
Principles of Transaction-Based On-Line Reorganization 

Betty Salzberg Allyn Dimock * 
College of Computer Science 

Northeastern University 
Boston, Massachusetts 02115 

Abstract 

For very large databases such as those used by banks 
and airlines, cost considerations may forbid shutting 
down the service for a long period of time and reor- 
ganizing off-line. Similarly, the size of the database 
may preclude constructing another copy with the de- 
sired organization on another disk collection. Such 
databases need incremental on-line reorganization. 
References to records occur in many places in the 
database. If the identifier used for the record changes 
due to reorganization, all of these references must be 
changed. This paper concentrates on the problems 
of updating references to enable on-line parallel incre- 
mental reorganization to be correct while reusing ex- 
isting code and making minimal changes to underlying 
transaction processing software. 

1 Introduction 

In many large database installations, down time of 
only a few minutes can cause a loss of millions of dol- 
lars. Yet currently, the only way to reorganize the 
database is to shut it down and spend hours or days 
reconstructing it. Buying enough disk space for a du- 
plicate of the database may be too expensive. As 

*This work was partially supported by NSF grant IRI-88- 
15707 and IRI-91-02821. 

Permission to copy without fee all or part of this material is 
grantedprovided that the copies are not made or distributed 
for direct commercial advantage, the VLDB copyright no- 
tice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the 
Very Large Data Base Endowment. To copy otherwise, or 
to republish, requires a fee and/or special permission from 
the Endowment. 

Proceedings of the 18th VLDB Conference 
Vancouver, British Columbia, Canada 1992 

databases are growing to the size of several terabytes, 
this has become a pressing problem. 

For this reason, there has been a resurgence of inter- 
est in on-line incremental reorganization algorithms. 
Papers on on-line construction of secondary B+-tree 
in- 
dexes [Mohan1992a, Srinivasanl991, Srinivasan19921, 
conversion from B+-trees to hashing [Omiecinski1988], 
reclustering of records [Omiecinskil992], resequencing 
of primary Bs-tree leaves [Smith1990], and use of par- 
tial indexes[Stonebraker1989] have recently appeared. 

In this paper, we consider only one aspect of the 
on-line reorganization problem, an aspect which has 
been ignored in the other papers. This is the changing 
of all references to a record when its primary iden- 
tifier is changed. For some reorganizations, such as 
the construction of new secondary indexes, this is not 
relevant. Bowever, for other reorganizations, such as 
reclustering records in a database where page IDS are 
part of the identifier for a record, or construction of a 
new primary B+-tree index, this is crucial. 

Although we do not consider object-oriented 
databases per se, if physical addresses are used for 
object identifiers as in 02 [Velez1989], the principles 
outlined in this paper apply. Reclustering of objects 
in such databases will require updating of references 
in indexes and in containing objects. 

We assume there are several secondary indexes re- 
ferring to the record and possibly some foreign key 
references. We shall look at the problem in terms 
of “records moved.” For each record moved, several 
pages of the database must be updated. If a system 
failure occurs when some of the references have been 
changed and others have not, the database will be in- 
consistent. For consistency, we suggest all changes for 
a given moved record be encapsulated within a trans- 
action. In section 2, we describe the problem in more 
detail and outline the basic record-moving transaction. 
We explain why we do not choose to keep a differential 
table of old and new addresses. We show how some but 
not all of the code for deleting and inserting records 
can be reused. 

511 



When a record is moved, its address changes. What 
prevents a database transaction from obtaining an out- 
dated address? In section 3, we will explain how this 
situation is in some cases already handled by existing 
database code which was written to prevent access to 
deleted records. We show how code must be modified 
to handle record moving as well. 

When new primary B+-trees are constructed, one 
must keep track of how far one has got in the recon- 
struction process, so that it can be resumed after a 
system failure. Further, on encountering a reference, 
one must be able to decide whether it refers to the new 
or the old organization. For reclustering in databases 
where page IDS are used in the primary identifier for 
records, one may wish to keep track of requests to 
recluster a group of records. These are all problems 
of “transaction context,” information about the reor- 
ganization process which must persist between record- 
moving transactions. We shall discuss transaction con- 
text and scheduling in section 4. 

2 Transact ion Protect ion 

2.1 Discussion 

There are two main referencing mechanisms in use to- 
day. DEC’s Rdb and IBM’s DB2 refer to records using 
their Record ID or RID, a page address and a slot num- 
ber within that page. Tandem’s default organization 
is the primary B+-tree and records are identified else- 
where in the database by their key in that B+-tree. 
All these commercial products support secondary in- 
dexes. A secondary B+-tree will have <secondary key, 
primary key> or <secondary key, RID> in its leaves. 
Secondary indexes based on hashing are also available. 

For the fixed-page databases used by IBM and DEC, 
there are compelling reasons to move records in spite 
of the underlying organization. First, one may wish to 
cluster records by the values of one attribute. One can 
request such clustering in these products when design- 
ing the schema and loading the database. But clus- 
tering is not dynamic. Space can be allocated for a 
cluster, but it can always be outgrown. After a pe- 
riod of database growth, queries related to the desired 
clustering are no longer effici.ent. 

