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Abstract 
We describe the SVP data model. The goal of SVP is to 
model both set and stream data, and to model parallelism 
in bulk data processing. SVP also shows promise for other 
parallel processing applications. 

SVP models collections, which include sets and streams 
as special cases. Collections are represented as ordered 
tree structures, and divide-and-conquer mappings are easily 
defined on these structures. We show that many useful 
database mappings (queries) have a divide-and-conquer 
format when specified using collections, and that this 
specification exposes parallelism. 

We formalize a class of divide-and-conquer mappings 
on collections called SVP-transducers. SVP-transducers 
generalize aggregates, set mappings, stream transductions, 
and scan computations. At the same time, they have 
a rigorous semantics based on continuity with respect to 
collection orderings, and permit implicit specification of both 
independent and pipeline pa.ra.llelism. 

1 Introduction 
Achieving parallelism in bulk data processing is a 
relatively old problem, which has recently enjoyed a 

resurgence of interest. This paper proposes a new 
approach to addressing the problem. Since many of 
the issues involved are complex, we begin with first 
principles. 
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1.1 Parallel Programming 

Parallel programming aims at exploiting high-perfor- 
mance multiprocessor systems. An important objective 
is to be able to express the parallelism available in 
-an application. There are essentially three ways to 
accomplish this: 

l automatically detect parallelism in programs written 
with a sequential language (e.g., Fortran, OPS5); 

l augment a language with explicit parallel constructs 
that exploit the computational capabilities of a 
parallel architecture (e.g., C* [17], Fortran90); 

l create a new language in which parallelism can be 
expressed in an architecture-independent manner. 

The first approach can be practical in the short-term, 
but is faced by many difficult problems. Among these, 
development of a parallelizing compiler is a major chal- 
lenge. Methods for automatic program restructuring, 
and the parallelization of serial programs can produce 
good results for some programs (e.g., certain scientific 
programs), but most of the time the resulting speed-up 
is quite limited. For instance, experiments conducted 

with the OPS5 rule-based language revealed that in 
practice, the true speed-up achievable from parallelism 
was less than tenfold [7]. A related serious problem 
with this approach is that, in the final analysis, the se- 
rial programming paradigm does not encourage the use 
of parallel algorithms. 

The second approach enables the programmer to ex- 
press parallel constructs such as task creation and inter- 
task synchronization, thereby providing leverage over 
parallelism. Although this approach can lead to high- 
performance, it is generally too low-level and difficult 
for the programmer. Furthermore, the large variety 
of parallel architectures result in distinct, architecture- 
specific extensions to the original 1anguage.l In order 

lLinda [4] is a notable exception of ‘coordination language’ 
with simple, language-independent parallel constructs, which can 
mate easily with many non-parallel languages. 
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to achieve efficient program execution, the programmer 
must first become acquainted with the programming 
paradigm dictated by the architecture of the target ma- 
chine. 

The third approach can combine the advantages of the 
other two. It can ease the task of programming while 
allowing the programmer to express non-sequential 
computation in a high-level way [16]. Once the 
programmer has specified the algorithmic aspects of 
his program using high-level programming constructs, 
automatic or semi-automatic methods can be used to 
derive a mapping from the computational requirements 
of the program to parallel hardware. The basis for 
this mapping is data partitioning (also called data- 
parallelism), whereby program data can be divided into 
fragments on which either the same instructions can 
be executed in parallel (with the SIMD computation 
model) or different instructions are executed in parallel 
(with the MIM D computation model). The regularity 
of the data structures available in the language permits 
exploitation of different forms of parallelism, such as 
independent and pipeline parallelism [9]. 

In this paper, we follow the third approach, and 
propose a model for parallel database programming 
where the primary sources for parallelism are paral- 
lel set and stream expressions. Parallel programming 
environments that follow this approach have recently 
been proposed. For example, in Paragon [5], the pri- 
mary source for parallelism is parallel array expressions. 
Paragon is targeted to scientific programming applica- 
tions and offers the essential features of parallel Fortran 
languages. Our model is targeted at database applica- 
tions, and bulk data processing. 

1.2 Parallelism for Bulk Data Processing 
There are various forms of parallelism. Figure 1 shows 
four simple kinds of parallelism graphically. 

independent pipeline fan-out fan-in 

Figure 1: Types of Parallelism 

A few key ideas can be derived from studying this 
figure, and applying the parallelism structures there to 
problems in bulk data processing: 

l Division of problems is the essence of parallelism. 
Dividing into independent subproblems gives inde- 
pendent parallelism, while dividing into incremental 

. 

computations gives pipeline parallelism. Set map- 
pings naturally expose independent parallelism (a 
given instruction is independently applied to each 
element of a set) while stream mappings expose 
pipeline parallelism (some instructions are succes- 
sively applied to each element of a stream). Thus, 
sets and streams suggest a divide-and-conquer for- 
mat for specifying mappings which is implicitly also 
a format for specifying parallelism. 

Divide-and-conquer computations can be represented 
as series-parallel graphs. Series-parallel graphs [15] 
are defined recursively as graphs having one input 
and one output that can be constructed using two 
combination rules: series or parallel composition of 
the inputs and outputs. A typical series-parallel 
graph is shown in Figure 2. It models a situation 
where 1 and 2 are performed in parallel before 3, 
and 3 is performed before the parallel execution of 
4, 5, and (6 followed by 7). 

