
A Uniform Approach to Processing Temporal Queries 

Umeshwar Dayal 
Digital Equipment Corporation 
Cambridge Research Laboratory 

One Kendall Square 
Cambridge, MA 02139, USA 

dayalQcrl.dec.com 

Abstract 

Research in temporal databases has mainly focused on 
defining temporal data models by extending existing mod- 
els, and developing access structures for temporal data. 
Little has been done on temporal query processing and 
optimization. In this paper, we propose a uniform frame- 
work for processing temporal queries, which builds upon 
well-understood techniques for processing non-temporal 
queries. We start with an object-oriented model, and rely 
on its rich type system to model complex temporal infor- 
mation. The same query language is used to express tem- 
poral and non-temporal queries uniformly. A major benefit 
to this approach is that temporal query processing can be 
smoothly extended from an existing (non-temporal) query 
processing framework. For the purpose of query process- 
ing, we describe an object algebra, into which queries are 
compiled. Since the object algebra resembles the relational 
algebra, familiar relational query optimization techniques 
can be used. However, since the physical representation of 
temporal data and access methods differ from those of non- 
temporal data, new algorithms must be developed to evalu- 
ate the algebraic operators. We demonstrate that temporal 
queries can be processed and optimized under the existing 
query processing framework. 

1 Introduction 

Research in temporal databases [STSN88] has mainly 
been concentrated on two areas: (1) defining tempo 
ral data models and query languages by extending ex- 
isting models and languages, e.g. relational [SNOD87, 

Permission to copy without fee all or part of this material is 

grantedprovided that the copies are not made or distributed 
for direct commercial advantage, the VLDB copyright no- 
tice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the 
Very Large Data Base Endowment. To copy otherwise, or 
to republish, requires a fee and/or special permission from 
the Endowment. 

Proceedings of the 18th VLDB Conference Vancou- 
ver, British Columbia, Canada 1992 

Gene T.J. Wuu 
Bell Communications Research 

444 Hoes Lane 
Piscataway, NJ 08854, USA 

wuuOctt.bellcore.com 

CLTA85, GAYE88, TAGA89, NAAH89, GAMCSl], 
entity-relationship [ELWUSO, ROSESI], complex object 
[KAFESO], and object-oriented pUDA92, SUCH91]; 
and (2) developing access structures for temporal 
data [ELMASO, ELMA91, AHN86, SEGU89, GUSE91, 
KOST89, LUM84, LOSA89, ROSE87]. Little work has 
been reported on temporal query processing and optimka- 
tion. The slow progress on temporal query processing can 
be attributed to two reasons: (1) there has been little 
agreement on the temporal model and language, and (2) 
the lack of a suitable algebraic framework in which tempo 
ral query processing techniques can be developed. 

For the purpose of query processing, a query algebra 
serves as a target language into which high level query 
languages are compiled. Using the properties of the alge- 
bra, the query optimizer transforms the given query into 
an equivalent algebraic expression from which a more etli- 
cient execution plan can be constructed. Among the fac- 
tors used by the optimiser to determine an efficierf exe- 
cution plan are the underlying physical representation of 
data, any available access paths such as indexes, and a 
cost model associated with the execution of the algebraic 
operators. 

In the past, several temporal algebras have been pro- 
posed [CLTA85, GAYE88, TAGA89, TUCLSO]. These 
temporal algebras are high level, and are very powerful, 
indeed, for expressing complex temporal queries. How- 
ever, they are not suitable for query optimisation for two 
reasons. First, the temporal operators are defined at too 
high a level. The select operator in [GAYE88], for exam- 

ple, admits a complex Boolean expression (a set predicate 
consisting of combinations of temporal expressions) as its 
selection condition. It is not clear how to implement such 
operators efficiently using the various proposed temporal 
data representations and temporal access methods. Sec- 
ond, these high level algebras define many new operators 
that are significantly different from the familiar operators 
of relational algebra. Little is known about their algebraic 
properties and transformation rules, which are essential to 
the query optimizer. Adding to the problem is that many 
proposed temporal query languages are significantly differ- 
ent from their non-temporal counterparts; consequently, 
the mapping between the temporal query language and an 
algebra becomes more complicated, and has not been well 
studied. 

In this paper, we propose a uniform framework for pro- 

407 



cessing temporal queries that builds upon well-understood 
techniques for processing non-temporal queries. It is based 
on the uniform temporal model proposed in [WUDA92]. 
We start with an object-oriented model, OODAPLEX 
[DAYA89], (which itself is an object-oriented extension to 
the DAPLEX functional model [SHIP81]). We rely on the 
inherent rich type system of OODAPLEX to model com- 
plex temporal information. We treat time points as ab- 
stract objects, and define a type hierarchy of time types 
to support various notions of time. The OODAPLEX type 
system supports various parameterized types, like set, mul- 
tiset, tuple, and function. These type constructors are es- 
sential in modelhng temporal information, such as inter- 
vals, temporal properties, and temporal relationships. To 
introduce additional time-related semantics to the system, 
we define several temporal functions (e.g., lifespan) and 
temporal constraints. Such temporal extension is achieved 
without modifying the base OODAPLEX model. 

Since all the properties and behaviour of objects, tem- 
poral and non-temporal, are uniformly modelled by the 
same type system, no special language constructs are 
needed to express temporal queries. We demonstrated in 
[WUDA92, WUDASl] that a wide range of complex tempo- 
ral queries can be expressed, very naturally and uniformly, 
in OODAPLEX. These queries include temporal quantifi- 
cation, aggregation, versioned object manipulation, and 
the familiar temporal operators (e.g., when, shijt) intrc- 
duced by previous models. Again, this is achieved without 
modifying the OODAPLEX language. 

There are several benefits to this uniform approach: 
users need not learn a new data model and language for 
temporal applications1 ; and temporal query processing can 
be smoothly extended from the existing query processing 
framework. 

For OODAPLEX, we had developed an algebra, OOAl- 
gebra, as the target language for query compilation 
[DAYA89]. Since OOAlgebra resembles the relational alge- 
bra, the familiar relational query optimization techniques 
can be used. However, a few extensions (e.g., for deal- 
ing with function application, user-defined methods, and 
inheritance) were necessary. In adapting these techniques 
to temporal queries, some further extensions are needed. 
Since the physical representation of temporal data and ac- 
cess methods differ from those of non-temporal data, new 
algorithms must be developed to evaluate the algebraic op- 
erators. Also, the cost model has to be correspondingly 
extended (although we do not address this problem in this 
paper). However, by adopting this uniform approach, a 
single framework can be used to optimize temporal and 
non-temporal queries. While we describe the approach in 
the context of OODAPLEX and OOAlgebra, we believe 
that the techniques developed here can be applied to other 
models and query languages. 

The paper is organized as follows. Section 2 gives an 
overview of the OODAPLEX model and language. Sec- 
tion 3 describes OOAlgebra and the mapping between 
OODAPLEX and OOAlgebra. Section 4 describes the tem- 
poral extension from the base model. Section 5 presents 

‘Users still need to know of the various time types and new tern-- 
poral constraints. 

the physical representation of temporal data and a tempo- 
ral indexing structure. Finally, Section 6 discusses various 
techniques for temporal query processing. 

