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Abstract 

We propose a query optimization strategy for heteroge- 
neous DBMSs that extends the traditional optimizer strat- 
egy widely used in commercial DBMSs to allow execution 
of queries over both known (i.e., proprietary) DBMSs and 
foreign vendor DBMSs that conform to some standard such 
as providing the usual relational database statistics. We as- 
sume that participating DBMSs are autonomous and may 
not be able, even if willing, to provide the cost model pa- 
rameters. The novelty of the strategy is to deduce the 
necessary information by calibrating a given DBMS. As 
the calibration has to be done as a user, not as a system 
administrator, it poses unpredictability problems such as 
inferring the access methods used by the DBMS, idiosyn- 
crasies of the storage subsystem and coincidental clustering 
of data. In this paper we propose a calibrating database 
which is synthetically created so as to make the process of 
deducing the cost model coefficients reasonably devoid of 
the unpredictability problems. Using this procedure, we 
calibrate three commercial DBMSs, namely Allbase, DB2, 
and Informix, and observe that in 80% of the cases the 
estimate is quite accurate. 

1 Mot ivat ion 

Heterogeneity of databases and database management 
systems (DBMSs) h ave gained its due recognition as 
a result of the advent of open systems. Typically this 
heterogeneity may result from semantic discrepancies 
in the data, multiple data models, different systems, 
etc. All of these are consequences of the need for 
independent database systems to interoperate while 
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preserving their autonomy. Lots of research has been 
done in the context of integration and interoperability, 
where the center of focus has been in the semantics 
of translation and integration[HWKSPl, HWKSP2]. 
Very few papers have been published on the problem 
of query processing [Da851 and even less on query op- 
timization in the context of heterogeneous DBMSs, 
referred to as heterogeneous query optimization, or 
HQO. 

In [LS92] some important issues concerning HQO 
problem were enumerated. In this paper, we address 
the problem of optimization of queries over heteroge- 
neous DBMSs, where the degree of heterogeneity, with 
respect to the optimizer, may vary over the partici- 
pating systems. These participating DBMSs are typ- 
ically supplied by multiple database vendors and can 
be classified, in relationship to the integrating DBMS 
(referred to as HDBMS), into the following three cat- 
egories: 

l Proprietary DBMS: The participating DBMS is 
called a proprietary DBMS if it is from the same 
vendor as the HDBMS. A vendor would naturally 
like to have an optimizer that is at least as good as 
its DBMS product. This necessitates that the op- 
timizer is at least as capable as their participating 
DBMS optimizer and uses all the relevant infor- 
mation on cost functions and database statistics’. 
The HQO problem in the context of proprietary 
DBMS is quite similar to the distributed query 
optimization problem. 

l Conforming DBMS: The participating DBMS is 
called a conforming DBMS if it is from a for- 
eign vendor and the DBMS is capable of providing 
some important database statistics but incapable 
of divulging the cost functions either due to the 
lack of such abstractions in the system or due to 
such information being proprietary. 

l Non-Conforming DBMS: The participating for- 
eign vendor DBMS is incapable of divulging ei- 
ther the database statistics or the cost functions. 

‘In fact, any non-proprietary DBMS that is capable of 
providing the necessary information (i.e., cost functions and 
database statistics) for customizing the optimizer can be ac- 
commodated in this category. 
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This would be the case when supporting a data 
server that exports a set of functions. Therefore, 
the system has to be viewed as a black box whose 
only characteristics known to the optimizer are 
those observable by the execution of queries. 

The HDBMS query optimizer should be capable of not 
only providing the expected level of optimization when 
the participating systems are all proprietary but also 
degrading gracefully in the presence of either conform- 
ing or non-conforming DBMSs. Thus, it is imperative 
for the optimizer to view these systems in a seamlessly 
integrated fashion. We present such an approach for 
the optimizer that not only achieves this goal but also 
is presented as an extension to the widely used archi- 
tecture for the optimizer proposed in [Se1179]. 

In HDBMSs, the execution space must be extended to 
handle global queries across DBMSs. This can be done 
by simply allowing new join methods across DBMSs. 
Therefore, the execution space and search strategy 
used in commercial DBMSs can be used in HDBMS 
if only a cost model is made available for all categories 
of DBMSs. In short, the crux of the HQO problem 
is in deriving the cost model for autonomous DBMSs. 
This involves calibrating a given relational DBMS and 
deducing the cost coefficients of the cost formulae. 

As the calibration has to be done as a user to the 
DBMS, the association of cause and (observed) effect 
poses unpredictability problems. Thus, such a pro- 
posal should be able to answer questions such as, is 
the system actually using index scan for the inner loop 
of the join, is the observed value not distorted by some 
idiosyncrasies of the storage management of data, and 
is the observed value due to per-chance clustering of 
data. 

The novelty of our approach is in the design of the 
synthetic database and the properties that can be de- 
rived for both the database and the DBMS. Prior 
benchmarking efforts [BDT83] has relied on generat- 
ing the database in a probabilistic fashion. In con- 
trast we provide a deterministic generation algorithm 
using which formal properties of that relation can be 
stated. These properties ensure the avoidance of un- 
predictability problems. We argue that some of these 
properties cannot be attained using the traditional 
benchmarking approach. Another advantage of the 
synthetic database is that a million tuple database can 
be generated in minutes whereas the technique used in 
[BDT83] would take significantly more time. 

A calibrating procedure has been presented that has 
been applied to three commercial systems - namely 
Allbase, DB2, and Informix. The validation results 
indicate that this approach is reasonably accurate to 

the extent that estimated values of majority of the val- 
idation queries were within 20% error of the observed 
values. All the queries that had error in excess of 20% 
were found to be of a particular type. Being the first 
attempt to calibrate the system using an arms-length 
procedure, this is not only novel but also promising. 

In section 2 we review the traditional optimizer tech- 
nology and conclude that the crux of the problem is 
to design cost models for proprietary and conforming 
DBMSs such that they can be used by the heteroge- 
neous query optimizer. Section 3 outlines an extension 
of the traditional cost model for heterogeneous envi- 
ronment. Section 4 deals with the problem of calibrat- 
ing an autonomous DBMS. Here a logical cost model is 
presented that is devoid of physical information such as 
page sizes, number of I/OS, etc. Using this cost model, 
a calibrating procedure using the calibrating database 
is presented. Then we present practical calibrations 
of Allbase, DB2, and Informix and show that the esti- 
mated values are reasonably accurate. Finally we con- 
clude that such an approach is practical based on the 
following widely held maxim for the traditional query 
optimizer: “It is more important to avoid the worst 
execution than to obtain the best execution”[KBZ86]. 

This work has been done in the context of Pegasus 
project at HP Labs. 

2 Optimizer Overview 

A heterogeneous DBMS, HDBMS, can be viewed as 
a DBMS that has a set of participating DBMSs and 
provides both interoperability of DBMSs as well as 
integration of data. In this paper we assume that par- 
ticipating DBMSs are all relational and for the sake of 
simplicity assume that all data are schematically and 
representationally compatible; i.e., there is no integra- 
tion problem. In this sense, the HDBMS provides a 
point for querying all the participating DBMSs and 
provides database transparency (i.e., the user needs 
not to know where data reside and how queries are de- 
composed). Therefore, the HDBMS is relegated the re- 
sponsibility for decomposing and executing the query 
over the participating DBMSs. This is the motivating 
need for a query optimizer for HDBMSs. Without loss 
of generality, we assume that the query is a conjunctive 
relational query. 

