
Query Optimization in Heterogeneous DBMS

Weimin Du Ravi Krishnamurthy Ming-Chien Shan
HP Labs, Mailstop 3U-4, P.O. Box 10490, Palo Alto, 94303-0969

email: lastnameQhp1. hp. corn

Abstract

We propose a query optimization strategy for heteroge-
neous DBMSs that extends the traditional optimizer strat-
egy widely used in commercial DBMSs to allow execution
of queries over both known (i.e., proprietary) DBMSs and
foreign vendor DBMSs that conform to some standard such
as providing the usual relational database statistics. We as-
sume that participating DBMSs are autonomous and may
not be able, even if willing, to provide the cost model pa-
rameters. The novelty of the strategy is to deduce the
necessary information by calibrating a given DBMS. As
the calibration has to be done as a user, not as a system
administrator, it poses unpredictability problems such as
inferring the access methods used by the DBMS, idiosyn-
crasies of the storage subsystem and coincidental clustering
of data. In this paper we propose a calibrating database
which is synthetically created so as to make the process of
deducing the cost model coefficients reasonably devoid of
the unpredictability problems. Using this procedure, we
calibrate three commercial DBMSs, namely Allbase, DB2,
and Informix, and observe that in 80% of the cases the
estimate is quite accurate.

1 Mot ivat ion

Heterogeneity of databases and database management
systems (DBMSs) h ave gained its due recognition as
a result of the advent of open systems. Typically this
heterogeneity may result from semantic discrepancies
in the data, multiple data models, different systems,
etc. All of these are consequences of the need for
independent database systems to interoperate while

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear and
notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to re-
publish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada, 1992.

preserving their autonomy. Lots of research has been
done in the context of integration and interoperability,
where the center of focus has been in the semantics
of translation and integration[HWKSPl, HWKSP2].
Very few papers have been published on the problem
of query processing [Da851 and even less on query op-
timization in the context of heterogeneous DBMSs,
referred to as heterogeneous query optimization, or
HQO.

In [LS92] some important issues concerning HQO
problem were enumerated. In this paper, we address
the problem of optimization of queries over heteroge-
neous DBMSs, where the degree of heterogeneity, with
respect to the optimizer, may vary over the partici-
pating systems. These participating DBMSs are typ-
ically supplied by multiple database vendors and can
be classified, in relationship to the integrating DBMS
(referred to as HDBMS), into the following three cat-
egories:

l Proprietary DBMS: The participating DBMS is
called a proprietary DBMS if it is from the same
vendor as the HDBMS. A vendor would naturally
like to have an optimizer that is at least as good as
its DBMS product. This necessitates that the op-
timizer is at least as capable as their participating
DBMS optimizer and uses all the relevant infor-
mation on cost functions and database statistics’.
The HQO problem in the context of proprietary
DBMS is quite similar to the distributed query
optimization problem.

l Conforming DBMS: The participating DBMS is
called a conforming DBMS if it is from a for-
eign vendor and the DBMS is capable of providing
some important database statistics but incapable
of divulging the cost functions either due to the
lack of such abstractions in the system or due to
such information being proprietary.

l Non-Conforming DBMS: The participating for-
eign vendor DBMS is incapable of divulging ei-
ther the database statistics or the cost functions.

‘In fact, any non-proprietary DBMS that is capable of
providing the necessary information (i.e., cost functions and
database statistics) for customizing the optimizer can be ac-
commodated in this category.

277

This would be the case when supporting a data
server that exports a set of functions. Therefore,
the system has to be viewed as a black box whose
only characteristics known to the optimizer are
those observable by the execution of queries.

The HDBMS query optimizer should be capable of not
only providing the expected level of optimization when
the participating systems are all proprietary but also
degrading gracefully in the presence of either conform-
ing or non-conforming DBMSs. Thus, it is imperative
for the optimizer to view these systems in a seamlessly
integrated fashion. We present such an approach for
the optimizer that not only achieves this goal but also
is presented as an extension to the widely used archi-
tecture for the optimizer proposed in [Se1179].

In HDBMSs, the execution space must be extended to
handle global queries across DBMSs. This can be done
by simply allowing new join methods across DBMSs.
Therefore, the execution space and search strategy
used in commercial DBMSs can be used in HDBMS
if only a cost model is made available for all categories
of DBMSs. In short, the crux of the HQO problem
is in deriving the cost model for autonomous DBMSs.
This involves calibrating a given relational DBMS and
deducing the cost coefficients of the cost formulae.

As the calibration has to be done as a user to the
DBMS, the association of cause and (observed) effect
poses unpredictability problems. Thus, such a pro-
posal should be able to answer questions such as, is
the system actually using index scan for the inner loop
of the join, is the observed value not distorted by some
idiosyncrasies of the storage management of data, and
is the observed value due to per-chance clustering of
data.

The novelty of our approach is in the design of the
synthetic database and the properties that can be de-
rived for both the database and the DBMS. Prior
benchmarking efforts [BDT83] has relied on generat-
ing the database in a probabilistic fashion. In con-
trast we provide a deterministic generation algorithm
using which formal properties of that relation can be
stated. These properties ensure the avoidance of un-
predictability problems. We argue that some of these
properties cannot be attained using the traditional
benchmarking approach. Another advantage of the
synthetic database is that a million tuple database can
be generated in minutes whereas the technique used in
[BDT83] would take significantly more time.

A calibrating procedure has been presented that has
been applied to three commercial systems - namely
Allbase, DB2, and Informix. The validation results
indicate that this approach is reasonably accurate to

the extent that estimated values of majority of the val-
idation queries were within 20% error of the observed
values. All the queries that had error in excess of 20%
were found to be of a particular type. Being the first
attempt to calibrate the system using an arms-length
procedure, this is not only novel but also promising.

In section 2 we review the traditional optimizer tech-
nology and conclude that the crux of the problem is
to design cost models for proprietary and conforming
DBMSs such that they can be used by the heteroge-
neous query optimizer. Section 3 outlines an extension
of the traditional cost model for heterogeneous envi-
ronment. Section 4 deals with the problem of calibrat-
ing an autonomous DBMS. Here a logical cost model is
presented that is devoid of physical information such as
page sizes, number of I/OS, etc. Using this cost model,
a calibrating procedure using the calibrating database
is presented. Then we present practical calibrations
of Allbase, DB2, and Informix and show that the esti-
mated values are reasonably accurate. Finally we con-
clude that such an approach is practical based on the
following widely held maxim for the traditional query
optimizer: “It is more important to avoid the worst
execution than to obtain the best execution”[KBZ86].

This work has been done in the context of Pegasus
project at HP Labs.

2 Optimizer Overview

A heterogeneous DBMS, HDBMS, can be viewed as
a DBMS that has a set of participating DBMSs and
provides both interoperability of DBMSs as well as
integration of data. In this paper we assume that par-
ticipating DBMSs are all relational and for the sake of
simplicity assume that all data are schematically and
representationally compatible; i.e., there is no integra-
tion problem. In this sense, the HDBMS provides a
point for querying all the participating DBMSs and
provides database transparency (i.e., the user needs
not to know where data reside and how queries are de-
composed). Therefore, the HDBMS is relegated the re-
sponsibility for decomposing and executing the query
over the participating DBMSs. This is the motivating
need for a query optimizer for HDBMSs. Without loss
of generality, we assume that the query is a conjunctive
relational query.

