
Implementing High Level Active Rules

on top of a Relational DBMS

E. Simon, J. Kieman, C. de Maindreville

INRIA Rocquencourt,
78153 Le Chesnay,

France
Eric.Simon%uia.fr, kieman@almaden.ibm.com, maindrev@aar.alcatel-alsthom.fr

Abstract: Active database systems have rules (usually
called triggers), consisting of an event that causes a
condition to be evaluated, and if true, results in the
execution of a predefined action. However, existing
trigger languages have a few drawbacks. First, the
proposed semantics do not take advantage of well
understood and accepted formalisms developed for
rule-based systems, and thereby do not capitalize on
existing rule-based technology. Second, trigger
languages are low-level languages. These languages
require that the user provides all triggering conditions
associated with rules. This makes difficult the
specification of triggers and their maintenance. In this
paper, we present an extension of a deductive database
language, namely RDLl, towards active rules. By active,
we mean rules that react to external events. Rules are
expressed at a high level so that triggering conditions
are derived from rules by the system. The semantics of
our rule language is formally described by means of a
partial fixpoint operator which encompasses the
deductive database and active database paradigms.
We also present an architecture in which the system
responsible for detecting events issued by application
programs and triggering rules, is front-ended to a
relational DBMS.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the tit& of the publication and its date appear, and notice
is given that copying is by permission of the Very large Data
Base Endowment. To copy otherwise, or to republish, requires a
fee and/or special permission from the endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

1. Introduction

Integrating rules within a DBMS has been the focus of
important research on active database systems IHan89,
SJGP90, WCL91, CBB+89]. A rule generally consists of
an event that causes a condition to be evaluated, and if
true, results in the execution of a predefined action.
Events are modifications of the database, conditions
correspond to database queries, and actions perform
changes to the database. Sometimes the condition is
omitted. Rules of this kind are often called triggers or
Event Condition Action rules. They are powerful to
express integrity constraints like: “the salary of an

employee can only increase”, or “only those
departments which have no employee can be deleted”.

Existing trigger languages suffer from two main
drawbacks. First, the semantics of an active database
rule system is not well understood. Different rule
system semantics have been proposed IWCL91,
SJGP90, McD89, Han891 using descriptions ranging
from natural language to pseudo-code procedures. A
Petri-net model is used in IZB901 to formally compare
the semantics of active database systems, but the
model essentially concentrates on couplings between
events and conditions and actions of rules. An
imperative database programming language is used in
[HJ91] to describe the semantics of rules in active
database systems (e.g., Starburst). Nevertheless, most of
the proposed semantics do not take advantage of well
known and accepted formalisms developed for rule-
based systems such as production systems in AI (e.g.,
OPSS), logic programming languages (e.g., Prolog), or
deductive databases (Datalog-like languages). Hence,
active database systems do not capitalize on existing
rule-based technology (optimization techniques,

315

algorithms, programming environments, etc.) and
important issues like: when should rules be fired ?, how
should they be fired ?, how should their effects be
combined ?, are not given a uniform and formal
treatment.

A second weakness of existing active database rule
languages is that triggers are very similar to daemons or
database procedures, as specified for instance in
[Cod73], i.e., trigger languages are low-level languages.
This makes difficult the specification of triggers and
their maintenance. It is hard to have a global view of
what tasks are being performed by a set of triggers,
because a user-level rule (e.g., an integrity constraint) is
chopped into many triggers. For instance, consider the
two relations:

Emp (name, salary, dept-no, emp-no)

Dept (deptgo, mgr-no)

The referential integrity constraint saying that: “every
employee works in at least one department” will be
specified by several rules respectively triggered by
insertions into Emp, updates to Emp or Dept, and
deletions from Deppt.

Our starting point is that deductive database languages
provide a good basis for defining an active database
rule language. These languages have a simple and fairly
well understood semantics, formally defined using
fixpoint operators. They provide a formal basis to other
rule-based languages like OPSS or Prolog.
Implementation techniques have been developed in a
database framework, including optimization algorithms
(e.g., [SellS9]) Finally, various extensions of Datalog have
been proposed to obtain powerful languages. Examples
of deductive database systems are described in [NT89,
KMS90, BF89, PDR911.

Deduction rules can always be translated into triggers.
One solution, described in [W91], is to materialize all
intensional data defined by deduction rules, and specify
triggers for maintaining these data whenever
extensional data are updated. Practically, such
simulation entails a clear space-time tradeoff. On the
other hand, triggers cannot always be mapped into
deduction rules. A major reason is that deductive
database systems are not designed to manage events
(like delete or update operations), and deduction rules
cannot refer to the event’s effects.

Our first contribution in this paper, is to extend a
deductive database rule language, namely RDLl
[KMS90], towards an active database rule language,
thereby capitalizing on deductive database technology.
As a result, our language offers three main features

compared to existing trigger languages. First, rules are
expressed at a higher level. For instance, an integrity
constraint does not need to be decomposed into as
many triggers as the number of events that can violate it
(a notable exception is Ariel [Han89], which also has this
feature for static constraints). Second, the meaning of a
set of rules is formally described by two distinct aspects:
(i) the coupling between rules and events (including
transaction boundaries), and (ii) the semantics of a set
of rules, (on which database state are the rules executed
?, how are they executed ?). The second aspect is
common to both deductive and active database rule
languages. Therefore, we take advantage of the
formalisms developed within the framework of
deductive databases to formally characterize rule
application semantics. Finally, our rule language
facilitates the integration of deduction rules with ache
rules. By active rules, we mean rules that react to events.
We provide a single uniform notion of rule and our rule
semantics covers both the deductive database and
active database paradigms. In particular, a set of rules
whose evaluation is triggered by some events may use
rules that deduce data in order to perform intermediate
computations.