2.1 Traditional Optimizer Revisited 

The optimization of relational queries can be described 
abstractly as follows: 
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Given a query Q, an execution space E, and a 
cost function C defined over E, find an execu- 
tion e in EQ that is of minimum cost, where 
EQ is the subet of E that computes Q. 

mkm,C(e) 

Any solution to the above problem can be character- 
ized by choosing: 1) an execution model and, there- 
fore, an execution space; 2) a cost model; and 3) a 
search strategy. 

The execution model encodes the decisions regarding 
the ordering of the joins, join methods, access meth- 
ods, materialization strategy, etc. The cost model 
computes the execution cost. The search strategy is 
used to enumerate the search space, while the mini- 
mum cost execution is being discovered. These three 
choices are not independent; the choice of one can af- 
fect the others. For example, if a linear cost model is 
used, as in [KBZSS], then the search strategy can enu- 
merate a quadratic space; on the other hand, an ex- 
ponential space is enumerated if a general cost model 
is used, as in the case of commercial database man- 
agement systems. Our discussion in this paper does 
not depend on either the execution space (except for 
the inflection mentioned below) or the search strategy 
employed. However, it does depend on how the cost 
model is used in the optimization algorithm. There- 
fore, we make the following assumptions. 

The execution space used in [Se11791 can be abstractly 
modeled as the set of all join orderings (i.e., all per- 
mutations of relations) in which each relation is anno- 
tated with access/join methods and other such inflec- 
tions to the execution. These and other inflections to 
the tradional execution space is formalized in the next 
subsection. 

We assume the exhaustive search as the search strat- 
egy over the execution space, which has been widely 
used in many commercial optimizers. This space of ex- 
ecutions is searched by enumerating the permutations 
and for each permutation choosing an optimal anno- 
tation of join methods and access methods based on 
the cost model. The minimum cost execution is that 
permutation with the least cost. 

The traditional cost model uses the description of the 
relations, e.g., cardinality and selectivity, to compute 
the cost. Observe that the operands for these opera- 
tions such as select and join may be intermediate re- 
lations, whose descriptions must be computed. Such a 
descriptor encodes all the information about the rela- 
tion that is needed for the cost functions. 

Let the set of all descriptors of relations be ZJ, and let 
Z be the set of cost values denoted by integers. We 

are interested in two functions for each operation, u, 
such as join, select, project etc. These functions for a 
binary operation cr are: 

COST,:2)xD-,Z and DESC,:Dx2)-+2). 

Intuitively, the COST, function computes the cost of 
applying the binary operation u to two relations, and 
DESC, gives a descriptor for the resulting relation. 
The functions for the unary operators are similarly 
defined. In this paper we shall be mainly concerned 
with the COST function and assume the traditional 
definitions for the DESC function given in [Se1179]. 
This has the information such as the cardinality of the 
relation, number of distinct values for each column, 
number of pages, index information, etc. 

2.2 Execution Model for HDBMSs 

Here we outline the space of executions allowed by the 
HDBMS. Intuitively, an execution plan for a query can 
be viewed as a plan for a centralized system wherein 
some of the joins are across DBMSs. These joins can 
be viewed as alternate join methods. Here we formally 
define a plan for a traditional DBMS and then extend 
it by allowing these new join methods. 

A plan for a query, in most commercial DBMSs, de- 
notes the order of joins and the join method used for 
each join and the access plan for each argument of 
the join. Besides this, we assume the usual infbrma- 
tion needed to denote the sideway information passing 
(also known as the binding information). 

Formally, a plan for a given conjunctive query is ex- 
pressed using a normal form defined in [CGKSO] called 
Chomsky Normal Form or CNF. A CNF program is a 
Datalog program in which all rules have at most two 
predicates in the body of the rule. Consider a con- 
junctive query on k relations. This can be viewed as 
a rule in Datalog with k predicates in the body. An 
equivalent CNF program can be defined using k - 1 
rules each of which has exactly two predicates in the 
body. This is exemplified below. 

PK Y) - ~l(X,Xl),r2(Xl,X2),~3(XZ,X3),~4(X3,Y). 

has the following equivalent CNF program: 

P(X Y) - ~13(XX3),T4(X3,Y). 

713(X, X3) - n2(X, X2), rs(X2, X3). 

n2(X,X2) + n(X,Xl),r2(X1,X2). 

In the above CNF program we give the added restric- 
tion that the execution is left to right in the body of 
the rule. As a result, the sideway information passing 
through binding is from ris to r4 in the first rule. Fur- 
ther note that the CNF program completely denotes 
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the ordering of joins of the relations. Therefore, ~1 and 
~2 are joined before the join with 7-s. Note that the 
above CNF program can represent all type of bushy 
join trees; in contrast most commercial DBMSs allow 
only left deep join trees. For simplicity, we make the 
assumption that all CNF programs are left-deep (i.e., 
only the first predicate in the body can be a derived 
predicate) and thus omit other CNF programs from 
consideration. 

For each join in the CNF program, a join method is 
assigned; one join method is associated with the body 
of each rule. Two join methods are considered: nested 
loop (NL) and ordered merge (OM) such as sort merge 
or hash merge. Further, each predicate is annotated 
with an access method; i.e., at most2 two access meth- 
ods per rule. The following are four access methods 
we considered: 

sequential scan (SS): access and test all tuples in 
the reIation; 
index-only scan (IO): access and test index only; 
clustered index scan (CI): access and test clus- 
tered index to find qulifying tuples and access the 
data page to get the tuple; and 
unclustered index scan (UI): same as CI, but for 
unclustered index. 

This list of methods reflect the observations in many 
commercial DBMSs such as differentiating accessing 
index page only versus accessing both index and data 
pages. Access to clustered and unclustered index pages 
is not differentiated. 

Even though all access methods can be used with all 
join methods, some combinations do not make sense. 
Nevertheless, we assume that the optimizer can avoid 
these cases by assigning a very large cost. Note that 
the list of join methods and access methods can easily 
be extended and the cost formulae specified in a similar 
manner. For the discussion in most of this paper, this 
list of methods would suffice. We shall discuss in spe- 
cific context some variations to these access methods 
by inflecting them with techniques such as preselect 
(also known as prefetch), create index, etc. 

As mentioned before, the list of join methods is in- 
creased by a new method called remote join that is 
capable of executing a join across two DBMSs. This 
may be done by shipping the data directly to the other 
DBMS or to the HDBMS which in turn coordinates 
with the other DBMS to compute the join. Obviously, 
there is a host of variation in achieving this remote join 

2Note that in some cb~es such as the outer loop (of a nested 
loop join) that is being pipelined from another join, annotation 
of an access method does not make sense. 

and distributed DBMS literature has a wide variety of 
them documented [CP84]. For expository simplicity, 
we assume that some such remote joins are chosen. For 
each such remote join, a cost function is associated 
and the cost of the complete execution is computed 
in the traditional manner. Even though the specific 
choices for the remote joins and the cost model used 
for estimating the cost of remote join are important 
for a HDBMS optimizer, we can omit this aspect of 
the problem in the paper without loss of generality. 