Second, variable length records can grow. After an 
update to a variable length record causes it to grow, it 
may not fit on the page to which it was originally as- 
signed. In this case, forwarding addresses are attached 
and extra disk accesses are necessary for all queries re- 
lated to the expanded record. (We do not consider 
the special problems of records which are so large that 
they do not fit on one page.) 

Using primary Bs-trees makes certain types of reor- 
ganization unnecessary. Clustering is automatic. Vari- 
able length records do not need to be referred to by 
forwarding addresses when they no longer fit in the 
page to which they are originally assigned. In a B+- 
tree, when a record update makes the record too large 
to fit in a leaf, the leaf is split. Thus, from a reorgani- 
zation perspective, primary B+-trees are better than 
RIDS. 

It is true that if one wishes key-consecutive B+- 
tree pages to be physically consecutive for fast range 
searches, one must reorganize. This is nicely treated 
in [Smith1990]. The only reorganization we discuss for 
the primary Bf-tree database is changing which key 
should be the primary one or switching from a fixed 
page organization to a primary B+-tree. These are 
both rare events. 

The basic act in our reorganization process is the 
moving of a single record from one physical location 
to another. (When forwarding addresses are used 
for variable length records, the actual record may 
have been moved before; we would be concerned with 
erasing the forwarding address-eflectively moving the 
record.) For consistency, all references to this record in 
the database must be updated. These references will 
be on different pages in the database, in secondary 
indexes and in foreign key entries in other records. 
To keep the database consistent, we suggest record- 
moving and the related updating of references be en- 
capsulated in a database transaction. 

One transaction may contain all the changes for sev- 
eral records, however. That is, record moves may be 
batched. The more record moves in one transaction, 
the longer locks are held and the less control one has 
on interference with ongoing database work. On the 
other hand, setting up transaction table entries for 
each record moved may prove to be too much over- 
head. Therefore the length of the batch transaction 
is a parameter which can be tuned to system require- 
ments. We do not discuss batch size further; in the 
remainder of the paper, we assume only one record is 
moved per transaction. The extension to batching is 
straightforward. 

An alternative approach, as in [Omiecinskil992], 
would be to make a differential table or look-aside ta- 
ble correlating new and old addresses after a record is 
moved. We believe there is little advantage to post- 
poning the updating of references and maintaining a 
differential table. While there are still entries in the 
table, every database transaction using an index or for- 
eign key reference to the records in the relation with 
moving records must consult this table. If this table is 
not always completely memory-resident, look-up can 
be a serious performance drain. 

512 



In addition, there is still a need for transaction pro- 
tection for the moving of the record and the creating 
of the table entry. Other transactions must read the 
table entry if and only if the move has occurred. Also, 
if a record is updated by another transaction and then 
the record is moved, it may not be possible to UNDO 
the update. Thus one must lock the record when it 
is moved to cause an updater to either commit before 
the move or do the update after the move. One must 
also log the move so REDOing the updates before and 
after the move is possible. 

Also, an entry in a differential table cannot be 
deleted until it is determined that all references to the 
old address in the database have been changed. If all 
reference changes and the deletion of the table entry 
are encapsulated in a transaction, table entry deletion 
is safe. The advantage to a differential table is in be- 
ing able to postpone the work of changing references to 
another time. However, the scheduling algorithms in 
section 4 should keep reorganization from overloading 
the system, so this does not seem to be an important 
advantage. 

The transaction paradigm has the advantage of clear 
semantics and existing implementation. For the time 
being, this is the simplest way to guarantee eventual 
consistency in a database. But a non-transactional 
“mini-batch” approach as in [Lometl991] can also be 
applied to reorganization. 

For example, a system table could be maintained 
listing which references of an ongoing move operation 
remain to be changed. This table would be placed 
in log checkpoint records. Each new reference change 
would be logged and appropriate locks or semaphores 
used to guarantee isolation. In case of system failure, 
the recovery manager could reconstruct the table from 
the checkpoint record and the subsequent log records. 
This would guarantee eventual consistency without us- 
ing a transaction. The advantage is that no reference 
change need be undone after a system failure. The 
disadvantage is that recovery code must be rewritten 
to handle special log records referring to reorganiza- 
tion reference changes. We choose to aim for minimal 
rewriting of transaction processing software. We thus 
opt for transaction-based reorganization. 

2.2 A Record-Moving Transaction 

Each record-moving transaction must lock the record 
to be moved until end of transaction to properly se- 
rialize with other transactions which may wish to up- 
date (or delete) the same record. Some systems allow 
record level locking; others may require that the page 
be locked. All systems lock by name. We shall use the 
word Identifier to denote the name which is locked. 

Thus the identifier is the RID of the record or the pri- 
mary key of the record or the identifier of the page 
the record is in. The identifier is X-locked (exclusively 
locked) for the duration of the transaction. In addi- 
tion the new identifier of the record (after moving) is 
locked. 

