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Abstract 

We show how structured data stored in files can bene- 
fit from standard database technology and in particu- 
lar be queried and updated using database languages. 
We introduce the notion of structuring schema which 
consists of a grammar annotated with database pro- 
grams and of a database schema. We study the trans- 
lation from structured strings to databases, and the 
converse. We adapt optimization techniques from re- 
lational databases to our context. 

1 Introduction 

Database systems are concerned with structured data. 
Unfortunately, data is often stored in an unstructured 
manner (e.g., in files) even when it does have a strong 
internal structure (e.g., electronic documents or pro- 
grams). In this paper, we consider how data stored 
as strings can benefit from standard database technol- 
ogy and in particular be queried and updated using 
database languages. 

In actual systems, data is often stored as string for 
obvious historical reasons. The problem that we are 
considering is thus very general. Tools based on the 
ideas developed here would clearly be useful in a num- 
ber of classical fields such as software engineering (file 
= program) or information retrieval (file = SGML) and 
possibly in more exotic ones such as genetic engineering 
(file = gene). 
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We are interested here in files that have a strict in- 
ner structure. Such files are typically accessed with 
general editors (e.g., vi, emacs), programs (e.g., awk); 
or tailored applications. The general tools take little 
advantage of the inner structure and provide no data 
abstraction. The application specific tools (e.g., SGML 
editors) know of the inner structure. However, they do 
not provide many features currently found in database 
systems (e.g., high level query facilities). Furthermore, 
their lack of generality is a severe limitation for their 
larger use. 

Our aim is to propose a framework where database 
tools can be used to manipulate files based on the inner 
structure of the information they contain. In particular, 
we consider the following issues: 

- How can the implicit structure of files be 
described? 

- How can the structure be used for defining an 
abstract interface to the information stored 
in the file? 

- How can this interface be used for (i) access- 
ing (i.e., querying), (ii) updating, and (iii) 
maintaining the integrity of the data. 

To this’ end, we introduce the notion of structuring 
schema which consists of a grammar annotated with 
database programs and of a database schema. A struc- 
turing schema specifies how the data contained in a 
string should be interpreted in a database. 

We can use a structuring schema to translate data 
from a file and load it into a database. We can also 
understand it as the specification of a database view 
of the file. In this second case, to answer queries, one 
would like to avoid to load the data of the entire file. 
This can be achieved using (variations of) some stan- 
dard optimization techniques from relational databases. 
We also briefly consider optimizations of a more gram- 
matical nature. For updates, we highlight difficulties 
and present some solutions. 

The second (somewhat inverse) task is to convert 
data from a database to files. This is typically what 
is performed for instance in (database) report writ- 
ers or when transmitting database between distributed 
databases. Some of the issues are: 

73 



- How can the translation be specified? 
- What information should be recorded in the 

target file, in order to maintain the rela- 
tionship with the original data (for further 
querying, or updates)? 

We present solutions, showing this can be used for the 
update problem mentioned above. 

The problems of extracting data from files (and en- 
coding data onto files to a less extent) have been pop- 
ular database topics since the early days of the field. 
One should notably cite the system Express in the 70’s 
for data extraction and restructuring[l5]. Our contri- 
bution obeys the same motivations since the problem 
clearly did not disappear over the years. We use now 
standard database technology tools (e.g., optimization 
techniques; object-orientation) to provide a modern an- 
swer to the old problem. 

The database language that we consider here is 
strongly inspired by OzSQL [4] and the parsing by Yacc 
[3]. Indeed, some of the ideas described here were sug- 
gested by a first experience gained with the implemen- 
tation of a prototype system on the Oz database system 
[lo] called OaYacc and with applications developed with 
OzYacc. 

2 Structuring Schemas 

The problem is to connect structured strings with a 
database or, more precisely, to get a database represen- 
tation of a structured string. We present two solutions 
to this problem. 

The first only requires the description of the inner 
structure of the string. This is done in a very natu- 
ral way using a grammar. The connection with the 
database is then obtained in a straightforward man- 
ner by linking each non terminal of the grammar to a 
database type. We call this solution default structuring 
and we will see that it is unsatisfactory. 

The second solution requires explicit statements on 
the links between the non terminals of the grammar 
and their database representation. This is done again 
in a very standard manner using an annotated grammar 
to which we attach a schema definition. We call the 
resulting couple a structuring schema. 

