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ABSTRACT 

We propose a transaction model that provides a framework for 
transactions to cooperate without sacrificing serializability as a 
notion of correctness. Cooperation does not depend on detailed 
knowledge of the semantics of transaction operations. 
Semantic properties such as data dependent commutativity can 
be “discovered” automatically at run time without a need to 
declare these properties explicitly. 
When transactions wish to cooperate, they do so by issuing 
“proclamations”. A proclamation is an (implicitly or explicitly 
specified) set of values, one of which the transaction 
“promises” to write if it commits. So, a proclamation 
provides incomplete information concerning future possible 
database states. Transactions can compute with this incomplete 
information, and can commit after writing conditional multi- 
values. 
We examine the theoretical basis for the proclamation model. 
We outline an implementation strategy for the model, including 
a simple lock-based transaction manager and a transaction 
compiler extension to handle sets of values. 

1. INTRODUCTION 

Traditionally, concurrency control for transactions has 
relied upon a rigorous correctness notion of serializability, see 
[6]. The serializability restriction may be relaxed by relying on 
the semantics of operations [3,19]. In many cases, one can live 
with a weaker notion of correcmess, and indeed, for 
performance reasons, one often does so. For instance, many 
real users of large database systems today rely on weaker ad- 
hoc notions of correcmess such as “cursor stability” [9]. At 
the same time, the longer duration of transactions has increased 
the pressure not to apply concurrency control too strictly. 

As databases are applied to non-traditional applications, 
such as design and software development, the possibility of 
cooperation between transactions increases, and the transaction 
management system should be able to adapt to take advantage 
of this. Cooperation typically requires one transaction relying 
on certain behavior by another transaction. While this reliance 

Petition fo copy withoutfee all or part of this material ic grantedprovided 
that the copies are not made or dktributedfor direct commercial advantage. 
the VLDB copyright notice and the title of the publication and iu date 
appear8 ad notice ir given that copying is by pennSon of the Very Large 
Doti Base Endowment. To copy otherwire. or to republish. requires a fee 
ondlor special permission from the Endowment. 

Proceedings of the 18th VLDB Conference 
Vancouver, British Columbia, Canada, 1992 

usually is based on some higher level semantic knowledge, it 
can often be reduced to a reliance on a particular update 
behavior. In particular, a transactions may be able to predict, at 
least partially, what value it will write for a particular data 
item, call it X, well in advance of the transaction completing its 
computation and committing. Another transaction, wishing to 
read the value of X, may be able to perform useful computation 
even if it does not know the exact value of X, but instead 
merely that X belongs to some ser of values. Several examples 
are presented in Section 2 where such is the case. 

In this paper, we propose a transaction model in which 
transactions are allowed to cooperate, if they so choose. We do 
so without sacrificing serializability. The transactions in our 
model are similar to traditional transactions: they are 
deterministic, and transform consistent states into consistent 
states. When transactions wish to cooperate, they do so by 
issuing proclamations. A proclamation is an (implicitly or 
explicitly specified) set of values, one of which the transaction 
“promises” to write if it commits. The transaction 
management system ensures that transactions meet some 
minimum guarantees with respect to these proclamations. 
Therefore, a malicious transaction cannot cause other 
transactions to err by issuing false proclamations. 

Our model reduces to the conventional model if 
transactions choose not to cooperate. The major point of 
departure in the case of cooperating transactions is that a 
transaction may read a set of values and proclaim a set of 
values. Transactions are also monotonic: intuitively, if each 
read operation of a transaction is made to read a subset of what 
it actually reads then each update operation will produce a 
subset of the values it actually produces. 

The paper is organized as follows. We present a few 
motivating examples in Section 2. In Section 3 we formalize 
the transaction model and present a theorem establishing a 
variant of view serializability that relies on reading and writing 
subsets of values appearing in the actual execution. Section 4 
presents extensions to the basic model that greatly enhance its 
utility. Section 5 considers larger systems issues, in terms of 
how the transaction code is written and compiled. Section 6 
discusses how to implement a transaction manager based on 
our model, and shows that small modifications of existing 
standard methods is all that is required. Section 7 concludes. 

Related Work 

Many extended transaction models have been proposed, for 
example [2,8,14,16,17]. There have also been many attempts 
at finding alternative notions of correcmess. Korth et. al. treat 
a general transaction model, including versions and 
subtransactions. where correctness is delined using pre- 
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conditions and post-conditions [lo]. In multidatabases one 
may define “local” and “global” consistency [13]. Nodine 
and Zdonik use finite state machines to specify the allowed 
interleavings of transactions[14]; these are similar in spirit to 
path expressions [7] and follow the work of [18]. These 
models either require the definition of a compensating 
transaction (to make up for commitment that was allowed too 
early), rely upon the transactions displaying certain semantics 
in their behavior or operations, or coordinate behavior using 
other mechanisms. For example, the work of [3] relies on a 
notion of “recoverability” that allows a transaction to commit 
after reading non-committed data. This data can be “fixed” in 
case of abort of its producing transaction. 

A scheme that maintains for each object an old value and a 
new value has been proposed in [4]. So, transactions may 
utilize the old value if the new one is being updated. The 
scheme increases parallelism. A locking scheme is provided to 
implement the idea with some unwanted side effects, e.g. a 
transaction may obtain the old value, for consistency reasons, 
even after a new committed value has been produced. More 
generally, there is a theory of multi-version concurrency 
control [5], where each item is allowed to have multiple 
versions. This feature allows more flexibility in scheduling 
algorithms, one can give each read request an appropriate 
version, in many cases, that will preserve consistency. Our 
scheme is different in that we do allow access to non- 
committed values, based on some properties of our transactions 
(monotonicity). Further, we allow access to sets of possible 
values, one being a real version and others being possibilities. 

2. MOTIVATION 

It is often the case that transactions know, or are able to 
predict (at least partially), what values they may write at 
completion. Furthermore such prediction is often useful to 
other transactions. In fact, the guarantees about future behavior 
encoded in such predictions are a fundamental primitive in 
terms of which cooperation can be defined. In this section we 
present a few examples from diverse applications. 