The record-moving transaction performs at least the 
following steps (in section 4, we shall consider adding 
operations to establish transaction context as well): 

X lock the old IDENTIFIER. 

X lock the new IDENTIFIER. 

Move the record or remove the forwarding ad- 
dress. (For forwarding address clean-up we as- 
sume the record has already been moved.) As 
necessary, adjust the old and new primary B+-tree 
indexes when moving from one primary B+-tree 
to another. Log these updates. 

Update any uses of the old IDENTIFIER as a 
foreign key. Each record which is updated must 
be X-locked. Log all updates. 

For each secondary index, update the IDENTI- 
FIER in the index. Use the concurrency algo- 
rithms required for isolation on the indexes. Log 
all updates. 

Commit transaction; release locks. 

2.3 How delete then insert differs from 
moving a record. 

Part of the code for reorganization already exists in the 
database system. For example, one has routines for 
finding all index entries for a given record so that the 
record can be deleted. This code can be used to find 
the entries which must be updated when a record is 
moved. Also, to enforce referential integrity, one must 
be able to decide whether or not there are foreign key 
references to a given record. Probably this is enforced 
using an index on the foreign key field for the relation 
which references this record. This index can be used 
to find the places where foreign key references must be 
changed when a record is moved. But using the delete 
operation followed by an insert operation is not the 
same as executing a record-moving transaction. 

Deletions and insertions may cause triggers to be 
executed. For example, ANSI standard SQL requires 
that foreign keys refer to existing records. If a record 
which has a reference to it is deleted, some action must 
be taken. Often, the DBMS will make a check at com- 
mit time to see if there are dangling references to a 
deleted key. Some implementations simply abort the 

513 



transaction if this is the case (called RESTRICTED 
in [Date1990]). Another solution might be to auto- 
matically delete all the records referring to the deleted 
record (called CASCADES in [Date1990]). (CODA- 
SYL systems are able do this.) But if an IDENTI- 
FIER is changed due to reorganization, aborting the 
record-moving transaction or deleting other records is 
not acceptable. 

When a record is moved, the references to it in other 
records must be changed. But a delete operation does 
not automatically erase foreign key references and an 
insert operation does not automatically create them. 

Further, more general triggers may be specified on 
insertion or deletion of a record. These should not be 
executed when a record is moved. 

If a delete is followed by an insert, each index is 
visited twice. This is inefficient and so should not be 
allowed to occur. In addition, index page consolidation 
might take place if an entry is removed from the index. 
Except in the case where the same key has multiple 
entries extending over several index pages, the new 
entry will be put in the same page and there will be 
no reason to consolidate. 

So while there are some similarities between moving 
a record and doing a delete followed by an insert, the 
two operations are not the same. Some of the code 
which already exists can be reused (such as for finding 
all foreign key references to a record), but one must 
be careful not to execute triggers or visit indexes more 
than once, and one must code the updating of foreign 
key references. 

3 Correct Search During Reor- 
ganizat ion 

In this section, we will look at the treatment of out- 
dated references in indexes and foreign keys, searching 
using primary keys, and scanning during reorganiza- 
tion. We will show how some mechanisms in place for 
detecting or preventing access to deleted records can 
be used to provide correct search for moved records. 

3.1 Outdated IDENTIFIERS 

While a record is being moved, a database transaction 
T may obtain the old IDENTIFIER in an index or a 
foreign key reference before it can be changed. For ex- 
ample, T may use a secondary index before the index 
entry is changed but after the record-moving transac- 
tion has begun. T will read the old IDENTIFIER in 
the index and request a lock on the old IDENTIFIER. 
After the record has been moved and this IDENTI- 
FIER is unlocked, T obtains the lock and looks for the 

record. However, this IDENTIFIER will not lead to 
the correct record. 

Every DBMS must assure that transactions do not 
use addresses of records which have been deleted, or 
if they do, that they can detect that the record has 
been removed. This can be accomplished in a variety 
of ways. Any of these mechanisms can be used to as- 
sure that a transaction either does not obtain a lock on 
a changed IDENTIFIER or can detect when a record 
IDENTIFIER has been changed. Existing DBMS sys- 
tem code must be modified to handle detected missing 
records now that they may be missing because they 
have been moved as well as because they have been 
deleted from the database. 

3.1.1 Holding all locks to end of transaction 

If all locks (including locks on index pages and “key- 
value” locks as in [Mohan1990]) are held to end of 
transaction, any index page which is locked to read 
an index entry or key-value lock held to access all ref- 
erences with this key or any record which contains a 
foreign key will be locked until the transaction com- 
mits or finishes abort processing. Then if a delete or 
a reorganization of a record is in progress, a dead- 
lock, detectable by the lock manager, will occur. The 
deleter or reorganizer will hold a lock on the record to 
be moved or deleted. The other transaction will wait 
for this lock. The deleter or reorganizer will need to 
wait for the page or record containing the IDENTI- 
FIER or key-value lock in order to change the IDEN- 
TIFIER. One of the two transactions will be aborted 
by the lock manager. This provides the desired cor- 
rectness. 

