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Abstract 1 Introduction and Motivation 

Service order provisioning is an important telecommuni- 
cation application that automates the process of providing 
telephone services in response to the customer requests. It 
is an example of a multi-system application that requires ac- 
cess to multiple, independently developed application sys- 
tems and their databases. In this paper, we describe the 
design and implementation of a prototype system’ that sup- 
ports the execution of the Flexible Transactions and its use 
to develop the service order provisioning application. We 
argue that such approach may be used to support the devel- 
opment of multi-system, flow-through processing applica- 
tions in a systematic and organized manner. Its advantages 
include fast and easy specification of new services, support 
for testing of the declaratively specified work-flows, and 
the specification of potential concurrency among the tasks 
constituting an application. 
Keywords: multi-system application, work-flow control, 
service order provisioning, Flexible Transactions 
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‘The term “prototype” refers to a “softwaze prototype” 
throughout this paper. 
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In many industrial computing environments, dedi- 
cated application systems were developed to automate 
various organizational functions. These systems were 
usually designed independently and used their own 
databases to store the data they needed. As the scope 
of automation was expanded, the needs for new multi- 
system applications that require access to multiple au- 
tonomous systems began to grow. Such needs have 
usually been addressed by developing dedicated soft- 
ware systems which are said to control work-flows. 
When the work-flows are completely automated, i.e., 
do not require manual processing steps or human in- 
terventions, the system is said to supportflow-through 
processing. 

In current systems supporting flow-through pro- 
cessing, the integration of component systems has 
been usually implemented in an ad hoc manner, with 
the work flows hard-coded in the application. To 
develop robust multi-system applications, we need a 
model that allows flexible specification of work-flows 
and efficient control of their execution. Multidatabase 
transactions provide a technology that can be used to 
address these issues. 

The multidatabase approach assumes the existence 
of multiple and possibly heterogeneous databases in 
which component database systems maintain their au- 
tonomy upon integration [J!IM85, LA86, SL90]. In 
managing multidatabase transactions, the problems 
associated with preserving the autonomy of partici- 
pating database systems are aggravated by the fact 
that multidatabase transactions are often long run- 
ning activities. This is inconsistent with the assump- 
tion of the traditional transaction model that trans- 
actions are short lived. To address this situation, 
several models have been proposed in the literature 
to relax some requirements of the traditional trans- 
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action model, such as atomicity or isolation, that 
may be too restrictive in a multidatabase environment 
[GS87, Elm92]. The management of work-flows and 
long running activities has been addressed, among 
others, in [Reu89, GGKf90, DHL91, Kle911. 

During a cooperative research project involving 
Bellcore and the University of Houston, a prototype 
transaction processing system based on an extended 
transaction model was developed. The system was 
then used to implement a telecommunication applica- 
tion that served as a testbed for the prototype. The 
application we have selected is service order provi- 
sioning, which is the automated process of providing 
telephone services to customers. A service request 
is processed by multiple and heterogeneous systems 
that are responsible for performing optimal line and 
equipment assignments and updating the facility, cus- 
tomer and billing information databases. The systems 
involved in processing of a customer request have 
various functionalities and are, to a large extent, au- 
tonomous. In order to provide a service, the execution 
of these systems must be coordinated and data may 
need to be exchanged between them. This problem is 
fundamental to the telecommunications industry since 
its business consists of efficiently providing telecom- 
munications services to customers. 

The objective of the project was to determine 
whether the application of multidatabase transaction 
models might permit flow-through processing appli- 
cations to be defined and supported quickly, flexibly, 
and efficiently. The project provided insight into both 
the strengths and weaknesses of the approach for this 
class of applications. 

The transaction processing system described in this 
paper is based on the Flexible Transaction paradigm 
[RELL90, ELLR90]. A Flexible Transaction is a 
collection of subtransactions related by a set of ex- 
ecution dependencies among them. Associated with 
each Flexible Transaction is a set of acceptable states 
defining the conditions for the success of the global 
transaction. Therefore, the success of all subtrans- 
actions may not be necessary for the success of the 
global transaction. This characteristic of the Flexi- 
ble Transactions provides flexible atomicity, by per- 
mitting specification of the subsets of subtransactions 
that should be treated as units of atomicity, rather 
than requiring the all or nothing property. In addi- 
tion, partial results of the Flexible Transactions (the 
results of committed subtransactions) are visible to 
other transactions, if the subtransactions are declared 
to be compensable. This characteristic provides flex- 
ible isolation. Furthermore, declaring the execution 

dependencies of the subtransactions permits specifi- 
cation of intra-transaction parallelism. 