In summary, we view the optimizer as one that 
searches a large space of executions and finds the 
minimum cost execution plan. As execution space 
and search strategy largely remain unchanged, we 
need only describe the cost model for each category 
of DBMSs in order to describe the optimizer for 
HDBMSs. In particular, we shall concentrate on the 
cost model for select and join operations in the context 
of a single DBMS, using which joins across DBMSs can 
be computed based on the remote join cost model. The 
cost models for proprietary and conforming DBMS are 
the topics of the next two sections. 

3 Cost Model for Proprietary 
DBMSs 

As mentioned before, the cost model for a query over 
multiple proprietary DBMSs must be comparably ca- 
pable to the cost model used in the DBMS itself. This 
requires that the cost model knows the internal details 
of the participating DBMS. For a proprietary DBMS, 
this is possible. In this section, we outline the cost 
model at a very high level. Our purpose is not to 
present the model details per se but to observe the 
use of physical parameters such as prefetch, buffering, 
page size, number of instructions to lock a page and 
many other such implementation dependent character- 
istics. 

Typically the cost model estimates the cost in terms 
of time; in particular the minimum elapsed time that 
can occur. This estimated time usually does not pre- 
dict any device busy conditions, which in reality would 
increase the elapsed time. We use this notion of time 
as the metric of cost. This is usually justified on the 
ground that minimizing this elapsed time has the effect 
of minimizing the total work and thereby ‘maximizing’ 
the throughput. 

In HDBMSs, elapsed time can be estimated by esti- 
mating three components: 
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CPU time incurred in both the participating 
DBMSs and the HDBMS. 
I/O time incurred in both the participating 
DBMSs and the HDBMS. 
Communication time between the HDBMS and 
the participating DBMSs. 

Traditional centralized DBMSs included only CPU 
and I/O time in their estimate. We propose to use a 
similar estimate for both these components. For each 
of the join methods and access methods allowed, a cost 
formula is associated. 

The CPU estimate includes the time needed to do 
the necessary locking, to access the tuples either se- 
quentially or using an index, to fetch the tuples, to do 
the necessary comparisons, to do the necessary projec- 
tions, etc. The cost formulae are based on estimating 
the expected path length of these operations and on 
the specific parameters of the relations such as num- 
ber of tuples, etc. Obviously, these parameters are 
continually changing with the improvement in both 
the hardware and the software. For a proprietary sys- 
tem these changes can be synchronized with the new 
versions. 

The I/O time is estimated using the device character- 
istics, page size, prefetch capabilities, and the CPU 
path length required to initiate and do the I/O. 

The time taken to do the necessary communication 
can be estimated based on the amount of data sent, 
packet size, communication protocol, CPU path length 
needed to initiate and do the communication, etc. It is 
assumed that the physical characteristics of the com- 
munication subsystem are known to the HDBMS and 
accurate cost model can be developed using these pa- 
rameters. 

In summary, we have described the cost model for a 
proprietary DBMS to be one that has complete knowl- 
edge of the internals of the participating DBMS. 

4 Cost Model for Conforming 
DBMSs 

A conforming DBMS is a relational DBMS with more 
or less standard query functionality. The purpose in 
this section is to design a cost model that would es- 
timate the cost of a given query such that the model 
is based on the logical characteristics of the query. In 
this section, we first outline a cost model for estimating 
the cost of a given plan for a query. Then we describe 
the procedure by which to estimate the constants of 

the cost model as well as experimental verification of 
this procedure. Finally, a dynamic modulation of these 
constants is presented to overcome any discrepancy. 

4.1 Logical Cost Model 

The logical cost model views the cost on the basis 
of the logical execution of the query. There are two 
implications. First, the cost of a given query is esti- 
mated based on logical characteristics of the DBMS, 
the relations, and the query. Second, the cost of com- 
plex queries (e.g., nested loop joins) is estimated using 
primitive queries (e.g., single table queries). In this 
subsection, we outline such a cost model. 

4.1.1 Cost Formulae 

For the sake of brevity, we restrict our attention to 
that part of the cost model which estimates the cost 
of select and join operations. Formally, given two re- 
lations ri and 7-2 with Ni and N2 tuples, we estimate 
the cost of the following two operations: 

l a select operation on ri with selectivity Si; and 
l a join operation on ~1 and 13 with selectivity J12. 

The formulae for these two operations are given in Fig- 
ure 1 with the following assumptions, all of which will 
be relaxed in the next subsection: 

l The size of the tuple is assumed to be fixed. 
l There is exactly one selection/join condition on a 

relation. 
l The entire tuple is projected in the answer. 
l All attributes are integers. 

Intuitively, the select cost formulae can be viewed as a 
sum of the following three (independent) components: 

CO M PO : initialization cost. 
COMPl : cost to find qulifying tuples. 
COMPz: cost to process selected tuples. 

The COMPo component is the cost of processing the 
query and setting up the scan. This is the component 
that is dependent on the DBMS, but independent of 
either the relation or the query. 

In the case of sequential scan, the COMPl component 
consists of locking overhead, doing the ‘get-next’ op- 
eration, amortized I/O cost and all the other overhead 
incurred per tuple of the scan. Note that the fixed 
size of the tuple assures that the number of pages ac- 
cessed is directly proportional to the number of tuples. 
Therefore, the cost per tuple is a constant. In the case 
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The selection cost formulae are categorized as follows: 

Sequential Scan: 
cs,, = cso,, + ((CSl:o, + csl:y) * N1)+ 

(CSL * NI * SI) 

Index-Only Scan: 
c.%s = CSO,, + CSL, + (CS2,, * Nl * 5’1) 

Clustered Index Scan: 
(csci = CSO,, + CSI,, + (CS2,, * N1 * S1) 

Unclustered Index Scan: 
CSui = CSOui + CSl,, + (CS2,i + Nl * S1) 

where, 

cso,, 

CSlZ 

csl::” 

CSl,, 

c=s, 

CSL 

( i.e., CSO,,, CSOi,, CSO,, and CSO,,) The ini- 
tialization cost for selects; 

The amortized I/O cost of fetching each tuple of 
the relation, irrespective of whether the tuple is 
selected or not. 

The CPU cost of processing each tuple of the 
relation (e.g., checking selection conditions). 

(similarly, CSl,, and CSI,,) The cost of initial 
index lookup. 

The cost of processing a result tuple for sequen- 
tial scan. 

(similarly, CS2,i and CS2,i) The cost of pro- 
cessing each tuple selected by an index. This 
includes the I/O cost to fetch tuple if necessary. 

The join cost formulae are categorized as follows: 

l Nested Loop: (if sequential scan on,rz) 
CJd = CS*,(71)+CSOss(f2)+ CS1:0,(72)+ 

(NI*SI*(CS~~(~~)-CSL(~~)-CSGY(~~))) 

o Nested Loop: (if index scan on 72) 
CJnI = CS,z(r1)+ CS0,*(72)+ 

(NI * SI * (CL(r2) - CSOzz(r2)) 

l Ordered Merge: 
CJ,, = C&r(Q)+ C&472)+ CSss(n)t 

CSss(r2) + CJ2,, * NI * N2 * J12 

where, 

CA, The cost of ordering (e.g., sorting) a relation. 
Note that it may be zero if there is an index on 
the joining column. 

