
A Proclamation-Based Model for Cooperating Transactions

H. V. Jagadish
O&d Shmueli

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

We propose a transaction model that provides a framework for
transactions to cooperate without sacrificing serializability as a
notion of correctness. Cooperation does not depend on detailed
knowledge of the semantics of transaction operations.
Semantic properties such as data dependent commutativity can
be “discovered” automatically at run time without a need to
declare these properties explicitly.
When transactions wish to cooperate, they do so by issuing
“proclamations”. A proclamation is an (implicitly or explicitly
specified) set of values, one of which the transaction
“promises” to write if it commits. So, a proclamation
provides incomplete information concerning future possible
database states. Transactions can compute with this incomplete
information, and can commit after writing conditional multi-
values.
We examine the theoretical basis for the proclamation model.
We outline an implementation strategy for the model, including
a simple lock-based transaction manager and a transaction
compiler extension to handle sets of values.

1. INTRODUCTION

Traditionally, concurrency control for transactions has
relied upon a rigorous correctness notion of serializability, see
[6]. The serializability restriction may be relaxed by relying on
the semantics of operations [3,19]. In many cases, one can live
with a weaker notion of correcmess, and indeed, for
performance reasons, one often does so. For instance, many
real users of large database systems today rely on weaker ad-
hoc notions of correcmess such as “cursor stability” [9]. At
the same time, the longer duration of transactions has increased
the pressure not to apply concurrency control too strictly.

As databases are applied to non-traditional applications,
such as design and software development, the possibility of
cooperation between transactions increases, and the transaction
management system should be able to adapt to take advantage
of this. Cooperation typically requires one transaction relying
on certain behavior by another transaction. While this reliance

Petition fo copy withoutfee all or part of this material ic grantedprovided
that the copies are not made or dktributedfor direct commercial advantage.
the VLDB copyright notice and the title of the publication and iu date
appear8 ad notice ir given that copying is by pennSon of the Very Large
Doti Base Endowment. To copy otherwire. or to republish. requires a fee
ondlor special permission from the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada, 1992

usually is based on some higher level semantic knowledge, it
can often be reduced to a reliance on a particular update
behavior. In particular, a transactions may be able to predict, at
least partially, what value it will write for a particular data
item, call it X, well in advance of the transaction completing its
computation and committing. Another transaction, wishing to
read the value of X, may be able to perform useful computation
even if it does not know the exact value of X, but instead
merely that X belongs to some ser of values. Several examples
are presented in Section 2 where such is the case.

In this paper, we propose a transaction model in which
transactions are allowed to cooperate, if they so choose. We do
so without sacrificing serializability. The transactions in our
model are similar to traditional transactions: they are
deterministic, and transform consistent states into consistent
states. When transactions wish to cooperate, they do so by
issuing proclamations. A proclamation is an (implicitly or
explicitly specified) set of values, one of which the transaction
“promises” to write if it commits. The transaction
management system ensures that transactions meet some
minimum guarantees with respect to these proclamations.
Therefore, a malicious transaction cannot cause other
transactions to err by issuing false proclamations.

Our model reduces to the conventional model if
transactions choose not to cooperate. The major point of
departure in the case of cooperating transactions is that a
transaction may read a set of values and proclaim a set of
values. Transactions are also monotonic: intuitively, if each
read operation of a transaction is made to read a subset of what
it actually reads then each update operation will produce a
subset of the values it actually produces.

The paper is organized as follows. We present a few
motivating examples in Section 2. In Section 3 we formalize
the transaction model and present a theorem establishing a
variant of view serializability that relies on reading and writing
subsets of values appearing in the actual execution. Section 4
presents extensions to the basic model that greatly enhance its
utility. Section 5 considers larger systems issues, in terms of
how the transaction code is written and compiled. Section 6
discusses how to implement a transaction manager based on
our model, and shows that small modifications of existing
standard methods is all that is required. Section 7 concludes.

Related Work

Many extended transaction models have been proposed, for
example [2,8,14,16,17]. There have also been many attempts
at finding alternative notions of correcmess. Korth et. al. treat
a general transaction model, including versions and
subtransactions. where correctness is delined using pre-

265

conditions and post-conditions [lo]. In multidatabases one
may define “local” and “global” consistency [13]. Nodine
and Zdonik use finite state machines to specify the allowed
interleavings of transactions[14]; these are similar in spirit to
path expressions [7] and follow the work of [18]. These
models either require the definition of a compensating
transaction (to make up for commitment that was allowed too
early), rely upon the transactions displaying certain semantics
in their behavior or operations, or coordinate behavior using
other mechanisms. For example, the work of [3] relies on a
notion of “recoverability” that allows a transaction to commit
after reading non-committed data. This data can be “fixed” in
case of abort of its producing transaction.

A scheme that maintains for each object an old value and a
new value has been proposed in [4]. So, transactions may
utilize the old value if the new one is being updated. The
scheme increases parallelism. A locking scheme is provided to
implement the idea with some unwanted side effects, e.g. a
transaction may obtain the old value, for consistency reasons,
even after a new committed value has been produced. More
generally, there is a theory of multi-version concurrency
control [5], where each item is allowed to have multiple
versions. This feature allows more flexibility in scheduling
algorithms, one can give each read request an appropriate
version, in many cases, that will preserve consistency. Our
scheme is different in that we do allow access to non-
committed values, based on some properties of our transactions
(monotonicity). Further, we allow access to sets of possible
values, one being a real version and others being possibilities.

2. MOTIVATION

It is often the case that transactions know, or are able to
predict (at least partially), what values they may write at
completion. Furthermore such prediction is often useful to
other transactions. In fact, the guarantees about future behavior
encoded in such predictions are a fundamental primitive in
terms of which cooperation can be defined. In this section we
present a few examples from diverse applications.

2.1 Airline Reservation

We begin by considering a classic problem of high data
contention. Let X, the variable of interest, be the number of
seats available on a particular flight A typical transaction,
checking the availability of seats for a passenger. needs only to
know whether the current value of X is non-zero. If it can be
informed for instance, that the current value of X is 14 or 15
depending on whether some other reservation transaction
commits or aborts, it can go ahead and provide a positive
response regarding seat availability. If this transaction now
wishes to reserve a seat, having confirmed availability, it can
do so. and mark the 6nal value of X as either 13 or 14,
depending on whether the “true” value of X read by the
transaction was supposed to have been 14 or 15, respectively.
In airline reservations systems today, the special semantics of
this process are used to provide a customized concurrency
control mechanism specific to the particular application. The
ideas we develop below, we claim, can have much the same
effect, but with complete independence from the semantics of
the application.