The project consisted of two phases: (a) develop- 
ment of a prototype for executing Flexible Transac- 
tions, and (b) specification of provisioning for a class 
of service requests as a Flexible Transaction and exe- 
cuting it on the prototype. The prototype consists of 
a scheduler, which decides when the subtransactions 
of a Flexible Transaction should be submitted for exe- 
cution and an Execution Monitor which submits each 
scheduled subtransaction to the appropriate DBMS, 
monitors its progress, and relays the information back 
to the scheduler. The second phase of our project in- 
volved modeling of a substantial application system 
and study of the applicability of the model in industrial 
context. 

The rest of the paper is organized as follows. In 
section 2, the Flexible Transaction model is reviewed. 
Some extensions to the original model that were pro- 
posed as a direct result of this project, are provided 
in this section. Section 3 reviews service order pro- 
visioning and describes how a class of service orders 
can be modeled as a Flexible Transaction. Section 4 
presents the steps in implementing this multi-system 
application using the Flexible Transaction paradigm 
and describes the architecture of our prototype for 
processing Flexible Transactions. Section 5 presents 
conclusions and future work. 

2 Flexible Transaction Model 

A Flexible Transaction is specified by providing the 
following information [ELLR90]: (a) a set of sub- 
transactions, (b) a set of intra-transaction execution 
dependencies, and (c) a set of acceptable states defin- 
ing the conditions for the success of the FlexibleTrans- 
action. 

2.1 The Set of Subtransactions 

Each subtransaction is a logical unit of work that per- 
forms some operations at a particular site. A subtrans- 
action can be either compensable or noncompensable 
[Gra81, KLs901. 

Most nested transaction models use commitment 
protocols to assure that all subtransactions constituting 
a global transaction are either committed or aborted. 
Some models assume the existence of a prepared to 
commit state. A subtransaction that has finished all its 
operations can wait in this state for a commit or abort 
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decision from the global transaction manager. How- 
ever, since multidatabase transactions are frequently 
long-running activities, holding the locks on data by 
the subtransactions waiting in the prepared-to-commit 
state, may lower the availability of the data. There- 
fore, transaction models have been proposed that may 
take advantage of compensation to increase the avail- 
ability of data and decrease the possibility of a dead- 
lock [GS87, LKS91]. However, the applicability of 
these models is limited by the fact that not all sub- 
transactions can be compensated (especially in a mul- 
tidatabase environment). By allowing both compens- 
able and noncompensable subtransactions to coexist 
within a single Flexible Transaction, the visibility of 
the subtransactions can be controlled as follows. A 
compensable subtransaction can commit locally and 
make its results visible to other (sub)transactions, as- 
suming that it can be compensated, if necessary. A 
noncompensable subtransaction must wait in a pre- 
pared to commit state for a commit decision from the 
global transaction manager before it can make its re- 
sults visible to others. 

2.2 The Intra-transaction Execution Depen- 
dencies 

One characteristic that most multi-transaction mod- 
els share is that operations are grouped to form one 
or more subtransactions. Often a subtransaction can 
have an execution dependency as a condition to start 
a subtransaction, a condition to resume the execution 
of a halted subtransaction, or a condition to terminate 
a subtransaction [CR90]. The condition can be speci- 
fied based on the execution state of one or more sub- 
transactions, based on the output generated by other 
subtransactions, or based on time. A comprehensive 
list of executing dependencies have been discussed in 
[Ans92]; below we present a summary. 

The execution state of a subtransaction can be not- 
executed, executing, prepared-to-commit, committed, 
aborted, or compensated. A number of execution 
dependencies involving the execution state of one 
or more subtransactions can be defined. The exe- 
cution dependencies can be interpreted and defined 
from two different perspectives. One is from a his- 
torical perspective, i.e., whether a given history has 
maintained the execution dependencies of scheduled 
(sub)transactions [CR91]. It is useful when the inter- 
transaction dependencies of the subtransactions are 
being studied to establish a correcmess criterion for 
the concurrent execution of the global transactions. 
The other is from a postulative perspective, i.e., to 

define the intra-transaction dependencies of the sub- 
transactions in the specification of a global transaction 
[RELL90]. It is useful when the intra-dependencies of 
the subtransactions are being studied for constructing 
requirements for the execution of the global transac- 
tions. Below, different types of the execution depen- 
dencies are listed: 

l The execution dependencies based on the ex- 
ecution state. These dependencies have been 
discussed frequently in the literature and in- 
clude start dependencies (start-start depen- 
dency, commit-start dependency, prepared-to- 
commit-start, and abort-startdependency), com- 
mit dependencies (commit-commit dependency, 
prepared-to-commit-commit dependency, and 
abort-commit dependency), and abort dependen- 
cies (weak-commit-abort, and weak-abort-abort 
dependency). 