2.1 Traditional Optimizer Revisited

The optimization of relational queries can be described
abstractly as follows:

278

Given a query Q, an execution space E, and a
cost function C defined over E, find an execu-
tion e in EQ that is of minimum cost, where
EQ is the subet of E that computes Q.

mkm,C(e)

Any solution to the above problem can be character-
ized by choosing: 1) an execution model and, there-
fore, an execution space; 2) a cost model; and 3) a
search strategy.

The execution model encodes the decisions regarding
the ordering of the joins, join methods, access meth-
ods, materialization strategy, etc. The cost model
computes the execution cost. The search strategy is
used to enumerate the search space, while the mini-
mum cost execution is being discovered. These three
choices are not independent; the choice of one can af-
fect the others. For example, if a linear cost model is
used, as in [KBZSS], then the search strategy can enu-
merate a quadratic space; on the other hand, an ex-
ponential space is enumerated if a general cost model
is used, as in the case of commercial database man-
agement systems. Our discussion in this paper does
not depend on either the execution space (except for
the inflection mentioned below) or the search strategy
employed. However, it does depend on how the cost
model is used in the optimization algorithm. There-
fore, we make the following assumptions.

The execution space used in [Se11791 can be abstractly
modeled as the set of all join orderings (i.e., all per-
mutations of relations) in which each relation is anno-
tated with access/join methods and other such inflec-
tions to the execution. These and other inflections to
the tradional execution space is formalized in the next
subsection.

We assume the exhaustive search as the search strat-
egy over the execution space, which has been widely
used in many commercial optimizers. This space of ex-
ecutions is searched by enumerating the permutations
and for each permutation choosing an optimal anno-
tation of join methods and access methods based on
the cost model. The minimum cost execution is that
permutation with the least cost.

The traditional cost model uses the description of the
relations, e.g., cardinality and selectivity, to compute
the cost. Observe that the operands for these opera-
tions such as select and join may be intermediate re-
lations, whose descriptions must be computed. Such a
descriptor encodes all the information about the rela-
tion that is needed for the cost functions.

Let the set of all descriptors of relations be ZJ, and let
Z be the set of cost values denoted by integers. We

are interested in two functions for each operation, u,
such as join, select, project etc. These functions for a
binary operation cr are:

COST,:2)xD-,Z and DESC,:Dx2)-+2).

Intuitively, the COST, function computes the cost of
applying the binary operation u to two relations, and
DESC, gives a descriptor for the resulting relation.
The functions for the unary operators are similarly
defined. In this paper we shall be mainly concerned
with the COST function and assume the traditional
definitions for the DESC function given in [Se1179].
This has the information such as the cardinality of the
relation, number of distinct values for each column,
number of pages, index information, etc.

2.2 Execution Model for HDBMSs

Here we outline the space of executions allowed by the
HDBMS. Intuitively, an execution plan for a query can
be viewed as a plan for a centralized system wherein
some of the joins are across DBMSs. These joins can
be viewed as alternate join methods. Here we formally
define a plan for a traditional DBMS and then extend
it by allowing these new join methods.

A plan for a query, in most commercial DBMSs, de-
notes the order of joins and the join method used for
each join and the access plan for each argument of
the join. Besides this, we assume the usual infbrma-
tion needed to denote the sideway information passing
(also known as the binding information).

Formally, a plan for a given conjunctive query is ex-
pressed using a normal form defined in [CGKSO] called
Chomsky Normal Form or CNF. A CNF program is a
Datalog program in which all rules have at most two
predicates in the body of the rule. Consider a con-
junctive query on k relations. This can be viewed as
a rule in Datalog with k predicates in the body. An
equivalent CNF program can be defined using k - 1
rules each of which has exactly two predicates in the
body. This is exemplified below.

PK Y) - ~l(X,Xl),r2(Xl,X2),~3(XZ,X3),~4(X3,Y).

has the following equivalent CNF program:

P(X Y) - ~13(XX3),T4(X3,Y).

713(X, X3) - n2(X, X2), rs(X2, X3).

n2(X,X2) + n(X,Xl),r2(X1,X2).

In the above CNF program we give the added restric-
tion that the execution is left to right in the body of
the rule. As a result, the sideway information passing
through binding is from ris to r4 in the first rule. Fur-
ther note that the CNF program completely denotes

279

the ordering of joins of the relations. Therefore, ~1 and
~2 are joined before the join with 7-s. Note that the
above CNF program can represent all type of bushy
join trees; in contrast most commercial DBMSs allow
only left deep join trees. For simplicity, we make the
assumption that all CNF programs are left-deep (i.e.,
only the first predicate in the body can be a derived
predicate) and thus omit other CNF programs from
consideration.

For each join in the CNF program, a join method is
assigned; one join method is associated with the body
of each rule. Two join methods are considered: nested
loop (NL) and ordered merge (OM) such as sort merge
or hash merge. Further, each predicate is annotated
with an access method; i.e., at most2 two access meth-
ods per rule. The following are four access methods
we considered:

sequential scan (SS): access and test all tuples in
the reIation;
index-only scan (IO): access and test index only;
clustered index scan (CI): access and test clus-
tered index to find qulifying tuples and access the
data page to get the tuple; and
unclustered index scan (UI): same as CI, but for
unclustered index.

This list of methods reflect the observations in many
commercial DBMSs such as differentiating accessing
index page only versus accessing both index and data
pages. Access to clustered and unclustered index pages
is not differentiated.

Even though all access methods can be used with all
join methods, some combinations do not make sense.
Nevertheless, we assume that the optimizer can avoid
these cases by assigning a very large cost. Note that
the list of join methods and access methods can easily
be extended and the cost formulae specified in a similar
manner. For the discussion in most of this paper, this
list of methods would suffice. We shall discuss in spe-
cific context some variations to these access methods
by inflecting them with techniques such as preselect
(also known as prefetch), create index, etc.

As mentioned before, the list of join methods is in-
creased by a new method called remote join that is
capable of executing a join across two DBMSs. This
may be done by shipping the data directly to the other
DBMS or to the HDBMS which in turn coordinates
with the other DBMS to compute the join. Obviously,
there is a host of variation in achieving this remote join

2Note that in some cb~es such as the outer loop (of a nested
loop join) that is being pipelined from another join, annotation
of an access method does not make sense.

and distributed DBMS literature has a wide variety of
them documented [CP84]. For expository simplicity,
we assume that some such remote joins are chosen. For
each such remote join, a cost function is associated
and the cost of the complete execution is computed
in the traditional manner. Even though the specific
choices for the remote joins and the cost model used
for estimating the cost of remote join are important
for a HDBMS optimizer, we can omit this aspect of
the problem in the paper without loss of generality.

In summary, we view the optimizer as one that
searches a large space of executions and finds the
minimum cost execution plan. As execution space
and search strategy largely remain unchanged, we
need only describe the cost model for each category
of DBMSs in order to describe the optimizer for
HDBMSs. In particular, we shall concentrate on the
cost model for select and join operations in the context
of a single DBMS, using which joins across DBMSs can
be computed based on the remote join cost model. The
cost models for proprietary and conforming DBMS are
the topics of the next two sections.