The database construction ,from a text and a gram- 
mar that we propose is somewhat reminiscent of tech- 
niques used for automatic synthesis of editors for lan- 
guages. They also use annotated grammars to construct 
editors and “unparsing” specifications to display pro- 
grams. Of course, the problems studied are very differ- 
ent but some of the techniques they develop (e.g., in- 
cremental evaluation) seem applicable to our context. 
(See [13].) 

In the sequel, we assume standard knowledge on 
object-oriented databases, context-free grammars and 
parsing. We will use part of the 02 database type sys- 
tem [lo], but (with minor variations), we could have 

used any reasonable object-oriented database type sys- 
tem. 

2.1 Default Structuring 

The association between grammars and database defi- 
nitions arises quite naturally from an analogy between 
non terminals and typed objects. For instance, we may 
associate a class A to each non terminal A. Intuitively, 
this means that an occurrence of A in a parse-tree will 
be represented by an object in class A. This is illus- 
trated in the following example. 

Example 2.1 (Aliases) Consider the following gram- 
matical description of aliases: 

;;fl”74 + (Aliases) (Alias) 1 E 
zas -+ string “, ” string (‘; ” 

It corresponds to the following class definitions with 
standard methods (e.g., display, edit). 

class Aliases= tuple(aliases:Aliases, alias:Alias) 
class Alias= tuple(al:string, a2:string) 
The list of aliases “m , mail ; 11 , 1s -1 ;” is represented 

by an object o with the following association between 
objects and values: 

class name oid value 

Class Aliases : o [aliases : 01, alias : 021 
01 [aliases : 03, alias : 041 

03 -l 

Class Alias 02 [a1 : “11” , a2 : “Is - l”] 
04 [al : “m”, a2 : “mail”] 

(the empty string is associated to an object with unde- 
fined value). 0 

It is easy to generalize this drfault structuring. When 
considering general context-free grammar, disjunctive 
types will naturally arise from non terminals defined dis- 
junctively. Since disjunction of types is not supported 
in 02, this would not be directly realizable. There are 
of course a variety of means of simulating such types 
(in particular using inheritance). 

The default structuring presents two major defaults. 
First, it clearly lacks flexibility: the resulting structure 
may be rather inappropriate for querying. Also, it re- 
sults in the creation of too many (unnecessary) objects: 
e.g., in the above example 01, 0s have no meaningful 
semantics. 

2.2 Structuring Schemas 

As we have seen, the grammar does not provide enough 
semantics for the string. Indeed, a more natural way 
to see (Aliases) is as a list or a set of tuples (each 
representing one alias). An alt,ernative (since we are in 
the 02 context) is to consider (Aliases) as a list or a set 
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of objects. Each of these views is related to the default 
structuring above. However, 

1. nothing in the grammar allows us to 
choose between these possible representa- 
tions (values or objects, lists or sets); and 

2. depending on the application, a particular 
choice other than the default may be more 
appropriate, e.g., for querying. 

Thus, the grammar does not provide enough informa- 
tion for interpreting the content of a string. A more pre- 
cise and flexible way of specifying its semantics is pro- 
vided by a structuring schema. A structuring schema 
consists of a schema and an annotated grammar. The 
annotated grammar specifies the relationship between 
the grammar non terminals and their database repre- 
sentation. More precisely, it associates to each deriva- 
tion rule A + Al,... ,A,, a statement describing how 
the database representation (that may be object or 
value) of a word derived from this rule is constructed 
using the database representations of the subwords de- 
rived from Al, . . . , A,. In the sequel, we use a Yacc-like 
notation [3]. In a rule A + Al,. . . , A,, $i denotes the 
database image of the string corresponding to Ai, and 
$$ the one associated to A. 

The schema describes the database types, classes 
(types + methods) and inheritance relationship. One 
may argue that the type information can be partially or 
totally derived from the annotated grammar using type 
inference. However, the issue of type inference can be 
viewed in a larger context and is not the topic of the 
present paper. The next example provides a structuring 
schema for aliases. 

Example 2.2 (Aliases continued) The schema is the 
following: 
/* Class definition */ 
class Alias = tuple(Name: string, Definition: string) 

method edit, update-dejjstring); 
. . . . 

/* Non terminals type definition */ 
type (Aliases) : set(Alias); 
type (Alias) : Alias ; 

The schema provides type definitions for the non ter- 
minals of the grammar. Note the distinction between 
Alias, a class name; and (Alias) which denotes a string. 

