
Updates in a Rule-Based Language for Objects

Michael Kramer* Georg Lausent Gunter Saake$

Abstract

The integration of object-oriented concepts into de-
ductive databases has been investigated for a certain
time now. Various approaches to incorporate updates
into deduction have been proposed. The current paper
presents an approach which is based on object version-
ing ; different versions of one object may be created
and referenced during an update-process. By means
of such versions it becomes possible to exert explicit
control on the update process during bottom-up eval-
uation in a rather intuitive way. The units for up-
dates are the result sets of base methods, i.e. meth-
ods, whose results are stored in the object-base and are
not defined by rules. However, the update itself may
be defined by rules. Update-programs have fixpoint
semantics; the fixpoint can be computed by a bottom-
up evaluation according to a certain stratification.

1 Introduction

The integration of object-oriented concepts into deduc-
tive databases has been discussed and investigated for

a certain time now [Ban86,D0089,Abi90,AK89,KL89,

I<L\V90,D0091]. Various approaches to incorporate
updates into deduction have been proposed. How-
ever, only a few of these take object-orientation into

‘F&&tit fiir Mathematik und Informatik, Universitlt
Mannheim, W-6SO0 Mannheim, Germany

tFakxlt;it fi.ir Mathematik und Informatik, Universit;it
Mannheim, W-6SOO Mannheim, Germany

:FakultHt fiir Informatik, TU Braunschweig, W-3300 Braun-
schweig, Germany

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear, and
notice is given that copyright is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to re-
publish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

account. In the current paper we present an approach
which is based on object versioning; different versions
of one object may be created and referenced during an
update-process. By means of such versions it becomes
possible to exert explicit control on the update process
during bottom-up evaluation in a rather intuitive way.
As units for updates we consider the result sets of base

methods, i.e. methods, whose results are stored in the
object-base; we do not consider derived methods, i.e.
methods, whose results are defined by rules. However,

the update itself may be defined by rules.

In deductive databases, depending on whether top-
down or bottom-up evaluation strategies are applied,
updates are done in rule-bodies or rule-heads. In top-
down approaches, updates are contained in the rule-
bodies and are performed as side-effects of the refuta-
tion process. Much work has been done on the topic of
updating derived (intensional) predicates. These ap-
proaches typically rely on SLD-, SLDNF-Resolution or
Abduction (e.g. [AT91,Dec90,KM90,TomS8]). Exam-
ples for approaches considering updates of base predi-
cates are Prolog, LDL [NT891 and DLP [MW87]; DLP
manages updates of derived predicates, too. Bottom-
up approaches for updates also have been proposed.
In [AV91] various extensions of Datalog including
deletions are investigated, and the language RDLl

[dMS88] provides a seperate component for explicit
control of the bottom-up evaluation. Moreover, up-

dates in production systems (e.g. OPS5 [BFKM86])
and corresponding extensions of relational databases

by rules (e.g. [SJGP90,WF92,ZH90]) are realized by
applying the rules in a bottom-up way, and, finally,
also some database programming languages which in-
corporate rules follow this way (e.g. [PDRSl,HJSl]).

From those deductive languages involving object-
oriented features, only a few provide update concepts,

eg. Logres [CCCR+90] and LOCO [LVVSSO]. Logres

is a typed extension of Datalog, supporting object-
identity, classes and isa-hierarchies. Updates can be

251

expressed by using rules with deletions in the head;
the evaluation of the rules may be done according to

stratified or inflationary semantics. In addition, the
set of relevant rules may also be updated; based on this
feature also derived methods can be updated. LOCO

is based on ordered logic [LSVSO]: a set of Datalog-
like rules (allowing negation in rule-heads) may be or-
dered in a isa-hierarchy to allow inheritance. Updates
are done by making the new rules an instance of the
to-be-updated object; applying inheritance with over-
riding yields the instance as updated object.

In this paper we present a different approach to

the update problem. The intentions are to provide
a rule-language which allows to exert explicit con-
trol on the update process during bottom-up evalu-
ation in a rather intuitive way. Control is based on
so called version-identities (VIDs), which are special

object-identities, built-up by function symbols denot-
ing types of updates (insert, delete, modify) in such a
way, that they admit tracing back the history of up-
dates performed on each object. This approach is stim-
ulated by F-logic [KL89,KLWSO], where general terms
are used to denote objects (see also [CW89,KW89])
and to control versions; however, updates are not con-
sidered in these works. VIDs have temporal character-
istics, denoting different versions of an object during
its update-process. Each object-version can be con-
sidered as a single stage - corresponding to a certain
time-step - of the entire process of updating the ob-

ject. A set of update-rules forms an update-program.

Update-programs have fixpoint semantics; the fixpoint
can be computed by a bottom-up evaluation according
to a certain stratification.

Object-versions are a well established concept in
object-oriented databases [KimSl]. Object-versions
are used to manage the (long-term) evolution of an
object, e.g. to support cooperative work. In the cur-
rent paper we use versions in a different context. We
consider versions as a means to support single updates,
several of them may give rise to introduce a new ver-
sion in the usual sense. Thus our approach outlines a

complementary application of the version concept in
rule-based object-oriented databases.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce a simple rule-language to define
updates, outline our ideas, give a motivating example

and a discussion of related approaches. In Section 3 we
introduce an immediate consequence operator, which

is the basis for bottom-up evaluation. Bottom-up eval-
uation is discussed in Section 4. In Section 5 the con-
struction of the updated object-base is outlined, and,
finally, Section 6 suggests extensions of our language
and indicates future work.