The execution dependencies based on the output 
of other subtransactions. These dependencies 
are sometimes referred in the literature as value 
dependencies [DE89]. 

The execution dependencies involving time. 
The execution dependency of a subtransaction 
based on time can be temporal-start depen- 
dency, temporal-commit dependency [LT88], or 
temporal-abort dependency. 

The execution dependencies listed above can be 
combined to express mom complex semantics. To 
simplify the specification of the subtransactions that 
are assigned to perform a common subgoal of a global 
transaction (e.g. the set of subtransactions that can be 
used to reserve a CZU)~, they can be grouped into clus- 
ters. Thus, execution dependencies may involve in- 
dividual subtransactions or clusters. Associated with 
each cluster, is a condition for its success. A subtrans- 
action with an execution dependency on a cluster can 
be executed only after success or failure of the cluster. 

2.3 The Set of Acceptable States 

The conditions for the success of a Flexible Transac- 
tion can be specified by providing a set of acceptable 
states, defined as a combinationof the execution states 
of the subtransactions. If an acceptable state is reached 

‘In [LER90], this is referred to as function replication. For 
a function T. the local database systems which can be used to 
implement T are said to be functionally replicated for T. 
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during the scheduling of the subtransactions, no ad- 
ditional subtransaction need to be scheduled and the 
Flexible Transaction can terminate successfully. 

Each acceptable state is specified as a conjunction 
of the subtransaction states (s-states). The s-states 
corresponding to the execution states are presented in 
Table 1. 

As an example, let’s consider a Flexible Transaction 
consisting of three subtransactions. A set of accept- 
able states for this transaction can be specified as: 

{CUW or (F&V or . ..} 

The first acceptable state indicates that the Flexible 
Transaction can successfully complete if the first and 
the third subtransactions succeed and the second sub- 
transaction fails. The second acceptable state indi- 
cates that the Flexible Transaction can complete suc- 
cessfully if the first subtransaction fails and the second 
and the third subtransactions succeed. 

A Flexible Transaction may have a subset of sub- 
transactions that can be alternatively used to achieve 
the same subgoal (such as the first and the second 
subtransaction in the above example). Such subtrans- 
actions can run concurrently; however, precautions 
must be taken, by the appropriate specification of the 
acceptable states, to ensure that only one of them is 
allowed to succeed. This is assured by the termination 
protocol, described in the next section. 

2.4 The Execution of Flexible Transactions 

The execution of a Flexible Transaction consists of 
a scheduling phase and a terminating phase. In the 
scheduling phase, subtransactions are scheduled ac- 
cording to their execution dependencies. All subtrans- 
actions whose execution dependencies are satisfied 
can be scheduled concurrently. Whenever the execu- 
tion state of a subtransaction changes, the scheduler 
checks if an acceptable state has been reached. This 
phase ends if one of the following events occurs: 
(a) One of the acceptable states is reached. An accept- 
able state is reached when all subtransactions whose 
success is required reach the S state3. This state is 
referred to as the accepted state. In this case, the 
Flexible Transaction has succeeded and therefore be- 
comes ready to commit. 
(b) No subtransaction is executing, no more subtrans- 
action can be scheduled, and no acceptable state is 

31f more than one acceptable state is reached simultaneously, 
one of them is selected. The choice can be either arbitrary or based 
on additional specification of preference among the acceptable 
states. 

reached. In this case, the Flexible Transaction has 
failed and therefore becomes rearj, to abort. 

In the terminating phase, the execution of the Flex- 
ible Transaction is completed as follows: 
(a) If the Flexible Transaction is ready to commit, the 
accepted state is used to determine which subtransac- 
tions must be committed, aborted, or compensated: 

l All the subtransactions that are still executing, 
are aborted. 

l All the compensable subtransactions that are 
committed, but their failure is required in the 
accepted state, are compensated. 

l All the subtransactions that are in the prepared- 
to-commit state, are either committed or aborted, 
as required by the accepted state. 