Now consider a different transaction, run by the airline, that
checks how many seats are left unused, to determine if a
smaller aircraft will suffice. This airplane assignment
transaction, even though it reads the value of X from the
database, does not care whether the value read is 14 or 15 or
16. It can compute and commit as long as it can be certain the
value is less than a threshold for aircraft substitution.

Observe that for the seat reservation transactions efficiency
improvements, similar to those we can obtain through a
uniform proclamation paradigm, can be obtained in a
semantics-dependent manner by using escrow locks [15] or
commutativity [3]. Due to their close dependence on the
semantics of seat reservations, these techniques cannot permit
concurrent execution of the airplane assignment transaction.

2.2 Modular VLSI Design

Suppose that one designer is currently modifying module
A. If this designer can guarantee certain aspects of the
interface to this module, then another designer can start
working on module B that has to interface with A. In fact, the
update to module B can be committed even before the update
to module A is complete! All that has to be guaranteed is that
at commit time, the promise ma& by the designer of A is kept
- the updated module A must indeed meet the promised
interface specification.

More specifically. consider (a grossly simplified view of)
integrated circuit design. Let transaction A be working on the
layout of module adder. The length and width of a
module are two important attributes. L.et transaction B be a
floor planner. The task of transaction B is to place the different
modules in the chip to minimize some objective function, such
as total area. Transaction B does not care about the internal
details of the design of module adder: all it needs are the
length and width.

Often, transaction A can proclaim a small set of possible
bounding rectangles for its implementation of adder before
the design is completely done. Transaction B can then make a
number of floor plans, one for each A-proclaimed rectangle,
and proceed with its computation without waiting for A to
finish. Alternatively, transaction B can determine reasonable
upper bounds on the length and width of the layout of module
adder, allocate sufficient space to accommodate any of these
rectangles, and proceed.

23 Software Engineering

Consider the development of an object-oriented system.
Let transaction A begin work to modify the definition of a class
cl-foo. Let transaction B develop code that requires the
definition of class cl-f oo. If transaction A proclaims a set of
data members and member functions that it will (not) modify,
and if transaction B requires use only of members not being
modified by A, then transaction B could utilize this knowledge
to proceed without waiting for A to finish. This is because the
definitions of members that B uses are guaranteed to stay
stable. (Of course. in most programming languages the code
written by the two transaction must be compiled together prior
to execution. Here we focus only on the code development
process and not on code execution).

266

The “value” of an objets such as the definition of class
cl foo, is a “string” representing its entire definition.
Transaction A, in this example, proclaims only some property
of this string that will remain invariant, still leaving open many
different strings that could finally result. In spite of the
proclamation not being an explicitly enumerated set of values,
transaction B is able to make use of it.

Most &sign and other cooperative applications are very
complex. Of necessity, the examples presented above are
simple. Our purpose is to convince the reader that there are
indeed applications where it is possible to predict at least part
of the outcome ahead of time, and where such predictions can
be utilized.

3. THE MODEL

3.1 Basic Features of the Model

Our model is that transactions wishing to cooperate can
issue proclamations regarding the value of a particular data
item that they will write at the end. Each proclamation is a set
of possible values that the data item may take at the end of a
transaction. (This set may be specified implicitly or explicitly,
and could even be infinite in some cases. In particular, a
proclamation may often be just an invariant with nothing said
about data items not included in the invariant). A transaction
may issue multiple proclamations with regard to an individual
data item. In this case, each successive proclamation has to be
a subset of the preceding proclamation for that data item.

When a transaction attempts to read a data item, it picks up
the latest information regarding the data item, whether this is
horn a committed write, or through a proclamation. By latest
we mean the latest value written by a non-aborted transaction.
If it reads a proclamation, it can go ahead and compute with the
set of values presented to it for the data item read. If it
completes its computation, it may commit.

There is an additional requirement regarding transactions
that issue proclamations. They must have read the value of the
data item they are issuing a proclamation for, either through a
true read, or from a proclamation, prior to issuing any
proclamations. We require that the set of values written in a
proclamation include not only the values the transaction at that
point thinks it might update the data item to, but also the
value(s) of the data item as read by the transaction. This is
required to take into account the possibility of an abort. (In
Sec. 6.4 we show how this requirement can effectively be
guaranteed by the transaction management system even if the
transaction code indicates a “blind write”).

The major requirement is that any value written by a
transaction for a data item be invariant irrespective of which of
the possible instantiations of the possible set of values in any
input obtained by read proclamation is eventually “declared”
to be the value to be read by the transaction. (We will relax this
requirement later).

When a transaction commits, it first performs N’ operations
for all items it proclaimed values for, and perhaps some
additional ones. Its last operation is C. So, W operations write
cornmined values, as in [Ill. The last operation of an aborted
transaction is A.

We present an example to give the reader a flavor of the sorts
of executions possible under the scheme we propose. P[X]
denotes a proclamation on X. R [X] denotes a read operation on
X (either of a committed value or a proclamation), W[X]
denotes a final declaration of a committed value for X. We shall
use U[X] to denote an update operation on X (P[X] or W[X])
and OIX] to denote any operation on X. C and A indicate
successful completion and abortion, respectively.

Example 1

__-------------- > (the)
t,:R~[xl Pl[Xl R,[Yl w,m c1
t2: R,Wl W,P’l C2

Transaction tt reads “from” t2 and vice versa. The two
transactions execute concurrently. It is still possible to
serialize t2 ahead of tl because the value that t2 writes is the
same whether it reads the value of X prior to I, or the one
produced by t , .

We summarize the main features of transactions in this model:

i.

. .
ll.

. . . 111.

iv.

V.

vi.

vii.

. .
Vlll.

ix.

267

When a transaction ti issues a read operation, it reads
from the latest value (written by a write or a write
proclamation) produced by a non-aborted transaction tj.
The result obtained may be a single unique value, or a set
of values. The former is a true read, the latter is the read
of a proclamation. In this paper, we do not distinguish
between the two and refer to both by the symbol R.

A transaction must read (or read proclamation) an item it
later updates.

If a transaction issues a proclamation on item X, the set
of values proclaimed must include the latest value(s) it
read for that item.

If a transaction issues more than one proclamation on X,
then each proclamation must be a subset of the previous
proclamation.

If a transaction writes item X, for which it has made a
proclamation, the value must be one of the values in its
latest proclamation for X.

Once a transaction writes (w) any item, it reads no more
items and it produces no more proclamations for any
item.