3 Cost Model for Proprietary
DBMSs

As mentioned before, the cost model for a query over
multiple proprietary DBMSs must be comparably ca-
pable to the cost model used in the DBMS itself. This
requires that the cost model knows the internal details
of the participating DBMS. For a proprietary DBMS,
this is possible. In this section, we outline the cost
model at a very high level. Our purpose is not to
present the model details per se but to observe the
use of physical parameters such as prefetch, buffering,
page size, number of instructions to lock a page and
many other such implementation dependent character-
istics.

Typically the cost model estimates the cost in terms
of time; in particular the minimum elapsed time that
can occur. This estimated time usually does not pre-
dict any device busy conditions, which in reality would
increase the elapsed time. We use this notion of time
as the metric of cost. This is usually justified on the
ground that minimizing this elapsed time has the effect
of minimizing the total work and thereby ‘maximizing’
the throughput.

In HDBMSs, elapsed time can be estimated by esti-
mating three components:

280

CPU time incurred in both the participating
DBMSs and the HDBMS.
I/O time incurred in both the participating
DBMSs and the HDBMS.
Communication time between the HDBMS and
the participating DBMSs.

Traditional centralized DBMSs included only CPU
and I/O time in their estimate. We propose to use a
similar estimate for both these components. For each
of the join methods and access methods allowed, a cost
formula is associated.

The CPU estimate includes the time needed to do
the necessary locking, to access the tuples either se-
quentially or using an index, to fetch the tuples, to do
the necessary comparisons, to do the necessary projec-
tions, etc. The cost formulae are based on estimating
the expected path length of these operations and on
the specific parameters of the relations such as num-
ber of tuples, etc. Obviously, these parameters are
continually changing with the improvement in both
the hardware and the software. For a proprietary sys-
tem these changes can be synchronized with the new
versions.

The I/O time is estimated using the device character-
istics, page size, prefetch capabilities, and the CPU
path length required to initiate and do the I/O.

The time taken to do the necessary communication
can be estimated based on the amount of data sent,
packet size, communication protocol, CPU path length
needed to initiate and do the communication, etc. It is
assumed that the physical characteristics of the com-
munication subsystem are known to the HDBMS and
accurate cost model can be developed using these pa-
rameters.

In summary, we have described the cost model for a
proprietary DBMS to be one that has complete knowl-
edge of the internals of the participating DBMS.

4 Cost Model for Conforming
DBMSs

A conforming DBMS is a relational DBMS with more
or less standard query functionality. The purpose in
this section is to design a cost model that would es-
timate the cost of a given query such that the model
is based on the logical characteristics of the query. In
this section, we first outline a cost model for estimating
the cost of a given plan for a query. Then we describe
the procedure by which to estimate the constants of

the cost model as well as experimental verification of
this procedure. Finally, a dynamic modulation of these
constants is presented to overcome any discrepancy.

4.1 Logical Cost Model

The logical cost model views the cost on the basis
of the logical execution of the query. There are two
implications. First, the cost of a given query is esti-
mated based on logical characteristics of the DBMS,
the relations, and the query. Second, the cost of com-
plex queries (e.g., nested loop joins) is estimated using
primitive queries (e.g., single table queries). In this
subsection, we outline such a cost model.

4.1.1 Cost Formulae

For the sake of brevity, we restrict our attention to
that part of the cost model which estimates the cost
of select and join operations. Formally, given two re-
lations ri and 7-2 with Ni and N2 tuples, we estimate
the cost of the following two operations:

l a select operation on ri with selectivity Si; and
l a join operation on ~1 and 13 with selectivity J12.

The formulae for these two operations are given in Fig-
ure 1 with the following assumptions, all of which will
be relaxed in the next subsection:

l The size of the tuple is assumed to be fixed.
l There is exactly one selection/join condition on a

relation.
l The entire tuple is projected in the answer.
l All attributes are integers.

Intuitively, the select cost formulae can be viewed as a
sum of the following three (independent) components:

CO M PO : initialization cost.
COMPl : cost to find qulifying tuples.
COMPz: cost to process selected tuples.

The COMPo component is the cost of processing the
query and setting up the scan. This is the component
that is dependent on the DBMS, but independent of
either the relation or the query.

In the case of sequential scan, the COMPl component
consists of locking overhead, doing the ‘get-next’ op-
eration, amortized I/O cost and all the other overhead
incurred per tuple of the scan. Note that the fixed
size of the tuple assures that the number of pages ac-
cessed is directly proportional to the number of tuples.
Therefore, the cost per tuple is a constant. In the case

281

The selection cost formulae are categorized as follows:

Sequential Scan:
cs,, = cso,, + ((CSl:o, + csl:y) * N1)+

(CSL * NI * SI)

Index-Only Scan:
c.%s = CSO,, + CSL, + (CS2,, * Nl * 5’1)

Clustered Index Scan:
(csci = CSO,, + CSI,, + (CS2,, * N1 * S1)

Unclustered Index Scan:
CSui = CSOui + CSl,, + (CS2,i + Nl * S1)

where,

cso,,

CSlZ

csl::”

CSl,,

c=s,

CSL

(i.e., CSO,,, CSOi,, CSO,, and CSO,,) The ini-
tialization cost for selects;

The amortized I/O cost of fetching each tuple of
the relation, irrespective of whether the tuple is
selected or not.

The CPU cost of processing each tuple of the
relation (e.g., checking selection conditions).

(similarly, CSl,, and CSI,,) The cost of initial
index lookup.

The cost of processing a result tuple for sequen-
tial scan.

(similarly, CS2,i and CS2,i) The cost of pro-
cessing each tuple selected by an index. This
includes the I/O cost to fetch tuple if necessary.

The join cost formulae are categorized as follows:

l Nested Loop: (if sequential scan on,rz)
CJd = CS*,(71)+CSOss(f2)+ CS1:0,(72)+

(NI*SI*(CS~~(~~)-CSL(~~)-CSGY(~~)))

o Nested Loop: (if index scan on 72)
CJnI = CS,z(r1)+ CS0,*(72)+

(NI * SI * (CL(r2) - CSOzz(r2))

l Ordered Merge:
CJ,, = C&r(Q)+ C&472)+ CSss(n)t

CSss(r2) + CJ2,, * NI * N2 * J12

where,

CA, The cost of ordering (e.g., sorting) a relation.
Note that it may be zero if there is an index on
the joining column.

CJ%-n, The cost of merging join tuples.

Figure 1: Cost Formulae for Select and Join

of index scans, COMPl is the initial index look up
cost. Note that in all the three cases of index scans,
we assume that COMPl is independent of the relation.
This is obviously not true as the number of levels in the
index tree is dependent on the size of the relation. But
this number is not likely to differ by a lot due to high
fanout of a typical B-tree or any other indexing mech-
anism. Thus we believe this independence assumption
is reasonable.

The COMPz component is the cost of processing each
of the selected tuples. This component cost is also
likely to be a constant because of the selection and
projection assumption made earlier.

The join formulae are straightforward derivation from
the nested loop and ordered merge algorithms. Note
that they are composed of selection cost formulae with
certain adjustments to handle operations (e.g., sorting
and merging) and problems (e.g., buffering effect) spe-
cial to join operations.