2.1 Airline Reservation 

We begin by considering a classic problem of high data 
contention. Let X, the variable of interest, be the number of 
seats available on a particular flight A typical transaction, 
checking the availability of seats for a passenger. needs only to 
know whether the current value of X is non-zero. If it can be 
informed for instance, that the current value of X is 14 or 15 
depending on whether some other reservation transaction 
commits or aborts, it can go ahead and provide a positive 
response regarding seat availability. If this transaction now 
wishes to reserve a seat, having confirmed availability, it can 
do so. and mark the 6nal value of X as either 13 or 14, 
depending on whether the “true” value of X read by the 
transaction was supposed to have been 14 or 15, respectively. 
In airline reservations systems today, the special semantics of 
this process are used to provide a customized concurrency 
control mechanism specific to the particular application. The 
ideas we develop below, we claim, can have much the same 
effect, but with complete independence from the semantics of 
the application. 

Now consider a different transaction, run by the airline, that 
checks how many seats are left unused, to determine if a 
smaller aircraft will suffice. This airplane assignment 
transaction, even though it reads the value of X from the 
database, does not care whether the value read is 14 or 15 or 
16. It can compute and commit as long as it can be certain the 
value is less than a threshold for aircraft substitution. 

Observe that for the seat reservation transactions efficiency 
improvements, similar to those we can obtain through a 
uniform proclamation paradigm, can be obtained in a 
semantics-dependent manner by using escrow locks [15] or 
commutativity [3]. Due to their close dependence on the 
semantics of seat reservations, these techniques cannot permit 
concurrent execution of the airplane assignment transaction. 

2.2 Modular VLSI Design 

Suppose that one designer is currently modifying module 
A. If this designer can guarantee certain aspects of the 
interface to this module, then another designer can start 
working on module B that has to interface with A. In fact, the 
update to module B can be committed even before the update 
to module A is complete! All that has to be guaranteed is that 
at commit time, the promise ma& by the designer of A is kept 
- the updated module A must indeed meet the promised 
interface specification. 

More specifically. consider (a grossly simplified view of) 
integrated circuit design. Let transaction A be working on the 
layout of module adder. The length and width of a 
module are two important attributes. L.et transaction B be a 
floor planner. The task of transaction B is to place the different 
modules in the chip to minimize some objective function, such 
as total area. Transaction B does not care about the internal 
details of the design of module adder: all it needs are the 
length and width. 

Often, transaction A can proclaim a small set of possible 
bounding rectangles for its implementation of adder before 
the design is completely done. Transaction B can then make a 
number of floor plans, one for each A-proclaimed rectangle, 
and proceed with its computation without waiting for A to 
finish. Alternatively, transaction B can determine reasonable 
upper bounds on the length and width of the layout of module 
adder, allocate sufficient space to accommodate any of these 
rectangles, and proceed. 

23 Software Engineering 

Consider the development of an object-oriented system. 
Let transaction A begin work to modify the definition of a class 
cl-foo. Let transaction B develop code that requires the 
definition of class cl-f oo. If transaction A proclaims a set of 
data members and member functions that it will (not) modify, 
and if transaction B requires use only of members not being 
modified by A, then transaction B could utilize this knowledge 
to proceed without waiting for A to finish. This is because the 
definitions of members that B uses are guaranteed to stay 
stable. (Of course. in most programming languages the code 
written by the two transaction must be compiled together prior 
to execution. Here we focus only on the code development 
process and not on code execution). 
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The “value” of an objets such as the definition of class 
cl foo, is a “string” representing its entire definition. 
Transaction A, in this example, proclaims only some property 
of this string that will remain invariant, still leaving open many 
different strings that could finally result. In spite of the 
proclamation not being an explicitly enumerated set of values, 
transaction B is able to make use of it. 

Most &sign and other cooperative applications are very 
complex. Of necessity, the examples presented above are 
simple. Our purpose is to convince the reader that there are 
indeed applications where it is possible to predict at least part 
of the outcome ahead of time, and where such predictions can 
be utilized. 

3. THE MODEL 

3.1 Basic Features of the Model 

Our model is that transactions wishing to cooperate can 
issue proclamations regarding the value of a particular data 
item that they will write at the end. Each proclamation is a set 
of possible values that the data item may take at the end of a 
transaction. (This set may be specified implicitly or explicitly, 
and could even be infinite in some cases. In particular, a 
proclamation may often be just an invariant with nothing said 
about data items not included in the invariant). A transaction 
may issue multiple proclamations with regard to an individual 
data item. In this case, each successive proclamation has to be 
a subset of the preceding proclamation for that data item. 

When a transaction attempts to read a data item, it picks up 
the latest information regarding the data item, whether this is 
horn a committed write, or through a proclamation. By latest 
we mean the latest value written by a non-aborted transaction. 
If it reads a proclamation, it can go ahead and compute with the 
set of values presented to it for the data item read. If it 
completes its computation, it may commit. 

There is an additional requirement regarding transactions 
that issue proclamations. They must have read the value of the 
data item they are issuing a proclamation for, either through a 
true read, or from a proclamation, prior to issuing any 
proclamations. We require that the set of values written in a 
proclamation include not only the values the transaction at that 
point thinks it might update the data item to, but also the 
value(s) of the data item as read by the transaction. This is 
required to take into account the possibility of an abort. (In 
Sec. 6.4 we show how this requirement can effectively be 
guaranteed by the transaction management system even if the 
transaction code indicates a “blind write”). 

The major requirement is that any value written by a 
transaction for a data item be invariant irrespective of which of 
the possible instantiations of the possible set of values in any 
input obtained by read proclamation is eventually “declared” 
to be the value to be read by the transaction. (We will relax this 
requirement later). 

When a transaction commits, it first performs N’ operations 
for all items it proclaimed values for, and perhaps some 
additional ones. Its last operation is C. So, W operations write 
cornmined values, as in [Ill. The last operation of an aborted 
transaction is A. 

We present an example to give the reader a flavor of the sorts 
of executions possible under the scheme we propose. P[X] 
denotes a proclamation on X. R [X] denotes a read operation on 
X (either of a committed value or a proclamation), W[X] 
denotes a final declaration of a committed value for X. We shall 
use U[X] to denote an update operation on X (P[X] or W[X]) 
and OIX] to denote any operation on X. C and A indicate 
successful completion and abortion, respectively. 