2 OODAPLEX Data Model and Lan- 

P%F 

2.1 OODAPLEX Data Model 

OODAPLEX [DAYA is an object-oriented data model 
based on the DAPLEX functional model [SHIPIll. It 
supports the essential ingredients of an object-oriented 
data model [ATKI89]: objects with identity, encapsulation 
through abstract data types, complex object types, sub- 
typing, inheritance, and polymorphic functions with late 
binding. 

An object models a distinct real-world or abstract en- 
tity. The basic characteristic of an object is its distinct 
identity, which is immutable, persists for the life time of 
the object, and is independent of the object’s properties 
or behaviour. All objects are abstract in that they consist 
of an interface (the object’s type) and an implementation 
(the object’s representation). 

Properties of objects, relationships among objects, and 
operations on objects are all uniformly modelled by fine- 
tions, which are applied to objects. A function, too, has an 
interface (the name of the function and a signature that de- 
fines the input and output arguments of the function) and 
an implementation (or body). A function may have zero or 
more input arguments and zero or more output arguments. 

Objects that have similar properties and behaviour are 
grouped into types (e.g., integer, person, ship). A type 
specifies a set of functions that can be applied to instances 
of the type. The implementation of a type defines the rep 
resentation of its instances and the bodies of the functions 
specified by the type. 

Types are themselves objects of type TYPE. Two spe- 
cial functions, types and ettent, which map between types 
and instances, are provided. The types function returns, 
for a given object, the types of which the object is an in- 
stance. The estent function returns, for a given type, the 
set of instances of the type currently in the database. 

In addition to the primitive, built-in types (such as 
integer, real, boolean, string) and user defined types, 
OODAPLEX supports constructed (parameterized) types: 
set, multi-set, and tuple, denoted as {T}, < T >, and [Al : 
Tr,...,A, : Tn], respectively. In addition, OODAPLEX 
supports the function type constructor, which (as we shall 
see in Section 4) is particularly important to temporal 
modelling and manipulation. A function type is denoted 
(D + R); D is called the domain type and R is called the 
range type. An instance of the function type is a partial 
function mapping from e&em!(D) to eztent(R). 

Subtypes of types may be defined, forming type (is-a) 
hierarchies. If S is a subtype of T, then the following 
properties hold (a) inclusion: e&e&(S) E ertent(T) and 
(b) substitutability: a function that expects an instance of 
T as input argument will also accept an instance of S for 
that argument. An example is shown below. 

408 



type employee is object 
function name (e:employee --f n:string) 
function salary (e:employee + s:money) 
function dept (e:employee -+ d:department) 

type manager is employee 
function controls (e:manager -+ d:(project}) 

type department is object 
function name (d:department + nstring) 
function lot (d:department --+ c:city) 
function members (e:department + m:{employee}) 
function mgr (e:department ---t m:manager) 

Here manager is a subtype of employee and has the func- 
tion control3 defined for it, in addition to the functions 
name, salary, and dept that it inherits from the supertype. 
OODAPLEX supports multiple inheritance and polymor- 
phism, but we omit the details here. 

2.2 OODAPLEX Query Language 

OODAPLEX is an extension of the DAPLEX functional 
query language [SHIPBl, SMIT83]. It is a powerful lan- 
guage that combines in a uniform way the retrieval and 
update of individual objects and aggregates of objects, as- 
sociative retrieval and navigation, the manipulation of ex- 
isting objects and the creation of new objects. For details 
refer to [DAYA89]. 

In this paper, we focus on a conjunctive, existential 
subset of OODAPLEX queries that are nested loop pro- 
grams of the form: 

for each zr in Xr where RI(F) 
for each zs in X2 where &(7i5) 

. . . 
for each z,, in X, where .%(?E;;) 

[A1:tl,Az:t2,...,Ak:tk] 
end 

end 
end 
The 2; are distinct variables; and z is a list of vari- 

ables involving only 21,. . . , 2;. The Ai are distinct labels. 
Each term tj is a constant, a variable in ?I%, or a function 
application eqression f(Z), where f is a function, and 5 
is a list of terms involving only variables in G. Each set 
term X; is either a named set S, or a function application 
expression f(U), where f is a set-valued function, and P is a 
list of terms involving only variables in 2;-1. Each Boolean 
expression B; is a conjunctive, existential well-formed for- 
mula over free variables E. The conjuncts can be Boolean- 
valued function application expressions, some of which may 
be written in the special infix forms (< term > < op > 
< term >) or (< te7m > in < aetfetm >); or existential 
formulas of the form (for some y in < set-term >)(Q) 
where Q is a conjunctive, existential well-formed formula 
over free variables y and z. 

This query retrieves a multiset of tuples of the type 
[AI : ti, A2 : tz,. _ . , Ak : tk] specified by the target list. 
There’s one tuple for each vector of values 2% in Xr x . . . x 

X, that simultaneously satisfy the qualifications B;. An 
example OODAPLEX query follows. 

for each d in extent(department) where 
lot(d) = “Bostonn and 
for some e in members(d) (salary(e) > 100K) 

[N: name(d), S: salary(manager(d))] 
end 

We chose to focus on this particular subset of 
OODAPLEX in this paper because it is analogous to SQL 
(each “for each” loop corresponds to a SQL query block). 
Hence, this subset provides a good basis for discussing 
the extensions to conventional query processing techniques 
that are needed for temporal queries, while allowing us 
to ignore several problems of query processing in object- 
oriented databases [MITCSl]. For example, in this pa- 
per we ignore problems of user-defined types and oper- 
ations, complex object construction, estimating costs of 
user-defined methods, and late binding. Those are impor- 
tant problems in their own right, but orthogonal to the is- 
sues we discuss here. We do, however, consider the issues of 
object identity, inter-object references (via functions), nav- 
igation (function application, function composition), com- 
plex object traversal, and inheritance. 

3 OOAlgebra and Query Transforma- 
tion 

3.1 OOAlgebra 

The algebra serves two purposes: (a) to define the se- 
mantics of OODAPLEX and other query interfaces; and 
(b) to be the target language for query compilation. 
While OODAPLEX is based on the function application 
paradigm, OOAlgebra adopts a relational perspective. In 
fact, it extends the relational algebra to deal with ob- 
jects, functions, and subtyping. Here, we only provide 
a brief overview of the algebra; the reader is referred to 
[DAYA89, MADA86] for details. 

The algebra operates on aggregates (tuples, sets, and 
multisets). Individual (i.e., non-aggregate) objects are ma- 
nipulated as if they were 1-tuples. Tuples of objects are, 
quite naturally, treated as tuples 2. Sets ’ are treated as 
sets of tuples (i.e., as relations). Functions are also treated 
as sets of tuples (viz., their extents) ‘I. 

Figure 1 shows some of the relations corresponding to 
the schema of the previous section. 

3.2 Operations of OOAlgebra 

The operations are polymorphic, so that they work on in- 
dividual tuples and on sets of tuples. However, in this 
paper, we assume that the inputs and outputs are sets. 
In the following, R, Rl, R2 are relations, L is a list of 
attribute labels, Lin; : Lout; is a list of pairs of attribute 
labels, and B is a Boolean-valued function. When we wish 

‘It is convenient to think that these tuples contain the identifiers 
of the corresponding objects. 