(b) If the Flexible Transaction is ready to abort, all 
the subtransactions in the prepared-to-commit state 
are aborted, and all the committed subtransactions are 
compensated4. 

3 Service Order Provisioning 

Service order provisioning is the automated process 
of providing a telephone service to a customer. The 
process of providing a service is carried out in a dis- 
tributed environment and requires access to multiple 
heterogeneous databases. The size and the complexity 
of the components and the fact that they maintain a real 
time inventory are some of the reasons for preserving 
the autonomy of the component systems. In the dis- 
cussion below, we will refer to the real applications 
and databases5. We wilI attempt to extract general 
characteristics of such applications, including the ex- 
ecution dependencies that exist among various tasks, 
omitting unnecessary details whenever possible. 

A customer’s request for a service is entered into 
the Service Order Processor (SOP) which reads the 
service request and converts it to the service order. 
From there, the service order is sent to different busi- 
ness units within the company for further processing. 
The order is sent to the provisioning unit where it is 

4Noncompensable subtransactions are not allowed to commit 
in the scheduling phase. 

‘NOTICE: Descriptionof applications, databases, and systems 
is abstract and for illustration only. Bellcore and Bellcore Client 
Companies may not be supporting these products or may not be 
using them in the way described in this paper. 

68 



s-states corresponding execution states 
N not-executed 

S (Success) committed, prepared-to-commit 
F (Failure) aborted, compensated 

The execution state of the subtransaction 
* has no effect on reaching the corresponding 

acceptable state. 

Table 1: List of possible s-states in an acceptable state 

analyzsed and processed for line and equipment as- 
signments. After completing the assignments, SOP 
receives the final status of the provisioning. 

3.1 Provisioning Environment 

Provisioning6 often involves three distinct types of 
areas in which different types of assignments may 
take place (see Figure 1). One type of area, called 
local loop, is from customer premises to the central 
office. All local loops in a geographic area terminate 
in the central office where the necessary equipment 
for switching between cables and wires reside. The 
second type of area is within a central office. The 
third type of area is between central offices and is 
called inter-office or trunk area. Figure 1 shows two 
local loops, two central offices, and one inter-office 
area. Usually one application system, called operation 
support system, is dedicated to assignments in each 
area. 

The assignment of a local loop, the transmission 
path between central office and customer premises, is 
done by Loop Facility Assignment and Control Sys- 
tem (LFACS). LFACS is a BelIcore provided opera- 
tion support system for the loop assignment center. 
The inventory for local loop facilities is maintained in 
the LFACS database and include, information about 
cables, cable pairs, distribution terminals, cross box 
terminals, binding posts, living units, customer ser- 
vice wires, remote switches, etc. 

The assignment of the line-side equipment within 
the central office (the equipment dedicated to the lo- 
cal loop) is done by the Computer System for Main 
frame Operation System (COSMOS). Its primary job 
is to assign the best possible line equipment in the 
central office (originating equipment) to the outside 
plant equipment (typically cablepair). A cable pair is 
assigned by LFACS and passed to COSMOS through 
the information flow controlIer module. The corre- 

‘The discussion here is that of a typical case. 

sponding originating equipment is assigned by COS- 
MOS based on the central office load balancing and 
other criteria determined by the telephone operating 
company. COSMOS maintains the inventory for local 
wire center facilities and circuits in its database. 

The assignment of the trunk-side equipment (the 
equipment dedicated to the trunks) within the central 
office and the assignments of the facilities between 
central offices is done by the TIRKS@system. The 
TIRKS system is composed of several software mod- 
ules performing a variety of functions. It supports the 
facilities between central offices and the associated 
equipment within a central office, required to make 
the facilities work. It also supports equipment inven- 
tory, facility inventory, and circuit design. 

Other systems exist in the provisioning environment 
that perform various tasks, in addition to facility as- 
signments. The Service Order Analysis and Control 
system (SOAC) controls the work flow and orches- 
trates the flow of information among the components 
of the system. SOAC is a transaction based system 
and holds only temporary data. Routing and dispatch- 
ing of work force is done by WFADO. It handles 
the routing and dispatching installation maintenance 
forces for the field, maps the job location, estimates 
the time to perform the work, categorizes the work to 
match technician skill, calculates dispatchs start date, 
and prioritizes dispatch jobs. Another system called 
the MARCH@system serves as a vehicle to associate 
service and/or custom calling features (e.g. 3 way 
calling) with the telephone number of the customer. 
The rest of the operation support systems are beyond 
the scope of this paper. 

