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ABSTRACT 
We present an approach for integrating inter-object constraint 
maintenance seamlessly into an object-oriented database 
system. We develop a constraint compilation scheme that 
accepts declarative global specification of constraints, 
including relational integrity, referential integrity, and 
uniqueness requirements, and generates an efficient 
representation that permits localized processing. We 
demonstrate the feasibility of our approach by designing a 
constraint pre-processor for O*, the programming language 
interface to the Ode object-oriented database. 

1. INTRODUCTION 

By its very definition, a database must serve as a faithful 
and incorruptible repository of data. Applications that consult 
the database expect a “warranty” that the database is 
supplying the correct values. As such, it is not surprising that 
much attention has been paid to the maintenance of integrity in 
relational databases. Object-oriented databases are rapidly 
gaining popularity, and show a promise of supplanting 
relational databases [15]. It is therefore imperative that we 
explore the maintenance of integrity in object-oriented 
databases. 

By virtue of object orientation, some integrity constraints 
are represented naturally and maintained “for free” in an 
object-oriented database, in that they are directly captured by 
the type system and the object class hierarchy. Typical 
examples of this sort are the constraints that every employee 
is a person and that every child of a person is a 
person. Other forms of integrity constraints apply to a single 
object, and clearly belong as part of an object class 
specification. An example of such a constraint for a person 
object is that years-of-schooling be at least 5 less than 
age. See [II] for a discussion of how such intra-object 
constraints can be integrated into an object-oriented database 
programming language. 
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However, by taking the object-centered position, it also 
becomes unnatural and difficult to represent and maintain many 
inter-object constraints, which apply across objects. For 
example, we may have a constraint that the age of a person 
must be at least 12 greater than the age of any child of 
person. This constraint compares the age attributes of two 
objects: a person and the person’s child. (Actually, it compares 
pairwise the age attribute of a person with each of the 
person’s children). When an integrity constraint enforces some 
relationship across object boundaries in this fashion, it is no 
longer clear how or where to record such a constraint in an 
object-oriented system. For instance, even though the 
constraint above was stated in terms of the age of a person with 
respect to that of the children, there is a complementary 
constraint on the age of a person with respect to that of the 
parents. This conflict, between supporting shared access for 
many applications and facilitating efficient representation and 
localized processing for a specific application, often results in 
the redundant representation of different views of the same 
knowledge in object-oriented databases [26]. 

In Section 4, we develop a constraint compilation approach 
to resolve this conflict. We show how inter-object constraints 
can be stated declaratively once and then integrated with the 
rest of the object-oriented system by a compiler. 

A major motivation for the work described in this paper is 
that given the flexibility and power of object-oriented systems, 
it should be possible to capture within the system integrity 
constraints that traditionally, in a relational system, have not 
been part of the database itself. At the same time, a key issue 
in the maintenance of integrity wnstraints is a careful 
circumscription of the set of constraints to be verified after 
each update. The recommended approach in an object-oriented 
database [l l] is to associate constraints with classes, and upon 
the update of an object to check each constraint associated with 
its class and none others. The constraint compilation approach 
we develop here generates efficient representations and 
localized consistency maintenance, by appropriately 
transforming a specified declarative constraint and associating 
it with exactly the relevant set of class definitions, where each 
of a small number of relevant constructs can efficiently be 
checked (procedurally). Our methodology encourages reuse, 
since after schema modification the constraints need only be 
recompiled - there is no need to respecify them. 

A few special cases of inter-object consnaints are of 
particular importance. One is refutional integrity, or the 
maintenance of “inverse” pointers. In an object-oriented 
database, a binary relationship between two objects is not 
represented as a single tuple in a relation, but rather as a 
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reference, at each of the two objects, to the other object 
involved in the relationship. If a change is made in one 
reference (in one object), a corresponding update is usually 
required in the other reference to maintain integrity. For 
example, when a man and a woman marry, they record a 
reference to each other in their respective wife and husband 
fields. Observe that two separate updates are required: one in 
the man object and one in the woman object. Similarly, if they 
decide to divorce at some later date, an update is once again 
required in both objects: an update only in one would violate 
relational integrity. Relational integrity is discussed in depth in 
Section 5. 

The second special case of inter-object constraints is 
referential integrity. This issue has been studied extensively in 
the context of relational databases and has recently been 
incorporated in some commercial products. In object-oriented 
terms, we wish to ensure that a reference to an object in the 
database is always valid. Referential integrity is studied in Sec. 
6. 

A third special case of inter-object constraints is 
uniqueness. Often some attribute is required to have a unique 
value for every object (in a class). Such uniqueness constraints 
are considered in Sec. 7. 

We begin in Section 2 with a quick review of O++, the 
primary programming language interface to Ode, describing in 
particular its constraint facilities. We introduce a language in 
Section 3, CIAO+t, which is a small extension of O-H, 
suitable for declaratively expressing integrity constraints. 
Additional CIAO++ constructs are discussed in Sections 5-7. 
In Section 8, we discuss how the ideas of Sections 3-7 can be 
integrated with the Ode object-oriented database and the 0++ 
language [ 11. 

Related Work 

A constraint maintenance facility has to answer two types 
of questions. Given a constraint, (1) when is the constraint 
violated? (2) how to fix the problem when there is a constraint 
violation? 

To answer the tirst question, a constraint compilation 
approach is taken in [7,12,13,19,22]. State transitions are 
abstracted into sets of inserted and deleted tuples. Assuming 
that the consaaint is true before a state transition, the objective 
is to derive an equivalent condition to be checked after the state 
transition. 

When state transitions are specified as transaction 
programs, constraint maintenance takes the form of verifying 
that a transaction preserves the truth of a constraint. Various 
programming logics have been used, such as Hoare Logic [ 101, 
Dynamic Logic [4], and Boyer-Moore Logic [23]. 

Constraints expressed in logical formulas are often very 
expensive to check. Finite differencing techniques have been 
used in [3,16,20] to transform complex constraint checking to 
simple data manipulation. A more general constraint 
reformulation approach is taken in [21], which simplifies 
constraint formulas using knowledge about database semantics 
and organization. 

To answer the second question, input from database 
designers is often needed to decide what to do when a 
constraint is violated. Query modification [U] represents an 
early attempt to handle this problem, where a state transition is 
aborted if the constraint is not properly maintained. This 
approach has evolved into various constraint monitoring 
schemes that either require database designers to specify 
maintenance actions as part of the constraint [S], or query 
database designers interactively to acquire such actions 
15.6.181. In [24], transaction compilation rather than 
transaction execution is aborted if a potential constraint 
violation is detected. 