Figure 2: A Series-Parallel Graph 

These graphs use only the constructs in Figure 1. 
Dividing a problem is represented by fan-out nodes 
in the graph, while conquering gathers results into 
a set (with independent parallelism), a stream (with 
pipeline parallelism), and/or an aggregate (with fan- 
in parallelism). Thus, divide-and-conquer solutions 
of problems often directly correspond to these four 
kinds of parallelism. 

l Database applications provide excellent opportuni- 
ties for parallel processing. The set-oriented nature 
of the relational model makes exploitation of inde- 
pendent parallelism natural [19]. In fact, set oper- 
ators such as the relational algebra operators can 
often be naturally expressed as divide-and-conquer 
computations, as we will show in section 2. 

These ideas raise hope for a parallel bulk data 
processing system that rests upon divide-and-conquer 
techniques. However, such a system must deal with 
several important technical issues to be viable. 

A first problem is that the relational model offers 
no way to talk about order among data (e.g., sorted 
relations, or ordered tuples). Relational languages are 
therefore inadequate for specifying ‘stream processing’, 
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in which ordered sequences of data are processed 
sequentially [13]. Pipeline parallelism is generally 
used, transparently to the user, in lower-level languages 
implementing relational algebra (e.g., PLERA [2], or 
PFAD [S]). However, higher-level relational interfaces 
do not permit streams to be exploited, preventing 
specification of stream computations and also pipeline 
parallelism. 

A second problem is that parallel data processing 
requires effective data partitioning capabilities. Typi- 
cally, a relational query (select-project-join expression) 
is translated into a low-level form of relational algebra 
with explicit (low-level) parallel constructs [2]. Data 
partitioning is used to spread the computation of rela- 
tional algebra operators among parallel processors [l]. 
This partitioning is typically defined during the physi- 
cal database design and then exploited by a compiler. 
Most of the time, a partitioned computation requires 
that processors exchange intermediate results in order 
to compute the final result. 

In our view, data partitioning must be expressible by 
the programmer within a parallel database language. 
Specifying parallel computations over relations often re- 
quires specifying how data partitioning (fan-out paral- 
lelism) will be done and how distributed results will be 
collected (fan-in parallelism). This view is supported by 
recent results on data reduction for Datalog programs 
[21], in which rules are replaced by their per-processor 
specializations. These specialized rules include appro- 
priate hash functions that capture partitioning informa- 
tion. This approach is very interesting in that it incurs 
no communication costs between processors. However, 
determining the appropriate hash functions to perform 
data reduction is still an open problem, known to be un- 
decidable in some cases. It seems unlikely that database 
systems will be able to completely automate partition- 
ing decisions. 

Database models have been developed before that 
permit expression of both ordering among tuples and 
data partitioning. For example, the FAD language has 
operators that express various forms of fan-out and fan- 
in parallelism [6]. FAD is a strongly-typed set-oriented 
database language based on functional programming 
and relational algebra. It provides a fixed set of higher- 
order functions to aggregate functions, like the pump 

parametrized aggregate operator and the grouping 
operator. The pump operator applies a unary function 
to each element of a set, producing an intermediate set 
which is then ‘reduced’ to a single datum using a binary 
function that combines the intermediate set elements. 
Indeed, pump naturally expresses a special case of fan- 
out and fan-in parallelism. At the same time, the group 

operator permits set partitioning. 

1.3 Goals of the Paper 

Based on the observations above, our main goal is to 
develop a data model, called SVP, that supports both: 

l ordered and unordered (stream and set) data repre- 
sentations; 

l a formal semantics for divide-and-conquer compu- 
tations on sets and streams to express independent 
(set) and pipeline (stream) parallelism. 

This model is intended to serve as a formal foundation 
for defining parallel database languages in which paral- 
lelism is specified at a high-level. 

The SVP data model has the following features: 

SVP values either are collections (a generalization 
of sets and streams), or are tuples of SVP values. 
Collections are represented as ordered binary tree 
structures. Intuitively, lists can represent streams, 
balanced trees can represent sets, and ordered binary 
trees can represent either. 

SVP allows restricted divide-and-conquer mappings 
on SVP values. In this paper these mappings are 
specified with recursive functional equations. They 
generalize other specification techniques, including 
restricted higher-order mappings like the reduction 
operator in APL [lo] and the pump operator in FAD 
[6], list comprehensions and elegant variants thereof 
[20], and series-parallel computation graphs [15]. 

Parallelism in the dividing and conquering is spec- 
ified using both the structure of the data, and 
the structure of the divide-and-conquer mapping: 
dividing-parallelism is specified by the data, and 
conquering-parallelism is specified by the mapping. 
Partitioning can always be used to modify data 
structure, and thus affect dividing-parallelism. 

The paper is organized as follows. Section 2 investi- 
gates the relationships between set and stream process- 
ing, and demonstrates with examples how divide-and- 
conquer mappings are important for data processing. 
Section 3 presents the SVP model and defines SVP val- 
ues, types, and mappings. Section 4 then gives exam- 
ples of SVP mappings for expressing relational algebra 
operators, grouping and aggregate operators. Finally, 
Section 5 concludes the paper and summarizes the con- 
tributions of the SVP model. A more comprehensive 
presentation of SVP is given in [14]. 