Example 1 

________________________________________-------------- > (the) 
t,:R~[xl Pl[Xl R,[Yl w,m c1 
t2: R,Wl W,P’l C2 

Transaction tt reads “from” t2 and vice versa. The two 
transactions execute concurrently. It is still possible to 
serialize t2 ahead of tl because the value that t2 writes is the 
same whether it reads the value of X prior to I, or the one 
produced by t , . 

We summarize the main features of transactions in this model: 

i. 

. . 
ll. 

. . . 111. 

iv. 

V. 

vi. 

vii. 

. . 
Vlll. 

ix. 
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When a transaction ti issues a read operation, it reads 
from the latest value (written by a write or a write 
proclamation) produced by a non-aborted transaction tj. 
The result obtained may be a single unique value, or a set 
of values. The former is a true read, the latter is the read 
of a proclamation. In this paper, we do not distinguish 
between the two and refer to both by the symbol R. 

A transaction must read (or read proclamation) an item it 
later updates. 

If a transaction issues a proclamation on item X, the set 
of values proclaimed must include the latest value(s) it 
read for that item. 

If a transaction issues more than one proclamation on X, 
then each proclamation must be a subset of the previous 
proclamation. 

If a transaction writes item X, for which it has made a 
proclamation, the value must be one of the values in its 
latest proclamation for X. 

Once a transaction writes (w) any item, it reads no more 
items and it produces no more proclamations for any 
item. 

A transaction writes (IV) to all items it proclaimed values 
for (and perhaps some additional ones) iff its last 
operation is C. A transaction performs a write (w) to 
any item only if its last operation is C. (We show in Sec. 
6.4 how such a requirement can effectively be met even 
with in-place updating). 

If a uansaction aborts then it writes (w) to no item and A 
is its last operation. 

Consider an execution of a transaction t. In this 
execution it reads and updates, both type of operations 
can refer to single values (reads and writes) and multiple 
values (read proclamation or issue proclamation). 
Transaction t is said to possess the monotonic 
computation property if it satisfies the following 
condition: If I produces sets Kr , . . . . K, as issued 



proclamations when supplied sets Ji , . . . , J, for read 
proclamations then when supplied for its read 
proclamations sets J’i , . . . , J’,, where J’ i is a (non- 
empty) subset of Ji (not necessarily proper), 
i=l,..., m, it produces K’, , . . . , K’, and produces the 
same values in all write (w) operations, with K’i a (non- 
empty) subset of K; (not necessarily proper), i = 1 ,..,n. 
Furthermore, the set of operations and the order of 
operations within a transaction remains unchanged. 
The rrwnotonic computation assumption is that each 
transaction in our system possesses the monotonic 
computation property. We show in See. 5 how this 
property can be guaranteed by the compiler for the 
transaction code. 

3.2 Serializability 

Consider a general transaction system supporting the 
interleaving of transaction operations. We define a realizable 
history as a pair (S,E) where E is the binary read-from relation 
(which we view as a directed graph) among operations and S is 
the sequence of system (read and write) operations in the order 
they executed. The sequence S is constructed once the system 
has ceased operating, i.e. no transaction is active, or 
equivalently, with all active transactions aborted. 
(Uj[X]~i[X]) is XI edge in E iff Ri[X] read the value that WAS 

produced by Uj [X] in the execution; we use j = 0 when reading 
from the initial database. In particular, (Vi [X],R; [Xl) is an 
edge in E implies that Uj preceded R; in S, i.e. reading 
causality. Note that E is not in general deducible from S. 

In our transaction system, we postulate a final transaction tl 
that reads for each item in the database its latest value which is 
written by a committed transaction; r, performs no updates, and 
the state it reads is defined as the fural srufe. We create 
appropriate corresponding edges for operations of rr in E. 

An execution history is a realizable history which could be 
produced in a transaction system conforming with our model. 
Now, consider an actual execution history (S,E) in such a 
transaction system. There is exactly one edge in E for each read 
operation (R), from the immediately preceding update 
operation (W or P) of a non-aborted transaction. The effective 
sequence of system operations, s, is derived from the execution 
history in three steps. The first step deals with aborted 
transactions. The second is an optional step in which 
transactions may “choose” a source for some of the values 
they read. The third step effectively gets rid of all P 
operations. 

Reduction Modification Procedure 

Consider an execution history containing transactions ti , t, 
and item X such that transaction r2 reads X via an operation 
R,[X] from an update operation Pi [Xl performed by 
transaction t i. 

Let RI [X] be the reading operation of rl on X which is 
most recently preceding Pi[X]. Such an RI must exist 
because of the requirement of reading before updating. E is 
modiied by deleting (P,[X]R,[X]) and adding 
(U, [X]P2[Xl), where the edge (Us [XIP i [Xl). for some Ua. 
is in E. (I.e., making tz read from where I, read just prior to 

proclaiming the value for X read by t s). 

Transformation Procedure 

Let t, be the first aborted transaction. Consider each 
transaction ra and item X such that ?a reads X from tl, 
and apply the reduction modification above to ti , fz and 
X. Then remove from S all operations performed by t,, 
and from E all edges relating reads performed by t r . 
Repeat the above procedure (stated for fi) for each 
aborted transaction tj. in the order of abort events, Aj. 
Thereby obtain a modified pair (S’,E’). which we shall 
call the commiffed history. 

Consider a transaction t2 that has an operation R2[X] 
reading from an operation Pi [X]. Apply the reduction 
modification procedure to ti, t2, and X. (I.e., we think, 
temporarily, of ri as “aborted” and make R,[X] read 
the earlier value of X). 
This transformation is optional, and may be applied to 
none, some, or all reads horn proclamations. Once this 
transformation has been applied in as many places as 
desired, the resulting pair (s’,e’) is called the pre- 
effective history. 

We now treat edges of the form (Vi [X].R,[X]) in e’. If 
the edge is l=(W,[X],R,[X]) then move R2[X] 
immediately to the right of W, [X] in s’. If the edge is 
1 =(Pl [X],R,[X]) then move R2[X] immediately to the 
right of W, [X] in s’ and replace 2 in e’ with the edge 
(W,[X],R,[X]). (The intuitive justification for this 
transformation is that by retaining edge 1 in step 2 we 
“intend” t2 to read X from r,). The resulting pair (s,e) 
is called the effective history. In general, this effective 
history may look strange: for example, there may be an 
R,[X] operation folfowing the C2 operation in s (in that 
case (s,e) is not even a realizable history). The s 
component of the effective history is called the effecfive 
sequence. 