Some special cases of integrity maintenance in an object- 
oriented database are discussed in [2.17]. However, our work 
represents the first comprehensive approach that combines 
isolated constraint maintenance techniques, in particular 
constraint compilation, finite differencing, auxiliary data 
structures, and monitoring, into an integrated constraint 
maintenance facility for object-oriented databases. Constraint 
maintenance in object-oriented databases differ from that in 
relational databases in three critical aspects, which makes the 
techniques developed for relational databases not directly 
applicable to object-oriented paradigm. 

Firstly, control in object-oriented databases is localized 
rather than centralized - there is no centralized place where 
constraints can be stated, reasoned abous and maintained. 
Instead, every object is responsible to maintain the constraints 
attached to it with respect to changes to its attributes. Our 
constraint compiler is capable of compiling every global 
constraint into severa local constraints attached to different 
objects, such that, by maintaining the local constraints instead, 
the global constraint is guaranteed to be valid, and redundant 
maintenance effort is minimized. 

Secondly, the object-oriented model is much richer than the 
relational model in terms of data modeling constructs. Every 
modeling construct supports the maintenance of some implicit 
constraints. By transforming explicit constraints stated by users 
into implicit constraints embedded in the object-oriented 
hierarchy, constraint maintenance is more efficient. Our 
constraint compiler is capable of compiling explicit constraints 
into auxiliary structures such as new object classes, new 
atuibutes. and new object references, such that non-local 
access is minimized. 

Thirdly, the object-oriented model supports the attachment 
of monitors to individual objects. Our constraint compiler 
utilizes this feature, together with finite differencing 
techniques, to compile global corrective actions into local 
triggers in 0~ that efficiently maintain the global constraints. 

The approach suggested here is to reduce inter-object 
constraints into sets of equivalent local constraints, and is 
exactly the opposite of the approach suggested in [2]. 

2. OBJECTS IN 0++: A BRIEF REVIEW 

The O++ object faciliv is based on the C++ object facility 
and is called the class. Volatile objects are allocated in volatile 
memory and are the same as those created in ordinary 
programs. Persistent objects are allocated in persistent 
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memory and they continue to exist after the program creating 
them has terminated. Each persistent object is identified by a 
unique identifier, called the object identity [14]. The object 
identity is referred to as a pointer to a persistent object. For 
example, here is a specification of the classes Dept. Emp, and 
Mgr: 

class Dept { 
int budget; 

public: 
char dname[20]; 
persistent Mgr *head(); 

//reference to dept. head object 
persistent Emp *emps[[MAX-EMPS]]; 

//double brackets denote unordered set 
I: 

class Emp i 
int salary : 

public: 
Name name; 
char sex; 
int Sal0 const {return salary; ) 
persistent Dept *dept; 
Emp(Name n, char s, int salfig, 

persistent Dept *d); 
void update-salarycint new-salary); 

constraint: 
sex == ' F' I I sex == 'M' ; 
(Sal0 >= 10000 II Sal0 == 0 ): 

update-salary(O) ; 
); 

class Mqr: public Emp { 
Mgr(Name n, char s, int salfig, 

persistent Dept *d); 
); 

O-H provides facilities for associating constraints with an 
object. These are specified as part of a class definition, and are 
treated as members of the class. The specified constraint 
conditions are checked every time an instance of that class is 
updated (through a public member function), a new instance is 
created, or an old instance is removed. If the condition is 
found to have been violated, the constraint “fires”, executing 
the action part associated with it, if any. After the action part is 
executed, the constraint is checked again. If it is still not 
satisfied, then the transaction attempting the update causing the 
constraint violation is aborted, and all its updates undone. The 
order in which constraint conditions are checked and actions 
executed is implementation dependent, but repeatable. 

The syntax for specifying constraints in Ott is: 

constraint: 
constmint~condition 1 [ : action, ] ; 
constraint-condition, [ : action,] ; 
. _ . 

For instance, there are two constraints in the defmition of class 
Emp. The first specifies that the sex field, which we know is 
of type char, should have a value exactly one of F and M. The 
second constraint also has an action part, and specifies that the 
salary of an employee should be recorded as zero, if it does not 
meet the minimum requirement of 1CKKKl. Observe that the 
constraint condition is satisfied once the salary has been 
recorded as zero. 

The constraint facility provided in O-+-t is intra-object in 
that when an object is updated only the constraints associated 
with is through its class definition, are checked. This 
restriction has been placed for reasons of efficiency, as well as 
in accordance with the spirit of localized processing of object- 
oriented programming. It is not practical to check every 
constraint with every object, every time that any update is 
made in the system. Note that there is no restriction on 
referencing (or even modifying) other objects in the condition 
or action part of a constraint. 

Constraints can be hard or sofi. Hard constraints are 
checked as soon as the object is updated, and must be satisfied 
immediately. Soft constraint checking is deferred until the end 
of the transaction causing the update. Inter-object constraints 
almost always must be soft since the constraint may be violated 
after one object has been updated, but before the other has. In 
this paper, we shall assume that all constraints are soft - some 
of these may later be hardened, as an optimization. 

Transactions in Ott have the form 

trans { 

) 

Transactions are aborted using the tabort statement. The 
macro old (X) can be used within a transaction, to return the 
value of X at the beginning of the transaction, where X is any 
persistent object. Similarly, the macro changed (X) returns 
TRUE if X has been modified from old (X) within the course 
of the current transaction, and returns FALSE otherwiss. 

3. LANGUAGE DESIGN 

C++ is a procedural language. Ott, being based on C++, 
is also a procedural language, except for the introduction of a 
set facility, and declarative intra-object constraints and triggers. 
However, 0++ does not provide a declarative mechanism, for 
instance, to express a constraint of the form: “there exists p in 
set S such that e(p)“, for some logic expression e. An explicit 
temporary variable is required that “collects” the evaluation of 
the expression for each element of the set. An Ott routine to 
evaluate this condition may be: 

1 
cond = FALSE ; 
for (p in S) ( 

COR" = cond I I e(p) ; 
I 
returr! cond ; 

) 

We believe that there is a value in having a cleaner and 
more declarative expression of constraints, both in terms of a 
user understanding code that has been written, and in terms of a 
compilation process that has to recognize particular constructs 
to be able to apply the transformation procedure or any of the 
optimizations discussed below. To this end, we define a 
language CIAO-+-t (short for “Constraints In An 0~ 
program”). CIAO++ is a (minor) extension of O-t+, just as 
0++ is an extension of C+t. In fats CIAO++ programs 
“look” exactly like O++ programs, except that more powerful 
and declarative constraint specification facilities are available 
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to the user. A simple “compiler” accepts CIAO++ code and 
emits Ott code. See Sec. 8 for an overview of this compiler. 
In this and the next three sections, we describe CIAO-H 
constructs as we go along. 