CJ%-n, The cost of merging join tuples. 

Figure 1: Cost Formulae for Select and Join 

of index scans, COMPl is the initial index look up 
cost. Note that in all the three cases of index scans, 
we assume that COMPl is independent of the relation. 
This is obviously not true as the number of levels in the 
index tree is dependent on the size of the relation. But 
this number is not likely to differ by a lot due to high 
fanout of a typical B-tree or any other indexing mech- 
anism. Thus we believe this independence assumption 
is reasonable. 

The COMPz component is the cost of processing each 
of the selected tuples. This component cost is also 
likely to be a constant because of the selection and 
projection assumption made earlier. 

The join formulae are straightforward derivation from 
the nested loop and ordered merge algorithms. Note 
that they are composed of selection cost formulae with 
certain adjustments to handle operations (e.g., sorting 
and merging) and problems (e.g., buffering effect) spe- 
cial to join operations. 

For example, the cost of accessing a relation in the in- 
ner most loop is modeled in the same manner as that 
of accessing a relation in the outer most loop. This is 
obviously not the case if the inner most relations are 
buffered to avoid the I/O. This uniformity was experi- 
mentally found to be quite acceptable for index scans. 
If a sequential scan is used in the inner loop of the join, 
the IjO cost may only incur once (for small tables) due 
to buffering whereas the table look up is done once for 
each tuple in the outer loop. In order to handle this, 
COMPl is broken into two parts in the formulae for 
sequential scans. These two parts represent the I/O 
and the CPU costs of ‘get-next’ operation. 

4.1.2 Relaxing Assumptions 

Let us now relax the assumptions made in the previous 
subsection. As the size of the tuple is varied, the con- 
stants will be affected. In particular only the constant 
CSl,, (= CSlg + CSl~$“) is expected to be affected 
and is likely to increase linearly with the size of the 
tuple. All the other constants are component costs for 
selected tuples and thus are not likely to be affected. 
But these constants (i.e., CS2,,‘s) are affected by the 
number of selection and projection clauses. In order 
to take these into account, we redefine the above con- 
stants to be functions with the following definitions: 

l CSl,, is a linear function on the size of the tuple 
in the relation. 

l CS2,,‘s are linear functions on the number of se- 
lection and projection clauses. 
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As these are no longer constants we refer to them as 
coefficients. 

Assuming that the checking is terminated by the 
first failure, the expected number of select condition 
checked is bounded by 1.5 independent of the num- 
ber of selection conditions. This was formally argued 
in [WK90]. Further more, the experiments show that 
the costs of checking selection conditions and project- 
ing attributes are negligible comparing to other costs, 
e.g., I/O (see Section 4.3). 

Finally, we relax the assumption that all attributes 
are integers by requiring one set of cost formulae for 
each data type in the DBMS. The respective coeffi- 
cients would capture the processing, indexing, paging 
characteristics of that data type. As this is orthogonal 
to the rest of the discussion, we present the rest of the 
paper for just one data type. 

The fundamental basis for the above cost model is 
that the cost can be computed based on factoring the 
costs on a per tuple basis in the logical processing of 
the query. Indeed, the coefficients CSO,,, CSl,,, and 
CS2,, are all composite cost including CPU, I/O, and 
any other factors that may be of interest such as the 
cost of connection. In this sense, the cost formulae are 
logical versus the cost formulae used in most commer- 
cial DBMSs which estimate based on physical parame- 
ters. The above formulae are structurally very similar 
to the ones that were used in the commercial DBMSs. 
There are three major differences. 

The traditional formulae assumed that the coeffi- 
cients are constants. Here we view them as func- 
tions. 
The value associated to these coefficients are com- 
posite cost of CPU, I/O, etc.; whereas these costs 
were separately computed in the formulae used in 
most commercial DBMSs. 
The value associated to the coefficients also reflect 
other system dependent factors such as hardware 
speed and operating system and DBMS configu- 
ration, etc. 

The above basis for computing the cost is obviously 
approximations of the more involved formulae used by 
the commercial DBMSs. But the important question 
is whether this approximations are significant to affect 
the optimizer decision? It is our claim that the above 
cost model will sufficiently model the behavior of the 
execution. We shall confirm this claim by experiment- 
ing with three commercial DBMSs. 

4.2 Calibrating Database and Proce- 
dure 

The purpose of the calibrating database is to use it to 
calibrate the coefficients in the cost formulae for any 
given relational DBMS. Our approach is to construct 
a synthetic database and query it. Cost metric val- 
ues (e.g., elapsed time) for the queries are observed to 
deduce the coefficients. Note that there are no hooks 
assumed in the system and therefore the system can- 
not be instrumented to measure the constants (e.g., 
number of I/O issued) of the traditional cost model. 
Further, the construction of the database, posing of 
the query, and the observations are to be done as a 
user to this ‘black-box’ DBMS. This poses the follow- 
ing two major predicatability problems: 

the problem of predicting how the system will ex- 
ecute (e.g, use index or sequntial scan, use nested 
loop or sort merge) a given query; 
the problem of eliminating the effect of data place- 
ment, pagination and other storage implementa- 
tion factors that can potentially distort the obser- 
vations and thus lead to unpredictable behavior. 

In order to deduce the coefficients in the cost formulae, 
it is imperative that the query and the database are 
set up such that the resulting execution is predictable; 
i.e., the optimizer will choose the predicted access and 
join methods. Even if the execution is predicatable, 
it should be free from the above mentioned distortion 
or else the determination of the cause for the observed 
effect is not possible. For example, if all the tuples 
having a particular value for an attribute just hap- 
pened to be in a single page then the observed value 
can be misleading. 

In this subsection we set up a database and a set of 
queries that are free from the above two problems and 
show that the coefficients of the cost formulae can be 
deduced. 

4.2.1 Calibrating Database 

For any integer n, let R,, be a relation of seven columns 
containing 2” tuples. The seven attributes have the 
following characteristics: 

Cl: integer [O, n], indexed, clustered. 
C2: integer [0,2” - 11, indexed, de facto clustered but 

not specified as such to DBMS. 
C’s: integer [0, n], indexed, unclustered. 
Cd: integer [0, n], no index. 
Cs: integer [0,2” - 11, indexed, unclustered. 
Cs: integer [0,2” - 11, no index. 
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Cr: a long character string to meet the size of the tuple 
requirement. 

The values in these attributes are defined below. Even 
though the relation is a set and as such unordered, we 
can conceptually view it as a matrix. Thus, the iih 
tuple in & is defined as follows: 

l Cl[n,i] = bell(i), where bell(O) = 0, bell(i) = L 
such that cqr,’ f(j) < i + 1 5 Xi=0 f(j) and 

1, ifj=O; 
2, ifj=landniseven; 

‘(j)= 

1 

ifj=landnisodd; 
2* f(j- l), if j < \fJ; 
f(i - I)/4, ifj< [t+lJ; 
f(j - 1)/T ifj= [:+lJ. 