Fig. 1 illustrates the transformation procedure. 

Next, we define conflicting operations in the usual way [6]: 
R[X] does not conflict with R[X], R[X] conflicts with W[X], 
W[X] conflicts with W[X]. Create from s a confricf graph with 
(committed) transactions as nodes, and a directed edge (ti, rj) 
iff transaction fi has an operation in s that precedes a 
conflicting operation in s of transaction Ii. We are now ready 
to state the main observation, the proof is omitted for lack of 
space. 

Theorem 1: 
Let G be the conflict graph for the effective sequence, obtained 
by the procedure described above. If G is acyclic then the 
transactions in S’ can be executed serially, i.e. one after 
another, with the order being a topological sort on G, such that: 

i. Each transaction in this serial execution, for each item X, 
reads one of the values that it read for X in the actual 
execution (a limited version of “view equivalence”), 
and 

ii. The net effect of the entire serial execution is to move 
the database to exactly the same final state as in the 
actual execution with execution history (S,E). 
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Consider the following execution history (transaction t, is the only one aborted): 

~=~o~XlR,~Xl~,~XlR,~Xl~,~XlR,~XlR,~XlP,~XlA, C, J+‘,[XlC, W,[XlC, R/IX1 
~=I~~o~Xl,R,~Xl~.~~,~Xl.R,~Xl~,~~,~Xl,R,~Xl~.(P,~Xl,R,[Xl),(W,[Xl,R~[Xl)) 

After step 1 of the transformation procedure, we get: 

~‘=~o[XlR,[Xlf’,[XlR,[XlR,[Xl~,[XlC, W,[XICI W,WlC3 R,[Xl 
~‘=~~~o~Xl,R,~Xl~.~~,~Xl.R,~Xl~.~~,~Xl.R,~Xl~.~~,~Xl.Rf~Xl~~ 

Apply the transformation of step 2 to ra that read X from I, : 

~‘=~~~X~R,[X~~‘,[X~RZ[X~R~[X~~J[XIC~ W,[XlC, W,IXlC3 RJXI 
~‘=~~~o~Xl,R,~Xl~.~~o~Xl.R~~Xl~.~~~~Xl.Rs~Xl~.~~~~Xl.R,~Xl~~ 

Finally, after step 3 of the nansformation procedure, we have: 

~=~o[XlR,[XlR,[Xl~,[Xlf’,[XlC, W,[XlR3[XlC, W,[XlR,[XlC, 
~=~~~~~X~.R,~X~~.~~~~X~,RZ~X~~,~~,~X~.R~~X~~,~~~~X~.R/~X~~~ 

The conflict graph that is obtained from the above transformed history: 

G is to ----> t, ----> tl ----> 13 ----> If 

G is acyclic and the serial execution ?a f r t, produces the same final state as the original execution. 

Figure 1. Example illustrating the Transformation Procedure to determine serializability 

An execution history for a set of hansactions is 
serializable, if it produces the same final database state as some 
serial, one by one, execution of the transactions. The 
conclusion is that if the conflict graph is acyclic then the 
execution history is serializable. Observe that the conflict 
graph for a given actual execution is not unique. In fact, it is 
quite possible that while some conflict graphs that can be 
obtained for an execution history have cycles, others are 
acyclic. An execution is serializable if it has at least one 
conflict graph that is acyclic. Indeed, Theorem 1 shows that a 
topological sort on such an acyclic conkt graph is a valid 
serialization of the execution history. 

4. EXTENSIONS TO THE BASIC MODEL 

4.1 Multiple reads 

A basic feature of our model is conveyed by the 
monotonic@ assumption. In a real world situation, a 
transaction may continue operating on the assumption that the 
value for X is taken out of a known set up to a point where it 
needs more specific information. One way to do this is for a 
transaction to perform multiple conditional computations, and 
select one of them at the end. If the number of alternative 
computations to be performed is not too high this may be 
worth doing, particularly in parallel processing situations. At 
that point it may issue a R [X] again in the hope of refining its 
knowledge. 

The first concern is to specify what value it reads on this 
subsequent R[X] operation. If the transaction f. from which it 
has read the value in the preceding R[X] operation, is not 
aborted, then the value received is the latest value posted 
(through W or P) by r. In case t has aborted, the value is 
obtained from the transaction from which t read X, in case that 
one has not aborted - and so on, recursively. Observe that in 

any case, the subsequent read is a subset of the previous read. 

Furthermore, with the above scheme, Theorem 1 still holds 
as its proof does not depend on having, for each X, only a 
single read operation. Of course, the transactions must still 
obey the monotonicity assumption. This implies that care must 
be taken in compiling transactions that perform multiple reads 
so that the same sequence of operations, or a sub-sequence 
leading to the same written values, would result in considering 
a serial execution history. 

4.2 Conditional Writes 

Another possible extension is to allow transactions to 
perform W operations that write conditional multi-values, a 
conditional multi-value is a set of conditional values. An 
example W[X=(if Y=l then 7, if Y=3 then 8, otherwise 
5)]. Such a multi-value should specify what to write for each 
combination of currently possible values for items read. Once 
such multi-values can be written. they can also be read. This 
presents no problem since these reads behave as if they are 
reading proclamations, as far as their utilization is concerned. 

To deal with such conditional values we refine the meaning 
of a C operation. Up till now, C signified “completion of 
committed transaction”. We shall now re-thii about C as an 
“effective completion” and introduce a new symbol D for the 
“true completion”. True completion means that all writes 
(Ws) performed by the transaction have been refined into single 
values, effective completion means that the transaction has 
written to all items for which it made proclamations, but some 
of the written values may be conditional. Recall thaw in all 
cases, no W operations are performed until a decision to 
commit has already been reached. 