The annotated grammar is given by: 

grammar Alias-Grammar = 
(Aliases) + (Aliases) (Alias) 

{$$ := $1 U set($2)} 

I 6 4 
($3 := set()} 

(Alias) + string “, ” string “;” 
($3 := newtAlias, 

tuple(Name : $1, Definition : $2))) 

Observe that an object of class Alias will be constructed 
each time the rule 

(Alias) + string ‘0” string I‘;” 

will be used. 
Now suppose that we have a file myaliases, we can 

load in the database the aliases that it contains using: 

aliases := load-string(Alias-Grammar, “myaliases”) 

where aliases denotes t,he result. of the parsing, i.e., a 
set of objects of class Alias. •I 

The language we use in the structuring schema is 
strongly inspired from OzSQL [4]. We chose a core 
subset of this language (sufficient to our purpose, e.g., 
without aggregate functions) and extended it with up- 
date features. We will see more of these new features 
in the sequel. A similar development can be done using 
other standard 00-database languages as well. 

OzYacc 

Structuring schemas allow to extract data from a string 
in a fairly convenient way. A class OzYacc has been 
implemented in the 02 system to provide such a func- 
tionality. The actions are written in OzC. The proto- 
type was easy to implement. Among other applications, 
it has been used to construct a bibliography database 
starting from BibTex files. The structuring schema for 
the BibTex application was developed in a couple of 
days. (A difficulty of this particular application is the 
management of duplicate references.) 

It is clear when one uses the nrototvne that the only 
mode that it provides, loading intire the data 
swer any query, is not acceptable. This led to 
oping the optimization technique also described 
present paper. 

to an- 
devel- 
in the 

3 Views and Optimization 

All we have so far is a sophisticated use of a database 
programming language (OzSQL and/or OzC) with a 
parser (Yacc) to transfer data from a file to a database. 
Once there, the data can be manipulated using stan- 
dard database tools, e.g., query languages [6]. 

This suffices to transfer data from a file to a database 
(and forget about the file). On the other hand, suppose 
that we want the file and the database (with data com- 
ing from the file) to logically coexist. Then, one may 
question the interest of having data physically in two 
different stores: (i) the storage cost may be prohibitive 
and (ii) the coherence between the database and the 
file after updates from one source or the other may be 
difficult to maintain. Thus, in this case, it is better to 
consider structuring schemas not as a way of extracting 
data from a file but as a way of specifying virtual data 
that, is loaded only when needed. 
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This leads to distinguishing two ways of using a struc- 
turing schema: 

1. as a building mechanism to load data, and 
2. as a view specification mechanism. 

We already addressed the first aspect and are now in- 
terested in the second. We are facing two problems 
common to standard view definitions: querying and up- 
dating. We will address the first in this section. The 
latter is considered in Section 7. 

Although the notion of view in an object-oriented 
database context is a rather new topic, lots of work has 
been already devoted to the issue (e.g., [12,9, 11). Many 
of the problems that will be found are not new to oo- 
databases. In particular, we will meet the malerialized 
view problem and the view update problem that are both 
now textbook material (see [17]). 

To answer a query on the database view of a file, one 
may construct the database image of the file and then 
evaluate the query. This technique will obviously lead 
to the construction of many unnecessary objects and 
complex values. We will show that this unnecessary ef- 
fort can be avoided using standard query optimization 
techniques slightly revisited. We start by giving an in- 
tuition of the process with a very simple example. We 
then present a sketch of the optimization algorithm. In 
the next section, we will see that things are somewhat 
more complex in general. 

Example of Optimization 

Suppose that we have a view on a file through the 
aliases structuring schema (we use the same structuring 
schema, but now we see it as virtual) and suppose also 
that we want to evaluate the following query: 

select x.Definition 
from x in aliases 
where x..Name = “lm”. 

The corresponding algebraic query is the following: 

P(x) E nDefini*ion(ul\r,,,=“l;n” (X)). 

To reduce the construction performed for evaluating 
the query, we push the query down inside the gram- 
mar specification. We leave the grammatical part of 
the structuring schema unchanged (the parser must still 
recognize the same file) while modifying the data con- 
struction part in an appropriate manner. The rule used 
to compute the aliases is: 

(Aliases) -+ (Aliases) (Alias) 
($3 := $1 U set($2)} 

I e 
{$$ := set()) 

The desired result is thus obtained using the query cp 
above: 

(cp(Aliases)) --+ (Aliases) (Alias) 

(1) 
(88 := ~($1 U set($2))} 

I 6 
($3 := cp(set())} 

Now we are back to (almost standard) algebraic 
mization: 

cp(setO) 
-2 

(2) nD,fi,ition(bNorne=,Llrn” (set())) 
w 

4) 

and 

~($1 U set(S2)) 
u 

opti- 

(3) Cp($l) U nD,,i,i,i,,(~Nome=‘,lm)) (set(S2))) 
-4 

~($1) U Set(~Definition(~l\rame=~~~m” ($2))). 