0 C&z, i] = i. 
0 C&i] = mf[j] such that i mod 2j+l = 2j where 

mfIj] = [?J + (-l)j+’ [YJ . 
0 C4[n, i] = cqn, i]. 
l Cs[n,i]=2”-k+jsuchthati=2k-1*(1+2*j) 

and Cs[n,O] = 0. 
0 C6[7,ii] = C&i]. 

The value for the seventh attribute is a padding field 
and can be set to anything and therefore, for conve- 
nience, omitted from the rest of the discussion. Figure 
4 has the relation & tabulated. 

The multicolumn key for the relation is (Cl ,Cz). This 
relation is indexed on this key, in ascending order, with 
Cr being the major key and CZ being the minor key. 
This index is clustered in the sense that the values 
of the major key (i.e., Cl) are clustered. In general 
the values of Ca may not be clustered. As it is clear 
from the construction of the relation, the values of 
the minor key (i.e., C2) are also clustered. In fact, 
the values in Cz are unique and have 2” values in the 
range [0,2* - l] and therefore these values can also be 
in ascending order. So, in some sense, we can view this 
column, Cz, as a sequence number for the rows. We 
shall refer to this Cz value as the row index. The need 
for multicolumn key and index is so that the tuples are 
ordered in the disk pages based on Cz and the system 
is informed that Ci has a clustered index. This could 
be achieved by inserting the tuples in that order as 
long as the index creation in DBMS is stable, which 
most DBMSs do satisfy3. 

Note that the database can be generated by a pro- 
cedure that evaluates the above formulae. Therefore, 
it is possible to generate a million tuple database in 
minutes. In contrast the database generated using tra- 

31n fact this was used in calibration of systems presented in 
the next subsection. 
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Figure 2: & relation 

ditional benchmarking technique [BDT83] would take 
significantly more time. 

4.2.2 Properties of the Database 

Before we describe the data, let us present some defini- 
tions. Let SEQ(n, i) (similarly SIQ(n, i)) be a select 
query on & using an equality (similarly inequality) 
predicate with the cardinality of the output result be- 
ing 2’ for i < n. Such a query will be of use in the 
following discussion. 

The values in Cr are in ascending order with a clus- 
tered index. The f[i] gi ves the number of tuples in 
which the value i occurs in Cl. Let us define mf[i] to 
be the ith most frequently occurring value in Cl. The 
distribution of values exhibits a ‘normal’ pattern such 
that the mf[.] 1 z va ue occurs in 1/2i of the number of 
tuples. The formulae for Ci[n, i] above has encoded 
this pattern, from which we can make the following 
lemma. 

Lemma 1 For any relation &, and any selectivity 
Si = 1/2’,i E [l,n], there ezis2s un equality predicate 
on Cl whose selectivity is si. 

Corollary 1 There ezists queries SEQ(n,i) and 
SEQ(n + 1, i) on relations R, and &,+I respectively 
fori=1,2 ,..., n. 

The above observations provide us with the guarantee 
that queries exist that 
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l select varying number of tuples using equality 
predicate on the same relation; and 

l select the same number of tuples using equality 
predicate from multiple relations of different sizes. 

For these queries using Ci, the following claim can be 
argued with reasonable assurance. 

Claim 1 Execution of any SEQ(*, *) query on Cl will 
result in the use of the clustered indez scan. 

As mentioned before, the predictability of the cost of 
executing a query SEQ(n, i) on Ci will depend on 
the CPU and I/O components4. CPU cost increases 
monotonically with the size of the result. Because of 
the above claim, the I/O cost also increases monotoni- 
cally until the maximum number of pages are accessed. 
Thus the number of I/O is a nondecreasing function 
of the size of the result. We shall refer to this class of 
function as saturating monotonically increasing func- 
tion. 

Lemma 2 For any storage implementation, and page 
size used, the number of pages accessed by a SEQ(n,i) 
query using Cl will be given by a saturating monoton- 
ically increasing function on i. 

Note that calibration of the cost formulae in the satu- 
rated region will result in incorrect calibration. How- 
ever, observe that almost half the number of pages 
will not be accessed in the worst c&e. Therefore, if we 
use large relations, the problem of saturation can be 
avoided. Thus, we can conclude that unpredictability 
problems are avoided for any query on Ci. 

Note that the values in Ci are functionally determined 
by the value in Cz’. In fact the values of Cz are in as- 
cending order because of the ascending-order indexing 
of the key. This observation and the fact that the in- 
dex is clustered lead us to the following lemma. 

Lemma 3 Any storage implementation of this rela- 
tion will retain this order of the tuples amongst pages 
of the relation. 

This observation gives us a handle on the pagination 
of the data. We shall use this to argue that Cs and C4 
values are uniformly distributed across all pages. 

The following two observations are obvious but stated 
here for completeness. 

‘We omit communication cost for simplicity. This can be 
also included without loss of generality. 

5For this reason, this relation is not in 2NF. As we me not 
concerned with updates to this relation, lack of normalization is 
not of concern. 

Lemma 4 For any relation &, and any selectivity 
si = l/2’, i E [l, n] there ezists an inaquality predicate 
on C2 whose selectivity is si. 

Corollary 2 There exists queries SIQ(n,i) and 
SIQ(n + 1,i) on relations hl,, and R,,+l respectively 
for i = 1,2, . . . , 72. 

Let us observe that the values in Ci are permuted into 
different rows of Cs. Therefore, the frequency distri- 
bution f [i] also applies to C’s and C4. This redistribu- 
tion is done with the observation that $ of the number 
of tuples have row index in binary representation the 
pattern *0 (i.e., last bit is zero), f of the number of 
tuples have row index in binary representation the pat- 
tern *Ol, etc. Therefore, the distribution can be done 
as follows: 

l All row index in binary that has the pattern *0 
has mf[l] value. 

l All row index in binary that has the pattern *Ol 
has mf[2] value. 

l All row index in binary that has the pattern *Oil 
has mf[3] value. 

0 . . . etc. . . . 

Thus we can conclude that any value in [0, n] is uni- 
formly distributed in the rows for Cs and (7.4. This 
leads us to the following lemma. 

Lemma 5 For any storage implementation, and page 
size used, and given a value i E [O,n], tuples contain- 
ing value i for C3 and C4 are uniformly distributed 
amongst all the pages. 

Using this lemma we can make the following observa- 
tion that overcomes one predicatability problem when 
using C3 or C4. 

Lemma 6 For any storage implementation, and page 
size used, the number of pages accessed by a SEQ(n,i) 
query using C3 or C4 will be given by a saturating 
monotonically increasing function on i. 

Once again we argue that saturating is not a problem 
because the unclustered index is mostly useful in the 
region when the selectivity is low. So if the calibra- 
tion is restricted to this region then the I/O will be 
monotonically increasing. With CPU cost increasing 
monotonically, we have avoided one of the predicata- 
bility problem. 

In order to determine the region when the index is 
being used we make the following observations. 
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Claim 2 Ezecuhon of any SEQ(*, *) query on C3 will 
result in the use of the index scan if the selectivity is 
low; but if the selectivity is high then the system may 
use sequential scan. 