‘Most operations apply to sets and multisets, so henceforth we 
will not distinguish between them when there is no risk of ambiguity. 

4“Computed” functions may result in infinite relations, but that 
is not a problem since we do not expect to materialize their complete 
extents. 

409 



aalaw: 

The employee type 
deot : 

name : 
employee string 

-1 

1 emp3 ) 
The manager type 

Figure 1: Relational Mapping 

to emphasize the tuple type of a relation, we use the no- 
tation R[Ll : Tl, . . . , L, : T,], where the Li are labels and 
the Ti are types. 

The operations project(R, L), select(R, B), and 
pToduct(R1, R2) are similar to their relational algebra 
counterparts. The only difference is that project returns 
one tuple per tuple of R, and hence in general produces 
a multirelation even if R were a relation. The operation 
dupe&m-project removes duplicates following a project. 

The operation rename(R, Lini : Louti) returns R with 
each attribute label Lin; replaced by the respective Lout;. 

The usual set operations union, intersection, and dif- 
ference and their “outer” variants [CODD79] are defined 
for relations (and multirelations [DAYA82, KLG085]). 

Other operations corresponding to theta-joins and their 
outer variants (assymetric and symmetric) can be analo- 
gously defined. 

The main workhorse operation in OOAlgebra is the 
apply-append. In [DAYASS], we defined this oper- 
ation as the left-outer natural join. The result of 
apply-append(R1, R2) has all the attributes of Rl plus 
those attributes M of R2 that are not in RI. It consists 
of every tuple of Rl concatenated with the M-value of ev- 
ery tuple of R2 that matches on their common attributes; 
in addition, the unmatched tuples of Rl are padded out 
with null values. In practice, this operation is used to 
mimic the application of a function R2 to every member 
of a finite set Rl. The common attributes of Rl and R2 
are the input arguments of function R2, and the remaining 
attributes M are the output arguments of R2. Informally, 
the function R2 is evaluated over each tuple of Rl, and the 
output arguments are then concatenated onto the input ar- 
guments. Since R2 may be a partial function in general, 
we used the left-outer natural join. However, for the sub- 

set of OODAPLEX that we consider in thii paper, we can 

assume that the apply-append operation in fact produces 
the natural join. 

Since we use the algebra to describe query process- 
ing, we must say something about how the operations 
are implemented. Select, project, product, and join may 
be implemented as their relational counterparts are. The 
apply-append operation may be implemented using a vari- 
ety of algorithms, depending on how the function R2 and 
the set Rl are implemented. A stored function may be 
implemented by associating the input and output argu- 
ments as fields in a record (i.e., by directly materializing 
the result of R2 with each record of Rl); in this case, the 
apply-append can be implemented by a simple file scan. 
Instead of being associated in the same record, the out- 
put objects (result of applying R2) may be clustered on 
physical storage close to the input objects (of Rl); iu this 
case, the implementation consists of scanning the physical 
storage units (e.g., pages in an area). Alternatively, the in- 
put objects may include references to (object identifiers of) 
the corresponding output objects. If the references are im- 
plemented by physical pointers, the apply-append may be 
implemented by scanning the input objects, and then fol- 
lowing the pointers. Alternatively, if the pointers are log- 
ical, any join algorithm (e.g., sort-merge or indexed join) 
may be used. For computed functions, the apply-append 
is typically implemented by scanning (iterating over) the 
input objects, and invoking the function’s method.once in 
each iteration. 

3.3 Mapping from OODAPLEX to OOAlge- 
bra 

The mapping of an OODAPLEX query into an equivalent 
OOAlgebra program follows the same general approach 
used to map SQL queries into relational algebra prior to 
optimization. First, the set Xi in the outermost loop is 
materialized, and restricted (via select operations) by the 
qualifkation Bi. Then, it is joined with the set X:, and re- 
stricted by the corresponding qualitication Bs, and so on, 
working from the outermost loop to the innermost. Ifthere 
are any existentially quantified variables in any qualifica- 
tion, then the ranges of these variables are also joined in, 
and then these variables are eliminated by doing a dupe- 
km-project. Finally, the result is obtained by projecting 
over the target hst [AI : tl,A2 : tz,...,Ak : tk 1. (See 
[DAYA82, DAYA87] for details.) 

There are a few complications, however. First, the 
qualiikations and target list may include function appli- 
cation terms. Because we represent functions by relations, 
these terms must be mapped to apply-append operations. 
Thus, resolving each qualification entails more than just a 
selection; apply-appends may first be necessary. Similarly, 
before projecting on the target list, apply-appends may be 
necessary to bring all the relevant attributes into a single 
relation. 

Second, the set terms that define the ranges of loop 
variables may be either named sets or function application 
terms. The latter are mapped to apply-append operations. 
For the former, the mapping algorithm constructs a product 
of this set with the intermediate result produced so far; the 

410 



optimizer subsequently tries to replace these products by 
less expensive operations such as joins or apply-appends. 

Third, because the apply-append operation matches la- 
bels, operands may have to be renamed. For every expres- 
sion of the form x in X, the label of the column of z’s type 
in X must be changed to 2. Also, for every expression of 
the form y in f(z), the result of the apply-append must be 
renamed so that its output column of y’s type is labelled 
Y. 

Fourth, the mapping algorithm must deal with inheri- 
tance. Thus, if S is a subtype of T, variable s ranges over a 
set X, of objects of type S, and f is a function defined for 
T, then the function application term f(s) is mapped into 
apply-append(X,, f). Since the relation f associates object 
identifiers of T objects with output objects, and S objects 
have the same identifiers as T objects, the apply-append 
operation correctly matches tuples of X, with tuples off. 
Note that only some renaming may be necessary to match 
the input argument label in f with 8. 

Instead of formally stating the algorithm, we illus- 
trate it on the example OODAPLEX query of the previous 
section.’ 

Tl := extent(department)[D:department] 
T2 := a-a(Tl[D: department], 

loc[D: department, L&y]) 
T3 := select(T2p:department, L&y], 

equals(L, “Boston”)) 
T4 := a-a(T3, members[D:department, E:employee]) 
T5 := a_a(T4[D:department, L:city, E:employee], 

salary[E: employee, S: money]) 
T6 := select(T5[D:department, L&y, E:employee, 

Smoney], greater-than(S, 100K)) 
T7 := dupelim-project(T6, [D]) 
T8 := a-a(T7, name[D:department, N:string]) 
T9 := a_a(T8[D:department, N:string], 

mgr[D:department, M:manager]) 
T10 := rename(salary[E: employee, S:money], [E:M]) 
Tll := a-a(TS[D:department, N:string, M:manager), 

TlO[M:employee, S:money]) 
Tl2 := project(Tll[ D:department, N:string, 

M:manager, S:money], [N, S]) 

T2 associates cities with departments via the lot func- 
tion, enabling the selection in T3, which corresponds to the 
first conjunct of the qualification. T4 associates employees 
with each department-city tuple via the members func- 
tion, and T5 then associates the salary of each employee, 
enabling the selection in T6. Since E is existentially quan- 
tified, duplicates must be eliminated in T7 (otherwise a 
Boston department with more than one employee earning 
over 1OOK will appear more than once in the result). This 
completes the processing of the qualification. To compute 
the target list, T8, T9, and Tll associate each selected 
department with its name, its manager, and the salary of 
its manager. The renaming in TlO is necessary to cor- 
rectly match the label of T9’s managez attribute with the 
employee label in the salary function, so that the man- 
ager and his salary can be associated. Finally, projecting 
on name and salary yields the result in Tl2. 