3.1.2 Crabbing 

Holding locks to the end of the transaction is more 
than is necessary for correctness. A weaker protocol, 
merely holding them long enough to obtain the lock 
on the IDENTIFIER to which they refer, is sufficient. 
This technique is called crabbing or lock cozlpling. 

We are not discussing tree traversal, which is of- 
ten associated with lock coupling. We simply suggest 
(leaf) index page locks or locks on records with foreign 
keys or key-value locks would be kept until the IDEN- 
TIFIER locks were obtained. This will be enough to 
cause a detectable deadlock if a delete or reorganiza- 
tion is in progress. It may not be enough for other 
consistency requirements of the database. 

514 



3.1.3 Checking references again after waiting 
for a lock 

Another technique for safety in using references is to 
recheck the information in the access path after the 
lock on the reference has been obtained. For example, 
it is proposed in [Mohan1992b] to increase concurrency 
in indexes by briefly holding “latches” on pages and 
releasing the latches as soon as the page is no longer 
of immediate interest. Latches are semaphores and the 
partial ordering of index structures is used for deadlock 
avoidance between latches. Latches are not visible to 
the database lock manager. 

This creates problems in going from the latched in- 
dex structure to a locked IDENTIFIER: if a latch is 
held while waiting for a lock then undetectable dead- 
locks may occur. Undetected deadlocks are avoided 
and the reference is checked as follows: 

l While holding the leaf page latch attempt to lock 
the IDENTIFIER, but instruct the lock manager 
to fail rather than wait for a lock (conditional 
locking). 

l If the lock is granted immediately then the IDEN- 
TIFIER is still valid, and the latch may be re- 
leased and the record accessed. 

l If it is necessary to wait for a lock, remember the 
SI in the index page, unlatch the page, and re- 
request the lock in the normal fashion. (The SI, 
or State Identifier, is changed when anything in 
the page is updated. Usually the log sequence 
number (LSN) of the corresponding log record is 
used as a state identifier.) 

Once the lock is eventually granted, relatch the 
index page. If the SI is unchanged then the locked 
IDENTIFIER is valid, so unlatch the index page 
and access the record. 

l If the SI of the index page has changed, keep the 
IDENTIFIER lock and m-search the index. 

3.1.4 Deletion marks 

If access to an outdated IDENTIFIER is not pre- 
vented, it may be detected. A slot in a page can be 
marked as deleted. This has been used in a number 
of DBMSs. When encountering a deletion mark while 
reorganization is in progress, one must search again. It 
cannot be assumed that the record has been deleted; 
it might have been moved. 

3.1.5 Missing keys or deletion marks when 
constructing primary B+-trees 

There is a special case, where detection of a missing 
record does not require searching again. This case oc- 
curs when we know from the position of an RID in 
the database, while converting from an RID organi- 
zation to a primary Bf-tree, that the record cannot 
have been moved. We are assuming that whether con- 
verting from one primary B+-tree to another or from 
a fixed record organization to a primary B+-tree, one 
proceeds in physical (not key) order in the original 
organization. This will free contiguous space to be 
used later for the new organization. We also assume 
(see section 4.3) that we can tell how far reorganiza- 
tion has gone in terms of physical location of the last 
record moved. 

In changing from one primary B+-tree to another, 
since we proceed in physical order, a missing primary 
key IDENTIFIER requires that the search though the 
secondary index or foreign key be made again. We 
believe this is less important than losing contiguous 
free space by proceeding in key-order. 

If we had obtained an RID, however, during a re- 
organization from a fixed-page to a primary Bs-tree 
structure, and there is a deletion mark for that RID, 
and the RID was past the last record moved, then the 
record has been deleted, not moved. If the RID was 
in the area where records had already been moved, we 
must search again whether there is a record in place or 
not, so there is no need to attempt to actually access 
the record with this RID. 

3.1.6 S ummary of dealing with outdated 
IDENTIFIERS 

To summarize, when record-moving transactions are 
possible, a transaction which uses foreign key refer- 
ences or secondary indexes must: 

l hold locks on index pages (or key values or records 
with foreign key references) to end of transaction 

l or lock-couple (i.e. hold locks only until the 
IDENTIFIER lock is obtained) 

l or check the State Identifier in an index page after 
waiting for a lock on an IDENTIFIER and search 
again if it has changed 

l or search for the record again if a deletion mark 
or missing source key is encountered. The one ex- 
ception, when one can tell that a missing record 
means that deletion has occurred, is in switching 
from a fixed-page organization to a primary B+- 
tree, where the RID is in the area where records 

515 



have not yet been moved. If the RID is in the area 
where records have been moved from a fixed-page 
organization to a primary B+-tree, the search 
must take place again whether or not a record 
is present. 