Multi-values can be refined into single values after 
execution. Once there are no more active transactions these 
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____________________---------------------------------- > (t;ne) 

tl:RI[Y=2]P1[Y=2,3] <various ops> W,[Y=3] CIDl 
r2: R,[Z=3] R,[Y=2,3] P,[Z=4,6] <variousops> W,[Z=El] C, D2 

t,:R,[L=15] R,[Y=2.3] Ps[L=15.30] cvariousops>As 
t*: R,[L=15.30] R,[Z=4,6] W,[L=E2] c, 
whereEl=[ifY=2then4,ifY=3then6] 
and E2=[ifL=30then30,ifL=15andZ=4then95,ifL=15andZ=6then100] 

04 

________________________________________-------------- > (tie) 

t,:R,[Y=2]P,[Y=2,3] <various ops> W, [Y=3] C,D, 
t2: R,[Z=3] R,[Y=2,3] P,[Z=4,6] <variousops> W,[Z=El] C, Dz 
tg:R3[L=15] R3[Y=2,3] Pj[L=15,30]<variousops>As 
t4: Rq[L=15,30] R,[Z=4,6] W,[L=E2] CQ D4 

Figure 2. Two possible execution histories corresponding to an execution with multi-valued writes 

active values are resolved as much as possible. This refinement 
depends on the conflict graph chosen. If the conflict graph 
chosen is acyclic, each W, involving multiple conditional 
values, can eventually be refined into a single value. In proof, 
consider the first transaction in Ss that wrote a multi-value, 
since it only reads single values it can resolve its Ws into single 
values; then proceed inductively. 

The reason some refinements are performed after the 
execution is that the refinement may depend on the particular 
conflict graph chosen. In fact, multi-values can also be refined 
by the system during execution. Conceptually, a multi-value 
remains active and at regular intervals the uansaction system 
tries to resolve its state. It does so by reading the items that 
determine the conditions. This is similar to performing 
multiple reads (Section 3.1) but here the reading is performed 
by the transaction system. 

Operationally, the transaction management system can 
“help” transactions resolve their conditional values by 
applying the reduction modification of step 2 of the 
transformation uf run time. This means “ignoring” the 
transaction r that X was read from, and “deciding to read x” 
from where t read it. This way, the possible values of X are 
restricted, which facilitates resolving conditional writes. In this 
case, during execution, the transaction system makes decisions 
that restrict the possible set of conflict graphs. 

Example 2 

Consider the execution history shown in hrst part of Fig. 2. 
Since t, D-completes (reaches true completion) before 12, t2 
effectively writes Z=6. Transaction f4 writes a conditional 
value; the actual value is determined by r2 and rs. Since r2 
writes Z = 6 and since ts aborts with L = 15 still in effect, the 
conditional write. of f4 is L = 100. Observe that the order of 
value determination is t,. t,. t,. This also happens to be a 
serialization order. 

However, a different serialization order may also be 
imposed. This order is t2, t,, ti. In this case t2 reads the value 
of Y read by rt (by application of the reduction modification of 
optional step 2 of the transformation procedure to this 
(uncommitted) read from ti). Therefore, the committed value 
of Z is 4, and the value of L written by r4 is 95. In this case the 

sequence of events is as shown in the second part of Fig. 2. 

The final database state obtained is different in the two 
serialization orders. However, they are both L‘correct” from 
the perspective of serializability. We have permitted the 
concurrent execution of interdependent transactions and let 
them commit with conditional writes. Different legitimate 
serializations may resolve these conditional values differently. 

4.3 Refining Monotonicity 

Monotonicity was defined in terms of set inclusion. There 
are other possibilities. Define a partial ordering, denoted I’<“, 
on values. Define a set A to be a c -subset of a set B if for each 
element u of A there exists an element b of B such that o <b. 
Now replace the subset specification in the definition of 
monotonicity with <-subset. 

This allows us to look at more general notions of 
monotonicity. For example, chip floor plan P may be < than 
another floor plan Q if each module placed in P has sufficient 
space allocated for it in module Q. With this extended notion 
we can handle the floor plan design example option of 
reserving sufficient space. Here, the particular monotonicity 
property ensured by a transaction is left to the transaction code 
writer to enforce. In case we use the (ordinary) subset notion 
of monotonicity. a compiler can produce monotonic 
transactions from user specified ones. This is the topic of the 
next Section. 

5. SYSTEM DESIGN 

An important task is to produce a monotonic transaction 
given the code of an “ordinary” transaction. In thii section we 
sketch how our ideas can be incorporated into transaction code. 
In particular, we show how it is often possible to make minimal 
modifications to transaction code to be able to read and write 
multi-values rather than single values. 

One burden we place on the user is to declare explicitly a 
list of proclamation predicates of relevance. These are the 
predicates whose truth a transaction may proclaim, and the 
ones which when proclaimed can be used by the transaction. 
(Since proclamations are only used between cooperating 
transactions, it is reasonable to expect the transaction writer to 
know what kinds of proclamations cooperating transactions 
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may make). This information is captured in a 
proclamation-definition-h file. In particular, a 
predicate of the form “member-of (c enumerated set >) “, 
is likely to be used often. 

The user writes transaction code as before, reading and 
writing single values. When appropriate, explicit 
proclamations are inserted by the user into the code. This is 
done by means of a new keyword proclaim which takes as 
arguments, the (identifier of the) database entity being 
proclaimed for, the specific predicate (of the ones already 
declared) being proclaimed, and parameters supplied to this 
predicate, if any. 

Let us consider a simple case in which a transaction reads a 
number of database items, performs some calculations, and 
then updates a set of database items. The code for the 
transaction’s calculations is iterated by the compiler, once for 
each possible combination of values for proclamations of 
interest. Each iterated execution has its own local copies of 
variables that it updates. The value proclaimed for a variable is 
the union of values in each iterated case. The final value of a 
variable is determined uniquely (and can be written into the 
database) if it is the same across all local copies of the iterated 
executions performed, otherwise, it is conditionally dependent 
on the specific values of inputs obtained imprecisely. If the 
transaction system is not capable of handling conditional 
multi-values then, the code is augmented with repeated reads 
until unique values may be determined. 

We do not, at the present. have a compiler implemented. 
Nevertheless, in the Appendix, we present some pseudocode to 
give the reader an idea of the transformations a compiler would 
make. The key point is that it is often possible to to take an 
ordinary user transaction code and transform it into transaction 
code that can read and write sets of values in a monotonic way. 
The concurrency connol ideas in this paper can be used, even 
without such a compiler, provided users are willing to write 
monotonic transactions that are capable of reading and writing 
multi-values. 