‘In the examples, WC abbreviate apply-append as aa. 

Of course, a query optimizer may rearrange the oper- 
ations to construct an equivalent plan that is cheaper to 
evaluate. The transformations used are analogous to those 
for relational optimization, since the operations have sim- 
ilar properties. For instance, selections and ptojections 
may be moved ahead of apply-appends and joins; e.g., 
the selections in T3 and T6 can be done before any of 
the preceding operations. Some apply-appends may be 
unnecessary; e.g., if we know that an inclusion depen- 
dency holds from the D column of lot to the D column 
of extent(depaztment), then steps Tl and T2 can be elim- 
inated, and lot used directly in step T3. The order of 
apply-appends may be permuted. Some product operations 
introduced by the mapping algorithm that are followed by 
selections may be replaced by joins or apply-appends. 

4 Temporal Extension from the Base 
OODAPLEX 

In this section, we show how the rich object-oriented type 
system can be used to model temporal information. As an 
example, we model temporal employees, temporal depart- 
ments, and temporal relationships between them using the 
function type constructor. 

type employee is object 
function name (e:employee + n:string) 
function salary (e:employee + 

9: (t:time -+ s:money)) 
function dept (e:employee -+ 

f: (t:time -+ d:department)) 
type department is object 

function name (d:department -+ n:string) 
function members (e:depa.rtment -+ 

f: (t:time --f m:{employee})) 
function mgr (e:department --t 

f: (t:time + m:manager)) 

In our approach, time is modelIed by abstract data 
types. We first define a generic object type, time, that 
carries the most general semantics of time. The > opera- 
tion is defined for the time type. Various different notions 
of time required by specific applications (linear vs. branch- 
ing, discrete vs. dense, events, or versions) can be exten- 
sibly defined as subtypes of time. Instances of the time 
types have the semantics of time points. Since the model 
supports polymorphism (overriding), different implemen- 
tations (and representations) may etit for the same time 
types while the interfaces of these types remain the same. 
For each time type, a set type is defined; instances of these 
set types are point sets. The usual set operations and pred- 
icates like E, C, =, il, and U, are inherited, but may be 
overridden due to different implementations of the time 
types. 

To incorporate the additional time-related semantics 
into the system, OODAPLEX defines several new functions 
and constraints. [WUDA92] describes the maintenance of 
these functions and constraints. In this paper, we only 
discuss the constraints that are relevant to query process- 

411 



ing. Other constraints like temporal referential integrity 
constraints are described in [WUDA92]. 

The function lifespan(o), where o is an object, re- 
turns the set of time points during which o existed. Liiees- 
pan is a polymorphic function. It also accepts a type T 
or a database DB as it input paramenter. The function 
lifespan(T) returns the union of lifespans of all objects in 
etlent(T). The function lifespun( D B) returns the union 
of lifespans of all types in DB. 

In temporal databases, an object can be of different 
types at different times. Consider the following subtypes 
of employee. 

type manager is employee 
function controls (e:manager + 

f: (t:time --f d:{project})) 
type technician is employee 

function owns (e:technician --) 
f: (t:time -+ d:{tool})) 

An employee may have been a technician for a while 
and may later have been promoted to a manager. There- 
fore, the lifespan of the employee as an instance of type 
manager (or technician) can be different from that of the 
same employee as type technician. We denote the lifespan 
of an object o as an instance of type T as lifeapun(o/T). 

A basic constraint exists between lifespans of objects, 
types, and the database DB, as defined below. Let o be 
an object of type T in database DB. 

(Cl) lifespun(o/T) c lifeepan(T) C lifespun 
For a partial function g, we use the notation lg[ to 

denote the subset of g’s domain over which g is defined. For 
a temporal attribute fi of a temporal object o (e.g., aulary 
of employee), the following constraint is maintained: 

(C2) Ifi E lifeapun(0) 
In temporal databases, the notion of inheritance is also 

temporally extended. Let o be an object of both a subtype 
T and a supertype P. The following constraint must hold. 

(C3) lifespan(o/T) E lifespun(o/P) 
Because temporal objects can move in and out of the 

extent of a type T (e.g., manager) at different times, the 
temporal model defines another function, t-eztent(P)(t), 
called the temporal eztent function, that returns a set of 
objects o of type P that existed at time t. For example, 
t-eztent(employee)(t) returns the set of employee objects 
that existed at time t. We formally define the temporal 
extent function by the following constraint. 

(C4) 0 E t-ertent(P)(t) ++ t E lifespun(o/P) 
The non-temporal function ertent(P) defined in the 

base OODAPLEX model is still available in temporal 
databases. It actually maintains all objects of type P that 
have ever existed in the database. The inclusion seman- 
tics of the base OODAPLEX model remains the same: if 
T is a subtype of P, then eztent(T) 5 eztent(P). The 
relationship between eztent and t-ertent is defined by the 
following constraint. 

(C.5) 0 E eztent(P) e 3 E lifespan(o) 
0 E t-eztent(P)(t) 

It can be derived from (C3) and (C4) that, for a pair 
of subtype T and supertype P, and a time point t, 

(C6) t-eztent(T)(t) C_ t-ertent(P)(t) 

(C6) defines the meaning of temporal inclusion. Due to 
(C4) and (C5), both the t-eztent and ertent functions can 
be derived from the lifespan function. Therefore, there is 
no need to physically maintain all three functions in the 
database. As discussed later in Section 5.1, only lifespan 
is physically maintained in the database. 

When applying an inherited function, (C2) requires 
that the result of such application be temporally restricted. 
Consider the salary function defined over the employee 
type. The result of the function, when applied to an em- 
ployee object, is a salary function defined for the duration 
of the employee’s lifespan. When applied to the object as 
an instance of type manager, the result cannot be the en- 
tire salary history of the employee, since this would violate 
the (C2) constraint. Instead, the result should be the re- 
striction of the temporal 3alarg function to the lifespan of 
the object as a manager. 

5 Temporal Data Representation and 
Indexing 

5.1 Physical Representation of Temporal 
Data 

In OOAlgebra, individual objects are represented by object 
identifiers (oid’s), Functions are treated as relations in the 
first normal form. As shown in Figure 2, the name func- 
tion with the type employee + string is represented as a 
relation. 

A function type that returns another function as its 
result, e.g., Tl --t (Tz ---t T3), can be represented by two 
separate relations corresponding the two functions. How- 
ever, to simplify the representation, we transform such a 
function type into another equivalent form (TI x Tz) -+ T3, 
a function with two input arguments and one output ar- 
gument. Hence it is represented as a single relation with 
three columns corresponding to Tl, Tz, and Ts. As shown 
in Figure 2, temporal attributes like salary or dept are 
represented as single relations with three columns. 

Figure 2 shows a canonicoirepresentation of a temporal 
Company database which represents the OOAlgebra view 
of data. The physical data representation may or may not 
be identical to the canonical form. For example, the name, 
salary, and dept functions may be physically stored as a 
single file, and each function can be implemented by a view 
that projects on the respective columns. Different physical 
representations may affect the execution plan produced by 
the query optimizer. In this paper, we assume that the 
physical representation is identical to the canonical OOAl- 
gebra representation. 