All this is rather standard (e.g., distributivity of projec- 
tion w.r.t. union) except for the pushing of the query 
onto a single element ($2 is not a set but an object). 
For this, we need to extend the algebra to have our op- 
erations also operate on single elements. This is rather 
straightforward if we view such an element as a sin- 
gleton set. We therefore extend the algebra to single 
elements. In particular, the selection on a single ele- 
ment is defined as follows: if it succeeds, the result is 
the element itself; and if it fails, the result is the single 
element I (which is viewed algebraically as the empty 
set). 

Now, we go on pushing the query down the gram- 
mar. The query on $1 and on $2 is pushed down on the 
corresponding non terminals: 

(cp(Aliases)) --) (cp(Aliases)) (cp(Alias)) 

(4) 
{$$ := $1 U set($2))} 

I E 
{$$ := set()) 

We have a definition for the nonterminal (cp(Aliases)). 
We obtain a definition for (cp(Alias)) by pushing ‘p in 
the grammar rule defining (Alias) in the following way: 

(5) ((o(Ali&)) + string ‘0” string “;” 
($3 := cp(new(Alias, 

tuple(Name : $1, Definition : $2)))) 

We can use again a rewriting technique: 

(6) 
II Definition ~~ame,,~c~m” ( ( 
new(Alias, tuple(Name : $1, Definition : $2)))) 

u 
II Definition(new(Alius, ~Nnme=cclm~~ ( 

tuple(Name : $1, Definition : $2)))) 
c\/) 

n Definition( 
tuple(Name : ~~~~~~=~,~~~~~($l), Definition : $2))) 
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This uses a slightly unusual rewrite rule: the absorption 
of object creation (new) by projection. The selection 
operation has been pushed inside the tuple construction 
(that can be viewed as a product). We introduced a 
A-expression in order to denote the element $1 in the 
algebraic operation. It must be noted that, as before, 
we use selection on an element (here a string). If $1 
is not lrn, the selection of $1 iS I, the tuple is also 
I (since the standard product with an empty set is 
the empty set), and the value of the projection is I as 
well (since the standard projection of an empty set is 
an empty set). The advantage of the above optimized 
construction is (i) it does not construct any object, and 
(ii) it discards immediately irrelevant tuples. 

To conclude with the above example, suppose that we 
want to obtain the objects and not only the Definition 
attribute (e.g., to edit them). Then we use: 

select 2 
f rom 2 in aliases 
where z.Name = “lmn. 

The same optimization (except for the absorption of 
new) would yield a structuring scheme which creates 
objects only for lm aliases. 

The Optimization Algorithm 

Let us consider more precisely the algorithm we used for 
this query optimization. It consists in applying alterna- 
tively two kinds of rewriting rules that we call grammar 
rewriting rules and query rewriting rules. For space lim- 
itations, the presentation of the rewrite rules is rather 
informal. 

The grammar rewriting rules push queries down the 
grammar specification. In the previous example, they 
are the ones used in Steps (1,4,5). Once a query is 
pushed into a rule, query rewriting rules are applied. 

The query rewriting rules are more traditional and 
rely on algebraic equivalences [5, 8, 14, 161. The alge 
braic expression assigned to 8% (which is the algebraic 
translation of an OzSQL expression) is rewritten in or- 
der to cut it into subexpressions on the $i variables. In 
the previous example, these rules were applied in Steps 
(2,3,6). Once these rules have been suitably applied we 
go back to the grammar rewriting rules. 

The algorithm stops when no rewriting rules can be 
applied. In the best case, the only objects/values con- 
structed are the ones returned by the query (e.g., the 
previous example). In the worst case, the query re- 
mains at the root of the grammar and the whole data 
is constructed. 

4 Closer Look at the Problems 

To give an intuition of the optimization algorithm, we 
had to omit important aspects that are considered now. 
These are summarized in the following questions: 

1. 

2. 

3. 

4. 

5. 

The grammar rewriting rules generate new non ter- 
minals (e.g., (p(Aliases))) and new rules. What 
happens to the old ones? 

In the previous examples, the result of the view in a 
single set ($8 for the start symbol of the grammar). 
Is it possible to specify several virtual anchors with 
a unique grammar? 