6. REALIZATION 

In this section we show how to build a transaction manager 
to realize the conceptual model described in section 3. ln 
particular, we show that proclamation-based concurrency 
control can be implemented using a locking protocol that is a 
slight extension of two-phase locking. We discuss how to 
integrate the proposed scheme with a standard write-ahead-log 
based recovery scheme. 

Other realizations of the conceptual model are possible. 
Our intention in describing the schemes below is simply to 
show that relatively simple techniques can be used to generate 
correct executions according to our criteria. 

6.1 A Locking Scheme 

There are three types of locks on an object - shared, 
exclusive, and preferred. The first two are standard. Only one 
transaction can hold an exclusive lock on a data item, and in 
that case, no transactions may hold any other locks. Only one 
transaction can hold a preferred lock on a data item, but at the 
same time any number of additional transactions can hold it in 
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shared mode. To be able to read a data item, a transaction must 
hold at least one of the locks listed. To be able to update a data 
item, a transaction must hold either an exclusive lock or a 
preferred lock. 

Standard two-phase locking is implemented with the 
modification that after the first proclamation of a transaction, 
the transaction system changes an exclusive lock on the 
corresponding data item to preferred. In fact, a transaction is 
never permitted to “upgrade” to a preferred lock from no lock 
or a shared lock, it must have an exclusive lock on a data item, 
and then voluntarily downgrade it to a preferred lock. 

When a transaction wishes to read an item, it first tries to 
obtain a shared lock on the item. (Not required if the 
transaction already has a stronger lock - exclusive or preferred 
- on the item). When a transaction wishes to write an item, it 
obtains an exclusive lock on the item. If it wishes to cooperate, 
the transaction may issue a proclamation and downgrade an 
exclusive lock to preferred. 

All the rest of the locking protocol is standard. Except for 
the downgrading discussed above, no locks are given up until 
all locks required have been obtained. All locks are given up at 
completion, by commit or abort time. If a transaction desires a 
lock that is currently unavailable, it waits for the current holder 
of the lock to finish. Where there is competition for locks, any 
transaction scheduling algorithm may be used. Any standard 
deadlock prevention technique, or deadlock detection and 
resolution technique, may be used. 

Lock actions are h[X] (h’[X]) for obtaining (resp., 
releasing) shared locks on X, x[X] (x’[X]) for obtaining (resp., 
releasing) exclusive locks on X, d[X] for downgrading an 
exclusive lock to a preferred lock, and p’[X] for releasing a 
preferred lock. 

6.2 Correctness 

Consider transactions in the order of appearance of their 
first write, denoted by F. operation (or C in case of no W 
operation) F,,..., F,, in (S’,E’), the committed execution. 
(This is the same as the order in the actual execution history, 
except that aborted transactions have been dropped, since step 
1 of the transformation procedure does not alter any W or C 
points). We shall argue below that this order is a serialization 
order for an execution according to the scheme above. Without 
loss of generality operation Fi is of transaction t;, i = l....,n. 

A basic assumption is that a transaction performs its first W 
operation once it knows it commits, and in particular it will 
need no more locks. (In a write-ahead log based system with 
in-place updates, all W operations, in the sense used here, take 
place at commit time. See Sec. 5.4 below). So. the Fi point 
identifies the point the i” decision was reached to commit a 
transaction. We shall argue that in the final contlict graph there 
will be no edge from ti into tj such that i > j. This implies that 
the graph is acyclic, with the Fi order being a topological SOIT, 
and the history is serializable. We start with a fundamental 
observation (the proof is in Appendix 1) : 

Lemma 4: 
For all i, j, X such that both Wi[X] and Wj[X] are in the 
execution history, Fi precedes Fj iff Wi [Xl precedes Wj [Xl. 



Example 1 

------------------------------------------------------, (he) 
tl:x[XlR,[XlP,[Xld[Xl MYlRl[Y1 w,[Xlh’[YlP’[XlC, 
12: Ku R,Wl x[Yl w,iy1 x’u? h’[Xl c, 

Example 2 

_____________-______---------------------------------- > (time) 
tl: WI R, [yl P, WI WI <various ops> ~,[y=3lP’[yl c, 
tz: xP’1 R,Vl WI R,[Yl Pz[Zl4Zl ~,[ZlP’[Zl ay1 c, 
t3: xW1 R,[Ll h[YjR,[Y]P,[L] d[L] cvariousops>p’[L] h’[Y]A, 
t4: ML1 h[Zl R,[Ll R4[Zl XWI w4 K,l x’[Ll h’[Zl c4 

Figure 3. Examples 1 and 2 reproduced with locking operations shown explicitly 

Theorem 2: 
There is a contlict graph derived from an execution following 
the locking scheme described above, such tha4 for 
i=l,... , n. the only edges entering ti are due to transactions 
tO>...vti-l. 

(Recall that the conflict graph obtained through the 
transformation procedure of Section 2 is not unique. The 
Theorem here postulates the existence of at least one graph 
meeting the specitied conditions. The proof is by construction 
and is presented in Appendix 1). 

6.3 Uniqueness of Written Values 

Now that we know a particular serialization order that can 
be induced on transactions executing according to the locking 
scheme specified here, we can show that there will never be a 
necessity to perform a multi-valued write at commit time, or 
delay committing to resolve conditional values. The idea is to 
always take steps consistent with the eventual conflict graph’s 
topological sort being the commit order. The proof is by 
induction. Consider multiple valued write operations. The first 
transaction in the serialization can always immediately perform 
a unique valued write as it can consider its effective read to be 
from the initial database. This means there is no need for a wait 
(although one may choose to wait) to resolve the multi-value 
later on). 

Consider ti the i* transaction to commit. ti need identify, 
for each item X, which value in what it read was written by an 
already committed transaction. Then, it can determine a unique 
write value. Now assume that all transactions serialized ahead 
of ti have performed unique-valued writes. We show that ti 

can perform a unique-valued write. By Theorem 2, we can 
think of all ti read operations as done from operations of 
previously committed transactions (in F order). But, all these 
values are written when ti decides to commit. Furthermore, by 
the induction hypothesis. they are single values. By the 
locking discipline, the needed value for X is the latest 
committed value written for X. Therefore, ti can write only 
single values. Hence proved by induction. 