3.2 Search using primary key 

A search can be made directly using a primary key 
value, without going through a secondary index or 
a foreign key reference. This would happen when a 
query is made using a value of the primary key for se- 
lection. We assume that when the search begins, the 
searcher has a lock on the IDENTIFIER, so that if the 
record exists, it cannot be moved during the search. 
We assume there is a source (old) primary B+-tree 
and a target (new) primary B+-tree. We assume all 
insertions are made to the target tree. Existing tree 
concurrency protocols are followed. When scans are 
required, scanning locks (next section, 3.3) are made. 

First we shall look at the case where the source 
tree is not converted to a secondary tree by the re- 
organization; it simply shrinks as records are moved. 
Here a missing source key value can mean that a 
record does not exist (might have been deleted or 
never was in the database) or the record has been 
moved or inserted in the target tree. A search on 
such a value must include a scan on the target pri- 
mary B+-tree. For range searches, key range locks 
([Gray1991, Mohan1992b, Mohan19901) on the source 
tree and scanning locks (section 3.3) on the target tree 
must both be made. 

Symmetrically, if a query is made on the target key, 
and there is no secondary index on the target key, and 
the record is missing from the target primary B+-tree, 
a scan must be made on the source organization. 

In switching from a source primary B+-tree to a 
target primary B+-tree, one may wish to convert the 
source B+-tree to a secondary index. As records are 
moved, entries with <source key, target key> can be 
placed in a new secondary B+-tree. When a new 
record is inserted in the relation, a new entry is in- 
serted in the secondary B+-tree. (The record itself is 
inserted in the target Bs-tree.) Both the secondary 
and the primary B+-trees on the source key may need 
to be searched for a given value. Here a missing 
source key means that the record does not exist. Thus, 
searches on source key do not need to scan the target 
tree in this case. Key-range locking must be extended 
to cover both the secondary and the primary trees on 
the source key. 

In the case where there is already a secondary BC- 
tree with the target key, a record-moving transaction 
removes entries from the secondary B+-tree as the 

records are inserted in the target primary B+-tree. 
Searches on target keys may have to use both indexes. 
Again, key range locking needs to involve both indexes. 
No scans on the source organization are needed. 

3.3 Scanning 

Suppose that a transaction T is scanning the entire 
relation without using an index. This would be the 
method of choice when a large number of records are 
to be read and/or updated, or when a query making 
a selection on a non-indexed attribute is made. If a 
record-moving transaction is in progress and if strong 
enough locking protocols are not used, anomalies can 
occur. T could see the same record twice (before and 
after it is moved) or miss a moved record because it is 
moved to a location the scan has already passed. 

Suppose, for example, that T locks records or pages, 
reads them, and then releases the read (share) locks. 
(This occurs in level 2 consistency or cursor stability, a 
locking option provided by many commercial systems.) 
Then T can read the record to be moved, unlock the 
record, then encounter it again after it has been moved 
and after the record-moving transaction has dropped 
its locks. 

It is simple to assure that records are not read 
twice by scanners. Simply require that scanners keep 
all locks to end of transaction (repeatable read or 
level S consistency) at least while reorganization is in 
progress. In this case, once T reads a record, the record 
cannot be moved until T completes. 

It is more subtle to assure a moved record is not 
missed by a scanner. Here we must deal with the phan- 
tom problem. Say T is making record-level locks only. 
(That is, the IDENTIFIER is for one record, not for 
a larger granularity such as a page.) T reads through 
page PI and locks each record in it. T has not yet 
reached page P2. Then a record can move from P2 
to PI. The locks held by T do not conflict with the 
new or the old IDENTIFIER of the moved record. T 
misses the moved record, for when T reaches P2, the 
record is no longer there. 

Similarly, suppose a transaction begins to move a 
record from PI to P2. When T reaches PI, the record 
is no longer there. If the record moving transaction 
aborts, and the record is replaced in PI after T has 
passed through, T never sees the record. 

The over locking or next-record locking techniques 
of [Mohan1992b, Mohan19901 used for range searches 
could be applied to the phantom problem. However, 
the phantom problem is usually not relevant for scan- 
ning entire relations because scanners usually lock with 
larger granularity-pages, or collections of pages, or 
even the whole relation. The real controversy (with 

516 



lock granularity smaller than the whole relation) is 
whether or not level 2 (cursor stability) should be an 
option. One must be aware that inconsistent views of 
the database can result. 

3.3.1 Mixed Multiversion Concurrency 

One solution to the scanning problem is to use mixed 
multiversion concurrency as implemented in DEC’s 
Rdb [Joshi1989]. 0 ne marks versions of records with 
commit-time timestamps of the transactions which 
created them. Read-only transactions read the most 
recently committed version with a timestamp before 
their own start time. Read-only transactions do not 
set locks. The record-moving transaction would put 
its timestamp on the moved (“new version”) record, 
and the read-only scanner would read the old “ver- 
sion” which had not been moved. 