2 Updates by Versioning

2.1 An Update-Language for Objects

We are interested in a language for objects, by which

we can define updates using rules. The alphabet of
our update language consists of (1) a nonempty set 0
of object-identities (OIDs) to denote the relevant
objects, (2) an infinite set V of variables to denote ob-
jects, (3) an infinite set M of method-names, and (4) a

set F := { ins, de/, mod} of function symbols of arity
one denoting certain update types. Here ins/del/mod

stand for insert/delete/modify, respectively. Meth-
ods are functions to express properties of objects. The
result of a method-application either is a value, or is
an OID which denotes an object to describe a rela-
tionship between objects. For formal simplicity, we do
not introduce types for values - we consider values as
specific OIDs in 0.

To give a first example, in the following expression a
method salary is applied on an object with OID henry
and gives as result (the OID) 250:

henry.salary+ 250.

Now we will introduce terms, atoms and rules. As
usual, when one of these does not contain a variable,
it will be called ground. The basic constructs of our
language are object-id-terms and version-id-terms. An
object-id-term either is a variable or an OID. To each
object there may exist several versions. To be able to
reference the different version we introduce version-id-
terms.’ A version-id-term is defined as follows : (1)
any object-id-term is also a version-id-term; (2) let
V be a version-id-term, then a(V) with cy E F is a
version-id-term. The set of all ground version-id-terms

1 On the result-position of a method only object-id-terms will
be allowed, not version-id-t-. We choose this way because
versions are only introduced for the purpose of the update-
process; a relationship is considered to be a more stable concept
in comparison to the concept of versions in our approach.

252

is denoted by 0, ; its elements are called version-
identities (VIDs). VIDs are used to denote specific

versions of the respective objects. Notice that c3 C

0, In the sequel we denote non-ground object-id-
terms and version-id-terms by names starting with an
upper-case letter; ground terms are denoted by names
starting with a lower-case letter.

An atom in our language either is a usual arithmetic
built-in predicate (<, >, =, etc.) or a version-term
or an update-term. We consider update- and version-
terms, because it is important for our approach to

distinguish between (1) whether a certain update is

applied on a version to create a new version with dif-
ferent properties, or (2) whether a version which has
been created by the application of a certain update
has a certain property. For the former we introduce

update-terms, for the latter version-terms.

Let m be a name of a method, V a version-id-term,
and Al, Af, R object-id-terms. Consider ‘@’ to be
an indicator for method arguments; it is omitted if
there are no arguments. A version-term is any expres-
sion of the form V.m@A1, Ak --+ R, where k 2 0.

A set of ground version-terms is called an object-
base. An expression m@Al, Ak + R is also called
a method-application. The state of a version w.r.t. a

certain object-base is given by the set of all ground
method-applications, which can be derived from its
version-terms in the respective object-base.

Update-terms are the means to express changes of
the states of the versions. Let m be a name of a
method, V a version-id-term, and Al, Ak, R, R’

object-id-terms. An update-term now is any expres-
sion of one of the following: ins[V].m@A1, Ak + R,

del[V].m@A1,Ak --+ R, or mod[V].m@A1, Ak +

(R - R’), where k 2 0. Each of these updates ex-
presses a transition from the state of a version V to the
state of a version a(V), where cy E F. Syntactically,
updates are indicated by the braces ‘[‘, ‘I’. Note, that
these braces are replaced by ‘(‘, ‘)’ when referring to
the version being the result of the state transition. In
case of an insert, the state of version ins(V) contains
a new method-application not contained in the state
of version V, in case of a delete, the state of version
V contains a method-application, which is no longer
contained in the state of version del(V), and, finally,
in case of a modify, both states of the versions mod(V)

and V contain a method-application w.r.t. the same
method and the same argumentss, however the results
are different.

For example the version-term

mod(henry) salary - 275
states that the method salary applied to the version
mod(henry) of object henry yields the result 275.
Here mod(henry) is a VID; henry and 250 are OIDs.
We consider mod(henry) to be the version of henry

after an update of type modify has been applied to
henry. On the other hand, the update-term

mod[henry].salary+(250*275)

defines an update of type modify changing the result
of salary applied to henry from 250 to 275. The new
value will hold in the state of mod(hen,ry).

An update-rule is written as

H+B,A...ABk ,k>O,

where H is an update-term called the head of the rule,

and Bl,... , Bk are positive or negated atoms forming
the rule’s body. H and the Bi’s are also called literals.
If k = 0, then the rule is called a.n update-fact. Rules
are considered to be V-quantified; the domain of quan-
tification is the set 0, i.e. the set of all OIDs. Let R be
an update-rule and let T be an update-rule which is de-
rived from R by replacing variables by OIDs. We call T

a ground instance of R. We require that rules are safe

(cf. [Ull88]). A set of update-rules forms an update-
program. The evaluation of an update-program is
called update-process, From now on when talking
about “rules”, “programs” or “processes”, we always
mean “update-rules”, “update-programs” or “update-
processes”, respectively.