Claim 3 Execution of any SEQ(+, *) query on Cd will 
result in the use of the sequential scan. 

Knowing that C’s and CJ are identical, we can easily 
determine the region of selectivities when index is be- 
ing used and use that data to calibrate the system. 
Thus we can conclude that unpredictability problems 
are avoided for queries on Cs and Cd. 

Cs and Cs are also permutations of CZ and are in- 
tended for use with inequality queries. So the precli- 
catability problem for such a query involves the num- 
ber of pages accessed by a selection with an inequality 
predicate of the form Cs < i. The values need to be 
distributed in such a fashion that the number of pages 
accessed are increasing as the selectivity is increased. 
This is achieved by distributing the values with the 
following property. 

Lemma 7 For any i E [0, n], the set of values [0,2’ - 
l] are distributed uniformly in C’s and Ce. 

Intuitively, this results in requiring a SIQ(n, i) query 
to access a sequence of row indices such that successive 
row indices differ by a constant. Consider a query 
C’s < 8. This will access the rows (0, 2, 4, 6, 8, 10, 
12, and 14) in R4 with the property that successive 
rows differ by 2. Note that the condition is of the 
form C’s < 2’. Using this observation we can state the 
following lemma. 

Lemma 8 For any storage implementation, and page 
size used, the number of pages accessed by a SIQ(n,i) 
query using Cs or Ce will be given by a saturating 
monotonically increasing function on i. 

Once again using the argument similar to the one used 
for Cs and C, we can argue that preclicatability prob- 
lems can be avoided. The above observation for the 
relation & is particularly important because such a 
conclusion cannot be made if the relation is generated 
probabilisticdly as it was clone in the benchmarking 
studies. 

In summary we have argued that the queries posed 
against any of the attributes in the relation have pre- 
dictable behavior. 

4.2.3 Calibrating Procedure 

Now we proceed to show the procedure to deduce 
the coefficients from the observed execution of these 
queries. 

Claim 4 Cost of execution of queries SEQ(n,i) and 
SEQ(n + l,i) are identical except for the COMPl 
component of the cost due to the fact that they are 
accessing relations of different sizes. 

From this observation we can construct the following 
experiment: 

l Evaluate SEQ(n, i) and SEQ(n + 1, i) using an 
equality predicate on C, and observe the cost. 

l Knowing that the system will choose sequential 
scan, solve for the coefficient CSl,,. 

Note that the above experiment is not to be done with 
one or two points. Rather, many values are to be used 
to get the value for the coefficient so that error is min- 
imized. These observations will be elaborated in the 
experimentation section. 

Claim 5 Cost of execution of queries SEQ(n,i) and 
SEQ(n, i + 1) are identical except for the COMPz 
component of the cost due to the fad that they are 
selecting different number of tuples. 

From this observation we can construct the following 
experiment: 

l Evaluate SEQ(n, i) and SEQ(n, i + 1) using an 
equality predicate on C, and observe the cost. 

l Knowing that the system will choose sequential 
scan, solve for the coefficient CS2,,. 

Similar experiment on Cl and Cs can compute the co- 
efficient CS2,i and CS2,i for clustered index and un- 
clustered index respectively. As before, by projecting 
only the value for Cl with selection for Cl, the coeffi- 
cient CS2is can be computed using a similar procedure 
as above. 

Knowing CSl,, and CS2,, for the sequential scan cost 
formula, we can compute CSO,, from the respective of 
the observed cost for SEQ(*,*). 

The bifurcation of CSl,, into CSliO, and CSl:? is 
done by scanning a table twice in the same query in 
the manner specified by the following SQL query: 

select ti.cg from Rn ti,Rn t2 
where ti.Cg=t2.C6 & tl.Cg<c 

Note that computing CSli,, CSl,i and CSl,i poses 
a problem. Because these values are expected to be 
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small compared to other components and factoring 
them to a reasonable degree of accuracy is difficult. 
So we make the assumption that these coefficients have 
the same value as CS2,i. This is because the main cost 
of initial index tree lookup is the amortized I/O cost 
of fecthing index page. Since the index tree is usually 
clustered, this cost should be similar to that of fetching 
data page for clustered index, i.e., CS2,i. Our valida- 
tion on Allbase, DB2, and Inform& also corroborated 
this point of view. 

Thus we can compute the coefhcients in the cost for- 
mulae for selection using a series of observations from 
queries. 

Further note that similar experiments can be done us- 
ing C2, Cs and Cs to compute the coefficients for the 
inequality select operation. 

Next we outline the method to determine the cost of 
ordering a relation. This is needed in the ordered 
merge cost formulae. This is done by joining two h’s, 
in the manner specified by the following SQL query: 

select tl.Cq, t2.Cq from 4 ti $?i t2 
where tl.C4 =ta.c, & ti.C6+t2.C6<C 

Note that the first condition is preferable for as the 
join condition and C, does not have an index. There- 
fore, ordered merge algorithm will be used to compute 
the join. The output can be varied with the appropri- 
ate choice of the constant. Using the observation for 
queries on one relation with varying size of the out- 
put, the constant CJ2,, can be deduced. Further the 
same query can be computed for three or four values of 
n and the cost of sorting the relation can be deduced 
from the knowledge of the cost of sequential scan. 

Using the cost formulae for selection and ordering, we 
can compute the cost of joins without predicatability 
problems. 

Theorem: The coefficients of the cost formulae are 
computed without the unpredictability problems. 

Note that the viability of this approach is predicated 
on the following two assumptions. 

l Some relations can be stored in the participat- 
ing DBMS, either as a multidatabase user of the 
system or if such privilege is not available to the 
multidatabase user then by special request to the 
database administrator. These relations are to be 
used temporarily for calibration and not needed 
after calibration. 

l The observed behavior of the queries are repeat- 
able in the sense that the effect of other concur- 
rent processes do not distort the observations. 

Relation 
Name 

t1 
t2 
t3 
t4 
t5 
t6 
t7 
t8 
t9 

t10 
t11 
t12 
t13 
t14 
t15 

Relation 

Type 
RIO 
RIO 
RIO 
R13 

R13 

R13 

RlS 

RlS 

Rl5 

R17 

&7 

R17 

R20 

R20 

R20 

Size of 
tuple 

42 
42 
84 
42 
42 
84 
42 
42 
84 
42 
42 
84 
42 
42 
84 

Card. of 
Relation 

2’0 
210 
210 
213 
2i3 
213 
215 
215 
215 
217 
217 
217 
220 
220 
220 

Figure 3: Calibrating Relations 

4.3 Practical Calibrations 

In the last section we outlined a procedure to cal- 
culate the coefficients of the cost formulae. We use 
this technique to caliberate three commercial DBMSs 
- Allbase, DB2, and Inform@ i.e., compute the co- 
effiecients of the cost formulae. The experiments are 
set up so as to use mostly single table queries. This is 
not only because the join queries are time consuming 
and therefore takes too long to caliberate the system, 
but also because the cost of most join queries can be 
estimated using those of single table queries. As a 
validation, we ran various kinds of join queries and 
compared the estimated cost with the actual observed 
cost. The result showed that the coefficients can be 
estimated to the extent that subsequent estimation of 
the join queries were within 20% of actual observa- 
tions. In this subsection we discuss the queries posed 
and the calibrated coefficients. Finally we discuss the 
verification queries and the results. 