For example, the cost of accessing a relation in the in-
ner most loop is modeled in the same manner as that
of accessing a relation in the outer most loop. This is
obviously not the case if the inner most relations are
buffered to avoid the I/O. This uniformity was experi-
mentally found to be quite acceptable for index scans.
If a sequential scan is used in the inner loop of the join,
the IjO cost may only incur once (for small tables) due
to buffering whereas the table look up is done once for
each tuple in the outer loop. In order to handle this,
COMPl is broken into two parts in the formulae for
sequential scans. These two parts represent the I/O
and the CPU costs of ‘get-next’ operation.

4.1.2 Relaxing Assumptions

Let us now relax the assumptions made in the previous
subsection. As the size of the tuple is varied, the con-
stants will be affected. In particular only the constant
CSl,, (= CSlg + CSl~$“) is expected to be affected
and is likely to increase linearly with the size of the
tuple. All the other constants are component costs for
selected tuples and thus are not likely to be affected.
But these constants (i.e., CS2,,‘s) are affected by the
number of selection and projection clauses. In order
to take these into account, we redefine the above con-
stants to be functions with the following definitions:

l CSl,, is a linear function on the size of the tuple
in the relation.

l CS2,,‘s are linear functions on the number of se-
lection and projection clauses.

282

As these are no longer constants we refer to them as
coefficients.

Assuming that the checking is terminated by the
first failure, the expected number of select condition
checked is bounded by 1.5 independent of the num-
ber of selection conditions. This was formally argued
in [WK90]. Further more, the experiments show that
the costs of checking selection conditions and project-
ing attributes are negligible comparing to other costs,
e.g., I/O (see Section 4.3).

Finally, we relax the assumption that all attributes
are integers by requiring one set of cost formulae for
each data type in the DBMS. The respective coeffi-
cients would capture the processing, indexing, paging
characteristics of that data type. As this is orthogonal
to the rest of the discussion, we present the rest of the
paper for just one data type.

The fundamental basis for the above cost model is
that the cost can be computed based on factoring the
costs on a per tuple basis in the logical processing of
the query. Indeed, the coefficients CSO,,, CSl,,, and
CS2,, are all composite cost including CPU, I/O, and
any other factors that may be of interest such as the
cost of connection. In this sense, the cost formulae are
logical versus the cost formulae used in most commer-
cial DBMSs which estimate based on physical parame-
ters. The above formulae are structurally very similar
to the ones that were used in the commercial DBMSs.
There are three major differences.

The traditional formulae assumed that the coeffi-
cients are constants. Here we view them as func-
tions.
The value associated to these coefficients are com-
posite cost of CPU, I/O, etc.; whereas these costs
were separately computed in the formulae used in
most commercial DBMSs.
The value associated to the coefficients also reflect
other system dependent factors such as hardware
speed and operating system and DBMS configu-
ration, etc.

The above basis for computing the cost is obviously
approximations of the more involved formulae used by
the commercial DBMSs. But the important question
is whether this approximations are significant to affect
the optimizer decision? It is our claim that the above
cost model will sufficiently model the behavior of the
execution. We shall confirm this claim by experiment-
ing with three commercial DBMSs.

4.2 Calibrating Database and Proce-
dure

The purpose of the calibrating database is to use it to
calibrate the coefficients in the cost formulae for any
given relational DBMS. Our approach is to construct
a synthetic database and query it. Cost metric val-
ues (e.g., elapsed time) for the queries are observed to
deduce the coefficients. Note that there are no hooks
assumed in the system and therefore the system can-
not be instrumented to measure the constants (e.g.,
number of I/O issued) of the traditional cost model.
Further, the construction of the database, posing of
the query, and the observations are to be done as a
user to this ‘black-box’ DBMS. This poses the follow-
ing two major predicatability problems:

the problem of predicting how the system will ex-
ecute (e.g, use index or sequntial scan, use nested
loop or sort merge) a given query;
the problem of eliminating the effect of data place-
ment, pagination and other storage implementa-
tion factors that can potentially distort the obser-
vations and thus lead to unpredictable behavior.

In order to deduce the coefficients in the cost formulae,
it is imperative that the query and the database are
set up such that the resulting execution is predictable;
i.e., the optimizer will choose the predicted access and
join methods. Even if the execution is predicatable,
it should be free from the above mentioned distortion
or else the determination of the cause for the observed
effect is not possible. For example, if all the tuples
having a particular value for an attribute just hap-
pened to be in a single page then the observed value
can be misleading.

In this subsection we set up a database and a set of
queries that are free from the above two problems and
show that the coefficients of the cost formulae can be
deduced.

4.2.1 Calibrating Database

For any integer n, let R,, be a relation of seven columns
containing 2” tuples. The seven attributes have the
following characteristics:

Cl: integer [O, n], indexed, clustered.
C2: integer [0,2” - 11, indexed, de facto clustered but

not specified as such to DBMS.
C’s: integer [0, n], indexed, unclustered.
Cd: integer [0, n], no index.
Cs: integer [0,2” - 11, indexed, unclustered.
Cs: integer [0,2” - 11, no index.

283

Cr: a long character string to meet the size of the tuple
requirement.

The values in these attributes are defined below. Even
though the relation is a set and as such unordered, we
can conceptually view it as a matrix. Thus, the iih
tuple in & is defined as follows:

l Cl[n,i] = bell(i), where bell(O) = 0, bell(i) = L
such that cqr,’ f(j) < i + 1 5 Xi=0 f(j) and

1, ifj=O;
2, ifj=landniseven;

‘(j)=

1

ifj=landnisodd;
2* f(j- l), if j < \fJ;
f(i - I)/4, ifj< [t+lJ;
f(j - 1)/T ifj= [:+lJ.

0 C&z, i] = i.
0 C&i] = mf[j] such that i mod 2j+l = 2j where

mfIj] = [?J + (-l)j+’ [YJ .
0 C4[n, i] = cqn, i].
l Cs[n,i]=2”-k+jsuchthati=2k-1*(1+2*j)

and Cs[n,O] = 0.
0 C6[7,ii] = C&i].

The value for the seventh attribute is a padding field
and can be set to anything and therefore, for conve-
nience, omitted from the rest of the discussion. Figure
4 has the relation & tabulated.

The multicolumn key for the relation is (Cl ,Cz). This
relation is indexed on this key, in ascending order, with
Cr being the major key and CZ being the minor key.
This index is clustered in the sense that the values
of the major key (i.e., Cl) are clustered. In general
the values of Ca may not be clustered. As it is clear
from the construction of the relation, the values of
the minor key (i.e., C2) are also clustered. In fact,
the values in Cz are unique and have 2” values in the
range [0,2* - l] and therefore these values can also be
in ascending order. So, in some sense, we can view this
column, Cz, as a sequence number for the rows. We
shall refer to this Cz value as the row index. The need
for multicolumn key and index is so that the tuples are
ordered in the disk pages based on Cz and the system
is informed that Ci has a clustered index. This could
be achieved by inserting the tuples in that order as
long as the index creation in DBMS is stable, which
most DBMSs do satisfy3.

Note that the database can be generated by a pro-
cedure that evaluates the above formulae. Therefore,
it is possible to generate a million tuple database in
minutes. In contrast the database generated using tra-

31n fact this was used in calibration of systems presented in
the next subsection.