The second contribution of this paper is to propose an
architecture in which the system responsible for
detecting events and triggering rules is tightly coupled
with a relational DBMS. Most existing architectures for
active database systems integrate a rule-based system
within a DBMS (e.g., Postgres, Starburst, Alert). Our
approach does not require any change to an existing
DBMS. Rules, or more generally modules of rules, can
be dynamically defined. A newly defined module is first
compiled into an executable C/SQL procedure. It also
yields an incremental compilation of an environment
initialization procedure. These two procedure codes are
then assembled together within a specific Toolbox. The
resulting system, called Trigger Monitor, is activated
whenever an application program is connecting to the
database system. It analyzes the successive database
commands issued by the application program and
automatically triggers the evaluation of rules. This
coupling approach has the advantage of being flexible,
and portable on various kinds of DBMSs. However, it
can be less efficient than the integrated one because it
cannot take advantage of low-level system features
provided by the DBMS.

The paper is organized as follows. Sections 2 and 3
respectively present the syntax and semantics of our
rule language. In Section 4, we describe the process and
functional architectures of the Trigger monitor. The
Toolbox we have implemented at INRIA is then

316

described in Section 5. Comparisons with related work
are reported in Section 6. The last section concludes.

2. A Language for Active Rules

In this section, we extend a deductive database
language, namely RDLl IKMS901, towards a language
that supports active rulesI. The syntax of rules has been
augmented so that rules can refer to events, and
couplings between rules and events can be specified.
We first specify our meaning of events and introduce
the notion of delta relations. Then, the couplings
between rules and events is defined. Finally, the general
syntax of rules is given and illustrated.

2.1 Events and Delta Relations.

Throughout this paper, we shall consider that rule
processing is part of the execution of a given transaction
which can either be embedded into an application
program or interactively produced by a user. That is,
rules are activated and executed as a result of
operations issued by a transaction. We view a
transaction as a stream of operations consisting of SQL
commands (like select, insert, delete, commit, . ..) and
non SQL database commands.

Most existing trigger languages require rules to be
explicitely attached to events for which they can react,
using a specific statement (e.g., “WHEN <events> . ..‘I)
preceeding the specification of the rule. In our
language, triggering events need not be specified by the
user when defining rules. Instead, they are implicit in
rule definitions and can be derived by the system at rule
compile-time. We simply provide system-defined
relations, called delta relations, that enable to refer to
the effect of database events within rules’s conditions.
These relations record the net effects of database
changes performed by SQL commands: insert, update,
delete. Similar kind of relations are used in [WF90,
HJ91, RCBB891. We follow a syntax close to [WCL91] to
denote delta relations.

l Delta relations: If T (Al,...,An) is a relation schema,
then the delta relations associated with T have the
following schemas:

inserted-T (Al,...,An)

deleted-T (Al,...,An)
updakd-T (oldAl, oldAn, Al ,..., An)

1 We shall use the words actim rule instead of the word
trigger to denote a rule in our active database system.

Intuitively, inserted-T (Al,...,An) refers to the tuples
currently inserted into T, deleted-T (Al,...,An) refers to
the tuples currently deleted from T, and updated-T
(oldAl, oldAn, Al,...,An) refers to the tuples currently
updated in T with their new value.

l Properties of Delta relations: We impose that delta
relations satisfy the following:

1. inserted-T A deleted-T = 0;

2. deleted-T n TbldAl, oldAn (updated3 = 0,

deleted-T n l7~1, h (updated-T) = 0;

3. inserted-T n lI~l, h (updated-T) = 0, and

in=ted n TbldAl, oldAn (updated-T) = 0;
4. The current vahe of T is defined to be:

T - [deleted-T u TbldAl,...,oldAn (updated-T)]

U [inserted-T u HAI ,..., An (Updated-T)]
n u

2.2 Coupling Rules with Events and
Transaction Boundaries

As noted in [ZB90], a crucial point in the specification of
triggers, is to express how rule execution relates to
events, including those that mark the transaction
boundaries (commit, exit, rollback). Different coupling
modes can be envisaged by stating when the condition
(or the action) of a rule is evaluated relative to the
transaction in which the triggering event is signaled.

A single coupling mode is defined in our rule system. It
specifies if a rule must be evaluated either when the
triggering event occurs or when the transaction reaches
a commit point. In the former case, we say that the
evaluation is immediate relative to the event that
triggered it, otherwise we say that the evaluation of the
rule is deferred until the end of the transaction. We do
not provide means to specify a coupling mode in which
rule evaluation is decoupled from the triggering
transaction as in Hipac (see [ZB9Ol).

Both immediate and deferred rules are useful. For
instance, immediate rules enable to detect an
inconsistent intermediate database state as soon as it
occurs. An immediate decision can be taken, like
aborting the transaction, or issuing some compensating
actions in order to ensure database consistency.
Typically, the rule saying that: “the salary of an
employee cannot decrease” can be checked
immediately. Other rules need to be checked at the end
of the transaction because they are interested in the
final database state reached by the transaction

317

(intermediate inconsistent states w.r.t the rule are
allowed). The referential integrity constraint between
EMP and DEPT mentioned before is an example of
deferred rule. Deferred rules can also be checked
before the end of the transaction at infegrify
checkpoints (also called assertion points in [ANSIgO]).
We introduce a “CHECKPOINT” command that can be
used within a transaction to trigger the evaluation of all
deferred rules.

2.3 General Syntax of Rules

The syntax of our rules is based on that of RDLl
[KMS90], and incorporates the procedural extensions
described in [KM91]. A rule consists of an if-then
statement, where the if-part (also called condition) is a
tuple relational calculus expression. The then-part (also
called action) of the rule is a set of elementary actions,
each being either a database update, a variable
assignment or a procedural call (which does not involve
any database update).