Conceptually in OODAPLEX and OOAlgebra, time 
points are viewed as individual objects. Physically stor- 
ing these time points as individual objects would not be 
efficient for the storage system. Most temporal data stor- 
age models use intervals (pairs of begin and end points) to 
represent sets of consecutive time points. 

In our temporal storage structure, an arbitrary set of 
time points (a relation with one column) is physically rep 
resented as a set of non-overlapping intervals in a relation. 

412 



Each tuple in the relation contains exactly one interval. For 
example, the point set, (1, 2, 7, 8, 9) is represented by two 
physical tuples < [l, 2] > and < [7,9] >. For siimplicity 
we assume, in the following examples, that the time do- 
main is discrete and bounded, hence closed intervals are 
enough to represent arbitrary sets. Nevertheless, the same 
representation technique also applies to dense or continu- 
ous time domains using combinations of closed and open 
ended intervals for arbitrary sets. 

For relations containing a time column, we use the same 
technique. For example, the physical tuple < empl, [0,19], 
20K > in the salary relation is really a compact repre- 
sentation for the twenty conceptual tuples corresponding 
to twenty individual time points, {< empl, 0, 20K >, < 
empl, 1, 20K >, . . . , < empl, 19, 20K >} Again, the time 
column contains at most one interval. 

We assume that each tuple in the storage system is 
uniquely identified by a tuple identifier, which should not 
be confused with object identifiers. In Figure 2, we only 
show tuple identifiers for the salary relation, since they will 
be used later for describing the TIME index. 

For each temporal object type, P, the database keeps 
one relation for lifeapan( P). The relation has two columns 
maintaining the mapping from aid’s of P to time, as shown 
in Figure 2. The extent of P can be easily computed or 
materialized by projecting on the P column of the lifespan 
table. Note that the (C2) constraint is indeed maintained 
in the database. 

OODAPLEX defines a temporal extent function, 
t-ertent(P)(t), which gives the set of instances of P that 
exist at time t. The t-eztent(P) table can be computed (or 
materialized) from the lifeapun(P) table using the (C4) 
definition. We can think of the lifespan(P) as a table 
“grouped by” P’s &d’s, and the t-e&e&(P) table as the 
same table “grouped by” time points. The materialised 
view of t-eztent(empZoyee), in its flattened first normal 
form, is shown in Figure 2. As we shall discuss later, 
the TIME index is an ideal data structure to compute the 
t-eztent(P) relation from the lifespan(P) relation. 

We now discuss the representation of the temporal in- 
heritance hierarchy. Consider a pair of subtype S and su- 
pertype P. Functions defined for S, e.g., the controls func- 
tion of the the manager subtype, are represented in the 
same way as for other types, as shown in Figure 2. The 
table lifeapan(manager) shows that the lifespan of the 
employee emp2 as a manager is {[13,21], [39,now]}. This 
means that emp2, was promoted to manager and demoted 
from manager twice during her career with the company. 
Note that the (C3) constraint on emp2 is indeed main- 
tained in the database, i.e., 

lifeapun(emp2/munuger) = {[13,21], [39,nour]) C_ 
{[13, now]) = iifeapan(emp2/employee) 

5.2 The TIME index 

Temporal queries often impose search conditions on time 
attributes as well as on non-temporal attributes. Tradi- 
tional indexing methods like B+ trees can only be used for 
indexed values that are totally ordered. Such index meth- 
ods cannot be used for interval values, since a total ordering 

The employee type 
a&w: 

tid 11 employee 1 time salary 

dept : 

name : 
employee string 

-1 

eztent(employee) : 
[employee] 

empl 

H 
emp2 
emo3 

emp2 i66\now] dept3 
emp3 Pwl deptl 

t-eztent(employee): lifeapun(employee) : 

t i13:24i 1 - emv2 

dnume: 
The depw ill& LJp’c 

lifeapun(depuFtment) : 
department 1 time 

mar: 
1 department ] time manager 

1 devtl 1 r13.211 1 emo2 1 
1 debt1 1 f22138i 1 - emp3 I 

dept2 
dept3 

( [39,nowRj ( emp2 
1 FL671 I empt 

The manager 
controls : 

manager time project 

l-1 

type 
lifeapun(munuger) : 

I manager I time 

Figure 2: The Company Database 

413 



does not exist for interval values. In [ELMAgO, ELMASl], 
we proposed an access structure, called the TIME index, 
to support interval-based search. The goal of a temporal 
search is to find, given a time range R, the tuples whose 
time columns overlap with R. As a special case, R can be 
just a single time point. 

In the following, we give an overview of the TIME in- 
dex. It can be used to index any table in Figure 2 that 
has a time column. The TIME index plays an impor- 
tant role in the temporal query processing techniques pre 
posed in this paper. Other temporal access structures like 
[KOST89, SEGU89, GUSESl] may also be used to perform 
time-based search. 

The idea behind the TIME index is to maintain a set of 
linearly ordered change points. A change point pt; is a time 
point which either (a) starts an interval in the time column 
or (b) follows immediately the end point of an interval. 
Consider the salary table. The set of change points are 
(0, 9, 13, 20, 25, 30, 45, now+l}. These points are called 
change points because the state of the salary table changes 
only at these points. For example, the state of the salary 
table changes at 9, 20, and 25, because emp3 started its 
salary history at 9, got its salary raise at 20, and terminated 
at 25. If a TIME index is built for the lifeapan(employee) 
table, the change points in the TIME index correspond to 
the creation or termination times of employee objects. 

We use a regular B+ tree to index these linearly ordered 
change points. For each change point pti at the bottom 
level of the B+ tree, the TIME index maintains a bucket 
B(pti) containing identifiers of all tuples that existed at pti, 
i.e., their time intervals contain pt;. Consider the change 
point 30. Its bucket B(30) contains the tuples 93 and 94, 
since only these two tuples existed at point 30 (i.e., their 
time intervals cover point 30). The TIME index for the 
salary relation is shown in Figure 3. 

(s2,s4,s7) (s3,s4) 

Figure 3: The TIME Index for the salary Relation 

A bucket B(pt;) contains all temporal information at 
change point pti. It is important to note that, after the 
temporal information changes at a change point, it remains 
the same for the entire salary table until the next change 
point. Therefore to retrieve temporal data at an arbitrary 
point p, the following search algorithm is used: 

Search the B+ tree for p; 
Ifp is found 

the temporal information is found in the bucket B(p); 
else 

find the change point q in the B+ tree that 
immediately precedes p, and B(q) contains 
the temporal information at p. 

The above search algorithm can be extended to support 
range search as follows. Consider the search range R = 
[t,, t,]. First, perform a range search on the B+ tree to 
find the set S of all change points within R. If t, is not a 
change point in the B+ tree, add the change point q that 
immediately precedes t, to S. The reason we need to add 
p to S is because the the temporal information at t, is 
recorded at Q. After S is retrieved, compute the following 
to retrieve all temporal information in the range R. 