-c- cz Z =
0 0
1 1
1 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 11
3 12
3 13
3 14
4 15 - -

z =
2
3
2
1
2
3
2
4
2
3
2
1
2
3
2
0 -

c, cs E X
2 0
3 8
2 4
1 9
2 2
3 10
2 5
4 11
2 1
3 12
2 6
1 13
2 3
3 14
2 7
0 15 - -

-
G E
0
8
4
9
2
10
5
11
1

12
6
13
3
14
7
15 -

Figure 2: & relation

ditional benchmarking technique [BDT83] would take
significantly more time.

4.2.2 Properties of the Database

Before we describe the data, let us present some defini-
tions. Let SEQ(n, i) (similarly SIQ(n, i)) be a select
query on & using an equality (similarly inequality)
predicate with the cardinality of the output result be-
ing 2’ for i < n. Such a query will be of use in the
following discussion.

The values in Cr are in ascending order with a clus-
tered index. The f[i] gi ves the number of tuples in
which the value i occurs in Cl. Let us define mf[i] to
be the ith most frequently occurring value in Cl. The
distribution of values exhibits a ‘normal’ pattern such
that the mf[.] 1 z va ue occurs in 1/2i of the number of
tuples. The formulae for Ci[n, i] above has encoded
this pattern, from which we can make the following
lemma.

Lemma 1 For any relation &, and any selectivity
Si = 1/2’,i E [l,n], there ezis2s un equality predicate
on Cl whose selectivity is si.

Corollary 1 There ezists queries SEQ(n,i) and
SEQ(n + 1, i) on relations R, and &,+I respectively
fori=1,2 ,..., n.

The above observations provide us with the guarantee
that queries exist that

284

l select varying number of tuples using equality
predicate on the same relation; and

l select the same number of tuples using equality
predicate from multiple relations of different sizes.

For these queries using Ci, the following claim can be
argued with reasonable assurance.

Claim 1 Execution of any SEQ(*, *) query on Cl will
result in the use of the clustered indez scan.

As mentioned before, the predictability of the cost of
executing a query SEQ(n, i) on Ci will depend on
the CPU and I/O components4. CPU cost increases
monotonically with the size of the result. Because of
the above claim, the I/O cost also increases monotoni-
cally until the maximum number of pages are accessed.
Thus the number of I/O is a nondecreasing function
of the size of the result. We shall refer to this class of
function as saturating monotonically increasing func-
tion.

Lemma 2 For any storage implementation, and page
size used, the number of pages accessed by a SEQ(n,i)
query using Cl will be given by a saturating monoton-
ically increasing function on i.

Note that calibration of the cost formulae in the satu-
rated region will result in incorrect calibration. How-
ever, observe that almost half the number of pages
will not be accessed in the worst c&e. Therefore, if we
use large relations, the problem of saturation can be
avoided. Thus, we can conclude that unpredictability
problems are avoided for any query on Ci.

Note that the values in Ci are functionally determined
by the value in Cz’. In fact the values of Cz are in as-
cending order because of the ascending-order indexing
of the key. This observation and the fact that the in-
dex is clustered lead us to the following lemma.

Lemma 3 Any storage implementation of this rela-
tion will retain this order of the tuples amongst pages
of the relation.

This observation gives us a handle on the pagination
of the data. We shall use this to argue that Cs and C4
values are uniformly distributed across all pages.

The following two observations are obvious but stated
here for completeness.

‘We omit communication cost for simplicity. This can be
also included without loss of generality.

5For this reason, this relation is not in 2NF. As we me not
concerned with updates to this relation, lack of normalization is
not of concern.

Lemma 4 For any relation &, and any selectivity
si = l/2’, i E [l, n] there ezists an inaquality predicate
on C2 whose selectivity is si.

Corollary 2 There exists queries SIQ(n,i) and
SIQ(n + 1,i) on relations hl,, and R,,+l respectively
for i = 1,2, . . . , 72.

Let us observe that the values in Ci are permuted into
different rows of Cs. Therefore, the frequency distri-
bution f [i] also applies to C’s and C4. This redistribu-
tion is done with the observation that $ of the number
of tuples have row index in binary representation the
pattern *0 (i.e., last bit is zero), f of the number of
tuples have row index in binary representation the pat-
tern *Ol, etc. Therefore, the distribution can be done
as follows:

l All row index in binary that has the pattern *0
has mf[l] value.

l All row index in binary that has the pattern *Ol
has mf[2] value.

l All row index in binary that has the pattern *Oil
has mf[3] value.

0 . . . etc. . . .

Thus we can conclude that any value in [0, n] is uni-
formly distributed in the rows for Cs and (7.4. This
leads us to the following lemma.

Lemma 5 For any storage implementation, and page
size used, and given a value i E [O,n], tuples contain-
ing value i for C3 and C4 are uniformly distributed
amongst all the pages.

Using this lemma we can make the following observa-
tion that overcomes one predicatability problem when
using C3 or C4.

Lemma 6 For any storage implementation, and page
size used, the number of pages accessed by a SEQ(n,i)
query using C3 or C4 will be given by a saturating
monotonically increasing function on i.

Once again we argue that saturating is not a problem
because the unclustered index is mostly useful in the
region when the selectivity is low. So if the calibra-
tion is restricted to this region then the I/O will be
monotonically increasing. With CPU cost increasing
monotonically, we have avoided one of the predicata-
bility problem.

In order to determine the region when the index is
being used we make the following observations.

285

Claim 2 Ezecuhon of any SEQ(*, *) query on C3 will
result in the use of the index scan if the selectivity is
low; but if the selectivity is high then the system may
use sequential scan.

Claim 3 Execution of any SEQ(+, *) query on Cd will
result in the use of the sequential scan.

Knowing that C’s and CJ are identical, we can easily
determine the region of selectivities when index is be-
ing used and use that data to calibrate the system.
Thus we can conclude that unpredictability problems
are avoided for queries on Cs and Cd.

Cs and Cs are also permutations of CZ and are in-
tended for use with inequality queries. So the precli-
catability problem for such a query involves the num-
ber of pages accessed by a selection with an inequality
predicate of the form Cs < i. The values need to be
distributed in such a fashion that the number of pages
accessed are increasing as the selectivity is increased.
This is achieved by distributing the values with the
following property.

Lemma 7 For any i E [0, n], the set of values [0,2’ -
l] are distributed uniformly in C’s and Ce.

Intuitively, this results in requiring a SIQ(n, i) query
to access a sequence of row indices such that successive
row indices differ by a constant. Consider a query
C’s < 8. This will access the rows (0, 2, 4, 6, 8, 10,
12, and 14) in R4 with the property that successive
rows differ by 2. Note that the condition is of the
form C’s < 2’. Using this observation we can state the
following lemma.

Lemma 8 For any storage implementation, and page
size used, the number of pages accessed by a SIQ(n,i)
query using Cs or Ce will be given by a saturating
monotonically increasing function on i.

Once again using the argument similar to the one used
for Cs and C, we can argue that preclicatability prob-
lems can be avoided. The above observation for the
relation & is particularly important because such a
conclusion cannot be made if the relation is generated
probabilisticdly as it was clone in the benchmarking
studies.

In summary we have argued that the queries posed
against any of the attributes in the relation have pre-
dictable behavior.

4.2.3 Calibrating Procedure

Now we proceed to show the procedure to deduce
the coefficients from the observed execution of these
queries.

Claim 4 Cost of execution of queries SEQ(n,i) and
SEQ(n + l,i) are identical except for the COMPl
component of the cost due to the fact that they are
accessing relations of different sizes.