The primary new functionality required is the ability to 
identify the two types of quantifiers. We do this by means of 
the keywords foreach and thereis, standing for universal 
and existential quantification respectively. All Ctt logic 
expressions are also 0-H and CIAO++ logic expressions. A 
simple BNF for CIAO++ logic expressions is as follows: 

CIAO++-log-exp := C++-log-exp 1 
foreach variable in set ( CIAO++-log-q ) 1 
therei s variable in set ( CIAO++~log~eq ) 

It is easy to see that the set of logic expressions that can be 
defined using CIAO+t is exactly the set of range-restricted 
prenex formulasi. A couple of examples are given below, with 
regard to the classes Emp, Dept, and Mgr defined in the 
previous section. 

foreach d in Dept (thereis e in d->emps[[j: 
(e->sal() > d->head->salO/Z)) 

In words, the constraint above (we shall call it constraint A) 
says that in each department there is at least one employee 
whose salary is more than half the department head’s salary. 
We now specify another constraint, called constraint B, to the 
effect that there is at least one department in which each 
employee’s salary is more than one half the manager’s salary. 
This is written: 

thereis d in Dept (foreach e in d->emps[[]] 
(e->sal() > d->head->sal() /2)) 

In Ode, constraints have action parts associated with them, 
to be executed if the constraint condition is violated. It is 
sometimes convenient to refer to the quantified variable(s) in 
the action part as well. We permit this in CIAO+t, with 
respect to universally quantified variables. The action part is 
executed for each instantiation of the universally quantified 
variable for which the constraint condition is violated. Thus, 
we could fix a violation of constraint A, for instance, by 
lowering the salary of the department head. We would write 
this: 

foreach d in Dept (thereis e in d->emps:[]] 
(e->sal() > d->head->sal() /2) 1: 

lower salary (d->head) ; - 

A central principle of CIAO-H is that inter-object 
constraints can be associated with any of the objects that 
participate in the constraints, or even specified separately in a 
distinguished constraint specification file. The equivalent Ott 
program will have this constraint divided into an equivalent set 
of intra-object constraints, one constraint being associated with 
each relevant class definition. 

In Ott, constraints, like other members of a class, are 
permitted to reference private members of the specific 
object they are associated with. In CIAO++, an inter-object 
constraint, even if physically incorporated into a class 
definition, is not a member of the class, and is not permitted to 
reference private or protected members. Its association with 
the class is merely a notational convenience. 

In addition to the general declarative inter-object constraint 
construct, CIAO++ also offers convenient short-hand facilities 
for describing relational integrity, referential integrity, and 
uniqueness. A description of these facilities is deferred until 
Sections 5, 6, and 7 respectively. First, we develop a theory of 
inter-object constraint maintenance. 

4. CONSTRAINT COMPILATION 

Inter-object constraints are expressed in CIAO++ as 
described in the previous section. Our task is to implement 
each inter-object constraint as an equivalent set of (intra-object) 
constraints to be associated with the appropriate class 
definitions, that need be checked only when an object of that 
class is updated, created, or deleted. Clearly, it is sufficient, 
though unnecessarily profligate, to associate each such inter- 
object constraint with every class definition. On the other 
hand, it may not be sufficient to associate an inter-object 
constraint only with the classes mentioned explicitly in its 
quantification, because an object mentioned in the constraint 
may refer to objects in other classes, and changes to the 
referenced objects could violate the constraint. 

In the first subsection below we develop a transformation 
technique that correctly associates an inter-object consuaint 
with the appropriate classes. The following subsections present 
useful optimizations. 

4.1 Identifying Object References 

We distinguish two kinds of object references in an inter- 
object constraint: those appearing explicitly in the constraint 
expression, and those appearing implicitly in user-defined 
functions that are called within the constraint expression. A 
reference expression has the form e.a, where e is an expression 
that evaluates to an object, and a is an attribute name. A 
reference expression e.a is primitive if e itself is not a reference 
expression. 

4.1.1 Explicit References 

The first stage, in correctly associating an inter-object 
constraint with the appropriate classes, is to identify all the 
classes mentioned in explicit object references. To do this, we 
transform an inter-object constraint into a logically equivalent 
one such that all objects referenced explicitly in the constraint 
expression are “brought to attention” in the quantification. 
The transformation is defined as follows. 

Let (Q... )’ denote a sequence of zero or more 
quantifications. Every inter-object constraint has the form 
(QoI~~,) ... (Qo,eS,)e(o,. . . . . o, ), where Q is either V 
or !I, n > 0, e is a (quantifier-free) boolean expression, oi, . ,o, 
are all the variables occurring in e. and Si , . . . , S, are set- 
valued expressions. For each constraint of this form, we first 
transform it into 
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(The symbol I‘-+” stands for logical implication, and is 
equivalent to writing 7P VR). 

Then the following transformation step is applied 
repeatedly until no more application is possible. Suppose the 
consuaint has the form 
(Qol~.Sl) ---(Qo,ES,)(Q-.-)*(P+R) for some m<n. 
and there is a non-primitive reference expression (e. u i ).a a in 
R such that e.ui is primitive. The result of a single 
transformation step with respect to e.a, is 
(Qol~Sl) ... (Qo,~S,)(tlo~s)(Q...)*[e.u~/o] 
(PAo=e.u,+R[e.u,/o]). whereSistheclassofe.u,,ois a 
fresh variable not occurring anywhere in the constraint before 
the transformation step, and (Q .*. )‘[e.u,lo],R[e.u,lo] 
denote the expressions obtained from (Q . . . )‘*R respectively 
where all sub-expressions of the form e.u, are replaced by 
object reference o. 

Lemma 1: 

The transformation process applied to inter-object constraint 
(Qol~s,) -.+ (Qo,eS,)e(ol,.. ..o,> produces a 
constraint that evaluates to true iff the original constraint does. 