Rules are encapsulated within rule modules. A module
contains a relation declaration section which defines
input, output, base, and deduced relations. Base
relations correspond to relations that are physically
stored in the database. Input relations can be passed as
arguments to a module which produces a set of Oupuf
relations as a result. Input and output relations are
always extensional. Deduced relations are temporary
(i.e., intermediate) relations computed by a module
during execution. We refer to [KMS90] and (KM911 for a
more detailed presentation of the rule language.

To support the declaration of active rules, the RDLl
syntax is enriched in two ways. First, the coupling mode,
immediate or deferred, can be specified at the module
level or at the individual rule level. Two key words,
IMMEDIATE and DEFERRED, can be used just after
the key word “rules”, or the key-word “is”, as shown in
the examples below. Second, system-defined relations
can be referenced in the condition part of rules.

We now present examples of rule modules and give
their intuitive semantics.

Example 2.1: The module below defines a referential
integrity constraint between relations EMP and DEPT.

module ref-constraint-emp-dept;
base EMP (name string, emp-no integer, dept-no

integer, salary integer);
DEPT (mgr-no integer, deptgo integer);

rules
r is DEFERRED

if EMP (x) and not exists y in DEPT (x.dept-no =
y.dept-no) then - EMP (x);
end module

In the above rule, tuple variable x ranges over relation
EMP, and y is a quantified variable ranging over relation
DEPT. Intuitively, this module defines an active rule
that is activated whenever the EMP or DEPT relations
are modified. Here, EMP and DEPT always refer to the
current values of the employee and department
relations. Thus, if an employee with no department is
inserted it will be rejected (i.e., deleted from the set of
employees to be inserted). If a department that has
employees working in it is deleted then all its employees
will be deleted. As said before, triggering events are not
specified by the user but are rather implicit. A crucial
point is to determine how triggering events (e.g., insert
to EMP, delete from DEPT) can be derived from rule
conditions.

Next example shows that one can also explicitly refer to
event’s effects within rules.

Example 2.2: This example is borrowed from [WCL911.
We test if any inserted or updated employee has a
salary greater than 100. If true, the action sets the
salaries of all inserted employees to 50 and reduces
each existing employee’s salary by 10% if it is greater
than 100.

module salary-control;
var integer change;
base EMP (name string, empgo integer, dept-no
integer, salary integer);
rules DEFERRED
rl is
if (exists z in Inserted-EMP (zsalary > 100)) or (exists
z in updated_EMP (z. salary > 100))
thenonce change = 1;

r2is
if inserted_EMP (x) (change = 1)
thenonce -/+ EMP (x; salary = 50);

r3 is
if EMP (x) (change = 1 and xsalary > 100)
then -/+ EMP (x; salary = .9 * xsalary);

control priority (rl, r2, r3)
init (change = 0;)
end module

We use a global variable, change, to enable and disable
the changes to EMP performed by r2 and r3. The
variable is initialized in the “init” section, and then
updated in the action part of rule rl. In fact, this variable
simulates a rule rl saying: “if crl’s condition> then

318

(execute r2; execute r3;)*“. Anticipating the description
of our procedural control language in Section 3.3, the
control string “priority (r-1, r2, r3)” indicates that rl has
priority over r2 which has priority over r3. When the
module runs, rule rl is fired first. The “thenonce” key-
word means that if the rule is fired then it will never fire
again. If the value of variable change is set to 1, rule r2
fires and all employees in inserted_EMP are updated
with a salary equal to SO. Then rule r3 recursively
updates employees who have a salary greater than 100
in EMP (i.e., the EMP relation and its associated delta
relations). Notice that here again, triggering events are
not specified by the user. Instead, the user may refer in
the rules to the cumulated effect of previous events.

For instance, suppose the situation is as follows. EMP
contains two tuples, Bob with salary 90K and Alice with
salary 120K. Suppose the transaction inserts a new
employee Joe with salary 1lOK and updates Bob’s salary
to 110K. What happens ? Rule rl sets the value of
change to 1. Then, rule r2 deletes Joe from
inserted_EMP and inserts instead tuple (Joe, XX). Rule
r3 deletes Bob from updated_EMP and inserts instead
tuple (Bob, 9OK, Bob, 99K), and inserts tuple (Alice,
12OK, Alice, 108K) into updated_EMP. Finally, r3 deletes
Alice from updated_EMP and inserts instead (Alice
12OK, Alice 97.210.

3. Semantics of Rules

As mentioned before, rules are activated and executed
as a result of events issued by a transaction. The
semantics of our rule system is described in three steps.
Fust, in Section 3.1, we describe when rules are activated
with respect to the events of the transaction. Second, in
Section 3.2, we define how a given set of activated rules
is executed using a partial fixpoint operator. Finally, the
notion of procedural control over a set of rules is
introduced in Section 3.3 and the control language is
presented.

3.1 Activation of Rules

The way rules are activated with respect to the events of
a transaction is described by a recursive function
evaluate, which takes as parameters a stream of events
and a database state. The execute-imm function
computes the partial fixpoint of a database instance
using some immediate rules. Finally, the execute-diff
function computes the fixpoint of a database instance
using some deferred rules. In the following, we use the
abbreviations: Tx for a transaction, R for a rule base,
and I for a database instance (including delta relations).
Also, we denote e(1) the database instance where delta
relations in I have been updated accordingly to event e,
the notation x.S, means that x is the first element of a

The last example demonstrates a deduction capability.