In object oriented databases, cyclic data is com- 
mon. Does the presence of cyclic data have impact 
on our technique? 

In [2], duplicate elimination was shown to be an 
important issue for languages allowing the creation 
of objects. Can we eliminate duplicates? And does 
this have impact with our technique? 

We showed the optimization of a simple query. 
What happens when considering complex queries? 

Each of these questions highlights some limitations of 
the technique or subtle issues which force us to com- 
plicate this technique. We next address these different 
questions. The end of this section is rather technical; 
and it is possible to skip it and continue directly with 
Section 5. We use a slightly more complicated example. 

Example 4.1 we are interested in a database view of 
a BibTex file’. For those unfamiliar with BibTex, below 
is one BibTex reference: 

@Inproceedings{ 

% 

ChandraLM81, 
author = “A.K.Chandra and 
R.Lewis and J.A.Makowsky”, 
source = “Kanellakis91” 
title = “Embedded Implicational 
. . . their Inference Problem”, 
booktitle = stoc, 
year = “1981”, 
pages = “342 - 354”) 

We now give a partial structuring schema. 
/* Types and Classes */ 

Class Reference = 
tuple( Keyword : string, 

Authors : AuthorSet 
Source : string,. . .) 

/* Eon terminals type definition */ 
Type (Re f set) = set(Reference) 
Type (Reference) = Reference 
Type (String) = string 

/* Annotated Grammar */ 

‘BibTex is a program which, given a file containing biblio- 
graphical data (in BibTex format) produces a LaTex bibliography. 
The syntax of the bibliographical data should be self explanatory. 
We have slightly modified the syntax to simplify the presentation. 
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grammar Alias-Grammar = 

(RefSet) --) (Reference) (RefSet) 
($8 := set($l) U $2) 

I f 
{$$ := set()) 

(Reference) -+ . . . 
“@Inproceedings{” (String) 
“author = ” (AuthorSet) 
“%source = ” (String) 

(String) 

;ki := new(Reference, 
tuple(Keyword : $1, 

Authors : $2 
Source : $3, 

. . .)I 
-t string 

{$$ := $1) 

cl 

4.1 Multiplication of Rules 

The optimization algorithm applies grammar rewriting 
rules whose effect is to modify a rule to obtain a new 
rule (e.g., (Aliases) into (cp(Aliases))). What happens 
to the old rules? The old rules are kept in the grammar. 
The reason for this is that one rule may have different 
uses in different places of the grammar. In some cases, 
this may yield unreachable nonterminals that are then 
just discarded. The nonterminals that are defined in the 
annotated grammar for alias after the rewriting process 
are the following: 

(aliases), (cp(aliases)), (alias), (cp(alias)). 

Considering the rules defining these non terminals, it 
must be noted that (aliases) or (alias) is not derivable 
from the new start symbol (cp(aliases)). Thus, it may 
be discarded. However, such nonterminals cannot be 
discarded in general: 

Example 4.2 Let us now consider the following query: 
4-v = 
uKeyword=“ChondraLM~l”hsouree=L1Kanellaki~91 1) v> 

Suppose that we apply this query on the view 

references := view-string( Bib-Grammar, “my-bib”). 

In a manner similar to that of the aliases example, the 
rewriting process will derive the following rule: 

(cp(Reference)) --+ . . . 
{$$ := new(Reference, 

tuple(Keyword : cpr($l), 
Authors : $2, 
Source : ‘p2($3), 

...J) 

with R(X) = bXr.(r=“CharadraLMal”) (W and 

$72(X) = fJ X=.(I=“Kanellnkis91”)(X) 

Now, if we apply grammar rewriting rules to push the 
queries further down, we have: 

(p( Reference)) 

(91 (String)) 

(v2(Striv)) 

(String) 

0 

+ . . . 
“@Inproceedings{” 

(cpl (String>) 
“author = ” (AuthorSet) 
“%source = ” (cpa(String)) 
. . . 
(33 := new(Reference, 

tuple( Keyword : $1, 
Authors : $2, 
Source : $3, 

. . .))I 
+ string 

{$$ := $7r($l)} 
-+ string 

($3 := $o@l)} 
--t string 

{$$ := $1) 

This example shows that several nonterminals may be 
derived from the same original one while still needing 
that original one. Thus no rule should be discarded 
unless one shows (which is rather straightforward to 
check) that the nonterminal in the head of the rule is 
not reachable. 