4 Transact ion Context and 
Scheduling 

The problem of when to systematically reorganize a 
database was extensively written about in the late 
1970s and early 1980s. vao1976] was one such pa- 
per. The issue considered in most of the literature 
concerned deciding when the DBA should shut down 
the database for offline reorganization. Soderlund 
[Soderlundl981] h owever suggested that online reor- 
ganization techniques were practical for CODASYL 
databases so long as the size of any individual reorga- 
nizing transaction was kept small so that “real” work 
would be minimally delayed. This is the scheduling 
principle we adopt. 

4.1 Scheduling 

We also borrow some suggestions from [Smith1990], 
which describes a B+-tree reorganization designed and 
implemented by Franc0 Putzolu. Here, the problem is 
to resequence B+-tree leaves so that leaves which are 
consecutive in key order will be consecutive on the 
disk. Putzolu’s algorithm runs through the leaves in 
key order performing short transactions such as in- 
terchanging two blocks (containing B+-tree leaves) or 
splitting one leaf. (Behind the current leaf under treat- 
ment, the tree may lose physical contiguity.) This fol- 
lows Soderlund’s principle of isolated small transac- 
tions. 

One can issue requests for the next transaction in 
the Putzolu algorithm with a parameterized time delay 

where RATE can be any positive number up to 100 
specified by the “user” (DBA) and TIME is the time 
used to complete the previous requested reorganization 
transaction. A rate of 100 means reorganization has 
as high priority as other ongoing transactions; consec- 
utive requests are not delayed. Otherwise, the delay 
depends both on the priority assigned to the reorgani- 
zation and the load on the system. [Sm90] also notes 
that extra log records are generated by reorganization 
and that if the log record generation is too fast to be 
handled by the recovery system, the priority (RATE) 
can be adjusted downward by the user. That is, delay 
between transactions can be used not only to mini- 
mize interference when there is heavy demand on the 
system, but also to prevent the extra log records gen- 
erated by reorganization from clogging the system. 

4.2 Context for forwarding address re- 
moval or clustering 

For removal of forwarding addresses, or for recluster- 
ing, one may wish to keep a request queue. One does 
not wish the queue to disappear if there is a system 
failure. So this should be a recoverable queue. Many 
transaction processing systems implement recoverable 
queues [Bernsteinl990a] [Bernsteinl990b]. 

The record-moving transaction would begin by re- 
moving a request from the queue. If a record-moving 
transaction aborts, or if a system failure occurs be- 
fore the record-moving transaction can complete, the 
UNDO of this step would place the request back in 
the queue. Since requests can be repeated, the record- 
moving transaction must check to see if the move still 
needs to be made. 

Transactions may request removal of forwarding ad- 
dresses if (1) they create the forwarding address while 
updating a database record or (2) they follow a for- 
warding address left by another transaction. This re- 
questing ability can be suppressed until the perfor- 
mance of the system declines to a certain point. Re- 
questing reclustering is similar. When a cluster no 
longer fits in its assigned space, a request for reclus- 
tering can be made. This can happen at the time a 
new member of the cluster is entered in the database, 
or when a query has to make too many disk accesses 
for a given cluster. This can also be suppressed until 
performance falls below some threshold. 

As an optimization, we make two suggestions: (1) 
Only make requests when a forwarding address or 
wide-spread cluster is encountered, not when it is cre- 
ated. These constructs cause no performance decline 
if they are not accessed. (2) Let the length of the re- 
quest queue influence the reorganization priority. A 
long queue means many extra I/OS have been made 

517 



and reorganization is more important. 
Other optimizations seem more questionable. For 

example, one could count occurrences of the same re- 
quest and make the queue a priority queue. But then 
one must search the queue each time a request is made. 
Even more complicated, with less benefit, is to have a 
threshold count for reorganization. This requires also 
keeping a timestamp to discard old requests with low 
counts. 

4.3 Context for new primary B+-trees 

For constructing a new (target) primary B+-tree, con- 
text is more subtle. One must keep track of which 
parts of the old (source) organization have already 
been processed. We assume that we process a source 
organization in physical order whether it is a primary 
B+-tree or a fixed-page organization. This will free 
contiguous space to be used later for the target orga- 
nization. 

A record-moving transaction must include an up- 
date of status in a “status” relation. This is logged as a 
record update. If the record-moving transaction fails, 
the previous status record contents is replaced. Such 
a record-moving transaction must read and X-lock the 
status record as its first operation. Parallelism can be 
supported by having separate status records for each 
partition of the source organization. This solves the 
problem of how to restart, or what the next record- 
moving transaction for a given partition of the source 
organization should be. 

There is another context problem with new pri- 
mary B+-trees. Suppose that a record has been moved 
and its IDENTIFIERS changed in all the relevant sec- 
ondary indexes and all the foreign keys. Suppose that 
a search for this record obtains the correct IDEN- 
TIFIER and locks it. How does the searcher know 
whether this is an IDENTIFIER of the source B+-tree 
(or in the case of conversion from fixed location to B+- 
tree, the source fixed location IDENTIFIER), or the 
IDENTIFIER of the target B+-tree? 