6.4 Locking Scheme Implementation 

We consider how the locking scheme described above 
might be implemented. The lock table is essentially the hash 
table as described in [6] with some new features. In particular, 
the current lock holders are partitioned into those having an 

exclusive lock, those having a preferred lock and those having 
a shared lock on X. In case there is a preferred lock on X by 
transaction t. the value read by t for X is recorded in the read 
field. The proclamations made by t are recorded in the 
proclamation field. Since a transaction may make a number of 
proclamations, the proclamation field holds the latest 
proclamation. 

The above description is conceptual; physically, if keeping 
an augmented lock table is too costly in terms of memory 
consumption, a pointer to disk resident data might be kept (one 
possibility is to keep such data as part of the system’s log). By 
the locking discipline, at any point in time, there is at most one 
proclamation on X. We require that a physical write operation 
into the database always installs a single value. This practical 
restriction can be satisfied even though, conceptually, 
transactions may proclaim and write (conditional) multi-values. 

In what follows we shall consider both P and W operations 
as ‘write” operations and use “value” to refer to either a 
single value or a multi-value. 

When a transaction first reads item X, it obtains a shared or 
exclusive lock on X. If there is no current proclamation for X 
the value is read from the database, and recorded in the read 
field of the lock manager. If there is a proclamation on X. the 
value taken is the latest proclamation found in the proclamation 
field, it may be a multi-value. 

To expose proclamations the transaction must: 

a. hold an exclusive lock on X (which is now downgraded 
to a preferred lock), 

b. have previously read X from the database, i.e. a 
committed value (it suffices if the latest committed value 
is in the read field - see optimization below), and 

c. have updated X (and the latest updated value of X 
initializes the proclamation field). 

An expose-proclamation is a one-time action: once it is 
performed, all subsequent updates are “visible” to other 
transactions. This visibility is made possible by converting the 
exclusive lock to a preferred lock. 

To write an item, a transaction must have an exclusive or 
preferred lock on that item. (Which of the two depends only on 
whether the transaction has exposed its proclamations). We 
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consider these two cases in order: 

1. The transaction writes an item to which it has not 
exposed proclamations. If the write is a single value, the 
value is simply written into the database (update in 
place) and the proclamation field. Appropriate logging is 
done to assure recovery in case of an abort or a crash, as 
in [12]. When a transaction writes a (possibly 
conditional) multi-value, the value, or a pointer to is is 
written to the proclamation field in the lock table 
(overwriting whatever was there previously). As far as 
recovery is concerned this is an internal transaction 
operation and no logging is required. 

2. The transaction writes an item to which it has exposed 
proclamations. The system checks that the written value 
is a subset of the latest proclamation; if not then the 
transaction is aborted. The written value, or a pointer to 
it, replaces the one in the proclamation field. If this is a 
single value it is (also) written into the database as in the 
previous case. 

If a transaction aborts and it has previously issued 
proclamations for X, then the proclamations, including the read 
field, are erased and item X has no outstanding proclamations 
(see the optimization below). For each item in the database 
which is actually updated by the transaction, an undo operation 
is performed as in [12]. Space for any multi-values in. or 
pointed by, the proclamation field is reclaimed. Transactions 
that read proclamations made by aborted transactions are not 
immediately affected. If such a transaction attempts a read on 
X, a proclamation of which it previously read from an aborted 
@artsaction, X is obtained from the database. 

A transaction is eligible to commit if for each item X to 
which it has written, its latest write operation defines a unique 
value. A transaction writes a unique value either by writing a 
single value or by writing a conditional multi-value which is 
exhaustive, i.e. covers all the possible cases for the values of 
items mentioned in the condition. Eligibility can be assured 
during compilation, we shall assume that only eligible 
transactions issue commit. Let z be a transaction eligible to 
commit. We shall describe two alternative basic ways for 
committing a transaction. 

1. The first step in committing a transaction is to replace 
any conditional multi-value it has written by a unique 
single value. This is always possible according to the 
preceding sub-section. If a transaction has finally written 
conditional multi-values, these values are resolved as 
follows. Let X be an item for which the transaction read 
a proclamation. If item X is still locked in preferred 
mode, then the value of X is taken to be that in the read 
field, inductively, this value is a single value because it 
was written by a previously committed transaction. 
Otherwise, the value is read from the database. (An 
optimization is possible that will keep the last committed 
value for X, in the read field, as long as there are 
transactions holding shared locks on X.) 

2. There is another option when a transaction is ready to 
commit; its advantage is that items reflect later updates; 
its disadvantage is that of holding locks for long 

durations. If a value read by the transaction still has an 
outstanding proclamation by some transaction 1, this 
transaction Waits for t to commit. The transaction will 
actually commit once all transactions it waits for have 
committed. Once the written value is resolved into a 
single value, that value is written into the database and 
the read field, as in the previous option. Thus, 
inductively, the read field only contains single values. It 
is possible that there is a cycle in the implied wait-for- 
commit relation (which we view as a directed graph). In 
that case a transaction is chosen to commit according to 
the previous scheme, by resolving to single values. 

A mixed option is also possible, in which the transaction 
resolves some values and waits for other transactions to 
terminate on other values; when a cycle results some values are 
resolved to eliminate an edge in the wait-for-commit relation. 

7. CONCLUSIONS 

In this paper we have presented a proclamation-based 
model for cooperating transactions. We permit transactions to 
use uncommitted data in a controlled fashion, through 
proclamations. Transactions have the monotonic computation 
property which enables achieving serializable execution 
schedules, including reads of such uncommitted updates, 
without the need for cascading aborts. We presented a simple 
lock-based protocol that is able to obtain many of the benefits 
of our model. 

We also permit transactions to commit while writing values 
that are conditioned upon incompletely specified values read by 
it. While we have assumed that complete specitication of these 
values will happen “eventually”, there is no conceptual reason 
why we could not delay this indefmitely. Thus our model can 
support transaction management in a database storing 
incomplete information. 