As a first example, demonstrating the power of our
language, consider the following rule :

mod[E].saZ+(S-u;S’) e=

E.isa --+ empI A

E.sal+S A S’= S* 1.1
To every employee a 10% salary-raise has to be per-
formed. It is worthwhile noticing that this intuitive
version of the salary-update terminates, when eval-
uated bottom-up. In the above example each em-

ployee gets his salary raised exactly once (as intended),
because the rule only applies to “initial” (i.e. non-
updated) employees. (Remember, that a variable can
only be instantiated by a OID, not VID.) Thus ver-
sions help to avoid non-terminating update-loops.

253

In the following we will always consider a scenario
in which a certain update-program P is executed on

a given object-base ob. Note, that in this framework
we do not consider derived objects, i.e. objects, for
which a method is defined by a rule, which is not
an update-rule; our intention is to study updates of
base definitions only. However, these updates are de-
fined by rules. Further note, that we do not introduce
classes, because we are in the current paper not in-
terested in the interaction between updates and types,
respectively, inheritance.

The language introduced so far can be considered
as a variant of stratified Datalog: methods correspond

to predicates. Methods are mappings. Whenever an
object-base contains several method-applications for a
certain object (-version) 21, all having the same method

name m and the same arguments al, ak, we con-
sider the method m to be set-valued. Proceeding this
way we do not have to consider consistency questions

w.r.t. functionality of methods; moreover, we have a
simple set-concept in our language without any addi-
tional effort. (In fact, it corresponds to the set seman-

tics introduced in [CW89,KW89].) Further it is worth
to note, that our usage of function symbols does not
enforce termination problems during bottom-up eval-
uation, because we quantify over the set of all OIDs 0,
only. More precisely, for safe rules only a finite num-
ber of new versions can be derived during evaluation.
Thus we do not enter the computationally more diffi-
cult world of Datalog with function symbols [UIISS].

2.2 General Idea

We conceive an update-program as a mapping from
an (old) object-base into a (new) object-base; update-
programs are evaluated bottom-up. Our update-
approach bases on the idea of object-versions at dif-
ferent time-steps, where the first version of an object
(denoted by an OID) is the one found in the current to-
be-updated object-base. Updating an object is done
by carrying-out on it several groups of basic updates of

the same type (inseti, delete or modify). Each group
is implemented by one or several update-rules. Real-
izing one such group “transforms” an object-version
into the next (further updated) version of the respec-
tive object. Conceptually this “transformation” is un-

derstood as follows: consider version v with a certain
state. Further assume that a group of updates of some

type cy (E {ins, del, mod}) are to be performed on v.
Before performing the updates, a version o(v) is cre-
ated as a “copy” of 21, i.e. all method-applications of
v are taken to hold (by default) for o(v). Now the
updates of type Q defined on version v are performed
by changing the default method-applications of Q(V)
accordingly. After all updates have been performed,
o(v) is the a-updated version of v. The “last version”
of an object’s update-process represents the final up-
dated object. Moreover, during an evaluation of an
update-program all versions created during that eval-
uation can be used to derive the desired method values.

Assume we want to update an object-base ob yield-

ing a new object-base ob’ using an update-program
P. Let us focus on one object in ob, denoted by its

OID o. Assume that the update-rules in P define (and
perform) some modify-updates on the not-yet-updated
object o , followed by some delete-updates based on the
“modified version of o”, concluding with some insert-

updates following the delete-updates. Consequently

we here have 3 groups of basic updates of the same
type. At the time before evaluation of P has started,
the object is denoted by o. After the modify-updates,
it is denoted by mod(o); here from the OID o we have
derived by the respective modify a VID mod(o). Con-
ceptually, mod(o) can be read as “the denotation of the
version of object o , after updates of type modify have
been performed on o”, which we consider tantamount
to saying, that “the updated object-version is refer-
enced by mod(o)“. Thus VIDs have temporal char-
acteristics. Performing delete-updates on the version
mod(o), results in a new version denoted by the VID
deZ(mod(o)), h h w ic again can be read as “the denota-
tion of the version of object o, after updates of type
modify, followed by updates of type delete, have been
performed on 0”. In analogy, performing the insert-
updates yields the version ins(deZ(mod(o))), which -
if no further updates follow - is taken over into the
new object-base ob’ (where the object then will be de-
noted by o again). The general case of k consecutive
groups of basic updates (of types or,. . . ,crk resp.)
performed on an object o , is illustrated in figure 1.

Review the salary-update example in Section 2.1.
Talking in the jargon of versions we have the follow-

254

Update-Process (Evaluation
of an Update-Program) -+---& I

object-
versions

0 q(o)

i

\
I

“kc... “2 (q(o))..) o VIDs

1 Figure 1 An update of an object o , in general.

ing : for an employee-object e , e.g. with method-
applications isa - empl and sal - 100 in the to-

be-updated object-base, the bottom-up evaluation of
the salary-update rule yields a version mod(e) with

method-applications isa + empl and sali 110. The
method-applications of the mocl(..)-versions form the
updated object-base; i.e. once the update-process is
finished we have e.isa+empl and e.sal+llO in the
new object-base.