2 Set and Stream Processing 
Let us clarify first what set processing and stream 
processing are, and then study how they might be 
integrated in a parallel processing model. 
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2.1 Sets and Streams 
For the purposes of this paper, we will rely on similar 
formulations of sets and streams. 

Given a set of values D, we will write 2O to denote the 
finite or infinite sets on D, and write D l to denote the 
finite or infinite streams on D. Sets use the following 
notation: 

1. {} is a set (the empty set); 

2. { 2) is a set, for any value 2; 

3. Finite sets are written with set braces, as with: 
{1,2,31. 

4. The union Sr U Sz is a set, if S1 and SZ are sets. 
(We use the symbol ‘u’ for disjoint set union in this 
paper, except where indicated otherwise.) 

5. The cordinality I] S ]I of any set S is the number of 
values in the set. 

Streams analogously use the following notation: 

1. 

2. 

3. 

[] is a stream (the empty stream); 

[z] is a stream, for any value z; 

Finite streams are written with square braces, as 
with: [l, 2,3]. 

4. The concatenation Sr l S2 is a stream, if Sr and 
Sz are streams. (We use the symbol ‘ l ’ for stream 
concatenation (‘append') in this paper.) 

5. The length 1 S] of any stream S is the number of 
values in the stream. 

As usual, set union is associative and commutative, 
where stream concatenation is only associative. 

Although streams are formalized here like strings, 
with a concatenation operator, they are accessible like 
lists. Specifically, every nonempty stream S satisfies 

S = (h -T) 

where h is the head of S, and T is the tail of S. Here h 
will be a value, and T will be a stream. The constructor 
symbol ‘-’ (‘cons') can be viewed as an operator that 
combines a value and a stream into a stream. The 
single-element stream [z] is actually a shorthand for 
(z . [I>, and L VI is a shorthand for (1 . 2 . 3 . [I). 
All finite streams are terminated explicitly with [I. 

One more bit of notation will be useful. We use 
parentheses to set off tuples (vectors). Thus 

(a, 1, b) 

denotes a 3-tuple (tuple with 3 elements). 

2.2 Set and Stream Mappings 

Consider the following mappings, using the formaliza- 
tion of sets and streams given above. We would like to 
be able to formalize these mappings in our model. 

The equations 

count({)) = 0 
co?mt({z}) = 1 
count(S~ u S2) = count + count(Sz) 

define a set mapping (in this case an aggregate) 
recursively. This definition reflects parallelism that 
can be obtained by computing cardinalities of subsets 
independently. For example, in the computation 

count({a, b, c}) = count((a, b}) +- count({c}) 
= count({a}) + 

+ count({c}) 
= 1+1+1 
= 3 

we have ultimately three independent 
that are ‘fanned-in’ to an aggregate. 

Consider now the stream mapping 

parallel threads 

diiM1) 
diffst~ . [I> 
diffs(z . y. S) = (y - z) . di@(y . S) 

This yields a stream of the differences between adjacent 
elements in the input stream. For example: 

diffs(98.99.97.97.99.96. [I) 

= +1 . A&(99 .97.97 .99.96 . [I) 

= +l . - 2 . diffs(97 .97.99.96. [I) 

= +l- -2. O.difls(97.99.96.[]) 
= $1 . -2. 0. $2. difls(99.96.[]) 

= $1 . - 2 . 0. + 2 . - 3 . difls(96. [I) 
= +1* -2. 0. +2* -341. 

This mapping implements a kind of ‘automaton’, or 
‘transducer’, that scans the stream of values and trans- 
lates it to a stream of pairwise differences. These trans- 
ducer mappings are important in analyzing streams, but 
are (at best) quite challenging to implement with a set- 
oriented model. 

2.3 Composition of Set and Stream Mappings 

Functional mappings can be composed naturally. We 
consider a simple example that illustrates how compo- 
sition of set and stream mappings allows us to answer 
arbitrary queries by composing a few elementary map- 
pings. 
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Example: Areas of Convex Polygons 

We are given a convex polygon a.5 a stream of points in 
(r, y)-coordinate form that trace out the boundary of 
the polygon, and the problem is to compute the total 
area of the polygon. 

This problem can be solved by triangulating the 
polygon, i.e., cutting the polygon into triangles, and 
computing the total area of the triangles. Specifically 
we can transform the stream of points of the polygon 

KQ>Yl), (22,Y2), *-* (G-b,Y*)l 

into a set of triangles (triples of points) 

{ ((t1, Ylh (22, Y2)r (13, Y3)), 

((21,Yl),(Z3,Y3),(24,Y4)), **- 

cc-, Yl), (%-1, Yn-l), (Ga, Y*>) } 

and then compute the sum of the areas of the triangles. 

Figure 3: Triangulation of a Convex Polygon 

For example the polygon given by the stream of points 

[(O, 01, (1,4), (5,6>, (6,3), (4, -41 

corresponds to the set of triangles 

{ ((O>O>, (LJ)> (%6>>, 
((0, Oh (5,6), (6,3)), 
((0, Oh (6,3), (4, -1)) I 

having respective areas” 

2 The Heron formula for the area of a triangle whose sides have 
respective lengths a, b, c is given by 

+(s - a)(s - b)(s - c) 

where s = (u + b + c)/2. 