Example 2.3 : We define a deduced relation Manages
(sup, sub) to contain the management hierarchy of the
company using the rules rl and r2 (transitive closure of
a relation obtained by joining relations EMP and DEPT).

stream S, and [I denotes the empty stream.

evaluate ([I, I) = execute-diff (R, I)

evaluate (e.Tx,I) = evaluate (Tx, execute-imm (R, e(I)))
% at each invokation of evaluate: event e

module recursive-rule ;
base EMP (name string, emp-no integer, dept-no
integer, salary integer);

% is processed and immediate rules are
% evaluated

DEPT (mgr-no integer, dept-no integer);
deduced MANAGES (sup integer, sub integer) ;
rules IMMEDIATE
rl is
if DEPT (x) and EMP (y) (x.dept-no = y.dept-no)
then + MANAGES (sup = x.mgr-no, sub = y.emp-no) ;

r2 is
if MANAGES (x) and MANAGES (y) (x.sub = y.sup)
then + MANAGES (sup = x.sup, sub = y.sub) ;
end module

The evaluation process can be depicted using a
graphical notation close to the one of [WF90]. Lti.,‘i
stand for the initial database state, we denote Ei the 1
event of transaction Tr, and fix (R, Ij), a fixpoint of 11
using rules in R (if the rule execution terminates). We
assume that Tx contains p events and that Ri denotes
the set of rules actually activated by event Ei. If Ep is the
event associated with the “commit” action of Tx, then
Rp is the set of deferred rules. If i # p then Ri is the set of
immediate rules.

As in RDLl [KMS90], an SQL select operation on
MANAGES will immediately activate the two rules. The
transformation of the select query is detailed in Section
4.3.2. This example shows that there is a single notion of
rule for both the deductive database and active
database paradigms.

2 Indeed, this is a partial fixpoint because neither the
termination of the execution nor the unicity of the result
can be guaranteed for general rule programs [AS91]. For
simplit%?y, we abusively use the word fixpoint.

319

2. If + T(t) is in Imm-Cons (r,I) and - T(t) is not in
Imm-Cons (r,I), then: if AT-(t) is not in I then
AT+(t) is in J otherwise AT(t) is not in J.

3. If - T(t) is in Imm-Cons (r,I) and + T(t) is not in
Imm-Cons (r,I), then: if AT+(t) is not in I then AT-
(t) is in J otherwise Al-+(t) is not in J.

4. If current-T(t) is in I and - T(t) is not in Imm-Cons
(r, I), then T(t) is also in J

10 5 11 +fix (RI, II) 512 -1 fix VP, IP)

On this diagram, event El maps the initial state into a
new state II in which delta relations, initially empty,

may contain some tuples (if the event is an SQL select
then IO = II). Then, all immediate rules are used to
compute the fixpoint of II. The next event is then
processed, and so on so forth, until the end of the
transaction is reached.

3.2 Partial Fixpoint Semantics of Rules

In this section, we concentrate on the meaning of a set
of rule modules. We first define the notion of
immediate consequence of a database state using a
rule instantiation. Let I be a database state, and r be a
rule. An instantiation of r, henceforth r’, is a rule in
which every free variable ranging over a relation T has
been substituted by a tuple in the “current value” of T in
the state I. If T is not a delta relation, then the “curent
value” of T, denoted by current-T, in I is: (T - AT-) u AT+
where AT- refers to all tuples currently deleted from T,
AT+ refers to all tuples currently inserted into T. Delta
relations AT+ and AT- are required to satisfy the
properties given in Section 2.1, in particular: AT- n AT+ =
0. Formally, we shall treat an update of a relation T as a
deletion from T and an insertion into T.

If r’ is such that its condition part is true in the state I,
then the action part of r’ is called an immediate
consequence of I using r’. Given a rule r, Imm-Cons (r,I)
is defined to be the set of all the immediate
consequences of I using instantiations of r.

Note that there is a very simple way of constructing
Imm-Cons (r,I). Suppose that r’s condition has q free
variables ranging over relations TI, Tq (not

necessarily pairwise distinct& The set of all tuples in the
product TI X T2 X . . . X Tq that satisfy the condition part

of r, is first retrieved using a relational query. This
returns the set of all instantiations of r that satisfy the
condition part. Imm-Cons (r, I) is then obtained by
projecting these instantiations on the attributes of the
relations that appear in the action part of r.

l Set-oriented semantics. The set of rules R of a module
defines a relation among database instances as follows.
For each state I, J = R(I) if for some rule r in R, J is such
that:

1. If current-T(t) is in I, and + T(t), - T(t) are both in
Imm-Cons (r, I), then current-T(t) is in J.

If the sequence R(I), R(R(I)), . . . has a limit, it is denoted

fix RI). iI

Intuitively, this definition reflects the facts that: (i) every
relation T in the condition part of a rule refers to the
current value of T, (ii) if both a fact and its negation are
produced by some rule, the effect of the rule w.r.t. this
fact is null, and (iii) the delta relations are always
pairwise disjoint sets for every relation T. Every rule is
fired deterministically, but the order of firing rules is left
unspecified, thereby introducing non-determinism in
the computation. This semantics captures the
semantics of deductive rules in RDLl JKMS901.

l Semantics of modules. A module is composed from a
set of rules R. A set of modules M = (RI, Rn) defines a
relation among database instances as follows. For each
state I, J = M(I) if there exists j, 1 < j I n, such that J = fix

‘Rp. [I

Thus, modules are computed one after the other and
each module is computed up to saturation before
executing the next one. Ordering between modules is
described in the next section.