2.3 Illustrative Examples

Assume an enterprise-object-base holding information
about employees and let a first intended update be as
follows: “Each employee gets a 10% salary-raise and
those in a managerial position an extra $200. After-
wards all those employees are fired, who make more

than any of their superiors, and finally those of the re-
maining ones, who make more than $4500, are grouped
into a class called hpe (high-paid-employees).” The

following update-program realizes the update:

mod[E].sal*(S~S’) -C=

E.isa+empl/pos-+mgr/sal--,S A
S’ = (S * 1.1) + 200

(rulel)

mod[E].sal+(S*S’) e

E.isa+empl/sal-S A

(ruZe2)

lE.pos+mgr A S’ = (S* 1.1)

del[mod(E)].* t=== (ruZe3)

mod(E).isa * empllboss -+ B/Sal + SE A

mod(B).isa+empl/sal-SB A SE > SB

ins[mod(E)].isa-+hpe % (rule4)
mod(E).isa--,empl/sal+S A

s > 4500 A ydel[mod(E)] .isa -+ empl

Note that a construct v.ml + r1/m2 ---$ ra/. . . is
used as an obvious short notation for a conjunction
of the respective method-applications w.r.t. version v;
similarly, we write deZ[. . .I.* to express the deletion
of all method-applications of the respective version.
With these explanations on hand let us explain the
effect of the four update-rules, assuming a bottom-up

evaluation. The first rule takes an employee in a man-
agerial position (isa + empllpos + mgr), who had not
yet been updated (E) and initiates a modify of his
salary method (mod[E].sal+ (S-S’)). The second
rule modifies the salary of all employees who are no
managers. Assume in our to-be-updated object-base a
manager phi1 who makes $4000 and has no superior,
and an employee bob who makes $4200 and phi1 being
one of his superiors. Surely we expect that the update
(as a whole) leaves phil in the class hpe with a salary of
$4600 and bob fired (i.e. no more an employee). This

is indeed the case (cf. figure 2). The first rule ini-
tiates a modify-update on phi1 resulting in a version

mod(phil), which - compared to the version phi1 -

has the salary method result modified to $4600. An
analogous reasoning applies to bob together with the
second rule. The third rule only deals with employees
after a modify had been carried out on them (mod(..)),

255

rule 1 rule 4

n-

phi1 mod(phil) ins(mod(phil))

I
I I
I * time

i isa > empl j isa > empl : isa>empl i
i sal > $4000 j Sal > $4600 i isa > hpe
! pos > mgr :
: __..............____...............:

pos > mgr : sal > $4600

/ pos > mgr

;

i

“to-be-updated
object-base”

isa > empl

sal > $4200

boss > phi1

“updated
object-base”

I

isa > empl
:. . _ __ .

sal > $4620

boss >phil
i

t
I
1

I it=- time

bob mod(bob) del(mod(bob))
u-

rule 2 rule 3

Figure 2 An example of updates in an object-base.

i.e. in our example only the object-versions mod(phil)

and mod(bob) are considered. This rule performs a
delete-update on mod(bob) yielding the object-version
del(mod(bob)) with the method-applications deleted as
specified in the rule-head. Note that the third rule

does not apply to phil, because in our example-object-

base he has no superior. The last rule shows that in
our approach update-terms are allowed to appear in
rule-bodies. This rule fires, if a modified employee
(mod(E)) with salary greater $4500 exists and no
delete-update, deleting his isa-result empl, had been

performed on the mod(E)-version 2. The rule applies
to E = phi1 (but not to E = bob), initiating an
insert-update of mod(phiZ), yielding the object-version
ins(mod(phil)), for which isa + empl and isa * hpe
hold.

2ivote that using the negated version term
ydel(mod(E)).isa + empl instead of the negated update-term
del[mod(E)].isa -+ empl would not at all have had the Same
effect, because the former would be satisfied for an employee e,
if, either there does not exist a version del(mod(e)), or there
exists such a version, however isa - empl does not hold; while
the latter asks for the version mod(e) not being subject to a
delete-update, which removes isa + empl. Therefore, only the
use of the negated update-term in the rule-body performs the
intended update.

The next example shows that our approach can also
be used to perform some sort of “hypothetical rea-
soning”, as the usage of versions-identities allows to

revise “hypothetical” updates. In the example below
we intend to determine if after a hypothetical salary-
raise (non-linear) to all employees, the employee peter
would be the richest employee of the enterprise:

mod[E].sal* (S- S’) X=
E.sal+ S/f actor -+F A S’=S*F

mod[mod(E)] .(S’- S) -c==

mod(E).sal-+S’ A E.sal+S

(rule 1)

(ruIe2)

ins[mod(mod(peter))].richest + TIO -+=

mod(E).sal-+SE A
mod(peter).sal -SP A SE > SP

(ruZe3)

ins[ins(mod(mod(peter)))].richest+yes +=
+ns(mod(mod(peter))).richest-+no (rule4)

Here the first two rules realize the hypothetical salary-
raise by performing and revising it right away. For
each employee e the mod(mod(e))-version is identical
to the e-version and the mod(e)-version contains the
raised salary. The third and fourth rule determine -
by using the version after the first modify - whether

256

peter would be the richest employee of the enterprise.3

The final example shows that also recursive rules can

be used for updates. By the two rules the ancestors of
some given persons are computed. Note, that in this
example methods unc and parents are considered to
be set-valued. The example is as follows:

ins[X].anc+P +=
X.isa -+ person/parents + P

ins[X].anc+ P *

ins(X).isa+person/anc+A A
A.isa-+person/parents--+ P

2.4 Discussion and Comparison

The concept of object-versions integrates in a nice
and easy-to-understand way procedurality into our rule
update-language. If, in our first example, bob would
only gain $4100, then without imposing control by the
structure of the VIDs, firing employees before raising
salaries could have led to a different unintended up-
dated object-base. In fact, there is a large consensus
that “procedurality” or some kind of “control” is re-
quired for updates [Abi88] (update = logic + control).