{ 7.0, 10.5, 9.0 } 

and a total area of 26.5. See Figure 3. This is expressible 
as 

PolYPn = [(O, 01, (1,4), (5,6), (6,3), (4, -111 
total-area = sum( areas( ts( poIygon ) ) ) 

where we define ts (triangles) with 

Ml) 
t+o . [I> 1 ;{ 
ts(po . PI . [I> = 0 
iS(Po . PI . P2 - s> = {(PO, Pl, P2)) u ts(Po . P2 . S). 

and the aggregate functions needed are: 

suNI> = 0 
S~N4) 
sum(S1 u S2) : kn(S,) + sum. 

areas(O) = 0 
a~ea4{(p0,pl,p2))) = {a-4p0,pl,p2)) 
areas(S1 U Ss) = areas(S1) U areas($). 

difq(% Yl), (E2, Y2)) = (t1 - 2212 + (Yl - Y2)2 

adpo,pl,p2) = ds(s - a)(s - b)(s -c) 

where: a = dist(p0,pl) 
b = WPl, P2) 

c = ~qP2,po) 
s = (a+ b+ c)/2. 

The example here hopefully makes two points: First, 
a model based on composing mappings on sets and 
streams is sufficient to develop expressive database 
systems - significantly more expressive than standard 
DBMS. Although the example problem above is not 
easy to solve with standard DBMS, the structures 
involved (sets of streams, etc.) are easy to understand, 
and the queries are easy to state, and easy to state 
mathematically. 

Second, the structure of the data (sets and streams) 
directly reflects parallelism in the data processing 
required. Both pipeline and independent parallelism are 
crucial in data processing, and these kinds of parallelism 
can be made evident by the stream or set structure of 
the data. 

2.4 Perspective: Divide-and-Conquer 
Mappings 

Our goal is to develop a formal data model that 
will support all of the mappings shown earlier. The 
challenge comes in developing a model that encourages 
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optimization and extraction of parallelism and supports 
at least the set and stream mappings shown earlier. 

The mappings above are all ‘divide-and-conquer’ map- 
pings, of three kinds: 

1. 

2. 

3. 

Aggregates 
Aggregates can be described 
the format 

f(O) = 

as functions of sets with 

id 

h(x) 
f(S) e f(S2 1 

where 0 is an associative, commutative operator 
whose identity is id, and h is a function that yields 
values of the type taken by 0. 

Set Mappings 
Set mappings have the divide-and-conquer form 

f(O) = 0 
f (1x1) = h(z) 

f(Sl u S2) = f(S) u f(S2) 

where h is a set-valued function. 

Stream Transducers 
Stream mappings like dins and triangles are natu- 
rally characterized as ‘automata’ that incrementally 
translate their input. We will call this kind of map- 
ping a transducer. 

In general form, we define a stream transducer f in 
terms of two function parameters, 6 and h, and an 
iterative control structure F: 

f(S) = F(qo,S) 
F(q, [I> = w?> 11) 
F(Q, I. S> = h(q, x> l F(%z, x), S). 

Here intuitively there is a set of ‘states’, pa is the 
‘initial state’, 6 is a ‘state transition function’ that 
maps a (state,input)-pair to a new state, and h(q, z) 
is the output stream produced in state q with input 
x. So, in particular, h(q, [I) is the output stream 
produced in state q when no input remains. Thus F 
maps a (state,stream)-pair into a stream. 

We call f a stream transducer because its definition 
directly mirrors the definition of a finite state 
transducer - a finite automaton that produces 
output given its current input symbol and current 
state. 

An obvious question facing us now is: 

What is 4 useful generalization of aggregates, set 
mappings, and stream transducers, that can be 
applied successfully in parallel data processing? 

The SVP model described next offers one answer to this 
question. 

3 The SVP Model 

The goals of SVP require a model in which collections 
(both stream collections and (multi-)set collections) can 
be expressed, and mappings on these collections can be 
defined. For simplicity, and without loss of generality, 
we limit ourselves to a value-based model - i.e., objects 
are not handled by the model currently. 

3.1 SVP Values 

SVP models two kinds of values: atomic values, 
and constructed values. Constructed values represent 
complex structures, or nested values, and can be either 
tuples or collections. Tuples are typically heterogeneous 
structures with a small number of elements, while 
collections are typically homogeneous structures with 
a large number of elements. 

Values are recursively defined as follows: 

l Any atom is a SVP value. 

l Any finite tuple (vi,. . . , vn) of SVP values vi, . . . , v,, 
is a SVP value. A tuple with one atom is called a 
1-tuple, a tuple with two atoms is called a 2-tuple, 
etc. 

l Any collection is a SVP value. 

In SVP, collections are recursively defined as follows: 

l () is the empty collection. 

l (v) is a unit collection if v is a SVP value. 

l Sr o Sz is a collection if 5’1 and S2 are nonempty 
SVP collections. Collections are forbidden to 
properly contain the empty collection. 

This definition allows SVP collections to model many 
structures of interest, including: 

sets 
The SVP-collection ((1) o (2)) o ((3) o (4)) repre- 
sents the set {1,2,3,4} as a balanced binary tree. 

streams and sequences 
A stream is a sequence (right-linear tree) that, if 
finite, is terminated with [I. The SVP-collection 
(1) o ((2) o ((3) o ((4) o [I))) represents the stream 
[1,2,3,4] as a list-like structure. 