Proof: 

We prove by induction on the chain of transformation steps. 
The base case is obvious. Let the constraint before and after the 
n” transformation step respectively be: 

(Qol~s,) . . . (Qo,E S,)(Q . . . )‘(P+R) (1) 
(Qol~s,) ... (Qo,~Sm)(~o~WQ ... 1’ 

[e.ullo](PAo=e.ul-tR[e.a,lo]) (2) 

and P does not contain any reference expression occurring in R. 
By the induction hypothesis, (1) evaluates true iff the original 
constraint does. Notice that e.ui must be non-null (else we 
cannot evaluate e.ul.uz). That is, (30ES)(o=e.ul) is true. 
Hence (1) is equivalent to 

(Qol~s,) .. . (Q~,ES,)((~OES)(O=~.~,)+ 
(Q *-. )‘V-+R)) 

which in turn is equivalent to 

(Qol~s,) .. . (Qo,E.S,,,)(VoES)(o=e.ul+ 
(Q . . . )‘(P+R)[e.ul/o]) 

Since e does not contain reference to any variables quantified 
in (Q . . . )*, and P cannot contain reference expression e.u,, 
the above formula is equivalent to (2). 0 

This transformation captures all explicit object references 
by identifying each with an (additional) universal quantifier. 
There are no non-primitive reference expressions in the new 
constraint expression, and only non-primitive reference 
expressions could possibly denote object dereference. 

We call the form of a constraint obtained after the above 
transformation process, its canonical represent&m. The 
canonical representation of a constraint must be associated with 
every object class that is quantified in it either universally or 
existentially. 

4.1.2 Implicit References 

Next, we need to identify aIl the implicit object references 
in user-defined functions called (directly or indirectly) in the 
constraint expression. We cannot expect the same 
transformation method to work here for several reasons. First, 
we cannot always expand function calls by inline code due to 
the existence of recursive functions. Second, reference 
expressions in user-defined functions might involve local 
variables, which are meaningless outside the function context. 

Instead in the case of implicit object references we simply 
associate the constraint with the class of each of them. 
Assuming that no user-defined predicate functions are 
compiled separately, this step captures all implicit object 
references, provided it is applied recursively through all 
function definitions encountered. Any separately compiled (or 
library) functions must advertise what classes they refer to, and 
we associate the constraint with each of these classes. The 
above discussion leads to the following theorem. 

Theorem 1 

To guarantee the validity of a consuaint, it is sufficient to 
associate its canonical representation with every class that 
either is quantified over in the canonical representation, or is 
the class of an implicit non-primitive reference expression. 

For example, the two constraints shown in section 3.2 are 
transformed as follows. The canonical representation of 
constraint A is: 

foreach d in Dept (foreach m in Mgr 
(thereis e in d->emps[[]] 

(! Cm == d->head) / 1 e->sal() > m->sal()/i))) 

and of constraint B is: 

thereis d in Dept (foreach m in Mgr 
(foreach e in d->emps[[]] 

(!(m == d->head) II e->salO > m->sal()/2))) 

Both constraints must be attached to all three classes, Dept, 
Emp, and Mgr. 

While the canonical m-presentations of these constraints are 
useful in correctly identifying the classes with which the 
constraint must be associated, more efficient representations of 
the constraints are clearly possible. In fact, no human 
programmer, having identified the classes with which to 
associate these constraints, would proceed to specify them in 
the baroque form of the canonical representation. In the next 
several sub-sections, we present optimizations that may be 
applied to the canonical representation of a constraint afrer if 
hus &en instuntiuted in u class definition. The attempt is to 
obtain (constraint specification) code from the constraint 
compiler that is of quality comparable to what a human 
programmer could have produced, were the human to 
determine all the classes a constraint should be associated with 
and write each instantiation of the constraint by hand. 

4.2 The One-Copy Property 

It is possible that there is more than one range variable 
quantified over the same class after the transformations of the 
previous step. In that case, only one copy of the constraint 
need be associated with the class definition. There is no value 
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in repeating the same constraint multiple times. We’ll refer to 
this as the one-copy property. 

Note that the onecopy property arises from the fact that a 
constraint in its canonical representation is perfectly symmetric 
with respect to all the quantified variables that participate in it, 
in the sense that the two or more constraints being associated 
with an object class due to two different quantified variables or 
implicit reference expressions are logically equivalent (in fact 
they are identical). If some transformation, such as most of the 
optimizations presented below, loses this symmetry, then the 
one-copy property no longer holds. 

43 Optimization via Specialization 

Inter-object constraints are in general very expensive to 
maintain, and the more quantifier nestings there are in a 
constraint, the more expensive it is to check its validity. For 
the class of inter-object constraints of the form ( VOE S)e(o), 
the constraint can be specialized with respect to the object to 
which it is attached. Speci&cally. the constraint associated with 
class S could be: e[olthis], where this refers to the current 
object (that is being changed). (Recall that the notation a/b is 
meant to denote the replacement of a by 6). Thus the cost of 
maintaining the constraint is reduced by 1 S 1 times because the 
universal quantification over S is removed2. This simplification 
is wrrect because the constraint is checked for validity 
whenever some object of S is changed. Assuming that the 
database is valid before the change, other objects in S, which 
have remained the same, do not have to be checked against this 
change. This leads us to the following theorem: 

Theorem 2 

With respect to changes in an object o’ of class S, if the 
database is valid before the state transition, then the original 
constraint (VocS)e(o) is valid iff the simplified constraint 
e[o/o’] is valid, after the state transition. 

For example, constraint A, when attached to the Dept class, is 
specialized into the fommla (Al): 

foreach m in Mgr (thereis e in emps[[l I 
(!(m == head) i I e->sal(l > m->salO/2)) 

As stated above, only the outermost universal quantifier 
may be removed by means of this optimization. However, we 
know that universal quantifiers commute. So the general rule is 
to take the copy of the constraint associated with some class 
and to see if, by commuting quantifters, it can be written in a 
form with the universal quantifier over this class being 
outermost. If so, this quantifier can be eliminated, as discussed 
above. 

Once a universal quantifier is eliminated using this 
optimization, the constraint is no longer symmetric, and 
therefore the one-copy property no longer holds. To see why, 
let the wnstraint 
~iio,~s,~~ao~~~~~~~,o~~, and S,=S,. The wnstrain~ 
to be associated with S, and S2 (they happen to be the same) 
are: (tlo2ESz)e(this,02) and (VoicSi)e(o,,this) 
respectively, which are not equivalent in general. Given an 
inter-object constrain4 if S,, . . . .S, are all the classes 
mentioned in the quantification that are equal to S and are not 
nested in any existential quantification, then the cost ratio 
between checking the one unsimplified constraint and checking 

I! ISil 
the m simplified constraints would be + , which is 

ISI 
izl,! I sj I 

equivalent to -_ The decision on whether to use the 
m 

simplified version depends on whether this wst ratio is greater 
than one, given that size information about object classes is 
available. Typically, one expects IS] >> m, and it is 
worthwhile to use the simplified version. 