From this observation we can construct the following
experiment:

l Evaluate SEQ(n, i) and SEQ(n + 1, i) using an
equality predicate on C, and observe the cost.

l Knowing that the system will choose sequential
scan, solve for the coefficient CSl,,.

Note that the above experiment is not to be done with
one or two points. Rather, many values are to be used
to get the value for the coefficient so that error is min-
imized. These observations will be elaborated in the
experimentation section.

Claim 5 Cost of execution of queries SEQ(n,i) and
SEQ(n, i + 1) are identical except for the COMPz
component of the cost due to the fad that they are
selecting different number of tuples.

From this observation we can construct the following
experiment:

l Evaluate SEQ(n, i) and SEQ(n, i + 1) using an
equality predicate on C, and observe the cost.

l Knowing that the system will choose sequential
scan, solve for the coefficient CS2,,.

Similar experiment on Cl and Cs can compute the co-
efficient CS2,i and CS2,i for clustered index and un-
clustered index respectively. As before, by projecting
only the value for Cl with selection for Cl, the coeffi-
cient CS2is can be computed using a similar procedure
as above.

Knowing CSl,, and CS2,, for the sequential scan cost
formula, we can compute CSO,, from the respective of
the observed cost for SEQ(*,*).

The bifurcation of CSl,, into CSliO, and CSl:? is
done by scanning a table twice in the same query in
the manner specified by the following SQL query:

select ti.cg from Rn ti,Rn t2
where ti.Cg=t2.C6 & tl.Cg<c

Note that computing CSli,, CSl,i and CSl,i poses
a problem. Because these values are expected to be

286

small compared to other components and factoring
them to a reasonable degree of accuracy is difficult.
So we make the assumption that these coefficients have
the same value as CS2,i. This is because the main cost
of initial index tree lookup is the amortized I/O cost
of fecthing index page. Since the index tree is usually
clustered, this cost should be similar to that of fetching
data page for clustered index, i.e., CS2,i. Our valida-
tion on Allbase, DB2, and Inform& also corroborated
this point of view.

Thus we can compute the coefhcients in the cost for-
mulae for selection using a series of observations from
queries.

Further note that similar experiments can be done us-
ing C2, Cs and Cs to compute the coefficients for the
inequality select operation.

Next we outline the method to determine the cost of
ordering a relation. This is needed in the ordered
merge cost formulae. This is done by joining two h’s,
in the manner specified by the following SQL query:

select tl.Cq, t2.Cq from 4 ti $?i t2
where tl.C4 =ta.c, & ti.C6+t2.C6<C

Note that the first condition is preferable for as the
join condition and C, does not have an index. There-
fore, ordered merge algorithm will be used to compute
the join. The output can be varied with the appropri-
ate choice of the constant. Using the observation for
queries on one relation with varying size of the out-
put, the constant CJ2,, can be deduced. Further the
same query can be computed for three or four values of
n and the cost of sorting the relation can be deduced
from the knowledge of the cost of sequential scan.

Using the cost formulae for selection and ordering, we
can compute the cost of joins without predicatability
problems.

Theorem: The coefficients of the cost formulae are
computed without the unpredictability problems.

Note that the viability of this approach is predicated
on the following two assumptions.

l Some relations can be stored in the participat-
ing DBMS, either as a multidatabase user of the
system or if such privilege is not available to the
multidatabase user then by special request to the
database administrator. These relations are to be
used temporarily for calibration and not needed
after calibration.

l The observed behavior of the queries are repeat-
able in the sense that the effect of other concur-
rent processes do not distort the observations.

Relation
Name

t1
t2
t3
t4
t5
t6
t7
t8
t9

t10
t11
t12
t13
t14
t15

Relation

Type
RIO
RIO
RIO
R13

R13

R13

RlS

RlS

Rl5

R17

&7

R17

R20

R20

R20

Size of
tuple

42
42
84
42
42
84
42
42
84
42
42
84
42
42
84

Card. of
Relation

2’0
210
210
213
2i3
213
215
215
215
217
217
217
220
220
220

Figure 3: Calibrating Relations

4.3 Practical Calibrations

In the last section we outlined a procedure to cal-
culate the coefficients of the cost formulae. We use
this technique to caliberate three commercial DBMSs
- Allbase, DB2, and Inform@ i.e., compute the co-
effiecients of the cost formulae. The experiments are
set up so as to use mostly single table queries. This is
not only because the join queries are time consuming
and therefore takes too long to caliberate the system,
but also because the cost of most join queries can be
estimated using those of single table queries. As a
validation, we ran various kinds of join queries and
compared the estimated cost with the actual observed
cost. The result showed that the coefficients can be
estimated to the extent that subsequent estimation of
the join queries were within 20% of actual observa-
tions. In this subsection we discuss the queries posed
and the calibrated coefficients. Finally we discuss the
verification queries and the results.

The systems calibrated were an Allbase DBMS (ver-
sion HP36217-02A.07.00.17) running on an HP 835
Hisc workstation, a DB2 DBMS (version V2.2) run-
ning on an IBM 3090 Mainframe and an Informix
DBMS (version 4.00.UE2) running on an HP 850 Rise
workstation. The calibrations were done at night when
DB2 was comparably lightly loaded whereas the All-
base and Informix had no other contender. DB2 and
Informix DBMSs were intended for production use and
were set up to suit their applications. For that reason
as well as to respect the autonomy of that installation,

287

1.1. select Cl from R, where Cl = c
1.2. select C3 from R, where C3 = c
1.3. select Ch from R, where Cd = c
2.1. select Cz from R, where Cl = c
2.2. select C’z from R, where C’s = c
2.3. select Cz from R, where C, = c
3.1. select Cz from R, where Cz < c
3.2. select C’s from R, where C’s < c
3.3. select CS from R, where CS < c
4.1. select Cl from R, where Cz < c
4.2. select Cl from R, where C’s < c
4.3. select Cl from R, where CS < c

/pEx Allbase 1 DB2

1.9 1 0.60
ts/105
0.000175
1.35
0.0007
0.00036
1.35
0.0007
0.0007
1.35
0.0007

ts/1.4*106
0.0003
1.2
0.0003
0.0003
1.2
0.0003
0.0003
1.2
0.0003

Figure 4: Calibration Queries for Table & .014 - .024 1 .007 - .009

Note:

the system parameters were not altered. l ts is the tuple size (in bytes).
l CS2,i varies slightly on table size.

There are 16 relations used in these calibrations as
shown in Figure 3. Each type of relation was instan-
tiated with two sizes of tuples and the smaller tuple
relation was duplicated. This duplication is because
the join queries needed two identical relations. Rela-
tions of type RIO, R13, Rls and R17 were used in the
calibration of Allbase and Informix whereas relations
of type R13, R15, R17 and Rzo were used in the calibra-
tion of DB2. This choice is because of the availability
of disk space. The calibration procedure is identical.

Figure 5: Allbase, DB2, and Informix Cost Formulae

The actual queries used in the calibration are given in
Figure 4, where R,, is a table of cardinality 2” and c is
a constant which determines the selectivity. For each
type of query against R,,, a set of queries with selec-
tivity 2-” (i=1,2,...,n) are constructed and observed.