While the presentation in this paper has mostly been in 
terms of proclamations being specified as an explicit set of 
values for a data item, clearly the set of possible values could 
be specified implicitly and could even be infinite. For instance, 
in an object-oriented system with object-level locking, a 
uansaction may issue a proclamation regarding the value of a 
particular attibute of the object, while leaving the possible 
final state of the object otherwise unspecified. Another 
transaction, interested only in the value of this particular 
attribute, may be able to proceed in parallel even though it has 
no other knowledge of the state of an object. 

Finally, in this paper we have not addressed the question of 
what motivates a transaction to issue a proclamation. Our 
expectation is that the issuing of proclamations may be 
autonomous in some high data contention situations. However, 
a more likely scenario, especially for design databases, is that a 
transaction, upon finding unavailable a data item that it wishes 
to access, may request the current lock-holder for a 
proclamation. 

We believe that humans execute “transactions” in a 
manner more like our proclamation-based model than the 
traditional transaction model. We expect that our model will 
be of particular value in systems with long-duration 

273 



do t 
return-val-set->initialize() ; 
read(proclaim-set-for-num-seats) ; // Read proclamation 
foreach x in proclaim-set-for-num-seats 

xact-copy(x) // Execute a copy of the transaction 

while (return-val-set->count() >l) 
// Repeat above until a unique return value is obtained 
// The count of values must decrease monotonically 
// since the proclaim-set becomes smaller monotonically 

return returnpal-set->unique() ; 

xact-copy (Y) 
int y ; 

if (y == 0 ) return-val-set->addtoset(O) ; // Failure to find seat 
else return-val-set->addtoset(l) ; // Seat available 

Figure 4. Transformed Code for Airline Seat Availability Query 

transactions and cooperation, such as design databases. Using 
our model, data contention can be decreased without a detailed 
knowledge of the semantics of the particular application, and 
without sacrificing serializability as a correctness criterion. 
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APPENDIX 

To understand how a compile system may work we walk 
through some pseudo-code in the spirit of O++. the 
programming language interface to the Ode object-oriented 
database system [l]. Consider the airline reservations example 
described in Sec. 2.1. num seats is a database variable 
stating the number of seats a&lable on a particular flight. The 
user writes the transaction, as shown below, with no regard for 
possible multi-values read. 

if (*num seats == 0 ) return 0 ; - 
else return 1 ; 

This code is transformed, by the compiler, into the code 
shown in Fig. 4. proclaim-set-for-num seats is the 
set of proclaimed values for num-seats that% read by the 
current transaction. num seats-val set and - - 
return val setaretheset ofvaluesfor num seats and 
for the &urn-value. respectively, that the transaction may 
produce. These sets are implemented by (and encapsulated in) 
an object class with member functions count ( ) , 
initializeo, addtoset(). and uniqueo. The 
member function unique () returns a single value, which is 
the value of the unique set element, provided it is invoked on a 
singleton set. Even if multiple values for num-seats are 
present in the proclaim se& the transaction can complete with a 
unique return value immediately, provided all these values are 
non-zero. The code in the while loop is executed exactly once. 
If there is a zero value in the proclaimed set. then the 

Eansaction cannot complete until it can be sure whether there 
are seats available. It does so by repeatedly executing the 
while loop. If such “busy-waiting” is not desired, a sleep ( ) 
for an appropriate duration can be added to the loop. 

Now consider a more complex user transaction that actually 
wishes to record a reservation. updating the variable 
num-seats. Once more, the user code, as shown in Fig. 5, 
does not need any awareness of the proclamation-based 
concurrency control protocol in use. Following the same 
recipe as in the previous case, the compiler can generate the 
code in Fig. 6 

This (intermediate) transformed code is very naive. In fact, 
it does not enhance concurrency at all. Several improvements 
are possible. First off, code independent of the set-valued 
proclamations being considered does not have to be iterated for 
each value. Second, one can define the notion of a material 
predicate, whose rmth value affects the flow of computation, 
and iterate the code only once for each possible value of the 
material predicate. Third, the transaction can write a 
(conditional) multi-value and commit, and the transaction 
management system will determine the appropriate unique 
value in time. 

In ourexample,we find ( num seats == 0 ) tobea 
material predicate. The transaczon code can then be 
transformed into a two phase computation. with a first phase 
where the truth of the material predicate is determined, and a 
second phase where the actual computation is performed. Fig. 7 
exhibits these ideas; once the material predicate is decided a 
unique return value can be determined, and a reservation, if 
appropriate, can be made; the number of seats is a conditional 
multi-value. 

One could get even more sophisticated. For instance, 
instead of writing explicit values for the conditional multi- 
values output. one could write a functional dependence. With 
this, one can get rid of the loop over the proclamation set 
entirely. In general, depending on the complexity of the 
compiler implementation that we are willing to tolerate, we can 

274 



if (*num seats == 0 ) return 0 ; // Failure to find seat - 
else { 

proclaim (num-seats, member of (*num seats, - *num-seats-l)) ; 
record-reservationo; // Does-not reference num-seats 
*num seats-- ; - 
return 1 ; // Reservation made successfully 

Figure 5. User Code for Airline Seat Reservation Transaction 

num-seats-val-set->initialize() ; 
return-val-set->initialize() ; 
read(proclaim~set~for~num~seats) ; 
foreach x in proclaim-set-for-num-seats // Read proclamation 

xact-copy(x) // Execute a copy of the transaction 
// Now proclaim for variable num-seats a predicate that 
// states that the value of num-seats is one of the values appearing 
// in num-seats-val-set 
proclaim (num-seats, member~of(num~seats~val~set)) ; 

while (return-val-set->count() >1 I I num-seatsqal-set->count() >l) ; 
// Repeat above until unique values are obtained for 
// both return value and num-seats 

if (return-val-set->unique()==l) 
record-reservation0 ; 

*num-seats = num-seats-val-set->unique() ; 
return return-val-set->unique() ; 

xact-copy (Y) 
int y ; 

if (y == 0 ) returnqal-set->addtoset(O) ; // Failure to find seat 
else ( 

num-seats-val-set->addtoset(y-1) ; 
return-val-set->addtoset(l) ; // Reservation made successfully 

Figure 6. Partially Transformed Code for Airline Seat Reservation Transaction 

choose how involved the logical inter-relationships between 
proclamations can be. The more sophisticated the compiler, the 
more efficient the transformed code can be. 
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