3.2 SVP Types 

Database systems support homogeneous collections of 
data. SVP does also, resting on a simple polymorphic 
type system that defines the following value types: 

0 atom 
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tuple(T1, . . . , Tn) is a constructed value type, if 
each T; is a value type. 

collection(T) is a homogeneous collection type, if 
T is a value type. 

Thus the following are homogeneous collection types: 
collection(atom), collection(collection(atom)), 
collection(tuple(atom,collection(atom))), etc. 

3.3 SVP Mappings 

Data models typically specify how all permissible map- 
pings can be constructed. We take a different approach. 
SVP imposes few restrictions on atomic value mappings 
- essentially any mapping on atomic values is permit- 
ted. However, SVP requires all collection mappings to 
be SVP-transducers. This class of mappings is power- 
ful, and suited to bulk data processing on homogeneous 
collections. At the same time SVP-transducers are re- 
strictive enough to permit optimization and extraction 
of parallelism. 

3.3.1 Basic SVP Mappings 

SVP explicitly provides the following basic mappings: 

l Constructors 

- tup/ing ((- * .)) 
If Xl,.. . , z,, are values of types Tl, . . . , T,, then 
(Zl,..., zn) is of type tuple(T1, . . . , T,). 

- collection (0) 
If S1 and Sz are of type collection(T), S1 o S2 
is also. The constructor o is used both as a 
constructor and as an operator that guarantees 
its result is a properly-formed collection, so that 
() o S = So () = S, but otherwise S1 o Sz 
yields the ordered binary tree with left subtree 
5’1 and right subtree 5’2. That is, the expression 
Sl o 5’2 evaluates to the structure S1 o Sz precisely 
when S1 and Sz are ()-free collections. This 
may be slightly confusing at first, but avoids 
introducing a new operator. 

l Deconstructors 
SVP provides the following type-membership predi- 
cates for SVP values 0: 

- atom(v) - whether 2, is an atomic value. 
- tuple(v) - whether 21 is a tuple. 
- collection(v) - whether ZJ is a collection. 

- emptycollection - whether o is (). 
- unitcollection - whether v is (2) for some I. 

Furthermore, the following functions are provided: 

- unitcollectionvalue(S) - 2, if S = (X). 

arity(t) - number n of elements in a tuple t. 

t[i] - tuple subscripting. If t is a tuple (xl,. . . , xn) 
of type tuple(?;, . . . ,T,), and i is an integer 
between 1 and R, then t[i] yields xi, of type x. 

Note only tuple deconstructors are allowed to appear 
in user-defined mappings. Deconstructors are not 
provided for collections. The only conskuct for 
iterating over colle&ons is the SVP-transducer. 

SVP collections can be regarded as an abstract data 
type, whose only defined operations are the collection 
constructor, the limited collection deconstructors just 
defined, and SVP-transducers introduced next. 

3.3.2 SVP-Transducers 

SVP-transducers specify mappings of collections as: 

1. the mapping of the elements in the input collection; 

2. the collecting of the resulting mapped input ele- 
ments into an output. 

SVP-transducers are capable of implementing all the 
example mappings shown earlier. 

A mapping f on SVP collections is an SVP-transducer 
if it is the composition of one or more functions, each 
of which can be written in the following divide-and- 
conquer form: 

f(S) = J’( Qo, P(S)) 

JYQ, 0) = ide 

J’( Qt lx> > = h(Q,x) 
F(Q,SloS2) = F(Q,p(Sl)) 

0 J'( 4Q,Sd, ~4.52) 1. 

Here QO is an arbitrary fixed value, p is either the 
identity mapping or an SVP-transducer, and h, 0, and 
6 are arbitrary SVP mappings of two arguments. We 
have written 19 as a binary operator. 

We also permit f, F, and h to take additional 
arguments not shown explicitly here; in particular f can 
be a function of other parameters besides the collection 
S (including other collection parameters). Also, the Q 
argument can be omitted if it is not used by h or 6. 

The mapping p(S) typically performs data partition- 
ing on the collection S. Common values for p(S) include 
just S (the identity mapping, with no repartitioning), 
and the operator partition(P,S), in which P is a predi- 
cate defining a splitting of S into two parts Sl o S2, the 
first for which P yields the value true, and the latter 
the value false (assuming both are nonempty). Parti- 
tioning operators will be investigated later. 
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The operator 0 must be of type T x T + T, for some 
SVP type T which must be declared. For example, the 
o collector here is restricted to work on operands of 
type collection, and produce a collection. This type 
also restricts the values produced by the h function. For 
example, when 6’ is ‘ o ‘, h must produce a collection. 

When 0 is a complete operator with a left identity 
6, we call 6 a collector. The table below gives 
examples of collectors. Parallel evaluation of associative 
collector expressions is sometimes called parallel prejit 
computation [I2]. Other properties of collectors (such 
as Commutativity, Idempotency) can be exploited to 
obtain greater parallelism. 

min atom -toa A;& 

Here o is the collection-forming operator, and ?r is the 
append operator for collections. Thus () is the identity 
for * , and when S and T are nonempty S*T is the 
collection consisting of S but with the rightmost leaf 
(2) of S replaced by (z) oT. 