3.3 Controlling the Execution of Rules

The execution order of rules that belong to a triggered
module is specified using a procedural control language
derived from [MS88]. A similar control language, called
a rule algebra, has been proposed in [NT891 in the
framework of the LDL language. Our control language
includes basic symbols that are rule names and three
primitives: sequence, saturation, and disjunction. The
control language is used to declare a control string in
the “CONTROL” section of a rule module. The syntax of
the control language is now given.

cexp> := <rule-name> I <sequence> I <saturation> I
<disjunct>

<sequence> := seq (<expI>, <exp2>)

<saturation> := [-z.xpl>, <exmz-1

<disjunct> := cexpI> + cexp2>

The sequence primitive means that argument
expressions are evaluated in their specified order. The

320

saturation primitive means that argument expressions
are evaluated up to saturation in any order. Finally, the
disjunct primitive specifies an exclusive “or” between
argument expressions. More formally, the semantics of
these primitives is given by the eval function below.

eval (r) = fire r if r is firable and returns r, nil otherwise
eval (seq (cexpl>, cexm>)) = eval (cexpl>); . . . ;

eval (<expg); . . .

evd ([-=pl> <expn>l) =

repeat eval (cexpi>), i l (1, n)

until all cexpi> evaluate to nil
eval (<expl> + cexp2>) =

eval (cexpl>l or eval (cexp2>)
<exp>; nil = cexp>

Example 3.1: Consider the control string: s = seq (rl +
r2, r3). This is interpreted as: rl or r2 is first evaluated
and then r3 is evaluated. []

Because priorities between rules are often useful, we
introduced a special key-word priority such that priority
(cexp1>, . ..I cexpn>) expresses that <expl> has priority
over cexp2> which has priority over . . . over <expn>.

Formally, priority (cexpl>, <expn>) is defined by:

b-l (Iseq ([seq . . . (kq @xpl>l, cexp2>)1, <exp&l
<-- (n - 1) times -->

Example 3.2: The control string: s = [priority (rl, r3),
priority (rl, r2>J, expresses that rl has priority over both
r2 and r3, but no priority exists between r2 and r3. [I

Two kinds of default priorities between rules are
allowed. First, if no control string is specified in a rule
module, rules are evaluated in their specification order
and every rule is executed up to saturation. Now,
suppose that a control string s only contains some of the
rules composing the module and that rules rl . . . rk do
not occur in s. The partial-evaal function is defined to
evaluate such a control string. Formally, we have:

partial -eval (s) = eval (priority (s, [rll + [r21+ . . . + [rkl))

Essentially, the partial-eval function enforces that the
control string has always priority over the other rules.
Suppose that s is evaluated up to saturation then s will
be evaluated again.

Finally, a default ordering relationship is defined
between modules triggered at the same time. This
ordering expresses that the least recently created
module is executed first.

Our control language is more powerful than a priority
system as proposed in Starburst [ACL91, WCL91]. For
instance, a simple ordering like: “fire rl once, fire r2
once, fire r3 once, and repeat this up to saturation”, is
not expressible with priorities as soon as recursive rules
are allowed. In fact, our language enables to describe
any sequential computation of a set of rules.

A limited control language can be compensated by
expressing control within rules (e.g., using temporary
relations that play the role of control predicates). Our
desire to have control separated from rules as much as
possible has influenced the design of a powerful control
language. Note that in Example 2.2, we use control both
within rules and with a control string.

4. Rule System Implementation

This section presents the functionality and the
architecture of an active database system resulting
from the specification of a set of rule modules.

4.1 Basic Assumptions and Design
Decisions

A number of important decisions underly the
architecture of our active database system: (i) a rule
base is compiled into an executable system called
Trigger Monitor which automatically activates and
executes rules depending on the actions taken by an
application program, and (ii) the Trigger Monitor is
coupled with a relational database system.

Most current implementations of active database
systems integrate rule processing within an existing
DBMS (e.g., Postgres and Starburst rule systems). This
should yield efficiency because the implementation of
rule processing can take advantage of low level system
capabilities like attachments in Starburst [WCLBI], or
tuple markers in Postgres [Ston90].

However, based on our previous experience in
developing an integrated deductive rule system
[KMSBO], we believe that the integrated approach
suffers from two drawbacks. First, the integrated system
is hard to maintain and to change because its
implementation is specific to the extended DBMS.
Active database rule languages differ significantly in
their semantics, and no sufficient experience has been
gained in order to agree on a common semantics.
Existing rule languages are then evolving and changing
their semantics may require considerable changes in
the implementation if it is made too dependent on the
usage of low level system features. A second point is

321

heterogeneity. The integrated approach has the
drawback of being not portable. On the other hand, the
coupled approach facilitates the implementation of a
rule system on different DBMSs that accept a common
interface protocol like SQL (which is the case of
relational DBMSs and some object-oriented DBMSs).
We argue that portability on multiple, existing SQL
systems is the advantage of our approach.

We assume a client-server architecture where an
application program is linked with a library of
communication procedures to interface a DBMS
server. We consider a typical library including
procedures like SqlConnect, SqlDisconnect, SqlRead,
and SqlExec. The SqlConnect and SqlDisconnect
procedures respectively open and close a connection
between the application process and a DBMS process.
The SqZExec procedure takes an SQL command as
input and transmits it to the corresponding DBMS
process. Such communication procedures may vary
from one DBMS to another. However, our library can be
easily emulated on existing DBMS.

4.2 Process Architecture of the Trigger
Monitor

The Trigger Monitor is an executable program that
automatically activates and executes rule modules
according to the operations performed by an
application program. This program results from the
compilation of a rule base. In this section, we describe
the process architecture.

Since we assume no change on the underlying DBMS,
the communication between an application process and
a DBMS process must be intercepted by the Trigger
Monitor. This is achieved by using renamed
communication procedures to establish and relax the
connection between the application and the DBMS.
The SqIConnect procedure call is replaced by an
SqZConnect* procedure call that creates a Trigger
Monitor process instead of a DBMS process, at
application start-up time. Communication with a local
or remote DBMS process is then established by the
Trigger Monitor. Thereafter, the Trigger Monitor
intercepts all commands issued by the application to
the DBMS. A Trigger Monitor process is created for
every application process and interfaces the DBMS
process which the application process communicates
Witl-L

The Trigger Monitor and the application processes
reside on the same client workstation. Figure 4.1 depicts
the run-time process architecture.