A transaction writes (IV) to all items it proclaimed values
for (and perhaps some additional ones) iff its last
operation is C. A transaction performs a write (w) to
any item only if its last operation is C. (We show in Sec.
6.4 how such a requirement can effectively be met even
with in-place updating).

If a uansaction aborts then it writes (w) to no item and A
is its last operation.

Consider an execution of a transaction t. In this
execution it reads and updates, both type of operations
can refer to single values (reads and writes) and multiple
values (read proclamation or issue proclamation).
Transaction t is said to possess the monotonic
computation property if it satisfies the following
condition: If I produces sets Kr , K, as issued

proclamations when supplied sets Ji , . . . , J, for read
proclamations then when supplied for its read
proclamations sets J’i , . . . , J’,, where J’ i is a (non-
empty) subset of Ji (not necessarily proper),
i=l,..., m, it produces K’, , . . . , K’, and produces the
same values in all write (w) operations, with K’i a (non-
empty) subset of K; (not necessarily proper), i = 1 ,..,n.
Furthermore, the set of operations and the order of
operations within a transaction remains unchanged.
The rrwnotonic computation assumption is that each
transaction in our system possesses the monotonic
computation property. We show in See. 5 how this
property can be guaranteed by the compiler for the
transaction code.

3.2 Serializability

Consider a general transaction system supporting the
interleaving of transaction operations. We define a realizable
history as a pair (S,E) where E is the binary read-from relation
(which we view as a directed graph) among operations and S is
the sequence of system (read and write) operations in the order
they executed. The sequence S is constructed once the system
has ceased operating, i.e. no transaction is active, or
equivalently, with all active transactions aborted.
(Uj[X]~i[X]) is XI edge in E iff Ri[X] read the value that WAS

produced by Uj [X] in the execution; we use j = 0 when reading
from the initial database. In particular, (Vi [X],R; [Xl) is an
edge in E implies that Uj preceded R; in S, i.e. reading
causality. Note that E is not in general deducible from S.

In our transaction system, we postulate a final transaction tl
that reads for each item in the database its latest value which is
written by a committed transaction; r, performs no updates, and
the state it reads is defined as the fural srufe. We create
appropriate corresponding edges for operations of rr in E.

An execution history is a realizable history which could be
produced in a transaction system conforming with our model.
Now, consider an actual execution history (S,E) in such a
transaction system. There is exactly one edge in E for each read
operation (R), from the immediately preceding update
operation (W or P) of a non-aborted transaction. The effective
sequence of system operations, s, is derived from the execution
history in three steps. The first step deals with aborted
transactions. The second is an optional step in which
transactions may “choose” a source for some of the values
they read. The third step effectively gets rid of all P
operations.

Reduction Modification Procedure

Consider an execution history containing transactions ti , t,
and item X such that transaction r2 reads X via an operation
R,[X] from an update operation Pi [Xl performed by
transaction t i.

Let RI [X] be the reading operation of rl on X which is
most recently preceding Pi[X]. Such an RI must exist
because of the requirement of reading before updating. E is
modiied by deleting (P,[X]R,[X]) and adding
(U, [X]P2[Xl), where the edge (Us [XIP i [Xl). for some Ua.
is in E. (I.e., making tz read from where I, read just prior to

proclaiming the value for X read by t s).

Transformation Procedure

Let t, be the first aborted transaction. Consider each
transaction ra and item X such that ?a reads X from tl,
and apply the reduction modification above to ti , fz and
X. Then remove from S all operations performed by t,,
and from E all edges relating reads performed by t r .
Repeat the above procedure (stated for fi) for each
aborted transaction tj. in the order of abort events, Aj.
Thereby obtain a modified pair (S’,E’). which we shall
call the commiffed history.

Consider a transaction t2 that has an operation R2[X]
reading from an operation Pi [X]. Apply the reduction
modification procedure to ti, t2, and X. (I.e., we think,
temporarily, of ri as “aborted” and make R,[X] read
the earlier value of X).
This transformation is optional, and may be applied to
none, some, or all reads horn proclamations. Once this
transformation has been applied in as many places as
desired, the resulting pair (s’,e’) is called the pre-
effective history.

We now treat edges of the form (Vi [X].R,[X]) in e’. If
the edge is l=(W,[X],R,[X]) then move R2[X]
immediately to the right of W, [X] in s’. If the edge is
1 =(Pl [X],R,[X]) then move R2[X] immediately to the
right of W, [X] in s’ and replace 2 in e’ with the edge
(W,[X],R,[X]). (The intuitive justification for this
transformation is that by retaining edge 1 in step 2 we
“intend” t2 to read X from r,). The resulting pair (s,e)
is called the effective history. In general, this effective
history may look strange: for example, there may be an
R,[X] operation folfowing the C2 operation in s (in that
case (s,e) is not even a realizable history). The s
component of the effective history is called the effecfive
sequence.

Fig. 1 illustrates the transformation procedure.

Next, we define conflicting operations in the usual way [6]:
R[X] does not conflict with R[X], R[X] conflicts with W[X],
W[X] conflicts with W[X]. Create from s a confricf graph with
(committed) transactions as nodes, and a directed edge (ti, rj)
iff transaction fi has an operation in s that precedes a
conflicting operation in s of transaction Ii. We are now ready
to state the main observation, the proof is omitted for lack of
space.

Theorem 1:
Let G be the conflict graph for the effective sequence, obtained
by the procedure described above. If G is acyclic then the
transactions in S’ can be executed serially, i.e. one after
another, with the order being a topological sort on G, such that:

i. Each transaction in this serial execution, for each item X,
reads one of the values that it read for X in the actual
execution (a limited version of “view equivalence”),
and

ii. The net effect of the entire serial execution is to move
the database to exactly the same final state as in the
actual execution with execution history (S,E).