In the case where one is converting from a fixed-page 
organization to a primary B+-tree, the status record 
can be used to determine that an IDENTIFIER is not 
in the source organization, if its value is less than the 
“where am I?” marker. But if the value is greater than 
the marker, one has no information. 

Perhaps the source IDENTIFIERS are all a different 
length from the target ones. Then nothing more is 
needed. But if they are the same length or variable 
length, one cannot tell from the IDENTIFIER which 
one it is. We propose using a code bit for each entry 
in a secondary index and for each record in a relation 
referencing the moved records as foreign keys. The 

code bit tells us if this is an old (source) key or a new 
(target) key. 

There are two possibilities: store the code bits in 
the pages of the index (or the pages of the relation 
with the foreign keys) or store them separately. Stor- 
ing them separately has the advantage that after the 
reorganization is finished, they can be instantly dis- 
carded. But storing them in the pages of the index 
or relation has advantages which we believe are more 
important. 

When a reference is changed, one already has in 
memory the page where that reference is. So only one 
page fetch is needed to change both the reference and 
the bit if the bit is stored in the page. 

Log records in most systems are page-based 
[Gray1991]. That is, for each page modified, one log 
record is written. Thus, changing the reference and 
changing the bit vector for the page requires only one 
log record if the code bit is stored in the page. If 
the code bits are stored separately, reorganization re- 
quires approximately twice the number of I/OS (unless 
the bit vectors are all memory resident throughout the 
reorganization) and twice the log records. 

Each secondary index has leaf nodes with 
<secondary key, primary key > entries. If each key 
is about 8 bytes, there are 128 bits in each key. So 
the bit vector for an index page is less than 0.01 of 
the page capacity. For pages with database records in 
them (for relations having foreign keys) it is more like 
0.001 of the page capacity. (There are less records in a 
database page than entries in an index page, so the bit 
vector is smaller.) So space for the bit vectors should 
not be a big problem. As each page is first updated 
for reorganization, the bit vector is inserted. The bits 
are changed with each further update. When reorga- 
nization is over, the bit vectors can be removed lazily 
as the pages are accessed for other purposes. 

One should keep in mind that the construction of a 
new primary B+-tree is a rare event. It is the price one 
pays for not choosing the correct primary key in the 
original schema-or for switching from a fixed-page 
architecture to a primary B+-tree architecture. 

4.4 Parallelism 

We have alluded to parallelism above. We do not as- 
sume any particular architecture such as shared noth- 
ing or shared disks. Thus a “partition” can be on a 
separate disk, at another node of a network, and so 
forth. 

For removal of forwarding addresses or for cluster- 
ing, any number of processors can access the request 
queue. If processors are associated with partitions of 
the data, there can be separate queues for each parti- 

518 



tion. This is a naturally parallel sort of reorganization, 
since each record-moving transaction is independent of 
the next. 

For creation of new primary Bf-trees, the source 
file can be partitioned with separate status records for 
each partition. Different processors can work on dif- 
ferent source partitions. The target can be partitioned 
also, so that insertions in the target can be handled in 
parallel. For example, different horizontal partitions 
based on the target key might be at different nodes of 
a network in a shared-nothing architecture. 

5 Conclusion 

Our goal in this paper has been to present principles 
which will allow many types of on-line reorganizations 
to be incremental, parallel and correct. We have not 
considered criteria for deciding when reorganization is 
needed. We have not looked at the question of find- 
ing space for the reorganized records, or how to rear- 
range the space one has. We have tried to point out 
what pieces of already existing code can be reused, and 
how they must be modified. We have tried to indicate 
where to be careful so that search will be correct and 
the database will remain consistent. 

We have argued that the moving of a record and 
the changing of all references to that record in the 
database should be encapsulated in a transaction. 
This was motivated by the desire to keep system soft- 
ware modifications to a minimum. Regulating the 
delay between transactions can mitigate interference 
with ongoing work and can limit the rate of reorgani- 
zation log record generation. 

Although the full deletion and insertion routines 
available in the DBMS cannot be used as is, many 
lower level subroutines can be used. Deletion or in- 
sertion might set off triggers which should not be exe- 
cuted when a record is moved. In addition, if a deletion 
routine is followed by an insertion routine, all indexes 
are visited twice, unnecessary node consolidation in 
indexes may take place and there is no provision for 
finding the places to reinsert foreign keys. 

We have noted how policies which prevent the ac- 
cess of deleted records also prevent the possibility of 
obtaining outdated addresses for records which have 
been moved. If access to deleted records is not pre- 
vented, one must be able to detect that they are miss- 
ing. Code must be changed to allow for the fact that 
a record which is missing may have been moved, not 
deleted. 

To obtain a consistent view of the database in a 
scanning operation, even read locks must be held to 
end of transaction, and granularity of locks must be 

large enough to prevent phantoms. If these rules are 
not followed, a moved record may be seen twice or not 
at all. 