Up.,.9 Nfi) 
The ba.&c TIME index is not very efficient in space, 

since a tuple (e.g., s4 in Figure 3) with a large interval 
may appear repeatedly in all buckets whose change points 
are within the interval. To eliminate the duplicate tu- 
ple identifiers in these buckets, an incremental scheme is 
proposed in [ELMASO]; that is, to keep full buckets at 
the leading entry of each leaf node in the B+ tree, and 
to keep only incremental changes at the following buck- 
ets. A complete description of the TIME index, its en- 
hancements, and their performance results are reported in 
[ELMASO, ELMA91, ELMA92]. 

6 Temporal Query Processing 

In this section, we show the translation between 
OODAPLEX temporal queries and OOAlgebra queries, 
and discuss techniques for processing temporal queries. 
OODAPLEX and OOAlgebra treat time as points and sets 
of points. The notion of points or point sets is logical, since 
they are physically represented as intervals in the storage 
system, rather than as individual points. Depending on 
the physical representation and available indices, the algo- 
rithms for evaluating the algebraic operators may vary. In 
any case, the results of these algorithms must fully con- 
form to the semantics of the algebraic operations. We will 
describe several algorithms for implementing certain im- 
portant OOAlgebra operators that involve time attributes. 
We also informally argue that these algorithms conform to 
the semantics of OOAlgebra. 

6.1 Temporal Applyappend Operation 

In this subsection, we use the following query to describe 
algorithms for implementing the upply..append operation 
involving time attributes. 

OODAPLEX Query 1: 
for each e in extent(employee) 

for each t in { [1..3], [18..25] } 
[N:name(e), T:t, S:salary(e)(t)] 

end 

414 



end 

OOAlgebra Query 1: 
Tl := { [1,3], [18,25] > 
T2 := product(extent(employee)[E:employee], Tl[T:time]) 
T3 := a_a(T2[E:employee, T:time], 

name[E:person, N:string]) 
T4 := a_a(T3[E:employee, T:time, N:string], 

salary[E:employee, T:time, Snumeric]) 
T5 := project(T4p:employee, N:string, T:time, Snumeric], 

P, T, W 
Tl has only two tuples containing the two intervals 

< [1..3] > and < [18..25] >. The product operator is im- 
plemented using the same algorithms as for non-temporal 
data. The result of T2 is shown in Figure 4. It can be eas- 
ily argued that the result conforms to the semantics of the 
Cartesian product between employees and logical points. 
There are two apply-append operations in the OOAlgebra 
translation. The first one (T3) applies the name function 
over a non-temporal input argument, employee; and it re- 
quires no new techniques for its implementation. However, 
the second apply-append operation (T4) joins tuples based 
on both temporal (t;me) and non-temporal (employee) at- 
tributes; and therefore it requires new algorithms. 

We call an apply-append operation that is based on at 
least one common time attribute a temporal apply-append 
operation. Based on the apply-append semantics, the eval- 
uation of a temporal apply-append(X,Y) is described as 
follows. Assume that X and Y have schemes (A, NT, T) 
and (NT,T, B), respectively, where NT is the non- 
temporal common column(s) and T is the temporal com- 
mon column(s). The result R of the temporal apply-append 
is defined as follows. 

let t be a tuple in X 
let 4 be a tuple in Y 
the tuple < t.A, t.NT, t.Tn q.T, q.B > is in R 

if and only if t.NT = q.NT and t.T n q.T # 0 

It is not difficult to argue that this evaluation conforms 
to the semantics of the apply-append operator, since the 
time columns of t and q agree on all points (and only those 
points) in t.T n q.T. Based on this definition, the temporal 
apply-append of Query 1 is evaluated to the result (T4) 
shown in Figure 4. 

The above temporal apply-append operation can be im- 
plemented by various algorithms, depending on available 
index structures on X and Y. A straightforward implemen- 
tation uses a modiied nested loop algorithm, as described 
below. For each tuple in X, scan through the entire Y 
table to find all tuples that meet the “matching” condi- 
tion, and then produce concatenated tuples accordingly, 
i.e., such that the resulting time is the intersection of the 
time intervals in the two tuples being joined. 

Other algorithms may also be developed to take ad- 
vantage of efficient access structures. For example, an al- 
gorithm proposed in [ELMASO] uses a two-level index tree, 
which combines the TIME index and the non-temporal in- 
dex into one index tree. If the two-level index is avail- 
able on Y, it can be used to find tuples in Y that match 

1‘ ; 

employee time 

It. 

employee name 1 time 1 salary 

Figure 4: Intermediate Results of Query 1 

tuples in X. Algorithms based on the sort-merge or 
hash-join approaches may also be developed for temporal 
apply-append. However it is beyond the scope of this paper 
to elaborate on the various algorithms and their associated 
costs. 

6.2 Temporal Selection using the TIME Index 

We have discussed various methods for implementing tem- 
poral apply-append. We now consider the following query 
to explore some temporal query optimization alternatives. 

OODAPLEX Query 2: 
for each e in extent(employee) where 

for some t in [2 . . 51 (salary(e)(t) > 35K) 
[N: name(e)] 

end 

OOAlgebra Query 2: 
Tl := {[2, 51) 
T2 := product( extent(employee)[E:employee], 

Tl[T:time]) 
T3 := a_a(T2[E:employee, T:time], 

salary[E:employee, T:time, Snumeric]) 
T4 := select(T3, greater-than(S, 35K)) 
T5 := aa(T4, name[E:employee, N:string]) 
T6 := dupelim_project(T5[E:employee, T:time, 

S:salary, N:string], [rJ1) 

We will show the second and third operations (in T2 
and T3) in Query 2 can be transformed into one single 
equivalent operation, which can be executed more effi- 
ciently using the TIME index. By an associative rule anal- 
ogous to that for join operations, the two steps are trans- 
formed to 

T2’ := a-a(extent(employee)[E:employee], 
salary[E:employee, T:time, S:numeric]) 

T3’ := a-a(Tl[T:time], 
T2’[E:employee, T:time, S:numeric]) 

415 



Since an inclusion dependency holds from the E column 
of salary to the E column of eztent(employee), step T2’ 
can be eliminated and salary can be directly used in T3’. 
(The same transformation can be applied to Query 1.) 

T3” := a-a(Tl[T:time], 
salary[E:employee, T:time, S:numeric]) 

The merged apply-append in T3” joins the two rela- 
tions only by the common time attribute. This is a special 
case of the temporal apply-append described earlier. The 
TIME index can be directly used to efficiently compute 
the result. For each interval in Tl (in the case of Query 
2, there is only one interval), use the TIME index to find 
all tuples in the salary relation that satisfy the time over- 
lap condition, and then produce the concatenated tuples 
accordingly, i.e., such that the resulting time is the inter- 
section of the two overlapping time intervals. 

Note that the new apply-append is basically a select 
operation with a range search condition, viz., “t in [2..5]“. 
It commutes with the following select operation that has a 
search condition on the salary value, greater-than(S, 35K). 
This commutativity property provides further alternatives 
for query optimization. Depending on the selectivities of 
the two select operations and available access structures on 
time or salary attributes, the order of evaluation of these 
two operations can be reversed. 

6.3 Temporal Inheritance 

Since additional constraints, (C2) and (C3), are defined 
for temporal inheritance (see Section 4), the processing of 
inheritance must be extended. This is illustrated by the 
following query, which retrieves the salary history for the 
current manager of the Clothes department. 