268

Consider the following execution history (transaction t, is the only one aborted):

~=~o~XlR,~Xl~,~XlR,~Xl~,~XlR,~XlR,~XlP,~XlA, C, J+‘,[XlC, W,[XlC, R/IX1
~=I~~o~Xl,R,~Xl~.~~,~Xl.R,~Xl~,~~,~Xl,R,~Xl~.(P,~Xl,R,[Xl),(W,[Xl,R~[Xl))

After step 1 of the transformation procedure, we get:

~‘=~o[XlR,[Xlf’,[XlR,[XlR,[Xl~,[XlC, W,[XICI W,WlC3 R,[Xl
~‘=~~~o~Xl,R,~Xl~.~~,~Xl.R,~Xl~.~~,~Xl.R,~Xl~.~~,~Xl.Rf~Xl~~

Apply the transformation of step 2 to ra that read X from I, :

~‘=~~~X~R,[X~~‘,[X~RZ[X~R~[X~~J[XIC~ W,[XlC, W,IXlC3 RJXI
~‘=~~~o~Xl,R,~Xl~.~~o~Xl.R~~Xl~.~~~~Xl.Rs~Xl~.~~~~Xl.R,~Xl~~

Finally, after step 3 of the nansformation procedure, we have:

~=~o[XlR,[XlR,[Xl~,[Xlf’,[XlC, W,[XlR3[XlC, W,[XlR,[XlC,
~=~~~~~X~.R,~X~~.~~~~X~,RZ~X~~,~~,~X~.R~~X~~,~~~~X~.R/~X~~~

The conflict graph that is obtained from the above transformed history:

G is to ----> t, ----> tl ----> 13 ----> If

G is acyclic and the serial execution ?a f r t, produces the same final state as the original execution.

Figure 1. Example illustrating the Transformation Procedure to determine serializability

An execution history for a set of hansactions is
serializable, if it produces the same final database state as some
serial, one by one, execution of the transactions. The
conclusion is that if the conflict graph is acyclic then the
execution history is serializable. Observe that the conflict
graph for a given actual execution is not unique. In fact, it is
quite possible that while some conflict graphs that can be
obtained for an execution history have cycles, others are
acyclic. An execution is serializable if it has at least one
conflict graph that is acyclic. Indeed, Theorem 1 shows that a
topological sort on such an acyclic conkt graph is a valid
serialization of the execution history.

4. EXTENSIONS TO THE BASIC MODEL

4.1 Multiple reads

A basic feature of our model is conveyed by the
monotonic@ assumption. In a real world situation, a
transaction may continue operating on the assumption that the
value for X is taken out of a known set up to a point where it
needs more specific information. One way to do this is for a
transaction to perform multiple conditional computations, and
select one of them at the end. If the number of alternative
computations to be performed is not too high this may be
worth doing, particularly in parallel processing situations. At
that point it may issue a R [X] again in the hope of refining its
knowledge.

The first concern is to specify what value it reads on this
subsequent R[X] operation. If the transaction f. from which it
has read the value in the preceding R[X] operation, is not
aborted, then the value received is the latest value posted
(through W or P) by r. In case t has aborted, the value is
obtained from the transaction from which t read X, in case that
one has not aborted - and so on, recursively. Observe that in

any case, the subsequent read is a subset of the previous read.

Furthermore, with the above scheme, Theorem 1 still holds
as its proof does not depend on having, for each X, only a
single read operation. Of course, the transactions must still
obey the monotonicity assumption. This implies that care must
be taken in compiling transactions that perform multiple reads
so that the same sequence of operations, or a sub-sequence
leading to the same written values, would result in considering
a serial execution history.

4.2 Conditional Writes

Another possible extension is to allow transactions to
perform W operations that write conditional multi-values, a
conditional multi-value is a set of conditional values. An
example W[X=(if Y=l then 7, if Y=3 then 8, otherwise
5)]. Such a multi-value should specify what to write for each
combination of currently possible values for items read. Once
such multi-values can be written. they can also be read. This
presents no problem since these reads behave as if they are
reading proclamations, as far as their utilization is concerned.

To deal with such conditional values we refine the meaning
of a C operation. Up till now, C signified “completion of
committed transaction”. We shall now re-thii about C as an
“effective completion” and introduce a new symbol D for the
“true completion”. True completion means that all writes
(Ws) performed by the transaction have been refined into single
values, effective completion means that the transaction has
written to all items for which it made proclamations, but some
of the written values may be conditional. Recall thaw in all
cases, no W operations are performed until a decision to
commit has already been reached.

Multi-values can be refined into single values after
execution. Once there are no more active transactions these

269

____________________---------------------------------- > (t;ne)

tl:RI[Y=2]P1[Y=2,3] <various ops> W,[Y=3] CIDl
r2: R,[Z=3] R,[Y=2,3] P,[Z=4,6] <variousops> W,[Z=El] C, D2

t,:R,[L=15] R,[Y=2.3] Ps[L=15.30] cvariousops>As
t*: R,[L=15.30] R,[Z=4,6] W,[L=E2] c,
whereEl=[ifY=2then4,ifY=3then6]
and E2=[ifL=30then30,ifL=15andZ=4then95,ifL=15andZ=6then100]

04

__-------------- > (tie)

t,:R,[Y=2]P,[Y=2,3] <various ops> W, [Y=3] C,D,
t2: R,[Z=3] R,[Y=2,3] P,[Z=4,6] <variousops> W,[Z=El] C, Dz
tg:R3[L=15] R3[Y=2,3] Pj[L=15,30]<variousops>As
t4: Rq[L=15,30] R,[Z=4,6] W,[L=E2] CQ D4

Figure 2. Two possible execution histories corresponding to an execution with multi-valued writes

active values are resolved as much as possible. This refinement
depends on the conflict graph chosen. If the conflict graph
chosen is acyclic, each W, involving multiple conditional
values, can eventually be refined into a single value. In proof,
consider the first transaction in Ss that wrote a multi-value,
since it only reads single values it can resolve its Ws into single
values; then proceed inductively.

The reason some refinements are performed after the
execution is that the refinement may depend on the particular
conflict graph chosen. In fact, multi-values can also be refined
by the system during execution. Conceptually, a multi-value
remains active and at regular intervals the uansaction system
tries to resolve its state. It does so by reading the items that
determine the conditions. This is similar to performing
multiple reads (Section 3.1) but here the reading is performed
by the transaction system.

Operationally, the transaction management system can
“help” transactions resolve their conditional values by
applying the reduction modification of step 2 of the
transformation uf run time. This means “ignoring” the
transaction r that X was read from, and “deciding to read x”
from where t read it. This way, the possible values of X are
restricted, which facilitates resolving conditional writes. In this
case, during execution, the transaction system makes decisions
that restrict the possible set of conflict graphs.

Example 2

Consider the execution history shown in hrst part of Fig. 2.
Since t, D-completes (reaches true completion) before 12, t2
effectively writes Z=6. Transaction f4 writes a conditional
value; the actual value is determined by r2 and rs. Since r2
writes Z = 6 and since ts aborts with L = 15 still in effect, the
conditional write. of f4 is L = 100. Observe that the order of
value determination is t,. t,. t,. This also happens to be a
serialization order.

