record, the count field is 
updated according to tuple insertions and deletions. A 
constructor can be deleted only if it appears in no 
dependency records. An attempt to delete a constructor 

which is currently “in use” causes a message to be 
displayed detailing the equations and selectors which 
reference that constructor. 

5. Conclusions 
In this paper we have inuoduccd a persistent functional 
language called PFL which adopts a functional as 
opposed to logic-based approach to deductive dala- 
bases. The key contributions of the language are its 
adaptation of functional programming to the needs of 
deductive databases, iu incremental updates and lypc 
checking, and its support of selectors. 

PFL has all the expressiveness of a functional pro- 
gramming language : higher-order functions, static type 
checking, lazy evaluation, and support for user-delined 
types and constants. However, PFL also supports 
extensionally and intentionally defined relations. 
Despite this increased expressiveness, querying remains 
purely functional, unless the update functions 
include and exclude areinvoked. 

Our approach to reconciling the advantages of deter- 
minlstic computations on the one hand and relational 
manipulalion of data on the other, is completely in con- 
trast to the alternative approach of extending Datalog 
with rewrite rules for function symbols, in [Gru89] for 
example. Our aim in this paper has been to argue the 
case for our functional approach which we bclicve is at 
least as promising as the Datalog-based altemarive. 

There are of course aspects of PFL which riced 
furlher attention. For a start, our update functions 
operate by side effect - of necessity since they act at the 
object level - which makes them quite cumbersome to 
specify. An alternative, possibly more attractive, 
approach would be to provide a purely functional 
update language at the mela level. Secondly, we do not 
at the moment support system-generated identifiers so 
the user has to chink of a new name for every new 
object he introduces : a generate--new built-in 
function could easily be provided for this purpose. This 
function would also be a useful aid in database restruc- 
turing, c.f. the generation of object identifiers in 
[ Abi891, and its invocation could be functionally deter- 
mined, c.f. the use of function symbols for this purpose 
in [Kil%Yj. Thirdly, encoding scnxuuic integrity con- 
straints within update methods has the disadvanlage 
that it is possible lo specify mutually inconsislcnt con- 
straints, so we arc currently exploring the alternative of 
global semantic integrity constraints. Lastly, we arc 
also considering equipping PFL with a higher-lcvcl 
“object-oriented” interface. 
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