TIRKS is a registered trademark of Bellcore. 
MARCH is a registered trademark of Bellcore. 
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Figure 1: Foreign Exchange Service 

3.2 Foreign Exchange Service: A class of ser- 
vice orders 

The foreign exchange service is one example of a spe- 
cial service order. It differs from an ordinary service 
order in that it has two terminating ends (customer 
premise, and caller to the customer premise). Also it 
uses circuits and trunks that are dedicated to special 
service circuits. To understand the foreign exchange 
service, let’s consider the following scenario. 

The owner of a warehouse in Piscataway has cus- 
tomers in Morristown (Figure 1). Although both Pis- 
cataway and Morristown are within the service area 
of the same telephone operating company, the call 
between them is a toll call, and the warehouse cus- 
tomers would have to pay the usage sensitive fee. The 
warehouse owner requests a Foreign Exchange Ser- 
vice from the telephone company to arrange a special 
service so that the warehouse customers in Morristown 
would not be charged for their calls to the warehouse. 
Instead, the warehouse owner will pay a monthly fee 
for the special service. 

The Foreign Exchange Service request is processed 
under the supervision of SOAC which interacts with 
multiple operation support systems. Figure 2 illus- 
trates the simplified flow information. Basically, the 
process consists of submitting appropriate allocation 
and update requests to the various component systems 
and passing the information between the components 
through the controller. Complex execution dependen- 
cies exist between the individual requests executed by 
the independent but cooperating systems. After the 
assignments and the physical connections are made, 
the special service is available and the telephone com- 
pany starts to bill the customer. 

3.3 Modeling the Foreign Exchange Service 
Order Provisioning as a Flexible Trans- 
action 

A service request (transaction), which is forwarded to 
SOAC, has the characteristics of a Flexible Transac- 
tion. The foreign exchange service transaction corre- 
sponding to Figure 2 consists of ten subtransactions. 
A flexible transaction can be represented by a trans- 
action graph, such as the one shown in Figure 3. The 
nodes of the transaction graph correspond to subtrans- 
actions ST; of flexible transactions. A directed edge 
is drawn from ST; to STj if an execution dependecy 
exists, requiring that STj cannOt be exuted until ST; 
completes successfully. Transactions with no incom- 
ing edges have no execution dependencies and are 
designated as primary subtransactions. 

In our example, ST1 , ST2 and ST3 are primary sub- 
transactions. Each subtransaction corresponds to one 
of the messages (with its corresponding response/reply 
message) shown in Figure 2). ST1 is the Planning 
MSG to WFADO, ST2 is MSGl and its reply MSGlR 
involving the TIRKS system, and ST3 is the Assign- 
ment Request to LFACS (that performs the assign- 
ments related to the loop serving the warehouse) and 
the reply response from LFACS. Upon the success of 
ST2, ST4 is scheduled. ST4 is MSG2 to the TIRKS 
system and its response MSG2R. Upon the success of 
ST3, ST5 and ST6 are triggered to provide Assignment 
Request to two COSMOSs corresponding to the two 
central offices. ST5 and ST6 are prepared based on 
the output of the ST3 which is the assignment done by 
LFACS. Upon the success of STl, ST4, ST5, and ST6, 
ST7 through ST10 are scheduled for execution. ST7 is 
the MSG3 to the TIRKS system, ST8 is the Assign- 
ment MSG to WFADO, ST9 is the Translation Packet 
to the MARCH system, and ST10 is the Assignment 
Section to SOP Upon the success of ST7 through STlo, 
the Flexible Transaction commits. Therefore, this 
Flexible Transaction has one acceptable state which 
specifies the success of all ten subtransactions as the 
condition for its success. 
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Figure 2: Foreign Exchange Service Order Provisioning 

4 Implementing a Class of Service Or- 
ders Using the Flexible Transaction 
Paradigm 

Our prototype testbed for foreign exchange service 
provisioning was developed in two steps. In the first 
step, a processing system for Flexible Transactions 
was implemented to receive the specification of a Flex- 
ible Transaction, schedule subtransactions and man- 
age the control and data flow among subtransactions 
until the Flexible Transaction commits or aborts. This 
implementation is independent from the application 
discussed in Section 3 and is capable of processing 
any Flexible Transaction. A model for executing Flex- 
ible Transactions using a parallel Prolog-based query 
language is described in [KPE92]. However, no in- 
formation about the actual implementation involving 
multiple application systems or databases is provided 

there. Implementation of our scheduler and the rest of 
the prototype is described in Section 4. 