The systems calibrated were an Allbase DBMS (ver- 
sion HP36217-02A.07.00.17) running on an HP 835 
Hisc workstation, a DB2 DBMS (version V2.2) run- 
ning on an IBM 3090 Mainframe and an Informix 
DBMS (version 4.00.UE2) running on an HP 850 Rise 
workstation. The calibrations were done at night when 
DB2 was comparably lightly loaded whereas the All- 
base and Informix had no other contender. DB2 and 
Informix DBMSs were intended for production use and 
were set up to suit their applications. For that reason 
as well as to respect the autonomy of that installation, 
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1.1. select Cl from R, where Cl = c 
1.2. select C3 from R, where C3 = c 
1.3. select Ch from R, where Cd = c 
2.1. select Cz from R, where Cl = c 
2.2. select C’z from R, where C’s = c 
2.3. select Cz from R, where C, = c 
3.1. select Cz from R, where Cz < c 
3.2. select C’s from R, where C’s < c 
3.3. select CS from R, where CS < c 
4.1. select Cl from R, where Cz < c 
4.2. select Cl from R, where C’s < c 
4.3. select Cl from R, where CS < c 

/pEx Allbase 1 DB2 

1.9 1 0.60 
ts/105 
0.000175 
1.35 
0.0007 
0.00036 
1.35 
0.0007 
0.0007 
1.35 
0.0007 

ts/1.4*106 
0.0003 
1.2 
0.0003 
0.0003 
1.2 
0.0003 
0.0003 
1.2 
0.0003 

Figure 4: Calibration Queries for Table & .014 - .024 1 .007 - .009 

Note: 

the system parameters were not altered. l ts is the tuple size (in bytes). 
l CS2,i varies slightly on table size. 

There are 16 relations used in these calibrations as 
shown in Figure 3. Each type of relation was instan- 
tiated with two sizes of tuples and the smaller tuple 
relation was duplicated. This duplication is because 
the join queries needed two identical relations. Rela- 
tions of type RIO, R13, Rls and R17 were used in the 
calibration of Allbase and Informix whereas relations 
of type R13, R15, R17 and Rzo were used in the calibra- 
tion of DB2. This choice is because of the availability 
of disk space. The calibration procedure is identical. 

Figure 5: Allbase, DB2, and Informix Cost Formulae 

The actual queries used in the calibration are given in 
Figure 4, where R,, is a table of cardinality 2” and c is 
a constant which determines the selectivity. For each 
type of query against R,,, a set of queries with selec- 
tivity 2-” (i=1,2,...,n) are constructed and observed. 

For each query the elapsed time in the DBMS is 
recorded. For DB2, the elapsed time is defined as class 
2 elapse time (see [IBM-DBS]). For Allbase and In- 
formix, it is calculated by subtracting the start times- 
tamp (when the query is received) from the end times- 
tamp (when the result has been sent out). In all 
DBMSs the queries were posed after flushing all the 
buffers to eliminate the distortion due to buffering. 
Each query is issued 30 times and the average elapse 
time is calculated. Except few cases, relative error be- 
tween actual data and average value is within 5% with 
confidence coefficient of 95%. Thus, the repeatability 
of the observation was assured. 

Figure 7. This corroborates two facts: 1) DB2 access 
to index only queries are not sensitive to size of the 
relation; 2) the approximation used for CSli, is not 
affecting the accuracy very much. As it can be seen, 
the error is quite small and this was true for all tests 
using the queries above. 

To explore the effect of multiple selection and pro- 
jection clauses, we modify and rerun the twelve basic 
queries on DB2. The new queries have upto five pred- 
icates and return upto five attributes. The following 
are two example queries. 

select C1,C2,C3,CqlC5 from Iln where C5<c 

Select C5 from Rn 
where C5<c & Cl>0 & Cz>O & ($20 & C4>0 

From these, the coefficients for the cost formulae for 
Allbase, DB2, and Informix can be deduced. Least 
square fitting algorithm was used to minimize the er- 
rors and estimate the coefficients, These are reported 
in Figure 5. The elapsed time for queries of the type 
3.1 running on DB2 for relations RI3 and R17 along 
with the estimated time by the cost formula, which is 
independent of the size of the relation, are shown in 

Note that in the second query, the ‘2’ predicates are 
true for all tuples. This guarantees that they are 
checked for those and only those tuples that have suc- 
ceeded with the first (original) predicate. 

The result of the experiments shows that in all cases, 
the differences are within 10%. It seems to suggest 
that the cost of projecting additional columns is neg- 
ligible once the tuple is in the memory and the cost 
to check predicates is also minimal comparing to other 
processing costs (e.g., I/O). 

The above cost formulae were also validated using the 
36 types of join queries shown in Figure 6. Queries of 
type 1.1-2.9 return 22*i tuples depending on constant 
c, where i = O,l,..., n. In this validation, joins of 
selectivity 22*k for k < (n - 4) were tested. Queries of 
type 3.1-4.9 return 2’ tuples depending on c, where i 6 

Informix 

0.06 
(168+ts)/7*105 
0.00045 
0.06 
0.001 
0.001 
0.06 
0.001 
0.001 
0.06 
0.001 
.OOl - .002 
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1.1. select &,.CI, R,.Cl where R,.CI = c & R,,.Cl = R,.CI 
1.2. select R,.C3, R,.C3 where R,.C3 = c & R,.C3 = Rm.C3 
1.3. select R,,.C4,R,.C4 where Rn.C4 = c & Rn.C4 = R,.C4 
1.4. select &.C4, R,.Cl where R,.C4 = c & R,.C4 = R,.Cl 
1.5. select R,,.C4, R,.C3 where Rn.C4 = c & R,.C4 = R,,,.C3 
1.6. select R,,.Cl,R,.C4 where Rn.Cl = c & R,.Cl = R,.C4 
1.7. select R,,.C,,R,.C3 where Rn.4 = c & Rn.C1 = Rm.C3 
1.8. select R,,.C3,Rm.C1 where Rn.C3 = c & Rn.C3 = R,.Cl 
1.9. select R,,.C3, Rm.C4 where Rn.C3 = c & R,.C3 = R,.C4 
2.1. select &.C2, Rm.C2 where Rn.Cl = c & R,.Cl = Rm.Cl 
2.2. select R,,.C2,Rm.C2 where Rn.C3 = c & Rn.C3 = Rm.C3 
2.3. select R.,,.C2, Rm.C2 where R,.G = c & Rn.C4 = Rm.C4 

2.4. select &.C2, R,.C2 where Rn.C4 = c & R,.C4 = R,.Cl 
2.5. select R,,.C2,R,.C2 where Rn.C4 = c & Rn.C4 = R,.C3 