LAN /Conlnl. Sopvare 1

Client Application

Figure 4.1 : Run-time Process Architecture.

4.3 Functional Architecture of the Trigger
Monitor

4.3.1 General Structure

The Trigger Monitor is functionnally decomposed into
three main components: the environment initialization,
the event handler, and the rule evaluator. The pseudo-
code procedure below describes the logical structure of
the Trigger Monitor.

Trigger Monitor
bagin
crea~~DBlS~rcuzss0;
init_Environnmt () ;
while (anSQLF.XITounnmd is not issued by the

a@i.cation) do
event = read-(Xient_EventO;
Handle-Exent () ;
send_Result~to_Client () ;

endwhile
end

The hit-environment procedure performs two tasks.
First, it builds a data structure describing all the delta
relations that should be managed for executing rules in
the rule base. For instance, if there is a rule referencing
the EMP relation or any of the delta relations associated
with EMP then the three delta relations associated with
EMP have to be managed. The second task is to build a
data structure containing the names of all the rule
modules that make the rule base.

The read-Client-Event procedure is a (simplified) SQL
parser that analyzes incoming database statements
(e.g., Sql-Exec). The parser isolates the SQL commands.
If the command updates the database, it determines
which relation is updated and which relations
participate in the command.

322

4.3.2 The Event Handler

The Event Handler performs a case analysis of the SQL
commands read by the read-client-Event procedure. If
the command is a SELECT involving deduced relations,
then all modules participating in the definition of the
deduced relations are executed. A modified SELECT
statement in which deduced relations are replaced by
the temporary relations containing their extensions, is
sent to the DBMS. If the SELECT only involves base
relations, it is issued to the DBMS and the result is
returned to the client application. If the command is an
UPDATE, it is sent to the DBMS. We assume that the
result of an SQL data manipulation command can be
stored as a temporary relation; a special command
“NAME” assigns a relation name to the last query result.
In the case of an UPDATE command, the temporary
relation returned by the system only contains the
updated tuples. A specific treatment is then necessary
to build the delta relation associated with updates.
When the command “NAME” is used, a specific
variable indicates the number of tuples in the
temporary relation created by the command. This
number indicates that an update has changed the
database state. If so, the Manage-Update procedure
updates the corresponding delta relations, if any,
according to the set-oriented semantics described in
Section 3.2. Then, the Rule Evaluator executes
immediate rules.

If the command issued by the application program is a
COMMIT or a CHECKPOINT, deferred rules are
evaluated and then the query is sent to the DBMS (only
in the case of a COMMIT). Below, we give a non-
exhaustive description of the analysis performed by the
Event Handler.

Handle-Event(event) {
switch (event.type)

case UPDATE:
send-Query-to-DBMS();
receive-Result-From-DBMSO;
if (event.result.tupleCount > 0) (
manage-Update(event.updatedRelation,

UPDATE);
evaluate-rules(event);}

/* INSERT, DELETE similar to UPDATE */
case SELECT:

if (query involves deduced relations)
{evaluate-rules(event);modify-query;}
send-Query-to-DBMSO;
receive-Result-From-DBMSO;

case COMMIT:
execute-deferred-rules;
send-Query-to-DBMSO;
receive-Result-From-DBMSO;

reset-All-EventsO;
case ROLLBACK:

send-Query-To-DBMSO;
receive-Result-From-DBMSO;
reset-All-EventsO;

default:
send-Query-To-DBMSO;
receive~Result~From~DBMS0:

4.3.3 Evaluation of Rules

The evaluation of rules is part of the euaZuate_ruIes and
execute-deferred-rules procedures. We essentially
describe the former procedure since the evaluation of
rules is done similarly in the second procedure. The
evaluate-rules procedure cycles over the set of
compiled rule modules and successively invokes the
program resulting from the compilation of each rule
module (by the Rule Compiler) until the database does
not change.

evaluate-rules (E: event);
/* E is represented by delta relations */
while the database changes {

execute-module[i] (E), for all modules i;)

We now detail the execution of a module. Three phases
are distinguished. First, the sensitivity of the module
with respect to the current cumulated event is tested.
This event is represented by the state of the delta
relations. For instance, if there is a non empty delta
relation associated with relation T and T occurs in a rule
r, then the module is sensitive to the event. Notice that
T may either occur in the condition or action part of r.
This test is produced by inspection of the rules in the
module at the time the module is compiled by the Rule
Compiler.

If a module is relevant, then the second phase consists
of building a specific data structure, called Production
Compilation Network (PCN) in main memory. This
structure describes the relationships between relations,
main memory variables, and rule conditions [MS881.

The third phase is the execution of rules using the PCN
structure. A rule is selected according to the control
strategy specified in the module (or the default strategy
if no strategy has been specified) and evaluated. If the
rule is fired then delta relations, temporary relations,
and main memory variables assigned in the rule are
updated. A next rule is then selected and fired until no
more rule is firable. Contextual data structures
(temporary relations, PCN) are then updated. This
processing is summarized below.

323

execute-module[iI (E: event); {
test-module-relevance (E);
init_PCN 0;
init_Control 0;
select-firable-rule 0;
while there exists a firable rule
/* the choice between immediate and
deferred depends on the event E l /

{fire-rule 0;
update-delta-relations 0;
monitor changes to main memory
variables;
select-firable-rule 0;)

free temporary relations no longer
needed;

maintain_PCN 0;)

Suppose that a module which has already been
executed is considered again for execution. The system
(in the evaluate-rules procedure) checks whether the
database state over which the module executes has
changed since its last execution. If not, the system
considers the next module.