OODAPLEX Query 3: 
for each d in extent(department) 

where name(d) = “Clothes” 
[salary(mgr(d)( %ow”))] 

end 

OOAlgebra Query 3: 
T1 := a-a(extent(department)[D:department], 

name[D:department, N:string]) 
T2 := select(T1, equals(N, “Clothes”)) 
T3 := a_a(T2[D:department, N:name], 

mgrp:department, T:time, M:manager]) 
T4 := select(T3, equals(T, “now”)) 
T5 := a-a(T4, lifespan(manager)[M:manager,T:time]) 
T6 := rename(salary[E:employee, T:time, S:numeric], 

[EW 
T? := a_a(T5[D:department,N:name,M:manager,T:time], 

TG[M:employee,T:time,S:numeric]) 
T8 := project(T’I[D:department,N:name,M:manager, 

T:time,S:numeric], [T, S]) 

Due to the extended semantics of temporal inheritance, 
applying an inherited temporal function, e.g., salary, 
needs special consideration. By (C2) and (C6), the salary 
of the selected manager must be restricted to the lifespan 
of the employee as manager. The apply-append operation 

in T5 associates the lifespan information with manager, 
which is then used in the apply-append of T? to restrict 
the salary history to just the lifespan of the selected man- 
ager. 

6.4 Complex Queries, Quantification, Aggre- 
gation 

As shown in [WUDA92], complex temporal queries may in- 
volve multiple time variables, quantification (existential or 
universal) over time, and temporal aggregation. Some of 
these complex queries cannot be easily expressed in other 
existing temporal query languages. In our uniform ap- 
proach, not only can we express such queries naturally, 
but we can also process them effectively. 

OODAPLEX Query 4: 
for each e in extent(employee) where name(e) = “John” 

for each t in lifespan(e) where salary(e)(t) < 20K 
[T: t, M: name(mgr(dept(e)(t))(t))] 

end 
end 

Query 4 retrieves all managers for whom John has 
worked when his salary was less than $20K, and the time 
periods during which he worked for these managers. The 
processing of such a complex query requires no extensions 
to the techniques described above, and hence we omit the 
OOAlgebra translation. 

As discussed in [WUDA92], quantification and aggre- 
gation (and grouping) in temporal databases can be ex- 
pressed over two orthogonal dimensions: the object di- 
mension and the time dimension. Using the full power of 
OODAPLEX (not just the conjunctive, existential subset 
defined in Section 2), we can easily express such queries. 
We now discuss how they can be processed using existing 
techniques and the TIME index. 

Several techniques have been proposed in the litera- 
ture for efficiently processing (non-temporal) queries with 
aggregates and quantifiers pAYA83, CEG085, DAYAS?, 
BULTS’I]. These techniques introduced some new alge- 
braic operators and their transformation rules. We can 
easily import these operators into OOAlgebra. Then, be- 
cause OODAPLEX uniformly expresses temporal and non- 
temporal queries, these same techniques can be used to pro- 
cess temporal queries that have quantifiers and aggregates. 
(However the implementation of these operators may need 
to be modified to take advantage of temporal data repre- 
sentations and access paths such as the TIME index.) 

Recall that Query 2 used an existential quantifier on 
time, and was processed using an apply-append and a 
dupelim-pmject. In fact, these could have been replaced 
by a semi-join. The following query uses a universal quan- 
tifier, and can be processed using an anti-join operator 
(anti-join is the complement of semi-join). Query 5 re- 
trieves employees whose salaries exceeded 35K during the 
entire interval [2..5], i.e., employees whose salaries were 
never less than or equal to 35K, or null, during this pe- 
riod. 

OODAPLEX Query 5: 

416 



for each e in extent(employee) where 
for all t in [2 . . 5] (salary(e)(t) > 35K) 

[N: name(e)] 
end 

OOAlgebra Query 5: 
Tl := {[2,5]} [T:time] 
T2 := a-a(T1 [T:time], 

salary [E:employee, T:time, S:numeric]) 
T3 := select(T2 [E:employee, T:time, Smumeric], 

less-eq-or-null(S, 35K) ) 
T4 := anti-join(extent(employee) [E:employee], 

T3[E:employee, T:time, Smumeric]) 
T5 := a_a(T4[E:employee], name[E:employee, N:string]) 
T6 := project(T5, [N]) 

Query 6 retrieves the running count of the employees 
in the company over the history of the company. 

OODAPLEX Query 6: 
for each t in lifespan(employee) 

[t, count(t-extent(employee)(t))] 
end 

OOAlgebra Query 6: 
Tl := aa(lifespan(employee)[T:time], 

t-extent[T:time, E:employee]) 
T2 := G-Agg(T1, [T], [count(E)]) 

As defined in [DAYA8’7], the Generalized Aggregation 
operator, G-Agg, takes three parameters: a relation, a list 
of grouping attributes, and a list of aggregate functions. It 
groups the relation by the grouping attributes, and applies 
the aggregate functions on each group. 

Since lifespan(employee) is the union of lifespans 
of all employee objects, and since (C4) and (C5) 
hold, it can be shown that Zifeapan(employee) = 
pmject(Leztent(employee)[T, E]; [Tl). Therefore, the 
apply-append operation does not produce more informa- 
tion than the t-extent relation itself. Thus, the two steps 
can be combined into one. 

Tl := GAgg(t-extent(employee) [T:time, E:employee], 

P-1 I bunt(E)1 1 

If a TIME index exists for the lifeapan(employee) ta- 
ble, there is no need to material&e the t-ertent table. 
The G-Agg operation can be efficiently computed using 
the TIME index, as described below. 

Starting from the earliest change point pt, in the TIME 
index, retrieve all tuples in the bucket B(pt,). From these 
tuples, compute the total number of distinct employee 
&d’s The result number represents the employee count 
at point pt.. Since the employee counts remain the same 
until the next change point, there is no need to repeatedly 
compute the employee counts for those points between two 
consecutive change points. To return the entire running 
count, the same counting procedure proceeds at all subse- 
quent change points in the TIME index. 

7 Conclusion 

We have presented a uniform approach to temporal query 
processing Rather than modifying a non-temporal data 
model and query language to work for temporal databases, 
we rely on a rich object-oriented type system for modeling 
temporal information. We use the same query language, 
OODAPLEX, to manipulate non-temporal and temporal 
data. To incorporate additional temporal semantics into 
the system, we define several temporal functions and con- 
straints. We achieve this without modifying the base 
object-oriented model or language. A major benefit to this 
uniform approach is that the existing, non-temporal, query 
processing framework can be smoothly extended for tem- 
poral databases. 

We presented an object algebra, OOAlgebra, to be used 
in query optimization, and showed the translation between 
temporal OODAPLEX queries and their OOAlgebra forms. 
We showed how to use the additional temporal semantics 
defined by the constraints can be used in query optimisa- 
tion. We described a physical representation of temporal 
data and the TIME index for efficiently accessing temporal 
data. The new data representation and index methods call 
for new algorithms for implementing the OOAlgebra oper- 
ators (e.g., apply-append) involving time attributes, which 
are also described in the paper. We believe that the tech- 
niques developed here can be applied to other models and 
query languages. 