Not surprisingly, the introduction of control leads
to an increase of computational power. In rule-

based update-languages based on top-down reason-
ing, different control mechanisms are encountered :
[Tom88,Dec90,KM90,MW87] use the implicit control
strategies offered by different variants of resolution.
The update language proposed by [NT891 provides
in addition explicit control by allowing sequential-,

conditional- and iterative- operators in rule-bodies.

A comprehensive study of various extensions of
Datalog with fixpoint semantics can be found in

[AV91]; deterministic and nondeterministic extensions
are studied w.r.t. their expressive power and complex-

ity. Connections to procedural languages are given

which also exhibit many interesting forms of pro-
grammed control. A different way to control eval-

uation is pointed out in RDLl [dMS88]: here ex-
plicit (user defined) control is achieved by adding so
called Production Compilation Networks to the rule-
programs, which allow similar control patterns as

3An appropriate stratification technique will be presented in
section 4.

Petri-Nets.

In Logres [CCCR+SO] update-rules are grouped in

modules, which have either inflationary or stratified
semantics, and can be used to define updates of base
and derived methods. By specifying orders on the exe-
cution of the modules, the user has a flexible, however
“manual” means for control. An interesting approach
for control is chosen in LOCO [LVVSSO]: here updates
are controlled by the inheritance mechanism of the lan-
guage. However updates cannot be defined by rules;
instead again in a “manual” way new rules have to be
introduced into the isa-hierarchy to achieve the desired
effects.

Our approach will provide different types of control :
in addition to a rule-ordering entailed by stratified

negation, an implicit control resulting from a “strat-
ification by object-versions”. We “move from version
to version” by explicitly naming them: VIDs allow
to refer to objects at different stages of their update-
process. This version aspect gives our approach a
greater functionality compared to having the whole
update-process performed at the same “time -step”, or
breaking the process into fixed modules as it is done in
Logres. There seems to be an interesting relationship
to the internal event calculus in [Oli89]. Here different
versions can be distinguished by certain time-points.
However no notion of object is considered and our
VIDs also contain information about the history of the
updates. Finally, we allow update-terms in rule-heads
as well as rule-bodies. In the rule-head an update-term
explicitly initiates an update (as in all bottom-up ap-
proaches), while in the rule-body it requests that a
certain update of a certain object-version has (or has
not) already been performed.

Versioning in object-oriented databases is a well-
established concept (the textbook [Kim911 contains
many references to relevant work.) High sophisticated
techniques have been proposed to organize the versions
of a certain object. We are more restrictive in this as-
pect and will require, that the versions of an object
must reflect a linear order, while usually a hierarchy is

allowed. The motivation for this restriction is that we

must choose for each object a version out of a possible
set of versions to built the new object-base; requir-
ing a linear order makes this simple. There exists an
interesting relationship between our update approach

257

and schema evolution. The way we consider inserts
and deletions would require changes of corresponding

class-definitions in a strongly typed environment, be-
cause methods become undefined, respectively defined
w .r.t. some objects according to the type of the up-
date. The techniques proposed in [SZ87] seem to be a
good starting point for an integration of our method

into a more general environment.

3 An Immediate Consequence
Operator

Let P be a given program, and ob an object-base. As
we are interested in the bottom-up evaluation of P

we now introduce an operator Tp, which maps object-
bases into object-bases. Tp is an adaptation of the
usual immediate consequence operator in deductive
databases. Let 1 be an object-base. Intuitively, Tp(I)

derives a new object-base I’, such that each element
in I’ follows from an application of a rule in P w.r.t. I.
The definition of Tp needs some further prerequisites.

First we define truth of ground version- and update-
terms w.r.t. an object-base I. Version-terms do not
perform any updates, they simply refer to a certain
object-version asking for a certain property. Update-
terms behave differently, depending whether they oc-
cur in the head or the body of a rule. An update-term
in a rule-head only then is true, if its effect has not al-
ready occurred before. For example, an insert of new
information is only then allowed, if the to be inserted
information does not already exist. In a rule-body, an
update-term only then is true, if the stated version-
transition really has occurred. For example, for an
insert it is required, that the respective information
did not hold w.r.t. the state of the version, on which
the insert has been performed, but does hold w.r.t. the
state of the version of the update-term. Similar holds
for a modify-operation; however for delete-operations
the situation is a bit more subtle, as we will explain
next. In the sequel, by iii we mean a method denoted
by m applied to a sequence of k > 0 arguments, i.e.
m@!al,uk.

Consider an update-term a[v].YE+r. The difference
between insert, respectively modify, and delete is, that
in the former cases we can be sure, that there will ex-

ist a version ins(v), respectively mod(v) in I’. For a
delete this is not necessarily the case, because by a

delete we shrink the state of a version, such that by
deleting the last method-application, also the informa-
tion about existence of the version has been deleted.
To avoid such loss of information we assume, that
for each object o in the given object base ob there

is defined a method exists as follows: o.exists + 0.