4.4 Optimization via Variable Binding 

The transformation procedure applied to capture all the 
classes with which a constraint is to be associated introduces 
universal quantifiers, as we saw above. Once the transformed 
constraint has been associated with appropriate classes, it is 
often possible to “undo” some of the transformation 
individually for each instantiation of the constraint in a class. 
By this means, the extra universal quantification can often be 
eliminated altogether. To be more specific, if a constraint 
associated with some particular class has the form 
(Q, ... )*(VOES)(Q~ ... )‘(o=eAP+R) and o=e does 
not contain any variables quantified in (Q2 . . . )‘. then it can 
be transformed into the equivalent form 
(Q, . ..)‘(Q2 . ..)‘(P+R)[o/e]. The correctness of this 
optimization is guaranteed by Lemma 1. 

For instance, constraint A, when associated with class 
Dept. can be simplified further after the optimization via 
specialization shown in formula A2, and written as follows: 

thereis e in emps[[]] 
(e->sal() > bead->sal()/2) 

Constraint B, when associated with class Dept, can be 
simplified to: 

thereis d in Dept (foreach e in d->emps[[l! 
(e->salO > d->head->sal()/2)) 

For instance, the same constraint A, when attached to the Mgr 
class, is specialized into the formula below by commuting the 
universal quantifiers on classes Dept and Mgr (A2): 

foreach d in Dept (thereis e in d->emps[[ll 
(! (this == d->head) I / e->sai() > sa10/2)) 

2. Wewe ISIrodmotcthecardinaliryofasdS 

This simplified form is exactly the same as the original 
specification, so it may appear that all our work thus far has 
been superfluous. Note, however, that this simplification is not 
possible in the case of consnaint A associated with class Mgr. 
The transformation technique permitted us to identify these 
classes, and to associate the correct constraint with all of them. 

4.5 Optimization via Redundant Data 

For another class of inter-object constraints of the form 
(306 S)e(o). the efficiency of maintaining its validity may be 
improved by maintaining redundant data. We create a variable 
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S’ whose type is set(S), and an object O’E S is a member of S’ 
if and only if e(o’) is true. We can replace the original 
consuaint by two constraints: (Eloe S)(OE S’) and 
(Uo~S)(oeS’oe(o)). The action part of the latter is such 
that o is inserted into (deleted from) S’ whenever e(o) becomes 
true (false). Given that S’ is initialized appropriately, the 
action part correctly maintains the validity of the second 
constraint. We thus have the following theorem: 

Theorem 3 

The original constraint (30ES)e(o) is true iff the two 
constraints (30~ S’) and (tto~ S)(oe S’oe(o)) are both true 
for some YES. 

Any class to be associated with the original constraint is 
instead associated with the second constraint above. S is 
associated in addition with the first conswaint above. Other 
optimizations can be applied to these constraints. In particular, 
the optimization of Section 4.3 is often applicable to the the 
second constraint associated with S. 

For example, constraint B can be simplified by the 
introduction of a class Set of-Dept. and an object, 
const B Dept. instance of this class. Each object of this -- 
new class represents a set of (references to) departments3. 
With class Dept we associate the constraints: 

thereis d in Dept (d in const-B-dept) ; 
foreach e in emps[[]] 

! (e->sal() > head->sal()/2) : 
const B dept += this ; -- 

! (foreach e in emps[[]] 
! (e->sal() 1 head->sal()/2)) : 

const B depr -= this ; -- 

Constraint B associated with other classes, must also be 
transformed for this to work. For instance, with class Emp, we 
must write (recall that the d in the action part refers to the 
specific departments for which the given constTaint condition is 
violated): 

foreach d in Dept (foceach e in d->emps[[]] 
! (e->sal() > d->head->sal()/2)): 

const B dept += d ; 
foreach d-in Dept ! (foreach e in d->emps[[]] 

! (e->sal() z d->head->sal()/2))) : 
const B dept -= d ; -- 

With the original constraint, there is no integrity 
maintenance overhead to create objects in the existentially 
quantified class that we try to remove, but it costs 1 S 1 to delete 
an object in S. With this optimization, the overhead when an 
object is created in S would be the same as the cost of 
evaluating e to check if it is also in S’, while deleting an object 
in S takes constant time to check if set S’ is non-empty. Let 1 P 1 
be the cost of evaluating the (quantified) logic formula to 
determine membership in set S’. Usually IP I>> 1 since 
evaluating the condition may involve iterating over other sets. 
Let ISI, IS’lbethesizesofthesetsSandS’. Clearly, Is’IsIsI 

3. Opator += has @,c semantics “add IO su if not already an element”. and 
operator -= has the semantics “if an element of the set, mn~ve”. 

. The total cost without the optimization for x insertions and y 
deletions is y * 1 S 1 * 1 P I. The total cost with the optimization is 
x*IPl+y*IS’I. s 0. statistically, this optimization is of value 
when x*I~l+y*l~‘l<y*I~I*l~l. TCS is certainly the case 
when ~*IP~+~*Is~=c~*IsI*IPI. Since lpl>>l, the atmve 
inequality holds when x c y* 1 S 1 . The cost of maintaining the 
constTaint with respect to changes in other classes is not 
affected. Therefore, this optimization is likely to be of value 
unless the expected number of insertions is greater than the 
expected number of deletions by a large factor. 

5. RELATIONAL INTEGRITY 

5.1 Basics 

Consider a binary relationship that is known at schema 
definition time. In a relational database, it would be stored as a 
table with two columns, each column holding a foreign key 
representing one of the participants in the relationship. In an 
object-oriented database, this relationship (assuming it is 
known at schema definition time) is stored as a directional 
reference (or set of references) from either participant in the 
relationship to the other. 

When such a relationship is to be updated, multiple updates 
have to be performed, one for each participant in the 
relationship, giving rise to the possibility that the relation is 
recorded differently at the different logical locations. 
Relational integrity in an object-oriented database is the proper 
maintenance of relationships recorded at multiple logical 
locations, ensuring that the recording is consistent. 

For example consider a “husband-wife*’ relationship. In a 
relational database, this would be stored in a table with each 
couple stored as a tuple, with the husband key (name or other 
identifier) in one column, and the wife key in the other column. 
In an object-oriented database, corresponding to this tuple, the 
husband object would have the wife’s id recorded in the wife 
attribute, and the wife object would have the husband’s id 
recorded in the husband attribute. Relational integrity ensures 
that if A records B as his wife, then B records A as her husband 
and vice versa. 

There is no way to express an n-ary relationship directly in 
an object-oriented model. There is also no need, since any n- 
ary relationship can be expressed as a set of n binary 
relationships, one between each participant in the original 
relationship and a special “relationship” object. As such, we 
shall focus on binary relationships. 