Future work includes detailed study of these new tem- 
poral algorithms and their cost analysis. Also, more work 
can be done to incorporate our techniques for temporal 
query processing into a fully extensible, object-oriented 
query optimization framework. 

References 

[ATKISS] 

[AHN86] 

[BULT87] 

[CEG085] 

[CLTA85] 

[CODD79] 

[DAYA82] 

M.P. Atkinson, et al. The Object-Oriented 
Database System Manifesto. 

I. Ahn. Towards an Implementation of 
Database Management Systems with Tempo- 
ral Support. Proc., Second IEEE Data Engi- 
neering Conf., 1986. 

G. von Bultzingsloewen. Translating and Op 
timising SQL Queries Having Aggregates. 
Proc. Thirteenth VLDB Conf., 1987. 

S. Ceri, G. Gottlob. Translating SQL into 
Relational Algebra: Optimization, Semantics, 
and Equivalence of SQL Queries. IEEE Trans. 
SE-11, 4, April 1985. 

J. Clifford, A. Tansel. On an Algebra for 
Historical Relational Databases: Two Views. 
Proc., ACM SIGMOD Conf., 1985. 

E.F.Codd. Extending the Database Relational 
Model to Capture More Meaning. A CM Trans. 
on Database Systems, 4(4), December 1979. 

U. Dayal, N. Goodman, R.H. Katz. An Ex- 
tended Relational Algebra with Control over 
Duplicate Elimination. Proc., ACM Symp. on 
Principles of Database Systems, 1982. 

417 



[DAYA U. Dayal. Processing Queries with Quantifiers: 
A Horticultural Approach. Proc., ACM Symp. 
on Principles of Database Systems, 1983. 

[DAYA87] U. Dayal. Of Nests and Trees: A Unified Ap 
preach to Processing Queries that Contain 
Nested Subqueries, Aggregates, and Quanti- 
fiers. Proc., Thirteenth VLDB Conj., 1987. 

[DAYASS] U. Dayal. Queries and Views in an Object- 
Oriented Data Model. In Proc., Second Inter- 
national Workshop on Database Programming 
Languages, 1989. 

[ELMASO] R. EImasri, G. Wuu, Y. Kim. The Time In- 
dex: An Access Structure for Temporal Data, 
In Proc., Sixteenth VLDB Conf., August 1990. 

[ELMASl] Il. Elmasri, Y. Kim, G. Wuu. Efficient Im- 
plementation Techniques for the Time Index, 
Proc., Seventh IEEE Data Engineering Conj., 
April 1991. 

[ELMA92] R. Ebnasri, M. Jaseemuddin, V. Kouramajian. 
Partitioning of Time Index for Optical Disks 
Proc., Eighth IEEE Data Engineering Conj., 
February 1992. 

[ELWUSO] Ii.. Elmasri and G. Wuu. A Temporal Model 
and Language for ER Databases. Proc., Sixth 
IEEE Data Engineering Conj., February 1990. 

[GAMCSl] D. Gabbay, P. McBrien. Temporal Logic 
and Historical Databases. Proc., Seventeenth 
VLDB Conj., 1991. 

[GAYE88] S. Gadia, C. Yeung. A Generahsed Model for 
a Temporal Relational Database. Proc., ACM 
SIGMOD Conj., 1988. 

[GUSESl] H. Gunadhi, A. Segev. Efficient Indexing 
Methods for Temporal Relations. Lawrence 
Berkeley Lab Technical Report LBL-28798 

[KAFESO] W. Kafer, N. Bitter, H. Schoning. Support for 
Temporal Data by Complex Objects. Proc., 
VLDB Conj., 1990. 

[KLGO85] A. Klausner, N. Goodman. Multirelations - 
Semantics and Languages. Proc., Eleventh 
VLDB Conj., 1985. 

[KOST89] C. Kolovson, M. Stonebraker. Indexing Tech- 
niques for Historical Databases. Proc., Fifth 
IEEE Data Engineering Conj., February 1989. 

[LOSA89] D. Lomet, B. Salsberg. Access Methods for 
Multiversion Data. In Proc., ACM SIGMOD 
Conj., 1989. 

pUM84] V. Lum, et al. Designing DBMS Support for 
the Temporal Dimension. In Proc., ACM SIG- 
MOD Conj., 1984. 

[MADA86] F. Manola, U. Dayal. PDM: An Object- 
Oriented Data Model. Proc., International 
Worksho 
tems, 19 ff 6. 

on Object-Oriented Database Sys- 

NITCSl] G. Mitchell, S.B. Zdonik, U. Dayal. Object- 
Oriented Query Optimization: ~What’s the 
Problem? Tech. Renort CS-91-41. Brown Uni- 

[NAAH89] S. B. Navathe, R. Ahmed. A Temporal Rela- 
tional Model and a Query Language. In In- 
formation Sciences, North Holland, 49(1,2,3), 
1989. 

[ROSE871 D. Rotem, A. Segev. Physical Organization of 
Temporal Data, proceedings, IEEE Data En- 
gineering Conference, 1987. 

[ROSE911 E. Rose, A. Segev. TOODM - A Tempo- 
ral Object-Oriented Data Model with Tempo- 
ral Constraints. 10th International E-R Conj., 
October, 1991. 

[SEGU89] A. Segev, H. Gunadhi. Event-Join Optimisa- 
tion in Temporal Relational Databases Proc., 
Fifteenth VLDB Conj., August 1989. 

[SHIP811 D. Shipman. The Functional Data Model and 
the Data Language DAPLEX. ACM Transac- 
tions on Database Systems, 6(l), March 1981. 

[SMIT83] J.M. Smith, S.A. Fox, T.A. Landers. 
A DA PLEX: Rationale and Reference Manual. 
Technical Report CCA-83-08, Computer Cor- 
poration of America May 1983. 

[SNOD87] R. Snodgrass. The Temporal Query Language 
TOuel. ACM Trans. on Database &stems. 
12[2) 1987. 

” 

[STSN88] Stam, R., and R. Snodgrsss. A Bibhogra- 
phy on Temporal Databases. IEEE Bulletin on 
Data Engineering, Vol. 11, No. 4, Dec. 1988. 

[SUCH911 Su, S.Y.W., H.H.M Chen. A Temporal Knowl- 
edge Representation Model OSAM*/T and Its 
Query Language OQL/T. Proc., Seventeenth 
VLDB Conj., 1991. 

[TAGASS] A. U. Tansel, L. Garnett. Nested Historical 
Relations Proc., ACM SIGMOD Conj., 1989. 

[TUCLSO] A. Tuzhilin, J. Clifford. A Temporal Rela- 
tional Algebra as a Basis for Temporal Re- 
lational Completeness Proc., Sixteenth VLDB 
Conj., 1990. 

[WUDASl] G. Wuu, U. Dayal. A Uniform Model 
for Temporal and Versioned Object-Oriented 
Databases. Digital Equipment Corp., Cam- 
bridge Research Lab., CRL-91/11, November, 
1991. 

[WUDA92] G. Wuu, U. Dayal. A Uniform Model for 
temporal Object-Oriented databases. Proc., 
Eighth IEEE Data Engineering Conj., Febru- 
ary 1992. 

versity, June 1991. * 

418 