In the general SVP-transducer, 8 is permitted to 
be an arbitrary operator, and ido an arbitrary value. 
However, we shall mainly deal in the rest of the paper 
with transducers in which 0 is a collector. 

The important restriction this form imposes is that 
the computation over the collection be performed 
by a divide-and-conquer traversal. Basically, SVP- 
transducers provide a (‘large’) control structure that 
directs a function on values (‘small’ data manipulation) 
to be applied as needed. This control structure can be 
viewed as a generalized scan over a collection, together 
with gathering of scan results, where both the scan 
and the final gathering may be performed using parallel 
techniques. 

3.3.3 Definition of SVP Mappings 
Further mappings can be built using the basic mappings 
and SVP-transducers defined above. However, SVP 
mappings are restricted in the following ways: 

l All mappings arguments are typed, and all mappings 
must be well-typed. In particular, constructors and 
deconstructors can be applied only to operands of 
the appropriate type. 

l The only operators that can be applied to collec- 
tions are SVP-transducers, and the constructor and 
deconstructors defined earlier. 

l An SVP mapping used as a parameter can invoke at 
most a bounded number of SVP-transducers. 

These restrictions limit the power of SVP-mappings. 
Without this restriction, transducers can be used (for 
example) to implement arbitrary iterative deconstruc- 
tors or Turing machines. General query optimization 
is infeasible. With the restriction, transducers are re- 
stricted to implement only bounded networks of trans- 
ductions on collections, and optimization is feasible. 

3.4 Properties of the SVP Model 

The SVP model was designed to address the goals given 
at the outset. This section has provided a variety of 
examples using SVP that will help motivate its being the 
way it is. To help clarify, however, below are perceptions 
about SVP that shaped its current form. 

1. 

2. 

3. 

4. 

The definition of SVP transducers is a direct gen- 
eralization of the earlier definitions of set mappings, 
aggregates, and stream transducers. Furthermore, it 
is a modest generalization, covering essentials only. 

SVP collections are ordered binary trees because 
this is enough to let them represent both recursive 
problem division, and also sets and streams. The 
ordering of the leaves in the tree is the stream 
ordering. Otherwise, the actual topology of the tree 
is important precisely in that it determines problem 
division (and conquering). 

When 0 is an associative operator, the expression 

xl e z2 e . . . e xn 

gives the same result regardless of the way it is 
parenthesized, i.e., regardless of the topology of the 
expression tree. The result is affected only by the 
ordering of the xi. Thus associative operators are 
naturally stream mappings. Furthermore, when 0 is 
associative and commutative, the result is the same 
regardless of the ordering of the xi. Thus associative, 
commutative operators are naturally set mappings. 

The definition of SVP transducers leads to a very 
nice theory, based on the idea of structure preser- 
vation. Divide-and-conquer techniques work only 
when the data can be divided in a way that repre- 
sents some underlying ‘structure’. SVP collections 
allow us to model various kinds of structure im- 
portant in data processing, including sort ordering 
and physical data partitioning. It is also possible 
to generalize the classic work of Kahn for contin- 
uous functions on sequences [ll] to work for con- 
tinuous functions on collections. The basic idea is 
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5. SVP is a model. It is not intended as a full 
database system and query language, but rather 
the sketch of a larger, full-featured system. It 
permits many practical extensions, including n-ary 
trees (not just binary) for representing collections, 
permitting n-ary problem division, and if-then-else 
constructs, permitting early termination of a scan 
over a collection. Earlier versions of SVP permitted 
these extensions explicitly, but the result was a 
more complicated model. The current model is 
simple, and encourages a transducer style with more 
parallelism. 

4 Examples of SVP-Transducers 

that prefix-continuous functions on sequences3 are 
exactly those functions that yield pipeline paral- 
lelism. Stream-continuity gives pipeline parallelism, 
and set-continuity gives independent parallelism. 

To illustrate the power of SVP, we show how basic 
data processing primitives can be expressed as SVP 
transducers. These examples have all been implemented 
and execute correctly in an SVP prototype written in 
Bop, a rewrite rule language developed at UCLA. 

4.1 Three Basic Transducers 
SVP offers essentially three functionals: 

l collect (bottom-up accumulations) 

collect(0, id, 0) = id 
collect(8, id, (z)) 
collect(8, id, Sl o Ss) 1 :bllect(B, id, S,) 

B collect(0, id, Sz). 

l transduce (general transductions on collections) 

transduce(h, 6, Q, 0) 

transduce(h, 6, Q, (z)) 
= 0 
= h(Q,x) 

transduce(h, 6, Q, S1 o S’s) = 

transduce(h, 6, Q, Sl) 

o transduce(h, 6, J(Q, S,), SZ). 

l restructure (top-down reorganization) 

restructure@, S) = R(p, p(S)) 

WJ? 0) = 0 

Rh (xl> = (x) 
R(P, 5’1 0 S2) = VP> P(S)) 0 R(P, P(SZ)). 

3Prefix-continuous functions on sequences are functions that 
are monotone with respect to the sequence prefix ordering, so 
giving the function more input cannot result in the function’s 
producing less output, and also cannot wait indefinitely before 
producing an output. Fixed-point results for continuous functions 
lead to a rigorous fixed point semantics for networks of SVP- 
transducers, even for cyclic networks. 