In addition we require, that for all programs P, this
“system-method” exists does not occur in any update-
term. Proceeding this way we will achieve the desired
effect, that we cannot loose all information about a
version deZ(v) of an object o; at least a note about its
existence expressed by deZ(v).exists -+o will survive.

1.

2.

Version-Term
A ground version-term v.iii -+ r is true w.r.t. I

iff v.Yii+r E I.

Update-Term in a Rule-Head

l A ground update-term ins[v].Ei + r, which oc-
curs in a rule-head, is true w.r.t. I

iff v.X-+r 4’ I.

l A ground update-term de+].?5 * r, which oc-
curs in a rule-head, is true w.r.t. I

iff u.iii+r E I.

l A ground update-term mod[v].E - (r - r’),
which occurs in a rule-head, is true w.r.t. I

iff v.E+r E I.

3. Update-Term in a Rule-Body

l A ground update-term ins[v].Ei ---) r, which oc-
curs in a rule-body, is true w.r.t. I

iff v.iii--+r 9 I and ins(v).E+r E I.

l A ground update-term del[v].E + r, which oc-
curs in a rule-body, is true w.r.t. I

iff v.Ei-+r E I and
del(v).exists -+o E I and
del(v).?Ti+r @ I,

where o is the object of which de/(v) is a version.

l A ground update-term mod[v].?E - (r - r’) ,
where r#r’, which occurs in a rule-body, is true

w.r.t. I
iff v.Ei-+r E I and

mod(v).E+r $ I and
mod(v).E+r’ E I.

258

l A ground update-term mod[v].YE ---) (r - r’) ,

where T = r’, which occurs in a rule-body, is

true w.r.t. I
iff ~.?E--+T E I and mod(v).E-+r E I.

Negation in rule-bodies is treated as follows. A
negated ground version-term 7v.E + r is true w.r.t.
I, if v.?ii+~ is not true w.r.t. I. Negation of update-
terms in rule-bodies is defined analogously.

After having introduced all the prerequisites, the im-

mediate consequence operator Tp(I) now can be de-
fined by the following 3-step procedure:

Step 1

Compute the set:

T;(I) = {h 1 th ere exists a ground instance of
a rule in P such that its head h
and every literal in its body
is true w.r.t. I }

In this step we derive the set of updates, which
have to be performed on I.

Step 2

Let cr[v].E + T E T;(1), respectively, cy[v].~ +
(TU T’) E T;(I). Any such VID o(v) is called
relevant; it is called active, if in addition I already
contains a method-application of o(v). Compute
then the set:

T;(I) = { cr(v).E-r] o(v) is active
and a(v).?i7+r E I } U

{a(v).E+r 1 a(v) is relevant, however
not active and v.E+ r E I }

Now we have prepared, by copying from I, for
each object, on which an update has to be per-
formed, a state of a version on which the update

can take place. Note, in case of an active VID, we
can simply copy the state from I, while in case
the VID is relevant, but not active, we create a
new version by taking the method-applications of
the previous version as default.4

4At this point it may be interesting to reflect on the well-
known frame-problem. All knowledge true for an old version
has also to be true for the new one, if it has not explicitly stated
otherwise by the update. By copying old states only for the
objects being updated (and not the whole object-base), we keep
the unavoidable overhead low.

Step 3

It remains to do the required updates. To this

end, finally compute the result of applying Tp on
I:

Q”.P(I) =

{ins(v).TE+r 1 ins[v].i5i--,r E T;(I) or

ins(v).~+r E T;(I)} u

{deZ(v).E+r 1 deZ(v).E+r E T;(I) and

deZ[v].?Ji--,r $2 T;(I)} U

{mod(v).E+r] mod(v).EI-+r E T;(I) and

mod[v].ET-+(r-.-+r’) $! T;(I)} u

{mod(v).Ef+r’ 1 mod[v].E-+(r-+r’) E T;(I)}

4 Bottom-Up Evaluation

Bottom-up evaluation is complicated by several rea-
sons. First, we have nonmonotonicity because of
negation in rule-bodies; second, another source of
nonmonotonicity are delete- and modify-operations.
Insert-operations do not impose problems here, be-
cause inserts correspond to the usual derivation of new
(positive) facts. Finally, during application of the im-
mediate consequence operator, a copy of a state of a
version to get a basis for the state of a new version may
occur. Once such a copy haa occured, the state being
copied should not be changed further, because these
changes will not be implemented in the new version’s
state. A solution to these problems can be achieved
by a stratification of the rules in P. The aim of such
a stratification is to partition the rules into so called
strata; bottom-up evaluation then is done stratum by
stratum. The results of the lower strata are the input
to the respective next higher stratum. In case that for
a given program P there exists a stratification, after
having processed all strata, a fixpoint of P is reached.
This follows in analogv to results for stratified Datalog

[U1188].
For technical simplicity of the derivation of the re-

quired stratification, we replace in the given program
P each construct cx[V] by a(V), Q E FT. First, we

guarantee that once a state is copied, this state is not
changed any further. This gives our first condition for
stratification:

(a) If there exists a rule T with a version-id-term Q(V)

259

in its head, then each rule, which has a version-
id-term V’ in its head such that V and V’ unify,

is in a lower stratum than T.

Consider the first example stated in Section 2.3. The
following stratification fulfills condition (a):

{ rulel, rule2 }, { rule3, rule4 }.