2.6. select R,,.C2, R,.C2 where R,.CI = c & R,.Cl = R,.C4 
2.7. select R,,.C2,R,.C2 where R,.Cl = c & Rn.C1 = Rm.C3 
2.8. select R,,.Cz,R,.Cz where Rn.C3 = c & Rn.C3 = R,.Cl 
2.9. select R,,.C2,Rm.C2 where R,.C3 = c & Rn.C3 = R,.C4 

3.1. select R,,,C2,Rm.C2 where Rn.C2 < c & R,.C2 = Rm.C2 
3.2. select R,,.Cs,R,.Cs where R,.Cs < c & R,.Cs = Rm.Cs 
3.3. select R,,.Cc,R,.Cg where Rn.Cs < c & Rn.Ce = R,.Cs 
3.4. select I&,.&., Rm.C2 where R,.Cs < c & Rn.C% = R,.C2 

3.5. select R,,.C6,R,.C5 where R,.Cs < c & Rn.C6 = R,.C5 
3.6. select&,.C2,R,.,,.C6 where R,.C2 < c& R,.C2 =%-,.C6 

3.7. select R,,.C2, R,.Cs where Rn.C2 < c & R,.C2 = R,.Cs 

3.8. select F&,.(75, R,.C2 where Rn.Cs < c & Rn.C3 = R,.C2 
3.9. select &.Cs, Rm.C6 where Rn.C5 < c & R,.Cs = R,.Cs 
4.1. select R,,.Cl, R,.Cl where Rn.C2 < c & Rn.C2 = R,.C2 
4.2. select R,,.Cl,R,.Cl where %.CS < c & h.C5 = Rm.Cs 
4.3. select R,,.Cl,Rm.C~ where Rn.Cs < c& Rn.Ce = Rm.Cs 
4.4. select &,.CI , R,.Cl where R,.C6 < c & R,.Cs = R,.C2 
4.5. select R,,.CI ,R,.Cl where Rn’.Cs < c & R,.Cs = R,.Cs 
4.6. select R,,.CI,R~.CI where SC2 < c 8~ JL.C2 = %.CS 
4.7. select I&,.Cl, R,.Cl where R,.C2 < c & Rn.C2 = R,.Cs 
4.8. select R,,.Cl, R,.Cl where R,.Cs < c & Rn.C3 = R,.C2 
4.9. aekit Rn.Ci,a m 9 .Cl where Rn.C5 < c & Rn.Cs = Rm.Ce 

Figure 6: Join Queries for Tables R,, and R,,, 

min(n, m). Joins of selectivity 2’ for Ic < min(n, m)- 
4 were tested. In both cases, the observed value was 
compared with the estimated value. 

In Figure 8, we show the comparison of the estimated 
value with the observed values for the type 3.1 join 
queries running on DB2 using pairs of relations Ri3 W 
Rf3, Ri7 W Rf7 and RI3 W R17. Note that, in this case, 
the DB2 chooses nested loop as the join method and 
index-only access method. Therefore, in all the three 
cases the cost should be independent of the cardinality 
of the two relations. This is observed from the graph 
shown in Figure 8 wherein the maximum error is about 
10%. Once again corroborating the cost model and 
approximations. 

Figure 9 and 10 show the joins using sort-merge with 
R:, W Rf7 and RI3 W RI7 on DB2 respectively. Note 
that the estimated cost is once again within 10% error. 

The results of this validation showed that in more than 
80% of the cases the observed value was within a band 
of 20% error from the estimated value. Further, in all 

the other cases the following phenomenon contributed 
to the majority of the error. All these cases were when 
the system used unclustered index in the inner loop of 
the nested loop join. As the cost C’Sui is computed as 
a stand alone query, the potential buffering of pages 
underestimated the cost of this access in the inner loop 
of the join where it is competing for buffers with the 
outer loop. Thus, the estimate was always lower. We 
believe this can also be corrected and is a topic of 
future research. 

5 Conclusion 

In this paper we have proposed to use the traditional 
architecture for query optimization wherein a large ex- 
ecution space is searched using dynamic programming 
strategy for the least cost execution based on a cost 
model. It is shown that the traditional execution space 
can be simply extended to allow for remote joins and 
the search strategy can be used as is in the new con- 
text of heterogeneous DBMSs. Thus the crux of the 
problem is to design cost models for different DBMSs 
such that they can be used by the heterogeneous query 
optimizer. 

The design of cost model for proprietary DBMSs is an 
important problem but does not pose any new chal- 
lenges in our opinion. In contrast deriving the cost 
model for conforming and non-conforming DBMSs 
while treating the DBMS as a black box is the chal- 
lenge. In this paper, we proposed a calibration proce- 
dure for conforming DBMSs. A calibrating database 
is created in the DBMSs that are to be calibrated and 
has properties that enable the system to make observa- 
tions while avoiding unpredictability problems result- 
ing from the black box nature of interaction. 

This calibrating procedure has been used to cali- 
brate three commercial DBMSs (Allbase, DB2, and 
Informix) and the results are promising. The esti- 
mated values for majority of the queries were within 
20% error of the observed values. The remaining ones 
with more error were of a particular type that used 
unclustered index in nested loop joins. Being the 
first attempt to calibrate a database system using an 
arm-length procedure, this is not only novel but also 
promising. 

This work is definitely a beginning of more research 
that needs to be done for this approach to be success- 
ful. First we would like to calibrate a few more DBMSs 
such as Oracle and Sybase. As mentioned before, it is 
possible to improve the cost model by incorporating 
more aspects of the underlying system. 
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Quantifying the effect of buffering on unclustered 
iildex is an important extension. As mentioned 
before, almost all the queries that had significant 
error could be argued to be due to this problem. 
Inferring de facto clustering from the data, such 
as Cz in the database would be quite useful. Sys- 
tems such as DB2 have knowledge of the degree of 
clustering for this column to be 100% and there- 
fore may use it. In general, such information can 
still be used to interpolate the cost of ‘less clus- 
tered’ data. 
Detecting when an index scan switches to sequen- 
tial scan for an unclustered index is an impor- 
tant information if this access method is used in 
a nested loop. As the system may be using some 
rule of thumb for the switch, the HDBMS opti- 
mizer should know the point of transition. 

Finally the approach proposed here was in the con- 
text of a particular cost model. It should be obvious 
to the reader that even if the cost model is changed 
the approach can still be used to devise a new proce- 
dure. Thus, we feel the process of designing a synthetic 
database in a deterministic manner has merit. 

Using the knowledge of the proposal here for conform- 
ing DBMSs, it is possible to extrapolate an approach 
for the non-conforming DBMSs. We are developing 
a single invocation and execution model for DBMSs 
in all three categories so that the query optimization 
process developed in this paper can be extended to 
cover non-conforming DBMSs. To serve the purpose, 
we plan to integrate some widely used non-conforming 
DBMSs such as IMS, VSAM and Unix applications. 
The calibration procedure may need to be enhanced 
to measure DBMSs of this category. 

We also plan to explore issues of post query opti- 
mization such as dynamic reconfiguration of execu- 
tion plan at run time. This is important, especially 
in HDBMSs, because it is difficult (and sometimes im- 
possible) to get accurate cost formulae. Other related 
issues include reduction of invocations to participat- 
ing DBMSs, cross site data buffering, new global join 
methods, etc. These are topics of future research. 
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