However, a different serialization order may also be
imposed. This order is t2, t,, ti. In this case t2 reads the value
of Y read by rt (by application of the reduction modification of
optional step 2 of the transformation procedure to this
(uncommitted) read from ti). Therefore, the committed value
of Z is 4, and the value of L written by r4 is 95. In this case the

sequence of events is as shown in the second part of Fig. 2.

The final database state obtained is different in the two
serialization orders. However, they are both L‘correct” from
the perspective of serializability. We have permitted the
concurrent execution of interdependent transactions and let
them commit with conditional writes. Different legitimate
serializations may resolve these conditional values differently.

4.3 Refining Monotonicity

Monotonicity was defined in terms of set inclusion. There
are other possibilities. Define a partial ordering, denoted I’<“,
on values. Define a set A to be a c -subset of a set B if for each
element u of A there exists an element b of B such that o <b.
Now replace the subset specification in the definition of
monotonicity with <-subset.

This allows us to look at more general notions of
monotonicity. For example, chip floor plan P may be < than
another floor plan Q if each module placed in P has sufficient
space allocated for it in module Q. With this extended notion
we can handle the floor plan design example option of
reserving sufficient space. Here, the particular monotonicity
property ensured by a transaction is left to the transaction code
writer to enforce. In case we use the (ordinary) subset notion
of monotonicity. a compiler can produce monotonic
transactions from user specified ones. This is the topic of the
next Section.

5. SYSTEM DESIGN

An important task is to produce a monotonic transaction
given the code of an “ordinary” transaction. In thii section we
sketch how our ideas can be incorporated into transaction code.
In particular, we show how it is often possible to make minimal
modifications to transaction code to be able to read and write
multi-values rather than single values.

One burden we place on the user is to declare explicitly a
list of proclamation predicates of relevance. These are the
predicates whose truth a transaction may proclaim, and the
ones which when proclaimed can be used by the transaction.
(Since proclamations are only used between cooperating
transactions, it is reasonable to expect the transaction writer to
know what kinds of proclamations cooperating transactions

270

may make). This information is captured in a
proclamation-definition-h file. In particular, a
predicate of the form “member-of (c enumerated set >) “,
is likely to be used often.

The user writes transaction code as before, reading and
writing single values. When appropriate, explicit
proclamations are inserted by the user into the code. This is
done by means of a new keyword proclaim which takes as
arguments, the (identifier of the) database entity being
proclaimed for, the specific predicate (of the ones already
declared) being proclaimed, and parameters supplied to this
predicate, if any.

Let us consider a simple case in which a transaction reads a
number of database items, performs some calculations, and
then updates a set of database items. The code for the
transaction’s calculations is iterated by the compiler, once for
each possible combination of values for proclamations of
interest. Each iterated execution has its own local copies of
variables that it updates. The value proclaimed for a variable is
the union of values in each iterated case. The final value of a
variable is determined uniquely (and can be written into the
database) if it is the same across all local copies of the iterated
executions performed, otherwise, it is conditionally dependent
on the specific values of inputs obtained imprecisely. If the
transaction system is not capable of handling conditional
multi-values then, the code is augmented with repeated reads
until unique values may be determined.

We do not, at the present. have a compiler implemented.
Nevertheless, in the Appendix, we present some pseudocode to
give the reader an idea of the transformations a compiler would
make. The key point is that it is often possible to to take an
ordinary user transaction code and transform it into transaction
code that can read and write sets of values in a monotonic way.
The concurrency connol ideas in this paper can be used, even
without such a compiler, provided users are willing to write
monotonic transactions that are capable of reading and writing
multi-values.

6. REALIZATION

In this section we show how to build a transaction manager
to realize the conceptual model described in section 3. ln
particular, we show that proclamation-based concurrency
control can be implemented using a locking protocol that is a
slight extension of two-phase locking. We discuss how to
integrate the proposed scheme with a standard write-ahead-log
based recovery scheme.

Other realizations of the conceptual model are possible.
Our intention in describing the schemes below is simply to
show that relatively simple techniques can be used to generate
correct executions according to our criteria.

6.1 A Locking Scheme

There are three types of locks on an object - shared,
exclusive, and preferred. The first two are standard. Only one
transaction can hold an exclusive lock on a data item, and in
that case, no transactions may hold any other locks. Only one
transaction can hold a preferred lock on a data item, but at the
same time any number of additional transactions can hold it in

271

shared mode. To be able to read a data item, a transaction must
hold at least one of the locks listed. To be able to update a data
item, a transaction must hold either an exclusive lock or a
preferred lock.

Standard two-phase locking is implemented with the
modification that after the first proclamation of a transaction,
the transaction system changes an exclusive lock on the
corresponding data item to preferred. In fact, a transaction is
never permitted to “upgrade” to a preferred lock from no lock
or a shared lock, it must have an exclusive lock on a data item,
and then voluntarily downgrade it to a preferred lock.

When a transaction wishes to read an item, it first tries to
obtain a shared lock on the item. (Not required if the
transaction already has a stronger lock - exclusive or preferred
- on the item). When a transaction wishes to write an item, it
obtains an exclusive lock on the item. If it wishes to cooperate,
the transaction may issue a proclamation and downgrade an
exclusive lock to preferred.

All the rest of the locking protocol is standard. Except for
the downgrading discussed above, no locks are given up until
all locks required have been obtained. All locks are given up at
completion, by commit or abort time. If a transaction desires a
lock that is currently unavailable, it waits for the current holder
of the lock to finish. Where there is competition for locks, any
transaction scheduling algorithm may be used. Any standard
deadlock prevention technique, or deadlock detection and
resolution technique, may be used.

Lock actions are h[X] (h’[X]) for obtaining (resp.,
releasing) shared locks on X, x[X] (x’[X]) for obtaining (resp.,
releasing) exclusive locks on X, d[X] for downgrading an
exclusive lock to a preferred lock, and p’[X] for releasing a
preferred lock.

6.2 Correctness

Consider transactions in the order of appearance of their
first write, denoted by F. operation (or C in case of no W
operation) F,,..., F,, in (S’,E’), the committed execution.
(This is the same as the order in the actual execution history,
except that aborted transactions have been dropped, since step
1 of the transformation procedure does not alter any W or C
points). We shall argue below that this order is a serialization
order for an execution according to the scheme above. Without
loss of generality operation Fi is of transaction t;, i = l....,n.