Whenever, for some objects a and 6, and some directional 
relationship R, we say a R b. we also imply that b R-’ a 
holds. R-’ is called the inverse of R. For example if R is the 
relationship “manager of ‘, then R-’ is the relationship 
“managed by”. We know that if a is the manager of b, then b 
is managed by a, and vice versa. Observe that R = (R-l)-‘. 
In the example class definitions we have been using, this 
relation is between the attribute dept in class Mgr and the 
attribute head in class Dept. 

5.2 CIAO++ Constructs 

We provide a facility for declaring the inverse of an 
attribute in O+t as follows: 
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typeattr inverse inv-attr : 

Thus. wherever an attribute is being declared in the defmition 
of some class C, its inverse can also be specified. For such an 
inverse specification to be meaningful, the ‘ype must be of the 
form “class-name *“. The attribute itself may be an 
individual value, a set, or an array. The class class-name must 
have an attribute named inv-attr. inv-attr may be an individual 
value, a set, or an array, but in all cases its type must be a 
reference to the current class. The declaration above is 
understood to mean that C.atrr and class-namehv-attr are 
inverses of each other. That is, each attribute is a directional 
representation of the same relation, (pointing to the other 
object), with the two attributes expressing the relation in 
different directions4. 

Thus far, our attention has been focussed solely on the 
condition part of an inter-object constraint The action part has 
not been paid much attention, and has been specified just as in 
0+-t. Here, for the iirst time, we would like to have a 
convenient shorthand notation for different action possibilities. 
We handle these by introducing the keywords ripple and 
abort, meaning respectively that the action is to fix the 
reverse pointer and that the action is to abort the h-ansaction. 

A declaration of inverse is required in the definition of only 
one of the two attributes involved in the inverse relationship. 
That is., if A declares B as its inverse, B need not declare an 
inverse, but if it does, that is line too, as long as the inverse it 
declares is A and not anything else. By default, the action part 
of one applies to the other as well. However, it is permissible 
to have two different action policies for the two directions. See 
discussion in section 5.3. 

A few sample inverse declarations are given below: 

class Dept { 
. . . 
Mgr* head0 inverse dept abort ; 
Emp* emps[[5011 inverse dept ripple ; 
. . . 

class Emp { 
. . . 
Dept* dept inverse emps[[]] abort : 
Emp* mentees[[lO]] inverse mentors ripple ; 
Emp* mentors[[2]] ; 
Emp* officemates[[411 

inverse officemates[[]] abort ; 
. . f 

The first inverse declaration above relates a manager and 
the department he or she heads. Notice that head () is a 
computed attribute. The second inverse declaration relates 
employees to the department they work in. This is a many-one 
relation. The third inverse declaration (the first one in Emp)) is 

4. Our facility for declaring inverses is similar to the inverse-member 
facility in ObjectStore [17]. The diffezrnce is that OUT facility is not a special 
ad hoc comuuction. but rather syntactic sugar on top of the @mral inter- 
object ccnstraint facility. 

the complement of the previous declaration. Only one of these 
is required. However, the actions specified are different in the 
two directions. If a Dept object modiies its set of 
ews[[ll. then a corresponding modification is 
automatically made to the dept attribute of each employee 
affected, as part of constraint maintenance. On the other hand, 
an Emp object is not permitted to change its dept attribute 
unilaterally: an attempt to do so will cause the transaction to 
abort. 

The next inverse declaration is with regard to a many-many 
relationship between mentors and mentees. Observe that the 
inverse was declared only with one of the two attributes 
involved - mentees. There is no need to declare an inverse 
with mentors as well. Finally, we declare officemates 
to be an inverse of itself; that is, if a records b as an oflicemate 
then b must record u as an officemate as well.’ 

5.3 Maintaining Relational Integrity 

Inverse declaration in CIAO+t is a request to maintain 
relational integrity. In general, each relational integrity 
constraint is expressible as a pair of constraints in the canonical 
form of the previous section, with both consm%rns in the pair 
quantified identically. Consequently, the quantifier-free logic 
expressions can be combined to form a single conjunctive 
expression. For instance, the second relational integrity 
constraint in the example above is expressed by the pair of 
constraints: 

foreach e in Emp (foreach d in Dept 
((d != e->dept) II (e in d->emps[[]])) 

foreach e in Emp (foreach d in Dept 
(!(e in d->emps[[lll I! (d == e->dept)i) 

These can be combined and written: 

foreach e in Emp (foreach d in Dept 
((Cd != e->dept) II (e in d->emps[[]])) && 

(!(e in d->emps[[]]l II (d == e->dept)))) 

or equivalently, 

foreach e in Emp (foreach d in Dept 
((Cd != e->dept) && !(e in d->emps[[ll)) II 

((d == e->deptl &6 (e in d->emps[[ll)l)) 

Once the relational integrity constraint is placed in this form, 
all the optimizations discussed in the preceding section can be 
applied. 

If the action associated with a relational integrity constraint 
is to abort the offending transaction, then no special action part 
need be written in Ott. However, if the action associated is 
ripple, then an action specifying this ripple must be written. 
This action is different in the two classes involved. The 

5. R&ti~~~al iagtity dw not CZISU~C m&tivity. Thw., if a records b and c 
as offmnaus. then au we ensure is that b and c each record a as an 
officcmate. However, b and c need not record each 0th~~ as offimnares. If 
we wished to enforce such a transitive constraint WC would have to wire. an 
additional explicit inter-object constraint: 
foreach p in officemates[[l I 

(foreach r in p.officemates[[ll 
(r in officemates[[ll)) ; 
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example above becomes, when associated with class Emp: 

!changed(dept) : 
if (old(dept) != NULL) 

old(dept)->emps[[]] -= this ; 
if (dept != NULL) 

dept->emps[[] ] t= this ; 

Each time an object of class Emp has its dept attribute 
modiied, the object is removed from the set of employees in 
the old department and ad&d to the set of employees in the 
new department. The macro changed returns TRUE 
whenever the value of its argument has changed in the course 
of the current transaction. The macro old returns the value of 
its argument at the beginning of the current transaction. 

A similar constraint is required with the class Dept. Since 
each of these constraints independently specify the action to be 
taken when the inverse relationship is modified at one end, no 
additional complications are caused by having the action be 
abort in one direction and ripple in the other. 

5.4 Optimization via Inverse 

By virtue of two attributes aI of class S r and a2 of class Sr 
beiig inverses, representing a binary one-one relationship, 
several equivalent assertions are Que: 

We can derive four simplitkation rules corresponding to the 
three assertions above. (A simplification rule of the form 
P[ei] +P [e2] says that if we have a constraint formula with 
some subexpression that matches e,, then we could replace it 
by an equivalent formula in which the matched subexpression 
is replaced by e 2). 