The condition for stratification with respect to nega-

tion can be adapted from [UllSS]. However, in our
framework the role of predicate names in Datalog now
has to be taken by version-id-terms. The resulting

conditions for stratification can be stated as follows:

(b) If there exists a rule T with a version-id-term V of
a not negated atom in the body, then each rule,
which has a version-id-term in its head unifying
with V is in a stratum which is at most as high

as the stratum of T.

(c) If there exists a rule T with a version-id-term V of
a negated atom in the body, then each rule, which
has a version-id-term in its head unifying with V,
is in a lower stratum than T.

To continue our example, the following stratification
fulfills conditions (a) - (c):

(rulel, rule2 }, { rule3 }, { rule4 }.

The remaining task now is to consider nonmonotonic-
ity due to delete- and modify-operations. A further
stratification is necessary because of the following rea-
sons. Assume during bottom-up evaluation we have to
delete method-applications of a version v. (The case
of modify is analogous.) Then, first a new version,
say del(v), is created, whose method-applications are
the same as for w. On this version the delete opera-
tions will take place. This follows from our definition
of the T&operator. Now assume, that the delete op-
erations do not all take place during one application

of Tp. Thus, there is the possibility, that a method-
application of del(v) will be used to infer some opera-
tions w.r.t. other objects, and this method-application
will be deleted afterwards, as well. To avoid such coun-
terintuitive behaviour we require, that rules which per-
form a delete or a modify are assigned to a lower stra-
tum than those rules, which refer to versions on which
the corresponding delete- or modify-actions take place:

(d) If there exists a rule r with a version-id-term

del(V), respectively mod(V), of an atom in

its body, then each rule, whose head contains
a version-id-term del(V’), respectively mod(V’),
such that V and V’ unify, is in a lower stratum
than r.

In our example, no further partitioning of the rules is
implied by condition (d).

Let P be a program and ob a respective object base.
If P has a stratification such that (a) - (d) is fulfilled,
then the bottom-up evaluation is realized by iterating
the operator Tp stratum by stratum, starting from a
given object-base ob, in an analogous way as it is de-
scribed in detail in [U1188]. The result of this computa-
tion process is denoted by result(P). Note, as we are
only considering safe rules, the iteration is guaranteed
to terminate with respect to each stratum.

5 Building the New Object
Base

Let P be a program, and ob the object base on which
P is performed. Assume P is stratified and we have
computed result(P). Even though during the com-
putation a stratification has been observed, it is still

possible, that result(P) contains versions, which make
it impossible to derive the new updated object base
ob’. This is the case, if there exist two versions of the
same object o, with VIDs u,u’, for which we cannot
decide, which of the both is the one whose method-
applications are to be copied into ob’. For example,
such a situation could occur, if P contains the rules:

mod[o].m+(a-6) -cc . . . a rulebody . . .
del[o].mda -c= . . another rulebody .

and both rules fire during the evaluation of P. In gen-
eral, it is undecidable to predict whether such a situ-
ation may occur during evaluation. To exclude such
programs, for the purposes of the current paper, we be-

lieve that a runtime check during the computation of
result(P) is appropriate, because its realization seems
to be not expensive.

We call result(P) version-linear, if for any two VIDs
zi,z~’ of the same object o it holds, that either 2, is a
subterm of v’, or vice versa. For an object o, that ver-

260

sion of o is called the final version of o, whose VID
contains all VIDs of the other versions of o as a sub-
term. Version-linearity can be easily checked during
evaluation: At any point of time, keep the VID of the
most recent version of each object and check whether
the VID of any new version of the same object contains
the previous VID as subterm.

Finally, if result(l”) is version-linear, the updated
object base ob’ is derived from result(P) by copying
into ob’ for each object o E ob the method-applications
of its final version. Note, that it may be the case that

for an object all method-applications are deleted in its

final version, i.e. the only

sion is the method exists.

about such an object will

method defined for this ver-

In this case no information

be present in ob’.
[AV91]

6 Conclusion [Ban861

The primary intention of the current paper is to
present a technique for defining updates using rules
based on object-versions. To keep the framework sim-
ple, we restricted our language more than necessary.

More expressive power can be gained by allowing to
quantify over VIDs in addition to OIDs. However, such
an extension must be done carefully not to destroy the
termination properties of the evaluation process. Our
investigations can be continued in several directions.
First, it seems to be worth to try to develop stratifica-
tion or related criteria which allow to accept a broader
class of programs for evaluation. Also, alternatives to
version-linearity may be interesting. Second, we did
not consider derived objects. We do not see any prin-
cipal problems to generalize our approach in this direc-

tion. Finally, our version-based approach has temporal
characteristics. The investigation of the relationship
to temporal logics seems to be an interesting field for
further research.

Acknowledgement

We would like to thank the referees for their helpful
comments and for pointing out many relationships to

other work.

References

[AbiSS] Serge Abiteboul. Updates, a new fron-
tier. In Second Intl. Conf. on Data Base

[AbiSO]

[AK891

[AT911

[BFKM86]

[CCCR+90]

[CW89]

[DecSO]

[dMS88]

[DO0891

[DO0911

[HJ91]

Theory, Bruges, LNCS 326, pages l-18.
Springer-Verlag, 1988.

Serge Abiteboul. Towards a deductive
object-oriented database language. In
Data and Knowledge Engineering, Vol.5,
No.2, pages 263-287, 1990.