5. A Toolbox for Generating the
Trigger Monitor

In this section, we describe a toolbox which takes as
input a set of rule modules and generates a Trigger
Monitor.

The Toolbox consists of several software components.
Two levels of compilation are used to generate a Trigger
Monitor from a set of rule modules. At the first level, a
Rule Compiler compiles each source module into a
C/SQL procedure, and an Environment Compiler
generates the Init-Environment procedure mentioned
before. The second level of compilation then follows. A
standard makefile facility is used to generate a Trigger
Monitor from the output of the first compilation phase,
the Event Handler, the Interface Procedures (like
SqlConnect* described before), and user-supplied C
procedures invoked in rule modules.

Changes to a rule requires to rebuild the Trigger
Monitor. Since rules are organized into modules, only
those modules which have been updated need to be
recompiled. The initialization procedure has also to be
recompiled. The Trigger Monitor is then reassembled
from linking together the set of compiled modules.

The functional architecture of the Toolbox is depicted
on Figure 5.1. Square boxes represent the compilers and
the makefile facility. Grey circle boxes represent the
user-provided components.

T*i Env. Cyiler,

Figure 5.1: Functional Architecture of the Toolbox.

6. Comparisons with Related Work

This section briefly surveys previous work on active
database systems and relates it to our work.

Alert is an extension architecture designed for
transforming a passive SQL DBMS into an active
DBMS ISPAM911. Alert rules are SQL queries (called
active queries) which are defined over active tables.
Active tables are append-only tables created by the
user in order to record events. Therefore, events can be
general and are not limited to built-in operations like
SQL insert, . . . Active queries differ from usual SQL
queries in their cursor behaviour. When a cursor is
opened for an active query, tuples added to the
underlying active table after the cursor was opened
contribute to the query. Thus, rules wait for tuples to be
appended to the active table and are instantiated with
each new tuple (i.e., a rule is executed in a tuple-
oriented fashion). Unlike our system, format of events
must be declared by the user (in active tables) and rules
are explicitely attached to these events. Alert provides
several coupling modes between events and rules.
Rules can run in the same or in separate transactions as
the triggering transaction. The triggering transaction
can be halted for the execution of triggered transaction
or it can be run in parallel. Finally, a rule can be
immediate or deferred. Coupling modes are specified
separately from the rules using a command activate.
Thus, a rule can be activated with different coupling
modes. Unlike our system, rules are executed in a tuple-
oriented fashion however, the semantics of a set of
rules is not formally defined and interaction between
rules is not clear. Therefore it is not easy to see how an

324

arbitrary rule system could be supported by the Alert
architecture.

Triggers in Starburst [WCL911 are expressed using set-
oriented production rules where conditions are
relational expressions and actions consist of sequences
of SQL commands. Triggering events are associated
with the built-in operations: update, insert, delete, and
they are explicitely attached to each rule. Unlike our
language, all rules are deferred and evaluated at the
end and as part of the triggering transaction. Events are
implemented using transition tables that are similar to
our delta relations. A rule is executed with respect to the
net effects of the transaction (including the effects of
rules already executed). However, unlike Hipac and our
system, the net effects are computed separately for
each rule according to the last time the rule was
executed. The idea is to prevent a rule from being fired
twice with the same tuples in transition tables. This
semantics is very similar to the notion of refraction used
in OPS5 [BFMK85]. Our language enables to simulate
this behaviour using control predicates in rules. Finally,
control between rules is expressed using a priority
mechanism [ACL91].

In Hipac [DBB+88, CBB+891, triggers are specified as
event-condition-action statements. Events can be built-
in (including timing events, hardware signals), or user-
defined. Events can be composed using a specific event
language. Changes made by database operations in a
transaction are kept into delta relations similar to ours.
Like in our system, delta relations record the net effects
of database changes. Hipac also offers a rich variety of
coupling modes (including those of Alert) [ZB90].
Howewer, as noted in ISPAM911, it is not clear to see
which coupling modes are essential and which ones
simulate some form of control over rules. Hipac’s
execution model is a nested transaction model, and an
assignment of condition evaluation and action
execution to transactions based on coupling modes. As
a result, there is no conflict resolution policy that
chooses a single rule to fire, or a serial order to fire the
rules. Instead, all the rules fire concurrently as
subtransactions [ZB90]. This semantics makes the
expression of control between rules difficult to express.

The Postgres rule language PRSII has a syntax quite
close to that of Starburst [SJGP90]. Similar to Hipac,
rules consist of event-condition-action triples and are
low-level statements. Similar to Starburst, events
correspond to built-in database operations: select,
insert, delete, . . . PRSII allows a single coupling mode
between rules and events: rules are immediate and are
executed within the triggering transaction. Unlike
Starburst and Hipac, but like Alert, rules are tuple-

oriented. When an individual tuple is accessed,
updated, inserted or deleted in a transaction, then the
transaction appropriately instantiate the triggered rules
and execute them concurrently. A special algorithm
uses special locks to mark tuples or table columns
whose changes or retrievals would trigger one or more
rules. Thus, there is no notion of delta relations. Unlike
our system, PRSII does not provide a control language
over rules, or a priority system like in Starburst. PRSII
enables to define a rule as an exception to another rule.

7. Conclusion

We have presented an extension of a deductive
database language, namely RDLI, towards rules that
react to events. Events consist of built-in database
operations (select, insert, delete, update). The net
effects of database operations are recorded into delta
relations. These relations can be used in rule’s
conditions. Our language has the following features.
First, unlike Hipac, Alert, Starburst and PRSII, our rules
are expressed at a high level. Triggering events are not
provided by the user but are instead derived from rules
by the system. Second, our rule system is formally
described by means of a partial fixpoint operator, which
encompasses both the deductive database and active
database paradigms. Hence, a rule module may consist
of rules that deduce data and rules that modify the
database as reaction to external events. In this formal
framework, existing work on rule-based systems can be
reused. Finally, we presented a control language that
enables to specify a rich variety of rule execution
orderings.