A basic assumption is that a transaction performs its first W
operation once it knows it commits, and in particular it will
need no more locks. (In a write-ahead log based system with
in-place updates, all W operations, in the sense used here, take
place at commit time. See Sec. 5.4 below). So. the Fi point
identifies the point the i” decision was reached to commit a
transaction. We shall argue that in the final contlict graph there
will be no edge from ti into tj such that i > j. This implies that
the graph is acyclic, with the Fi order being a topological SOIT,
and the history is serializable. We start with a fundamental
observation (the proof is in Appendix 1) :

Lemma 4:
For all i, j, X such that both Wi[X] and Wj[X] are in the
execution history, Fi precedes Fj iff Wi [Xl precedes Wj [Xl.

Example 1

--, (he)
tl:x[XlR,[XlP,[Xld[Xl MYlRl[Y1 w,[Xlh’[YlP’[XlC,
12: Ku R,Wl x[Yl w,iy1 x’u? h’[Xl c,

Example 2

_____________-______---------------------------------- > (time)
tl: WI R, [yl P, WI WI <various ops> ~,[y=3lP’[yl c,
tz: xP’1 R,Vl WI R,[Yl Pz[Zl4Zl ~,[ZlP’[Zl ay1 c,
t3: xW1 R,[Ll h[YjR,[Y]P,[L] d[L] cvariousops>p’[L] h’[Y]A,
t4: ML1 h[Zl R,[Ll R4[Zl XWI w4 K,l x’[Ll h’[Zl c4

Figure 3. Examples 1 and 2 reproduced with locking operations shown explicitly

Theorem 2:
There is a contlict graph derived from an execution following
the locking scheme described above, such tha4 for
i=l,... , n. the only edges entering ti are due to transactions
tO>...vti-l.

(Recall that the conflict graph obtained through the
transformation procedure of Section 2 is not unique. The
Theorem here postulates the existence of at least one graph
meeting the specitied conditions. The proof is by construction
and is presented in Appendix 1).

6.3 Uniqueness of Written Values

Now that we know a particular serialization order that can
be induced on transactions executing according to the locking
scheme specified here, we can show that there will never be a
necessity to perform a multi-valued write at commit time, or
delay committing to resolve conditional values. The idea is to
always take steps consistent with the eventual conflict graph’s
topological sort being the commit order. The proof is by
induction. Consider multiple valued write operations. The first
transaction in the serialization can always immediately perform
a unique valued write as it can consider its effective read to be
from the initial database. This means there is no need for a wait
(although one may choose to wait) to resolve the multi-value
later on).

Consider ti the i* transaction to commit. ti need identify,
for each item X, which value in what it read was written by an
already committed transaction. Then, it can determine a unique
write value. Now assume that all transactions serialized ahead
of ti have performed unique-valued writes. We show that ti

can perform a unique-valued write. By Theorem 2, we can
think of all ti read operations as done from operations of
previously committed transactions (in F order). But, all these
values are written when ti decides to commit. Furthermore, by
the induction hypothesis. they are single values. By the
locking discipline, the needed value for X is the latest
committed value written for X. Therefore, ti can write only
single values. Hence proved by induction.

6.4 Locking Scheme Implementation

We consider how the locking scheme described above
might be implemented. The lock table is essentially the hash
table as described in [6] with some new features. In particular,
the current lock holders are partitioned into those having an

exclusive lock, those having a preferred lock and those having
a shared lock on X. In case there is a preferred lock on X by
transaction t. the value read by t for X is recorded in the read
field. The proclamations made by t are recorded in the
proclamation field. Since a transaction may make a number of
proclamations, the proclamation field holds the latest
proclamation.

The above description is conceptual; physically, if keeping
an augmented lock table is too costly in terms of memory
consumption, a pointer to disk resident data might be kept (one
possibility is to keep such data as part of the system’s log). By
the locking discipline, at any point in time, there is at most one
proclamation on X. We require that a physical write operation
into the database always installs a single value. This practical
restriction can be satisfied even though, conceptually,
transactions may proclaim and write (conditional) multi-values.

In what follows we shall consider both P and W operations
as ‘write” operations and use “value” to refer to either a
single value or a multi-value.

When a transaction first reads item X, it obtains a shared or
exclusive lock on X. If there is no current proclamation for X
the value is read from the database, and recorded in the read
field of the lock manager. If there is a proclamation on X. the
value taken is the latest proclamation found in the proclamation
field, it may be a multi-value.

To expose proclamations the transaction must:

a. hold an exclusive lock on X (which is now downgraded
to a preferred lock),

b. have previously read X from the database, i.e. a
committed value (it suffices if the latest committed value
is in the read field - see optimization below), and

c. have updated X (and the latest updated value of X
initializes the proclamation field).

An expose-proclamation is a one-time action: once it is
performed, all subsequent updates are “visible” to other
transactions. This visibility is made possible by converting the
exclusive lock to a preferred lock.

To write an item, a transaction must have an exclusive or
preferred lock on that item. (Which of the two depends only on
whether the transaction has exposed its proclamations). We

272

consider these two cases in order:

1. The transaction writes an item to which it has not
exposed proclamations. If the write is a single value, the
value is simply written into the database (update in
place) and the proclamation field. Appropriate logging is
done to assure recovery in case of an abort or a crash, as
in [12]. When a transaction writes a (possibly
conditional) multi-value, the value, or a pointer to is is
written to the proclamation field in the lock table
(overwriting whatever was there previously). As far as
recovery is concerned this is an internal transaction
operation and no logging is required.

2. The transaction writes an item to which it has exposed
proclamations. The system checks that the written value
is a subset of the latest proclamation; if not then the
transaction is aborted. The written value, or a pointer to
it, replaces the one in the proclamation field. If this is a
single value it is (also) written into the database as in the
previous case.

If a transaction aborts and it has previously issued
proclamations for X, then the proclamations, including the read
field, are erased and item X has no outstanding proclamations
(see the optimization below). For each item in the database
which is actually updated by the transaction, an undo operation
is performed as in [12]. Space for any multi-values in. or
pointed by, the proclamation field is reclaimed. Transactions
that read proclamations made by aborted transactions are not
immediately affected. If such a transaction attempts a read on
X, a proclamation of which it previously read from an aborted
@artsaction, X is obtained from the database.

A transaction is eligible to commit if for each item X to
which it has written, its latest write operation defines a unique
value. A transaction writes a unique value either by writing a
single value or by writing a conditional multi-value which is
exhaustive, i.e. covers all the possible cases for the values of
items mentioned in the condition. Eligibility can be assured
during compilation, we shall assume that only eligible
transactions issue commit. Let z be a transaction eligible to
commit. We shall describe two alternative basic ways for
committing a transaction.