Most SVP transducers are definable in terms of col- 
lect, transduce, and restructure. Note that whenever 
b(Q,S) = 6’(Q, restructure(p,S)) for all Q and S, the 
SVP transducer expression f(S) with the defining re- 
cursion 

f(S) 
JYQ, 0) 
J’( Q> (x) 1 

= F( &or P(S)) 
= ide 
= h(Q,x) 

JYQ, S1 oS2) = F(Q, P(S)) 

0 F( ~(Q,Sd, p(S2) >. 

is equivalent to the expression 

collect(0, id*, transduce(h, S’, &a, restructure(p, S))). 

4.2 Restructuring, Partitioning and Grouping 

Often it is useful to transform of one structure to 
another. Reorganization can be done both with 
restructure and collect in many ways. For example, 
sequence - a transducer that maps an input collection 
to a flattened sequence - is definable as 

sequence(S) = restructure( first-rest, S) 

where first-rest is a transducer that partitions a collec- 
tion into first and remaining elements. Alternatively: 

sequence(S) = collect( *, 0, S) 

- collections can be flattened by recursive appending. 
The restructure functional is useful for top-down reor- 

ganization of collections. For example, if p splits a tree 
into two trees of equal cardinality, then restructure(p, S) 

produces a balanced version of S. Also, if p partitions 
a tree into two subtrees by comparing with a median- 
estimate key value, then restructure(p, S) sorts a tree S 
by that key. 

We can restructure any collection into a balanced 
collection (balanced tree) by repeated halving: 

balance(S) = restructure(split, S) 

split(S) = pcoll( halves(l,count(S), 

sequence(S))) 

halves(i, n, 0) = (070) 
halves(i, n, (x)) = ifi<n/2 then((x),()) 

else ( 0, (4 > 
halves(i, n, S’l o S2) = halves(i, n, S1) 

pcomb halves(i + 1, n, &). 

Here we need several operators on partitions: 

PC4 (Sl,S2)) = 4 05-Z 

(pl,h) pcomb (Ql,Qd = (PloQl, hoQ2). 
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Note pcomb is a binary operator with identity (0, ()), 
and is thus a collector. 

Collecting is useful for bottom-up restructuring of col- 
lections. Partitioning can be performed with collecting: 

partition(P, S) = 

pcoll( collect( pcomb, (0, ()), parts(P, S)) 

wrts(P, 0) = 0 
parts(P, (2)) = if P(z) then ( (I), () ) 

else ( 0, (x) 1 
parts(P, SI 0 SZ) = parts(P, SI) 0 parts(P, S2) 

> 

This partitions by splitting collection S into two 
subcollections (Si, 5’2) according to predicate P, and 
using pcoll to recombine these into a collection. 

Grouping can also be expressed as collecting. The 
grouping operation takes a set S and a characteristic 
function h (say a hash function or a key function) as 
input, and produces as output a set of 2-tuples (Ic, Si), 
1 5 i 5 p, where k is the value obtained by applying 
h to any member of the set Si, and S is partitioned by 
the Si subsets. This can be implemented as an SVP- 
mapping that applies h to the 2 values in the input and 
accumulates the resulting (k, 2) values into buckets [14]. 

4.3 Algebraic Operators 

In FAD [6], the parameterized aggregate operator 
pump(h,~,& 3) is defined to yield 

ido ifS = {} 
h(+l) 6 . . . 6 h(z,) if S = (21,. . .,zn) 

where B is an associative, commutative binary operator, 
with identity ide. It is definable as an SVP transducer: 

wv(h, 0, ide, 0) = id@ 
pump(h, 6 ids, (4) = h(x) 
pump@, 4 6, Sl 0 S2) = pump@, 0, de, Sl) 

e wmp(h, 4 ide, 5-4. 

The list1 operator in [3] is similar. The APL reduction 
operator [lo] allows non-associative, non-commutative 
operators. In particular, if 0 is a binary operator and 
S (21,22,*.., 

S b; e is e/s 
z,,) is a vector, the APL reduction of 

= ((. . . (ti e 22) 0 . ..) B I*). This 
is an aggregation that reflects the ordering of the input. 
It can also be written as a SVP-transducer, assuming 
the input is in left-linear form: 

APLreduction(B, 0) = 0 
APLreduction(B, (2)) = 2 

APLreduction(0, S1 o S2) = APLreduction(8, S,) 

0 APLreduction(0, S2). 

Furthermore, any collection can be restructured to left- 
linear form with a simple SVP-mapping [14]. 

4.4 Joins 

Surprisingly, important n-ary operations like joins can 
be implemented with transducers! In fact, interesting 
join algorithms can be developed. 

Let us define a general join algorithm. One general 
specification for joins would be something like: 

combine(R,S) = { RESULT(r,s) 1 

TEST(r,s) A .r E R A s E S }. 

Most join algorithms use a simple definition for RESULT 

(e.g., tuple concatenation) and TEST (e.g., testing 
equality of key values). The join partitions the cross 
product R x S into equivalence classes. The kind of 
equivalence classes used are determined by the join 
algorithm, and can be used to introduce ‘groups’ over 
which the join is to be done - for example grouping the 
tuples with equal key values. 