In the second step, a program module was imple- 
mented to analyze a telephone service request, gen- 
erate the specification of a Flexible Transaction, and 
generate a set of subtransactions for local systems. 
Also, since the actual database systems used by the 
components of the service order processor were not 
accessed by the prototype implementation, models of 
these databases were created under a commercial re- 
lational database management system. These models 
captured only the data that were relevant to our appli- 
cation. Each of these databases are autonomous and 
are treated independently from other databases. The 
processing system for Flexible Transactions resides on 
a separate machine and no database has direct com- 
munication with other databases. 
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Figure 3: The intra-transaction execution dependency of a foreign exchange service transaction 

4.1 Software Architecture 

There are two major tasks in the implementation of 
a transaction processing system for Flexible Transac- 
tions [ARNS92]. The first task is to schedule sub- 
transactions and determine the success or failure of 
the global transaction. The second task is to execute 
subtransactions in the local database systems. Figure 
4 illustrates the architecture of PROMT (a PROcess- 
ing system for Multidatabase Transactions) prototype, 
which was developed to perform the above tasks. 

The scheduling algorithm for Flexible Transactions 
is implemented using L.0 [CCG+91, Nes90], a lan- 
guage that allows concise specification of the schedul- 
ing constraints on the subtransactions. The scheduler 
receives the specification of a Flexible Transaction 
consisting of a set of subtransactions, their depen- 
dency set, and the set of acceptable states. The spec- 
ification of a Flexible Transaction can be expressed 
in a pseudo language or through a graphical interface. 
In this case, the specification must be translated by a 
module to L.0 before it is passed to the scheduler. 

To supervise the execution of the scheduled sub- 
transactions, the Distributed Operation Language, 
DOL, is used [HAB+92]. DOL is designed to pro- 
vide access to multiple and heterogeneous hardware 
and software systems. By interfacing L.0 and DOL, 
the scheduler can cooperate with the execution moni- 
tor in processing FIexible Transactions. 

4.2 The Scheduler 

L.0 is a rule-based language, which was designed to 
ahow fast development of prototypes for software and 
hardware protocols [CCG+91, Nes90J. Such pro- 
tocols constrain the behavior of a number of differ- 
ent agents or components to achieve a common goal. 
Among such common goals are reliable transmission 

of data, fair resource allocation, recovery from an er- 
ror state, correct execution of a hardware circuit, and 
success or failure of a Flexible Transaction. 

Often these protocols are stated as sets of guarded 
commands [Dij75] (or rules). Each set of guarded 
commands specifies the behavior of a particular agent 
or component. In the case of Flexible Transactions, 
each subtransaction may be viewed as an agent. The 
Flexible Transaction itself may be viewed as a pro- 
tocol for coordinating the behavior of each of these 
subtransactions. Thus, the algorithm for processing 
Flexible Transactions can be implemented via a pa- 
rameterized set of guarded commands, which is in- 
stantiated once for each specification of a Flexible 
Transaction. 

The fundamental semantics of L.0 is the syn- 
chronous execution of the guarded commands. Each 
guarded command is composed of a guard (a set of 
predicates), and a set of actions to be taken once the 
guard becomes true. The guards in L.0 are referred 
to as causes, and the actions are referred to as effects. 
L.0 provides primitives to activate or deactivate a set 
of cause-effect rules in each synchronization step. 

Each synchronization step is composed of two 
phases. In phase one, all the causes in the set of 
active cause-effect rules are evaluated. The effects 
of the true causes are executed at the next synchro- 
nization step(s). In phase two, all of the effects with 
true causes (which are evaluated in previous steps) are 
executed. The execution of these effects appear to be 
simultaneous to the user. 