P[o, .a1 =o*] +P[o, =02.a2] 
P[o, =02.4*] +P[o, .a,=o*] 

The first two rules always result in optimization. The last two 
rules, while in themselves are Usually not optimizations, can 
often make further optimization possible. For example, the 
constraint A attached to the Mgr class (as shown in formula 
A2) is: 

foreach d in Dept (thereis e in d->emps[[ll 
(! ("this" == d->head) I / e->sal() > sa10/2)) 

If we know that the dept attribute of the Mgr class is the 
inverse of the head attribute of the Dept class, then the above 
constraint could be simplified to: 

thereis e in dept->emps[[l] (e->salO > sa10/2) 

For inverse attributes a1 of class St and a2 of class S, that 
represent some binary many-one or many-many relationships, 
the corresponding attributes aI and/or a2 are set-valued. The 
first two simplification rules do not apply. The other two rules 
are derived from an appropriate modification of the third 
assertion. For instance, if a1 is single-valued but a2 is set- 
value the equivalent assertion is 

and the applicable simplification rules are 

P[o, .a1 =02] +P[o, E 02.a*] 
P[OlE02.a2]+P[01.a,=02] 

5.5 Optimization via Relational Constraints 

Inter-object constraints of the form 
(Uo,ES1)(302ES2)e(ol,02), can be transformed with the 
help of redundant data, like the constraints discussed in Sec. 
4.5. provided that relational integrity is being maintained. 

For object class S, and S2. add new attributes a 1 and a2 
respectively, which are of type set(S,) and set(S t ). For each 
object o i of class S, , ot .a1 denotes the set of objects o2 of 
class S, that makes e(oi ,oa) true. Similarly, for each object 
o2 of class S2, 02.a2 denotes the set of objects oi of class Si 
that makes e(oi .02) true. 

Associated with classes S i and S 2 respectively are two new 
constraints. One says that for every object oi of S,, oi .a, is 
computed as the set: (02]02~S2Ae(o,,02)). Another says 
that for every object o2 of S2. 02.a2 is computed as the set: 
(oi ]oi~.Si Ae(o, .oa)). A third intra-object constraint is 
associated with Si which says T(ai =NVLL.). Finally, a new 
relational constraint claims that a1 and a2 are inverses of each 
other. 

Theorem 4 

Theoriginalconstraint(tlo,~S,)(~lo2~S2)e(o,,02) isvalid 
iff the following four new constraints are valid: 

(~0~~S~)(~42~S2)(4~~42.42~e(0~.42)) (1) 
(~41~S1)(~42~S2)(42~41.4,0e(4,,42)) (2) 
(+to,~S1)-,(ol.al=NVU) (3) 
(~0~ES~)(fl0~ES,)(0,~0~.4~00~E0~.4~) (4) 

Constraints (1) and (3) together are equivalent to the 
original constraint. and require the maintenance of the 
computed attribute a,. Constraints (2) and (4) assist in the 
maintenance of this computed attribute with the help of 
relational integrity. 

To maintain constraint A this way, we would have a new 
attribute associated with class Dept. named d-emps [ [ ] 1, 
which is the set of those “distinguished employees” in the 
department who earn more than half of the department head’s 
salary. A corresponding new attribute associated with class 
Emp, named distinguished, which is a boolean-valued 
attribute true if and only if the employee is a distinguished 
member of his department (it is not a set-valued attribute 
because the relationship between employees and departments is 
many-to-one). Besides maintaining d-emps [ [ ] ] and its 
inverse distinguished, constraint A ensures that 
d-emps [ [ ] ] is always non-empty. 

In the cost table below, we assume that the objects of S2 
that satisfy the relationship e(oi .02) with respect to specific 
o, are uniformly distributed; and the same with objects of S i. 
From the table, it is obvious that the more frequently S, is 
deleted from, the more savings our optimization provides. On 
the other hand, if the creation of objects in Sa and the deletion 
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of objects in Si are more frequent the original constraint is 
cheaper to maintain. In particular, consider a sequence of x 
insertions into and y deletions from S,, while S, remains 
unchanged. The total cost for this sequence of operations is 
x + ylS,IIS21 with the original constraint, and 
xlSl I + ylSl I/IS21 with the optimization. Assuming ISI I 
and ISa I are both a> I, the optimized constraint is cheaper to 
maintain iff x/y C I Sa I In other words, the optimization is to 
be preferred unless the total number of insertions exceeds the 
total number of deletions by a factor that is larger than the size 
of the set itself. 

I Before After , 
Create Si 1 s2 s2 
Delete S i 
Create S2 
Delete S 2 

constant 
constant 
Is, IXISJ 

6. REFERENTIAL INTEGRITY 

Referential integrity requires that any object referenced by 
another object actually exist. In an object-oriented system, 
references are recorded by means of object identifiers. Since 
the user has no way of generating or modifying object 
identifiers accidentally, the system can easily guarantee that a 
reference is valid at the time at which it is recorded. What 
requires work is to ensure that there are no references left to an 
object anywhere in the system when it is deleted. This 
question of maintaining referential integrity at object deletion 
time is our primary concern in this section. 

Suppose that an object to be deleted still has a reference to 
it. There are three standard maintenance options [9]. The 
reference can be deleted as part of the transaction deleting the 
object (by placing a NULL in the reference pointer), the 
referencing object can be deleted, or the deletion of the object 
can be disallowed 

Which of the three we want for each reference is specified 
once as part of the class definition, and is applicable to all 
instances of the class. This specification is inherited in derived 
classes. We use the keywords nullify, ripple, and 
abort, respectively for the three possible actions. We also 
introduce the keyword off to indicate explicitly that 
referential integrity is not to be maintained. The general 
statement for referential integrity is of the form: 

cattr-decb reference policy : 

and is included in the class definition, one for each reference. 
The policy is one of the four keywords mentioned above. The 
<attr-&cl> is the declaration of an attribute in the usual form. 
The &fault policy is off, if nothing is specified for some 
attribute. Here is an example: 

class Dept i 

Mgr* head0 
inverse dept abort reference abort ; 

Emp* emps[[50]1 
inverse dept ripple reference nullify : 

. . . 

a Mgr object, the transaction should be aborted if this object is 
listed as the head of some Dept object in the database. When 
a Emp object is deleted, any reference to this object from the 
Dept this employee works should be nullified and the deletion 
allowed to commit. 