1. The first step in committing a transaction is to replace
any conditional multi-value it has written by a unique
single value. This is always possible according to the
preceding sub-section. If a transaction has finally written
conditional multi-values, these values are resolved as
follows. Let X be an item for which the transaction read
a proclamation. If item X is still locked in preferred
mode, then the value of X is taken to be that in the read
field, inductively, this value is a single value because it
was written by a previously committed transaction.
Otherwise, the value is read from the database. (An
optimization is possible that will keep the last committed
value for X, in the read field, as long as there are
transactions holding shared locks on X.)

2. There is another option when a transaction is ready to
commit; its advantage is that items reflect later updates;
its disadvantage is that of holding locks for long

durations. If a value read by the transaction still has an
outstanding proclamation by some transaction 1, this
transaction Waits for t to commit. The transaction will
actually commit once all transactions it waits for have
committed. Once the written value is resolved into a
single value, that value is written into the database and
the read field, as in the previous option. Thus,
inductively, the read field only contains single values. It
is possible that there is a cycle in the implied wait-for-
commit relation (which we view as a directed graph). In
that case a transaction is chosen to commit according to
the previous scheme, by resolving to single values.

A mixed option is also possible, in which the transaction
resolves some values and waits for other transactions to
terminate on other values; when a cycle results some values are
resolved to eliminate an edge in the wait-for-commit relation.

7. CONCLUSIONS

In this paper we have presented a proclamation-based
model for cooperating transactions. We permit transactions to
use uncommitted data in a controlled fashion, through
proclamations. Transactions have the monotonic computation
property which enables achieving serializable execution
schedules, including reads of such uncommitted updates,
without the need for cascading aborts. We presented a simple
lock-based protocol that is able to obtain many of the benefits
of our model.

We also permit transactions to commit while writing values
that are conditioned upon incompletely specified values read by
it. While we have assumed that complete specitication of these
values will happen “eventually”, there is no conceptual reason
why we could not delay this indefmitely. Thus our model can
support transaction management in a database storing
incomplete information.

While the presentation in this paper has mostly been in
terms of proclamations being specified as an explicit set of
values for a data item, clearly the set of possible values could
be specified implicitly and could even be infinite. For instance,
in an object-oriented system with object-level locking, a
uansaction may issue a proclamation regarding the value of a
particular attibute of the object, while leaving the possible
final state of the object otherwise unspecified. Another
transaction, interested only in the value of this particular
attribute, may be able to proceed in parallel even though it has
no other knowledge of the state of an object.

Finally, in this paper we have not addressed the question of
what motivates a transaction to issue a proclamation. Our
expectation is that the issuing of proclamations may be
autonomous in some high data contention situations. However,
a more likely scenario, especially for design databases, is that a
transaction, upon finding unavailable a data item that it wishes
to access, may request the current lock-holder for a
proclamation.

We believe that humans execute “transactions” in a
manner more like our proclamation-based model than the
traditional transaction model. We expect that our model will
be of particular value in systems with long-duration

273

do t
return-val-set->initialize() ;
read(proclaim-set-for-num-seats) ; // Read proclamation
foreach x in proclaim-set-for-num-seats

xact-copy(x) // Execute a copy of the transaction

while (return-val-set->count() >l)
// Repeat above until a unique return value is obtained
// The count of values must decrease monotonically
// since the proclaim-set becomes smaller monotonically

return returnpal-set->unique() ;

xact-copy (Y)
int y ;

if (y == 0) return-val-set->addtoset(O) ; // Failure to find seat
else return-val-set->addtoset(l) ; // Seat available

Figure 4. Transformed Code for Airline Seat Availability Query

transactions and cooperation, such as design databases. Using
our model, data contention can be decreased without a detailed
knowledge of the semantics of the particular application, and
without sacrificing serializability as a correctness criterion.

Acknowledgement

We thank Shaul Dar for reading several drafts of the paper
and for his many suggestions. We also thank Narain Gehani
and Inderpal Mumick for their useful suggestions.

APPENDIX

To understand how a compile system may work we walk
through some pseudo-code in the spirit of O++. the
programming language interface to the Ode object-oriented
database system [l]. Consider the airline reservations example
described in Sec. 2.1. num seats is a database variable
stating the number of seats a&lable on a particular flight. The
user writes the transaction, as shown below, with no regard for
possible multi-values read.

if (*num seats == 0) return 0 ; -
else return 1 ;

This code is transformed, by the compiler, into the code
shown in Fig. 4. proclaim-set-for-num seats is the
set of proclaimed values for num-seats that% read by the
current transaction. num seats-val set and - -
return val setaretheset ofvaluesfor num seats and
for the &urn-value. respectively, that the transaction may
produce. These sets are implemented by (and encapsulated in)
an object class with member functions count () ,
initializeo, addtoset(). and uniqueo. The
member function unique () returns a single value, which is
the value of the unique set element, provided it is invoked on a
singleton set. Even if multiple values for num-seats are
present in the proclaim se& the transaction can complete with a
unique return value immediately, provided all these values are
non-zero. The code in the while loop is executed exactly once.
If there is a zero value in the proclaimed set. then the

Eansaction cannot complete until it can be sure whether there
are seats available. It does so by repeatedly executing the
while loop. If such “busy-waiting” is not desired, a sleep ()
for an appropriate duration can be added to the loop.

Now consider a more complex user transaction that actually
wishes to record a reservation. updating the variable
num-seats. Once more, the user code, as shown in Fig. 5,
does not need any awareness of the proclamation-based
concurrency control protocol in use. Following the same
recipe as in the previous case, the compiler can generate the
code in Fig. 6

This (intermediate) transformed code is very naive. In fact,
it does not enhance concurrency at all. Several improvements
are possible. First off, code independent of the set-valued
proclamations being considered does not have to be iterated for
each value. Second, one can define the notion of a material
predicate, whose rmth value affects the flow of computation,
and iterate the code only once for each possible value of the
material predicate. Third, the transaction can write a
(conditional) multi-value and commit, and the transaction
management system will determine the appropriate unique
value in time.

In ourexample,we find (num seats == 0) tobea
material predicate. The transaczon code can then be
transformed into a two phase computation. with a first phase
where the truth of the material predicate is determined, and a
second phase where the actual computation is performed. Fig. 7
exhibits these ideas; once the material predicate is decided a
unique return value can be determined, and a reservation, if
appropriate, can be made; the number of seats is a conditional
multi-value.