For reclustermg or removing forwarding addresses, 
the reorganization process can be an ongoing back- 
ground process or it can be invoked when performance 
declines. A recoverable queue of requests for record- 
moving transactions is kept. Transactions encounter- 
ing forwarding addresses or wide-spread clusters can 
place requests on the queue. 

For creating new primary B-+-trees, status records 
for each partition of the original organization must be 
kept to resume action after a system failure, or just to 
start up the next transaction. In addition, bit vectors 
must be kept to indicate which references have been 
changed to refer to the new B+-tree. 

If these principles are followed, reorganizations can 
be incremental, on-line, correct, and parallel. 

Acknowledgements We would like to thank David 
Lomet, Michael Carey, Georgios Evangelidis and 
the referees for their comments on this manuscript. 
Thanks also to Liz Chambers of Tandem for sending 
us a copy of [Smith1990]. 

References 

[Bernsteinl99Oa] P. B ernstein. Transaction Processing 
Monitors. Communications of the ACX Vol. 
33 No. 11. 1990 

[Bernsteinl990b] P. B ernstein, M. Hsu, B. Mann. 
Implementing Recoverable Requests Using 
Queues. Proc. ACM SIGMOD Conference 
on Management of Data. 1990 pp.112-122. 

[Date19901 C. J. Date, An Introduction to Database 
Systems, Vol. 1, Fifth Edition. Addison- 
Wesley, Reading, Massachusetts, 1990. 

[Gray19761 J. Gray, R. Lorie, G. Putzolu, I. Traiger. 
Granulan’ty of Locks and Degrees of Consis- 
tency in a Shared Data Base. IFIP Working 
Conf on Modeling of Data Base Management 
Systems. 1976 

[Gray19911 J. Gray, A. Reuter. ZYansaction Pro- 
cessing: Concepts and Techniques. Morgan 
Kaufmann 1991. (draft) 

[Joshi1989] A. Joshi, K. Rodwell. A Relational 
Database Management System for Produc- 
tion Applications. Digital Technical Journal, 
No 8 (Feb 1989) pp. 99-109. 

519 



[Lometl991] D. Lomet, B. Salzberg, Media Recovery 
with Time-Split B-trees. Digital Equipment 
Corp. TR Cambridge Research Lab 91/9. 

[Lomet1992] D. Lomet, B. Salzberg. Access Method 
Concurrency with Recovery. to appear in 
SIGMOD 1992 (San Diego). 

[MohanlSSO] C. Mohan ARIES/KVL: A Key-Value 
Locking Method for Concurrency Control of 
Multiaction Transactions Operating on B- 
33-e, Indexes. Proceedings of the 16th VLDB 
Conference. Brisbane. pp. 392-495. 

[Mohan1992a] C. Mohan, I. Narang. Algorithms for 
Creating Indexes for Very Large Tables 
Without Quiescing Updates. to appear in 
SIGMOD 1992 (San Diego). 

[Mohan1992b] C. Mohan, F. Levine. ARIES/M: An 
Eficient and High Concurrency Index Man- 
agement Method Using Write-Ahead Log- 
ging. to appear in SIGMOD 1992 (San 
Diego). 

[Omiecinskil988] E. Omiecinski. Concurrent Storage 
Structure Conversion: From B Plus Tree To 
Linear Hash File. Proceedings of the Fourth 
International Conference on Data Engineer- 
ing. 

[Omiecinskil992] E. Omiecinski, L. Lee and P. 
Scheuermann. Concurrent File Reorganiza- 
tion for Record Clustering: A Performance 
Study. Eighth International Conference on 
Data Engineering, 1992. pp. 265-272. 

[Smith19901 G. Smith. Online Reorganization of Key- 
sequenced Tables and Files. Tandem Sys- 
tems Review, October 1990. (A description 
of software designed and implemented by F. 
Putzolu.) 

[Soderlundl981] L. Soderlund. Concurrent Database 
Reorganization - Assessment of a Powerful 
Technique Through Modeling. Proceedings of 
the Conference on Very Large Databases, 
1981. 

[Srinivasanl992] V. Srinivasan, M. Carey, Perfor- 
mance of On-Line Index Construction Algo- 
rithms. to appear, International Conference 
on Extending Database Technology, Vienna 
Austria 1992. 

[Stonebrakerl989] M. Stonebraker, The Case for Par- 
tial Indexes. SIGMOD RECORD, vol. 18, 
no. 4, Dec. 1989. 

[Velez1989] F. Velez, G. Bernard and V. Darnis, The 
02 Object Manager: An Overview. VLDB 
1989 (Amsterdam) pp. 357-366. 

Fao1976] S. Yao, K. Das, T. Teory. A Dynamic 
Database Reorganization Algorithm ACM 
Transactions on Database Systems 1,2 1976. 

[Srinivasanl991] V. Srinivasan, M. Carey. On-Line In- 
dex Construction Algorithms. University of 
Wisconsin-Madison Computer Sciences TR 
March 1991 and High Performance Transac- 
tion Systems Workshop, Asilomar, Septem- 
ber 1991. 

520 