We have also presented a system architecture in which
the system responsible for detecting events issued by
application programs and triggering rules is front-
ended to an existing relational database system. This
approach can be used over any relational DBMS which
supports run-time interpretation of SQL commands. A
major feature of our approach is that it enables to
rapidly develop rule modules over an existing database.

Two research issues are envisioned in the next future.
One is the development of an optimizer integrated
within our Rule Compiler. Second, we wish to
incorporate error and exception handling mechanisms
in the rule language and study various alternative ways
of implementing them.

Acknowledgements: We would like to thank
Rakesh Agrawal, Patrick Valduriez, Allen van Gelder,
and Jennifer Widom for their detailed comments and

325

suggestions that greatly contributed to improve the
paper.

References

[ANSI901 ISO-ANSI Working Draft: Database
Language SQL2 and SQI.3; X3H2/90/398; ISO/IEC
JTCl/SC21/WG3,1990.

[AS911 S. Abiteboul, E. Simon : “Fundamental
Properties of Deterministic and Non-deterministic
Extensions of Datalog”, Journal of Theoretical
Computer Science, 78, pp 137-158,199l.

[BF89] J. Bocca, J. C. Freytag : “Rules for
Implementing Very Large Knowledge Base
Systems”, S&mod Record, 18(3): , Sept. 89.

[BFKM85] L. Brownston, R. Farrel, E. Kant, N. Martin:
“Programming Expert Systems in OPS5: An
introduction to Rule-Based Programming”,
Addison-Wesley, 1985.

[CBB+89] S. Chakravarthy, B. Blaustein, A. Buchmann
et al. : “HIPAC : A Research Project in Active, Time-
Constrained Database Management. Final
Technical Report, Xerox Advanced Information
Technology, May 1989.

[CW90] S. Ceri, J. Widom : Deriving Production Rules
for Constraint Maintenance”, in PYOC. of Int. Conf.
on VLDB, Brisbane, Australia, Aug. 1990.

[CW91] S. Ceri, J. Widom: “Deriving Production Rules
for Incremental View Maintenance”, PYOC. of Int.
Conf. on VL.DB, Barcelona, Spain, Aug. 1991.

[Cod731 CODASYL Data Description Language
Committee, CODASYL Data Description
Language Journal of Development, June 1973

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann et al. : ”
The HiPAC Project : Combining Active Databases
and Timing Constraints”, ACM SlGMOD
RECORD Vol. 17, N7, March 1988.

[Han891 E.H. Hanson : “An initial report on the design
of Ariel : A DBMS with an integrated production
rule system” in [SeI189]

[I$911 R. HuII, D. Jacobs : “Language Constructs for
Programming Active Databases”, Proc of lnt. Conf.
on VLDB, Barcelona, Spain, Sept. 1991.

[KMS90] G. Kieman, C. de MaindreviIIe, E. Simon :
“Making Deductive Database a Practical
Technology: A Step Forward”, Proc. of Int. Conf.
SIGMOD, Atlantic City, June. 1990.

[KM911 G. Kieman, C. de MaindreviIIe : “Compiling a
Rule Database Program into a C/SQL Application”
PTOC of 7th international Conference on Data
Engineering, Kobe Japan, 1991.

[McD89] D. McCarthy, U. Dayal: ‘The Architecture of
an Active Database Management System”, Proc. of
lnt. Conf. SIGMOD, June 89

[MS%] C. de Maindreville, E. Simon : “Modelling non-
deterministic Queries and Updates in a Deductive
Database”, Proc. of lnt. Conf. on VLDB, Los An-
geles, Aug. 1988.

[NT891 S. Naqvi, S. Tsur : “A language for Data and
Knowledge Bases”, book, W.H. Freeman, 1989.

[PDR91] G. Phipps, M.A. Derr, K.A. Ross: “Glue-Nail: A
deductive Database System”, Proc. of ACM
SlGMOD Int. Conf., Denver, Colorado, May 1991.

[RCBB89] A. Rosenthal, S. Chakravarthy, B. Blaustein, J.
Blakeley : “Situation Monitoring for Active
Databases”, in Proc. Int. Conf. on VLDB,
Amsterdam, Aug. 1989.

[SeII89] T. Sellis (editor), SIGMOD Record, Special
Issue on Rule Management and Processing in
Expert Database Systems, 18 (31, Sept. 1989.

[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, S.
Potamianos : ” On Rules, Procedures, Caching and
Views in Data Base Systems”,Proc. of SIGMOD, At-
lantic City, June. 1990.

[SPAMBI] U. Schreier, H. Pirahesh, R. Agrawal, C.
Mohan : “Alert : An Architecture for Transforming a
Passive DBMS into an Active DBMS”, PYOC of lnt.
Conf. on VLDB, Barcelona, Spain, Sept. 1991.

[WF90] J. Widom, S. Finkelstein : “A Syntax and
Semantics for Set Oriented Production Rules in
Relational Databases, ” Proc. of lnt. Conf.
SlGMOD, Atlantic City, June. 1990.

[WCL91] J. Widom,R.J. Cochrane, B.G. Lindsay :
“Implementing set-oriented production rules as an
extension to Starburst”, Proc of Int. Conf. on VLDB,
Barcelona, Spain, Sept. 1991.

[W91] J. Widom : “Deduction in the Starburst
Production Rule System” IBM Almaden Research
Report, May 1991.

[ZB90] D.R. Zertuche, A. Buchmann : “Execution
Models for Active Database Systems: A
Comparison”. GTE Research Report TM-O238-01-
90-165.

326