In general, referential integrity requires that at the time 
deletion is attempted on an object 0 of class 5. for every class S 
in the database, for every attribute u of S that is a reference to 
an object of class 5, we check V’OE S(o.a+G). The possible S 
and a values are known at compile time, and are independent 
of the size of the database. For each such S and (I, one 
constraint of the form just shown is placed in the definition of 
class S. and associated with every instance of the class. 

In Section 5.5 we discussed how relational integrity can be 
used to improve the enforcement of constraints of the form 
V (El 0). Since referential integrity has this form, the same 
technique is applicable here. Suppose we know that .?.7i is the 
inverse of S.a. Then the constraint associated with the class S 
simply reduces to checking that Z is NULL (or the empty set, if 
it is set valued). This check can be performed cheaply, in 
constant time. If relational integrity is not maintained, other 
techniques, such as reference counts, can be used to get rid of 
the universal quantifier. The key point to note is that referential 
integrity can be implemented, and optimized, using the general 
inter-object constraint mechanisms described in Sec. 4. 

7. UNIQUENESS 

Another special type of inter-object constraint is 
uniqueness, requiring that every object of a certain class have a 
unique value for some attribute. CIAO+t introduces the 
keyword unique, which can be used when declaring any 
attribute in a class definition. When applied to a set-valued 
attribute, it is taken to mean that the corresponding sets are 
disjoint. When applied to an array-valued attribute, it is taken 
to mean that the corresponding arrays differ in at least one 
element. These constraints can be written in the canonica1 
inter-object form in a straightforward fashion, and the 
techniques discussed in the preceding sections used. For 
instance, we could have: 

class Dept t 
unique persistent Mgr *head0 ; 
unique persistent Emp *emps[[MAX-EMPSII ; 

. . . 
1 

The first constraint above states that no two departments can 
have the same head (that is, no one manager can 
simultaneously head two departments), and is equivalent to: 

foreach m in Dept ( foreach n in Dept 
((m == n) I/ (m->headO != n->headO))); 

The second constraint states that no two departments can have 
any employees in common (that is, each employee works in no 
more than one department), and can be written as: 

foreach m in Dept (foreach n in Dept 
(foreach e in m->emps[[ll 

(foreach f in n->emps[[ll 
((m == n) II (e!=f))))) ; 

The example above states that when a deletion is attempted on 
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When a uniqueness constraint is violated, the action is 
assumed to be an abort of the transaction violating the 
consmint. 

As an aside observe that when attributes on which 
uniqueness is specified have inverses declared, then the 
maintenance of relational integrity automatically also maintains 
uniqueness. For instance, if a Mgr object has a single-valued 
Dept attribute, then (with relational integrity maintained) no 
two departments can have the same manager. Similarly, if an 
Emp class has a single-valued dept attribute, inverse of the 
emps [ [ ] ] attribute in the Dept class, then it is not possible 
for any Emp object to be. recorded in the emps [ [ ] ] set of 
more than one department. 

8. IMPLEMENTATION 

CIAO++ is accepted by the ciaofront preprocessor, 
which generates equivalent 0~ code. The Ott code 
generated is then compiled with the O+t compiler, comprising 
ofront and the C++ compiler. If 0~ is input to 
ciaof ront, then it is output with no modification: only the 
constructs specific to CIAO++ are processed6. 

Since all the new constructs in CIAO++ &al with class 
definition, only the class definitions need be processed through 
ciaof ront. This pre-processor works in two passes. In the 
first pass, it collects all the constraints and transforms them into 
their canonical representations. It then ensures that it has 
available to it all the class definitions that require one or more 
of these constraints to be included In the second pass, the 
transformed constraints are placed in all the appropriate 
classes, performing optimizations where appropriate. In C++, 
it is necessary that declaration precede use. In particular, it is 
not permissible for a member of a class A to be referenced in a 
class B unless the definition of A precedes that of B. A typical 
inter-object constraint is likely to involve members of multiple 
classes, such as A and B, so that we seem to be in trouble 
whichever we place first. ciaofront resolves this problem 
by encapsulating the condition evaluation in a function. The 
body of this function is placed after the declarations of all the 
classes involved. 

All the optimizations described in this paper are at the 
language level, and are incorporated into the CIAO++ language 
compiler. Lower level optimizations can also be of value, and 
may work in cases where language level optimizations are not 
possible. For instance, if objects of class S are indexed on the 
u attribute, then the constraint +/oeS(o.a#val) translates to 
$o~S(o.a=val), and can be evaluated by a single index 
look-up to determine whether there is indeed an object o that 
has an attribute a with the prescribed value. In other words, 
due to the existence of the index, the universal quantifier does 
not render the constraint expensive to maintain. We are 
currently studying how such “lower-level” optimizations may 
be incorporated into ciaof ront. 

6. Atafuwedatc. wcintmdtomergc ciaofront wib ofront tocreatca 
single pmprocessor. The cvcmual goal is 10 have a single efficimt compila 
for a stable language, without piping tigb multiple layers. 

By the very nature of inter-object constraints, it is not 
possible to compile interconnected classes separately. Now 
suppose that we have a database with an existing class A, 
already populated with several objects. What happens if one 
wishes to add a class B to the database, and create inter-object 
constraints between these two classes? Even if the inter-object 
constraints are stated with class B, class A also has to be 
recompiled. The objects existing in the database may not 
satisfy the new constraint: what do we do about them? These 
and other such problems compound the already hard question 
of schema evolution. We are currently studying this problem. 

9. CONCLUSIONS 

Object-oriented databases pose new challenges to semantic 
integrity, both in terms of constraint representation, and in 
terms of constraint maintenance. We have developed a 
constraint compilation approach that facilitates efficient 
representation and localized processing on one hand, and 
ensures global declarative specification and consistency 
maintenance on the other hand. Constraints are specified 
declaratively in the shared logical language. We have 
demonstrated the feasibility of our approach by designing a 
constraint preprocessor for the Ode object-oriented database 
system. 

Constraint compilation is a kind of knowledge compilation, 
where the generic constraint knowledge expressed in logic is 
compiled into object-oriented representations. In general, a 
knowledge representation scheme always provides constructs 
that ease the expression of certain types of knowledge, while 
making the expression of others hard. But no schemes are 
perfect for every possible application. We believe that our 
approach properly resolves the conflict between shared generic 
knowledge specification and localized efficient representation. 

A lot of work remains to be done. In particular, we have 
only scratched the surface of optimization. With the rich 
semantics of object-oriented paradigm, more optimization 
techniques can be developed for constraint compilation. We are 
also working on the implementation of the constraint compiler 
for Ode. Our work can be generalized to constraint compilation 
into other kinds of semantic data models, and to knowledge 
compilation in knowledge-based systems. 
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