For example in the scheduler of Flexible Transac- 
tions, the execution dependencies of the subtransac- 
tions are implemented using whenever cause-effect 
rules. For each subtransaction, there is one guarded 
command of the form: 

whenever 
<precondition for execution> C 
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Figure 4: The Architecture of PROMT 

<the execution state of the advantages. The basic idea underlying L.0 is syn- 
subtransaction is "not-executing"> chronous execution of quantified guarded commands. 

then 
<assign state of subtransaction 

to be "executing"> & 
<invoke DOL to start execution 

of that subtransaction>; 

The synchronous execution allows modeling of maxi- 
malparallelism [CNS91]. The parallelism may further 
be restricted according to the dependency constraints 
of the subtransactions and the limitations of the exe- 
cution environment for the subtransactions. 

This type of cause-effect rule implies that at each 
step, all subtransactions which have not been exe- 
cuted and whose preconditions (their execution de- 
pendency) are true, are scheduled for execution. By 
using a quanfifrer for the above cause-effect rule, the 
cause-effect rule is executed for all subtransactions. 

The predicate to determine the success or failure 
of the Flexible Transactions is implemented using the 
until deactivators. The until deactivator, which is a 
cause-effect rule, can be used to remove one set of 
rules and activate other set(s) of rules. In the sched- 
uler, two until deactivators are used. The cause of one 
deactivator specifies the conditions for the success of 
the Flexible Transaction. The cause of the other de- 
activator specifies the conditions for the failure of the 
Flexible Transaction. Once the cause of one of the two 
until deactivators becomes true, all other rules spec- 
ified by the whenever rule and the other until rule, 
are deactivated. Upon the completion of the effect of 
the until rule, it is also removed from the set of active 
rules and the execution stops. 

Another important advantage is that it simplifies the 
implementation. Some features of L.0 such as quan- 
tification and cause-effect rules are very expressive, 
and therefore permit an easy implementation of the 
scheduler. Furthermore, the specification of Flexible 
Transaction can be expressed easily using L.0 data 
structure. Interfacing L.0 to DOL is straight-forward, 
since L.0 provides the facility to call functions written 
inc. 

4.3 Subtransaction Execution Monitor 

The subtransactions are described using the Dis- 
tributed Operation Language (DOL) [HAB+92]. 
DOL can be used to specify a distributed execution 
of a global application in a heterogeneous computing 
environment. A DOL execution environment consists 
of Execution Engine, Service Directory, and Local Ac- 
cess Managers (LAMS). The architecture of the DOL 
system is illustrated in Figure 5. 

Thus, the scheduler of the Flexible Transactions is 
implemented using a quantified whenever rule and 
two until rules. These rules form an L.0 procedure. 
To process a Flexible Transaction, the specification of 
the Flexible Transaction, specified in (or translated to) 
L.0, is passed to the scheduler capsule. The scheduler 
capsule then processes the transaction, and upon ter- 
mination of the transaction, it returns the status of the 
transaction. The status specifies whether the Flexible 
Transaction has committed or aborted. 

The Engine is responsible for the execution of the 
DOL programs. Internally, it plays the role of a task 
controller and information flow controller. For each 
task to be performed at a site, it checks with Service 
Directory to determine how that site can be accessed. 
Then, it spawns an instance of a LAM on that site 
to perform the task. It supplies the LAM with all the 
necessary information, including commands and input 
data. Upon the termination of the task, it receives 
possible output and the status of the task from the 
LAM. 

Using L.0 to implement the scheduler has several A LAM acts as a proxy user for the software sys- 
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Figure 5: The Architecture of DOL system 

tern it manages, encompassing it in a sort of logical 
shell. Each LAM knows how to communicate with 
the Engine and with its local software system. It pro- 
vides to the local software system commands and data 
which it receives from the Engine and returns back to 
the Engine the output produced by the local software 
system. It also provides the Engine with the status of 
the performed task. 

This architecture allows an easy addition of soft- 
ware systems to DOL. To incorporate a new system, a 
LAM must be designed for it and its access informa- 
tion, such as its network address, must be added to the 
Service Directory. 

4.4 Interfacing the Scheduler and the Execu- 
tion Monitor 

The main concern in designing the L.0 interface to 
DOL was to allow the asynchronous execution of the 
DOL programs (subtransactions) so that L.0 program 
(scheduler) did not have to wait for each DOL program 
to finish before it would continue its scheduling job. 
The design of the interface is illustrated in Figure 6. 