One could get even more sophisticated. For instance,
instead of writing explicit values for the conditional multi-
values output. one could write a functional dependence. With
this, one can get rid of the loop over the proclamation set
entirely. In general, depending on the complexity of the
compiler implementation that we are willing to tolerate, we can

274

if (*num seats == 0) return 0 ; // Failure to find seat -
else {

proclaim (num-seats, member of (*num seats, - *num-seats-l)) ;
record-reservationo; // Does-not reference num-seats
*num seats-- ; -
return 1 ; // Reservation made successfully

Figure 5. User Code for Airline Seat Reservation Transaction

num-seats-val-set->initialize() ;
return-val-set->initialize() ;
read(proclaim~set~for~num~seats) ;
foreach x in proclaim-set-for-num-seats // Read proclamation

xact-copy(x) // Execute a copy of the transaction
// Now proclaim for variable num-seats a predicate that
// states that the value of num-seats is one of the values appearing
// in num-seats-val-set
proclaim (num-seats, member~of(num~seats~val~set)) ;

while (return-val-set->count() >1 I I num-seatsqal-set->count() >l) ;
// Repeat above until unique values are obtained for
// both return value and num-seats

if (return-val-set->unique()==l)
record-reservation0 ;

*num-seats = num-seats-val-set->unique() ;
return return-val-set->unique() ;

xact-copy (Y)
int y ;

if (y == 0) returnqal-set->addtoset(O) ; // Failure to find seat
else (

num-seats-val-set->addtoset(y-1) ;
return-val-set->addtoset(l) ; // Reservation made successfully

Figure 6. Partially Transformed Code for Airline Seat Reservation Transaction

choose how involved the logical inter-relationships between
proclamations can be. The more sophisticated the compiler, the
more efficient the transformed code can be.

REFERENCES

ACM Trans. Database Syst., 17(l), March 1992.
(Preliminary version in Proc. Fourth IEEE Conf. on
Data Engg. Feb. 1987. pp. 132-140)..

[4] R. Bayer, H. Heller. and A. Reiser, “Parallelism and
Recovery in Database Systems,” ACM Tram. on
Database Systems, S(2). June 1980, 139-156.

[I] R. Agrawal and N. H. Gehani, “ODE (Object Database
and Environment): The Language and the Data Model,"
Proc. ACM SIGMOD 1989 Int’l Conf. Management of
Data, Portland, Oregon, May-June 1989.

[2] B. R. Badrinath and B. Sriram, “Modeling Cooperative
Transactions Using Obligations,” Unpublished

Manuscript, 1991.

[3] B. R. Badrinath and K. Ramamritham, “Semantics-
based Concurrency Control: Beyond Commutativity,”

[5] P. A. Bernstein and N. Goodman, “Multiversion
Concurrency Control - Theory and Algorithms.,” ACM
Trans. on Database Systems, S(4). December 1983,465
483.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

[7] R. H. Campbell and A. N. Habermann, “The
Specification of Process Synchronization by Path
Expressions,” in Lecture Notes in Computer Science,

275

materialgredicate-evaluated = 0 ; // initialization
while (!material-predicate-evaluated) {

read(proclaim-set-for-num-seats) :
if (all x in proclaim~set~for~num_seats are >O) {

material-predicate = 0 ;
material-predicate-evaluated = 1 ;

else if (proclaim~set~for~num~sets->count() ==l) {
material-predicate = 1 ;
material predicate evaluated = 1 ; - -

// At this point the material predicate has been evaluated
// That is, we know whether we can successfully reserve a seat,
// even if we do not have a unique value for num seats -

if (materialgredicate) return 0 ;
else (

// Failure to find seat

num-seats-val-set->initialize() ;
foreach x in proclaim-set-for-num-seats

num-seats-val-set->addtoset([x-1,x])
// num seats val set now has conditional multi-values
// So each set element is a [value, condition] tuple

proclaim ([num-seats,num-previous], ([num-seats,numgrevious] is in num-seats-val-set)) ;
record reservation0 ; -
return 1 ; // Reservation made successfully

Figure 7. Transformed Code for Airline Seat Reservation Transaction

vol. 16, 1974. Springer-Verlag.

[8] H. Garcia-Molina and K. Salem, “Sagas,” Proc. ACM-
SIGMOD 1987 Int’l Conf on Management of Data, San
Francisco, California, May 1987.249-259.

[9] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger,
“Granularity of Locks and Degrees of COnsistency in a
Shared Database,” Proc. of the IFIP Working
Conference on Modeling Database Management
Systems, 1979. l-29.

[lo] H. F. Korth and G. D. Speegle, “Formal Model of
Correcmess Without Serializability.” Proc. ACM-
SIGMOD 1988 Int’l Conf Management of Data,
Chicago, IL, June 1988.379-386.

[l l] H. T. Kung and J. T. Robinson, “On Optimistic Methods
for Concurrency Control,” ACM Trans. Database Syst.,
6(2), June 1981.213-226.

[12] B. G. Lindsay, Single and Multi-Site Recovery Facilities
in Distributed Da&Bases, Chapter 10, Cambridge
University Press, Cambridge, UK, 1980.

[13] S. Mehrorta, R. Rastogi. H. F. Korth, and A.
Silberschatz, “Non-Serializable Executions in
Hetrogeneous Distributed Database Systems,” Proc.
PDIS 1st Int’l Conf. on Parallel and Distributed
Information Systems, Miami Beach, Florida , Dec. 1991,
245252.

[14] M. H. Nodine and S. B. Zdonik, “Cooperative
Transaction Hierarchies: A Transaction Model for

Supporting Design Applications,” Proc. 16th Int’l Conf.
Very tige Data Bases, Brisbane. Australia, Aug. 1990,
83-94.

1151 P. E. O’Neil, “The Escrow Transactional Method,”
ACM Trans. on Database Systems, ll(4). December
1986,405-430.

[16] C. Pu, G. E. Kaiser, and N. Hutchinson, “Split
Transactions for Open-Ended Activities,” Proc. of the
14th Int’l Conf. on Very Large Databases, Los Angeles,
California, Aug. 1988.26-37.

[17] A. Silberschatz and E. Levy, “A Formal Approach to
Recovery by Compensating Transactions,” Proc. 16th
Int’l Conf Very Large Data Bases, Brisbane, Australia,
Aug. 1990,95-106.

[18] A. Skarra, “Concurrency Control for Cooperating
Transactions in an Object Oriented Database,”
SIGPLAN Notices, 24(4), April. 1989.

[19] W. Weihl, “Commutativity-Based Concurrency Control
for Abstract Data Types,” IEEE Tram. on Computers,
10(4), Dec. 1988.

276