Serge Abiteboul and Paris Kanellakis.
Object identity as a query language prim-
itive. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 159
- 173, 1989.

Paolo Atzeni and Riccardo Torlone. Up-
dating deductive databases with func-
tional dependencies. In Proc. of the Intl.
Conf. on Deductive and Object-Oriented
Databases, Munich, 1991.

Serge Abiteboul and Victor Vianu. Dat-
alog extensions for database queries and
updates. Journal of Computer and Sys-
tem Sciences, I/01.43, pages 62-124, 1991.

Fransois Bancilhon. A logic-program-
ming/object-oriented cocktail. ACM
SIGMOD Record, Vo1.15, No.3, 1986.

Lee Brownstone, Robert Farell, Elaine
Kant, and Nancy Martin. Programming
Expert Systems in OPS5. Addison Wes-
ley, 1986.

F. Cacace, S. Ceri, S. Crespi-Reghizzi,
L. Tanca, and R. Zicari. Integrating
object-oriented data modeling with a
rule-based programming paradigm. In
ACM SIGMOD Conf. on Management of
Data, pages 225-236, 1990.

W. Chen and D. S. Warren. C-logic for
complex objects. In Proc. of the ACM
SIGACT-SIGMOD-SIGART Symposium
on Principles of database Systems, pages
369 - 378, 1989.

Hendrik Decker. Drawing updates from
derivations. In Proc. of the Intl. Conf.
on Database Theory, Paris, LNCS 470,
1990.

Christophe de Maindreville and Eric Si-
mon. A production rule based approach
to deductive databases. In Proc. of the
In-&l. Conf. on Data Engineering, Los An-
geles, 1988.

First Intl. Conf. on Deductive and
Object-Oriented Databases, Kyoto, 1989.

Second Intl. Conf. on Deductive
and Object-Onented Databases, Munich,
1991.

Richard Hull and Dean Jacobs. Lan-
guage constructs for programming active
databases. In Proc. of the Intl. Conf. on
Very Large Data Bases, 1991.

261

[Kim9 l]

[KL89]

[KLWSO]

[KM901

[KW89]

[LSVSO]

[LVVSSO]

[MW87]

[NT891

[OliSS]

[PDRSl]

[SJGPSO]

Won Kim. Introduction to Object-
Oriented Databases. MIT Press, 1991.

Michael Kifer and Georg Lausen. F-logic:
A higher-order language for reasoning
about objects, inheritance and scheme.
In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 134 - 146,
1989.

Michael Kifer, Georg Lausen, and James
Wu. Logical foundations of object ori-
ented and frame-based languages. Tech-
nical report, Univ. Mannheim, 1990.

A. Kakas and P. Mancarelle. Database
updates through abduction. In Proc. of
the Int. Conf. on Very Large DataBases,
Brisbane, 1990.

Michael Kifer and James Wu. A logic
for object-oriented logic programming
(maier’s o-logic revisited). In Proc. of the
ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of database Sys-
tems, pages 379 - 393, 1989.

E. Laenens, D. Sacca, and D. Vermeir.
Extending logic programming. In ACM
SIGMOD Conf. on Management of Data,
pages 184-193, 1990.

E. Laenens, B. Verdonk, D. Vermeir, and
D. Sacca. The loco language: Towards
an integration of logic and object oriented
programming. Technical report, Univer-
sity of Antwerpen, Report 90-09, 1990.

Sanjay Manchanda and David Scott War-
ren. A logic-based language for databse
updates. In Jack Minker, editor, Founda-
tions of Deductive Databases and Logic
Programming, pages 363-394. Morgan
Kauffman, Los Altos, 1987.

Shamin Naqvi and Shalom Tsur. A log-
ical Language for data and Knowledge
Bases. Computer Science Press, New
York, 1989.

Antoni Olive. On the design and imple-
mentation of information systems from
deductive conceptual models. In Proc. of
the Intl. Conf. on Very Large Data Bases,
pages 3-11, 1989.

Geoffrey Phipps, Marcia A. Derr, and
Kenneth A. Ross. Glue-Nail : A de-
ductive database system. In Proc. of the
ACM SIGMOD Conf. on Management of
Data, 1991.

M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures,
caching and views in data base systems.
In Proc. of the ACM SIGMOD Symp. on
the Management of Data, pages 281-290,
1990. 262

[SZ87]

[Tom@]

[II11881

[WF92]

[ZH90]

Andrea H. Skarra and Stanely B. Zdonik.
Type evolution in an object-oriented
database. In Bruce Shriver and Pe-
ter Wegner, editors, Research Directions
in Obj’ect-On’ented Programming. MIT
Press, 1987.

Anthony Tomasic. View update trans-
lation via deduction and annotation. In
Proc. of the Intl. Conf. on Data Base
Theory, Brnges, LNCS 326, pages 338-
352, 1988.

Jeffrey D. Ullman. Principles of Database
and Knowledge-Base Systems, Volume I.
Computer Science Press, New York, 1988.

Jennifer Widom and Sheldon J. Finkel-
stein. Set-oriented production rules in
relational database systems. In Proc. of
the ACM SIGMOD Symp. on the Man-
agement of Data, pages 259-264, 1992.

Y. Zhou and M. Hsu. A theory for rule
triggering systems. In Proc. of the Intl.
Conf. on Extending Database Technology,
pages 407-421, 1990.