Four C functions, DoTrans, GetState, Commit- 
Trans, and AborfTruns were developed to interface 
L.0 and DOL. DoTrans starts the Interface process and 
establishes the communication channel with it. It then 
passes the communication information and the name 
of the file containing DOL program (a subtransaction 
to be executed), as the arguments to the Interface. 
Finally, without waiting for the Interface process to 
finish, it returns back to the scheduler. It returns the 
communication information of the established chan- 
nel. 

GetState reports the current state of a subtransac- 
tion, upon a request from the scheduler. It checks 
whether there is any returned result from the Interface 
or the LAM. If there is any new result of the executing 
subtransaction, that is LocalCommit, LocalAbort or 
PreparedToCommif, it reports it back to the scheduler. 

Otherwise, it reports Executing as the current state of 
the subtransaction. If the subtransaction has locally 
committed or aborted, it closes the channel so that it 
can be reused. However, if the state is prepared to 
commit, it keeps the channel alive, so that it can be 
used to send a commit or abort message later. 

CommifTrans and AborfTrans are used for the sub- 
transactions that are in the prepared-to-commit state. 
If the scheduler decides to commit the pending sub- 
transaction, it calls the CommifTruns. The Commif- 
Truns uses the already established channel to signal 
the subtransaction to commit. Similarly, AbortTrans 
is used if the scheduler decides to abort the pending 
subtransaction. 

The Interface is a process started by DoTruns. It 
creates a child process to execute a subtransaction and 
waits for the result. If a subtransaction fails or suc- 
ceeds without waiting in a prepared-to-commit state, 
the DOL Engine reports the state of the subtransaction 
back to the Interface. The DOL Engine reports any 
kind of failure such as failing to connect to a service 
or aborting a subtransaction in the DBMS as Failure. 
In the case of a success, Interface records any output 
in a file and reports local commit to the scheduler. 
In each case, Interface plays the role of a filter. The 
implementation permits complex filtering depending 
on data returned by a subtransaction, as well as on the 
state information. 

5 Conclusions and Future Work 

Many applications and databases that were designed 
to operate as stand-alone systems need to become 
interoperable to support multi-system applications. 
Service order provisioning is one example of such 
a multi-system application which is fundamental to 
the telecommunications business. The automation of 
the provisioning will allow telephone operating com- 
panies to make new services available to customers 
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faster, i.e. in minutes, rather than in days or weeks. 
One conclusion of the project described in this pa- 

per is that the Flexible Transaction model was found 
to be useful for specifying the control and data flow 
in service order provisioning. Work flows for many 
telecommunications services are qualitatively simi- 
lar to the work flow considered here; hence Flexible 
Transactions for many services can be defined simi- 
larly. The use of this model facilitates specification of 
provisioning at a higher level of abstraction, making 
the provisioning of various services easier to under- 
stand. The declarative and high-level specification of 
work-flow control as dependencies and success/failure 
conditions, as compared to hard coded flows in appli- 
cation code has significant advantages. The work-flow 
can be changed independently of the subtransactions 
that perform a specific activity or request specific func- 
tions from other systems. A subtransaction that per- 
forms one type of activity can be used in multiple work 
flows that require performing the same type of activ- 
ity. Since the Flexible Transaction model permits con- 
current execution of subtransactions at different sites, 
it promises improved efficiency by exploiting paral- 
lelism among subtransaction executions. The model 
also allows easy addition of more systems and tasks 
to service order provisioning with new demands. The 
abstraction of the work and data flow could, in the 
future, permit automated verification of correctness. 

Another conclusion that might be drawn from this 
project is that proposed multidatabase transaction 
models (e.g. the Flexible Transaction model), which 
relax traditional requirements such as atomicity and 

1 
0 

isolation and even the correcmess criterion of serial- 
izability are practical, and have, in fact, been in use 
informally for years by “industrial” applications. 

One of the obstacles to efficient provisioning of 
services is that requests for manual assistance due to 
errors, failures and data inconsistencies may be gen- 
erated throughout the provisioning process. These 
scenarios must be identified and their handling must 
be automated. Our experiences indicate that provi- 
sioning and many other flow-through processing ap- 
plications could be defined and supported efficiently 
using multidatabase transaction models. However, it 
remains an open research problem to determine if the 
Flexible Transaction Model is expressive enough to 
naturally remove needs for manual assistance. 

The project is currently continued and its scope 
has been expanded. In particular, we are studying a 
number of research issues including the definition of a 
suitable correctness criterion for concurrent execution 
of multiple Flexible Transactions and the development 
of a recovery mechanism for Flexible Transactions. 
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