For each query the elapsed time in the DBMS is
recorded. For DB2, the elapsed time is defined as class
2 elapse time (see [IBM-DBS]). For Allbase and In-
formix, it is calculated by subtracting the start times-
tamp (when the query is received) from the end times-
tamp (when the result has been sent out). In all
DBMSs the queries were posed after flushing all the
buffers to eliminate the distortion due to buffering.
Each query is issued 30 times and the average elapse
time is calculated. Except few cases, relative error be-
tween actual data and average value is within 5% with
confidence coefficient of 95%. Thus, the repeatability
of the observation was assured.

Figure 7. This corroborates two facts: 1) DB2 access
to index only queries are not sensitive to size of the
relation; 2) the approximation used for CSli, is not
affecting the accuracy very much. As it can be seen,
the error is quite small and this was true for all tests
using the queries above.

To explore the effect of multiple selection and pro-
jection clauses, we modify and rerun the twelve basic
queries on DB2. The new queries have upto five pred-
icates and return upto five attributes. The following
are two example queries.

select C1,C2,C3,CqlC5 from Iln where C5<c

Select C5 from Rn
where C5<c & Cl>0 & Cz>O & ($20 & C4>0

From these, the coefficients for the cost formulae for
Allbase, DB2, and Informix can be deduced. Least
square fitting algorithm was used to minimize the er-
rors and estimate the coefficients, These are reported
in Figure 5. The elapsed time for queries of the type
3.1 running on DB2 for relations RI3 and R17 along
with the estimated time by the cost formula, which is
independent of the size of the relation, are shown in

Note that in the second query, the ‘2’ predicates are
true for all tuples. This guarantees that they are
checked for those and only those tuples that have suc-
ceeded with the first (original) predicate.

The result of the experiments shows that in all cases,
the differences are within 10%. It seems to suggest
that the cost of projecting additional columns is neg-
ligible once the tuple is in the memory and the cost
to check predicates is also minimal comparing to other
processing costs (e.g., I/O).

The above cost formulae were also validated using the
36 types of join queries shown in Figure 6. Queries of
type 1.1-2.9 return 22*i tuples depending on constant
c, where i = O,l,..., n. In this validation, joins of
selectivity 22*k for k < (n - 4) were tested. Queries of
type 3.1-4.9 return 2’ tuples depending on c, where i 6

Informix

0.06
(168+ts)/7*105
0.00045
0.06
0.001
0.001
0.06
0.001
0.001
0.06
0.001
.OOl - .002

288

1.1. select &,.CI, R,.Cl where R,.CI = c & R,,.Cl = R,.CI
1.2. select R,.C3, R,.C3 where R,.C3 = c & R,.C3 = Rm.C3
1.3. select R,,.C4,R,.C4 where Rn.C4 = c & Rn.C4 = R,.C4
1.4. select &.C4, R,.Cl where R,.C4 = c & R,.C4 = R,.Cl
1.5. select R,,.C4, R,.C3 where Rn.C4 = c & R,.C4 = R,,,.C3
1.6. select R,,.Cl,R,.C4 where Rn.Cl = c & R,.Cl = R,.C4
1.7. select R,,.C,,R,.C3 where Rn.4 = c & Rn.C1 = Rm.C3
1.8. select R,,.C3,Rm.C1 where Rn.C3 = c & Rn.C3 = R,.Cl
1.9. select R,,.C3, Rm.C4 where Rn.C3 = c & R,.C3 = R,.C4
2.1. select &.C2, Rm.C2 where Rn.Cl = c & R,.Cl = Rm.Cl
2.2. select R,,.C2,Rm.C2 where Rn.C3 = c & Rn.C3 = Rm.C3
2.3. select R.,,.C2, Rm.C2 where R,.G = c & Rn.C4 = Rm.C4

2.4. select &.C2, R,.C2 where Rn.C4 = c & R,.C4 = R,.Cl
2.5. select R,,.C2,R,.C2 where Rn.C4 = c & Rn.C4 = R,.C3

2.6. select R,,.C2, R,.C2 where R,.CI = c & R,.Cl = R,.C4
2.7. select R,,.C2,R,.C2 where R,.Cl = c & Rn.C1 = Rm.C3
2.8. select R,,.Cz,R,.Cz where Rn.C3 = c & Rn.C3 = R,.Cl
2.9. select R,,.C2,Rm.C2 where R,.C3 = c & Rn.C3 = R,.C4

3.1. select R,,,C2,Rm.C2 where Rn.C2 < c & R,.C2 = Rm.C2
3.2. select R,,.Cs,R,.Cs where R,.Cs < c & R,.Cs = Rm.Cs
3.3. select R,,.Cc,R,.Cg where Rn.Cs < c & Rn.Ce = R,.Cs
3.4. select I&,.&., Rm.C2 where R,.Cs < c & Rn.C% = R,.C2

3.5. select R,,.C6,R,.C5 where R,.Cs < c & Rn.C6 = R,.C5
3.6. select&,.C2,R,.,,.C6 where R,.C2 < c& R,.C2 =%-,.C6

3.7. select R,,.C2, R,.Cs where Rn.C2 < c & R,.C2 = R,.Cs

3.8. select F&,.(75, R,.C2 where Rn.Cs < c & Rn.C3 = R,.C2
3.9. select &.Cs, Rm.C6 where Rn.C5 < c & R,.Cs = R,.Cs
4.1. select R,,.Cl, R,.Cl where Rn.C2 < c & Rn.C2 = R,.C2
4.2. select R,,.Cl,R,.Cl where %.CS < c & h.C5 = Rm.Cs
4.3. select R,,.Cl,Rm.C~ where Rn.Cs < c& Rn.Ce = Rm.Cs
4.4. select &,.CI , R,.Cl where R,.C6 < c & R,.Cs = R,.C2
4.5. select R,,.CI ,R,.Cl where Rn’.Cs < c & R,.Cs = R,.Cs
4.6. select R,,.CI,R~.CI where SC2 < c 8~ JL.C2 = %.CS
4.7. select I&,.Cl, R,.Cl where R,.C2 < c & Rn.C2 = R,.Cs
4.8. select R,,.Cl, R,.Cl where R,.Cs < c & Rn.C3 = R,.C2
4.9. aekit Rn.Ci,a m 9 .Cl where Rn.C5 < c & Rn.Cs = Rm.Ce

Figure 6: Join Queries for Tables R,, and R,,,

min(n, m). Joins of selectivity 2’ for Ic < min(n, m)-
4 were tested. In both cases, the observed value was
compared with the estimated value.

In Figure 8, we show the comparison of the estimated
value with the observed values for the type 3.1 join
queries running on DB2 using pairs of relations Ri3 W
Rf3, Ri7 W Rf7 and RI3 W R17. Note that, in this case,
the DB2 chooses nested loop as the join method and
index-only access method. Therefore, in all the three
cases the cost should be independent of the cardinality
of the two relations. This is observed from the graph
shown in Figure 8 wherein the maximum error is about
10%. Once again corroborating the cost model and
approximations.

Figure 9 and 10 show the joins using sort-merge with
R:, W Rf7 and RI3 W RI7 on DB2 respectively. Note
that the estimated cost is once again within 10% error.