With this in mind, we can produce a generalized 
join mapping, in which R has ‘groups’ I&, S has 
‘corresponding groups’ Si, and we join over groups: 

combine(R, S) = { RESULT(T,S) 1 

TEST(v-,s) A r~& A s~,S’i 

AR-i = MAPl(P) A P E R 
A S; = MAP2(P,S) }. 

This generalized join mapping could be implemented 
in ‘macro’-like pseudocode as follows: 

combine(R,S) = T where 

1 
T= 0; 
for P in R 

{ 
h!i = MAPl(P); 
Si = MAP2(P,S); 
for r in I& 

for s in Si 
if (TEST(r,s)) 

then T = T u RESULT(r,s) 

1 

1 

Here P is a ‘part’ of R (such as a (key value, group)- 
pair), and R; and Si are the actual groups the 
join is to be done over. MAP1 and MAP2 are 
arbitrary functions that convert groups to a suitable 
representation. Groups give what is needed for joins to 
deal with multiple occurrences of join keys (or even of 
tuples); they capture join equivalence classes. 

This definition implements various join algorithms 
according to the structure chosen for R and S, and the 
choice of parameters. 
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If R and S are collections of tuples, MAP1 maps a 
tuple P in R to the collection l& = (P), and MAP2 

simply takes Si to be the entire collection S, then 
we obtain the nested loops algorithm. 

If R and S are groups (collections of collections) of 
elements with the same join key value, I& is the 
group of R with join key i, Si is the group of S 
with join key i, we obtain a general indexed join 
algorithm. Specifically, if the groups are collections 
of elements with the same hash key value, then 
the groups represent hash buckets, and we have 
the parallel hash join algorithm. The algorithm is 
parallel in that all groups can be joined in parallel. 

The parameterized set map operator filter(h,&, . . . , 

S,), in FAD [S] yields the value of h applied to each 
tuple in the cross product of the sets Si, . . . , S,,, (for 
m > 0): 

filter(h,&, . . .,Sm) = { h(zl,. . .,zm) 1 

I1 E Sl, . . . ) InI E s, }. 

We can implement filter as a cascade of m - 1 
combines implementing nested loops joins, where 
the final combine in the cascade applies h as its 
RESULT mapping. 

The generalized join operator described above can be 
implemented with cascaded transductions: 

combine(R, S) 

combinel(S, 0) 
combinel(S, (P)) 

combinel(S, PI o Pz) 

= combinel(S, R) 

= 0 
= combine2(MAP2(P, S), 

MAPl(P)) 
= combinel(S, PI) 

o combinel(S, P2) 

combine2(Si, 0) = 0 
combine2(Si, (r)) = combine3( (r), Si) 
combine2($, R+l o &) = combine2($, R+l) 

o combine2(Si, &2) 

combine3((r), 0) 

combine3((r), (s)) 
= 0 
= if TEST(r,s) 

then RESULT(r,s) 

else () 
combine3((r), $1 OSiz) = combine3((r), $1) 

o combine3((r), Siz). 

Many other tricks are possible here. For example, 
we can implement merge scans on streams (linear 
collections) with SVP-transducers. Merging of two 
streams is accomplished by making one of the streams 
the initial state, and incrementally consuming this state 
while simultaneously consuming the other stream [14]. 

5 Summary 

To review what is new about SVP: 

l SVP models information with collections. Collec- 
tions include many interesting special cases, includ- 
ing streams, multisets, and groups, and combine sets 
and streams neatly in a single model. 

l Collections are represented as trees. Where there 
have been many attempts to develop data processing 
models using functional operators on sets or on 
lists, SVP uses trees. This not only permits us to 
handle sets and streams in the same model, but 
also gives an explicit way to represent divide-and- 
conquer processing and parallel processing. 

l SVP permits a natural characterization of structure 
preserving mappings on collections, and these map- 
pings have important properties that yield paral- 
lelism and performance in data processing. 

l SVP is simple. It does not rely on sophisticated alge- 
braic concepts, or a powerful higher-order function 
framework, but on divide-and-conquer and func- 
tional composition. Earlier versions of the model 
experimented with greater sophistication (in fact a 
sizeable running prototype was written that treated 
transducers as higher-order functions), but ulti- 
mately were discarded in favor of simplicity. 

In SVP, database mappings (queries) are formalized as 
transducers. These mappings have important proper- 
ties: 

SVP-transducers implement many useful bulk data 
operations: scan computations, relational algebra 
operators, arbitrary aggregate operators, including 
FAD’s pump operator, arbitrary set mappings, in- 
cluding FAD’s filter operator, and many stream map 
pings (specifically, stream transductions). More 
generally, SVP-transducers implement divide-and- 
conquer mappings that appear useful in bulk data 
processing. 

SVP-transducers provide a natural means of spec- 
ifying both independent and pipeline parallelism. 
At the same time, they have a rigorous semantics 
based on continuity with respect to collection order- 
ings, that supports both independent and pipeline 
parallelism. Rigorous fixed point semantics can be 
derived for networks of SVP-transducers, even for 
cyclic networks. 

The objective of a database model is to find a class 
of structures and mappings on those structures that: 
permit conceptualization of complex problems; permit 
adaptation and extensibility for new situations; permit 
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efficient implementation; are rigorously defined; are 
generally useful. We feel the SVP model meets these 
essential criteria, and in addition offers insights on 
parallel data processing. 
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