The results of this validation showed that in more than
80% of the cases the observed value was within a band
of 20% error from the estimated value. Further, in all

the other cases the following phenomenon contributed
to the majority of the error. All these cases were when
the system used unclustered index in the inner loop of
the nested loop join. As the cost C’Sui is computed as
a stand alone query, the potential buffering of pages
underestimated the cost of this access in the inner loop
of the join where it is competing for buffers with the
outer loop. Thus, the estimate was always lower. We
believe this can also be corrected and is a topic of
future research.

5 Conclusion

In this paper we have proposed to use the traditional
architecture for query optimization wherein a large ex-
ecution space is searched using dynamic programming
strategy for the least cost execution based on a cost
model. It is shown that the traditional execution space
can be simply extended to allow for remote joins and
the search strategy can be used as is in the new con-
text of heterogeneous DBMSs. Thus the crux of the
problem is to design cost models for different DBMSs
such that they can be used by the heterogeneous query
optimizer.

The design of cost model for proprietary DBMSs is an
important problem but does not pose any new chal-
lenges in our opinion. In contrast deriving the cost
model for conforming and non-conforming DBMSs
while treating the DBMS as a black box is the chal-
lenge. In this paper, we proposed a calibration proce-
dure for conforming DBMSs. A calibrating database
is created in the DBMSs that are to be calibrated and
has properties that enable the system to make observa-
tions while avoiding unpredictability problems result-
ing from the black box nature of interaction.

This calibrating procedure has been used to cali-
brate three commercial DBMSs (Allbase, DB2, and
Informix) and the results are promising. The esti-
mated values for majority of the queries were within
20% error of the observed values. The remaining ones
with more error were of a particular type that used
unclustered index in nested loop joins. Being the
first attempt to calibrate a database system using an
arm-length procedure, this is not only novel but also
promising.

This work is definitely a beginning of more research
that needs to be done for this approach to be success-
ful. First we would like to calibrate a few more DBMSs
such as Oracle and Sybase. As mentioned before, it is
possible to improve the cost model by incorporating
more aspects of the underlying system.

289

D. naps* TlY w nap** Tlr
(in l c0n4) (In •~cona

2.30
210

210 24s

230 240

2m 2s

210
2%

200
2.15

190
2.u)

II0

1.70
23s

1.60 w

150 2u

1.M 220

1.30
21s

130
210

1.10
2w

1.00

0.00 1.00 200 3.00 4.00 0.00 moo am.00 3oam yx).w sm.00

21.60

2I10

2I.20

21.m

21 IO

2760

2740

2120

2700

24.u)

2460

26.ro

26.20

26.00

n.uJ

Y.60

n.yI

2.5.20

2s.00
0.00 200 4.00 6oD I.m

I Of mp1r
Dmcurn.4 x low

2.530

n.00

24.m

24.60

24.40

24.20

2400

23Io

2360

13.40

23.20

23.00

2240

22.0

PO

pzo

2200

2l.W
0.00 2oQ 4.m am 1.m

t Of Tu91r
D.turnd x 1000

i-w- 10. dm ’ bum RI>. I,, rbm R,,.C.<c ud Rt, C.= Rtr C.

290

Quantifying the effect of buffering on unclustered
iildex is an important extension. As mentioned
before, almost all the queries that had significant
error could be argued to be due to this problem.
Inferring de facto clustering from the data, such
as Cz in the database would be quite useful. Sys-
tems such as DB2 have knowledge of the degree of
clustering for this column to be 100% and there-
fore may use it. In general, such information can
still be used to interpolate the cost of ‘less clus-
tered’ data.
Detecting when an index scan switches to sequen-
tial scan for an unclustered index is an impor-
tant information if this access method is used in
a nested loop. As the system may be using some
rule of thumb for the switch, the HDBMS opti-
mizer should know the point of transition.

Finally the approach proposed here was in the con-
text of a particular cost model. It should be obvious
to the reader that even if the cost model is changed
the approach can still be used to devise a new proce-
dure. Thus, we feel the process of designing a synthetic
database in a deterministic manner has merit.

Using the knowledge of the proposal here for conform-
ing DBMSs, it is possible to extrapolate an approach
for the non-conforming DBMSs. We are developing
a single invocation and execution model for DBMSs
in all three categories so that the query optimization
process developed in this paper can be extended to
cover non-conforming DBMSs. To serve the purpose,
we plan to integrate some widely used non-conforming
DBMSs such as IMS, VSAM and Unix applications.
The calibration procedure may need to be enhanced
to measure DBMSs of this category.

We also plan to explore issues of post query opti-
mization such as dynamic reconfiguration of execu-
tion plan at run time. This is important, especially
in HDBMSs, because it is difficult (and sometimes im-
possible) to get accurate cost formulae. Other related
issues include reduction of invocations to participat-
ing DBMSs, cross site data buffering, new global join
methods, etc. These are topics of future research.

Acknowledgements

We wish to acknowledge the following people in HP Corpo-
rate Computing and Services for their help in our calibra-
tion. Mike Wang and Arthur Walasek of SOLID project
provided accesses to DB2 and Informix. Charlene Yoshizu,
Jeff Litalien, and Kim Iverson provided considerable sys-
tem support and patience while our calibration consumed
vast amounts of their resources.

References

[AetalSl]

[BDT83]

[CGKSO]

[CP84]

[D&51

[GHK92]

Ahmed, R., et al, “The Pegasus Heteroge-
neous Multidatabase System”, IEEE Com-
puter Magazine, Vol. 24, No. 12, 1991.

Bitton, D., D. Dewitt, and C. Turbyfill,
“Benchmarking Database Systems: A Sys-
tematic approach” Proc. of VLDB, 1983.

Chimenti, D., R. Gamboa, and R. Krish-
namurthy, “Abstract Machine for LVL,”
Proc. of EDBT, 1990.

Ceri, S. and G. Pelagat ti ,
Distributed Databases: Principles & Sys-
terns, McGraw-Hill Book Company, 1984.

Dayal, U., “Query Processing in Multi-
database System”, Query Processing in
Database Systems, Edited by W. Kim, D.
Reiner and D. Batory, Springer Verlag,
1985.

Ganguly, S., W. Hasan, and R. Krishna-
murthy, “Query Optimization for Parallel
Execution”, Proc. of SIGMOD, 1992.

[HWKSPl] Proc. of Workshop on Multidatabases
and Semantic Interoperability, Tulsa, OK.,
Nov. 1990, Tulsa, OK.

[HWKSPS] Proc. of 1st Intl. Workshop on Interoper-
ability in Multidatabase Systems, Kyoto,
Japan, Apr., 1991.

[IBM-DBS] “DB2 Performance Monitor (DB2PM)
Usage Guide”, Document no. GG24-3413-
00, Published by IBM Corporation, 1989.

[KBZSS]

[LS92]

[Sell791

lYK903

Krishnamurthy, R., H. Boral, and C.
Zaniolo, “Optimization of Non-Recursive
Q ueries,” Proc. of VLDB, 1986.

Lu, H., and M. Shan, “Global Query
Optimization in Multidatabase Systems”,
1992 NFS Workshop on Heterogeneous
Databases and Semantic Interoperability,
1992.

Sellinger, P.G. et al., “Access Path Selec-
tion in a Relational Database Management
System,” Proc. of SIGMOD, 1979.

Whang, K., and R. Krishnamurthy, “Query
Optimization in a Memory-Resident Do-
main Relational Calculus Database Sys-
tem” TODS, Vol, 15, No. 1, 1990.

291