4.2 Using Several Anchors 

If we consider the references view that we defined above, 
we may notice that the only access the user has to the 
data is through the set, containing all the references. 
This does not seem satisfactory. For example, one may 
want to be able to access directly the set of all authors 
as well. Of course, one can construct first the set of 
references, and then specify a set of authors (virtual as 
well) defined using the references. This is a possibility 
which may be unpractical for many applications. In 
this brief section, we consider an alternative that would 
allow to construct (again virtually) in the specification 
the set of authors and the information concerning them. 

Remark: In the 02 OODBMS, the user accesses the 
data through names that are explicit in the schema and 
that may be considered as global variables. It is then 
the user responsibility to assign and update these vari- 
ables. In other OODBMS, class extents are automati- 
cally maintained by the system. It is not our goal here 
to advocate one or the other choices. However, observe 
that the maintenance of these extents from the point 
of view of the opt#imizer is as complicated as the main- 
tenance of global variables (i.e., names, such as set of 
authors) that. are constructed in the specification. 0 



As we saw, t,he optimization process starts by consid- 
ering the rules defining the start symbol of the gram- 
mar. This is due to the fact that, using our view defini- 
tions, the corresponding $8 variables denote the set of 
relevant object/values. Then the optimization process 
smoothly pushes (if possible) the projection-selection 
down the grammar. Allowing global variables (or ex- 
tents) updated at different levels of the grammar re- 
quires a preliminary analysis in order to know where 
to push the query. The “pushing” must sometimes be 
blocked: elements that may be relevant for other parts 
of the query should not disappear. This is the difficulty 
of performing optimization in presence of side-effects. 

We propose the following solution. Suppose that we 
want to maintain two anchors (say references and ou- 
thors). We define these anchors as fields of the $8 corre- 
sponding to the start symbol. The elements contained 
in these anchors are pushed up the parsing tree to the 
top. To illustrate this idea, we modify the BibTex struc- 
turing schema as follows: 

/* Types and Classes */ 
Class Author = string 

/* Non terminals type definition */ 

Type(BibTex) = tuplec 
references : set(Reference) 
authors : set(Author)) 

. . . 
Type(Author-set) = set(Author) 
Type(Author) = Author 

/* Annotated Grammar */ 

(BibTex) + (Reference) (BibTex) 
{$$ := tuple( 

references : $2.re f erences 
U set(U), 

authors : $2.authors 
U $l.authors)} 

If 
($3 := tuple( 

references : set(), 
authors : set())} 

(Reference) + . . . 
Author “ = ” !AuthorSet) 
. . . 
{$$ := new(Reference, 

tuple(..., 
Authors : $2, 
. ...)) 

(authorset) --) (author)“,“(authorset) 
($3 := set($l) U $2) 
1 (author) 
{$$ := set($l)} 

(author) + string 
{$$ := new(Author, $1)) 

As we may see, the set containing the authors is 
accessible from the rules defining the start symbol 
(BibTex). Thus, a query defined on the set of authors 
can be pushed down the grammar from these rules. 

Let us reconsider the view definition: 
BibTex=view(Bib-Grammar, Nmy-bib”‘) 

The parsing returns a tuple with two attributes denot- 
ing a set of references and a set of authors. In order to 
formulate the query given in Example 4.2, we now need 
an extra projection operation in order to access the set 
of Am3ms (p(X) = u,,ur,,=...(nreferenees(X))) 

4.3 Dealing with Cyclic Data 

To simplify’ the exposition of the previous issues, we 
deliberately simplified the BibTex example. We did not 
consider cyclic data. In an 00 context, cyclic data is 
common. For instance, a more natural way to view the 
class author will be the following: 

Class Author = tuple( name : string, 
refs : set(Reference)) 

This definition introduces a cycle between the refer- 
ences and the authors. A Reference will be linked to 
a set of authors and an Author to a set of references. In 
order to maintain this cyclic data, the user will have to 
create objects in one rule and update their values in an- 
other. Before we illustrate that, it is important to note 
that this issue is closely related to the issue of duplicate 
elimination which is postponed to the next subsection. 

The annotated grammar corresponding to the new 
definition of Class Author is as follows: 

(Reference) + . . . 
“author = “(.4uthorSet) 

ii$ := new(Reference, 
tuple(..., Authors : $2, 

(author) 

. . . 
MAp~,.(,.,,~~:=~.~.fj’u set(.w))(W) 
--f string 
($3 := new(Author, 

tuple(name : $1, 
refs : set())} 

In the rule defining (Reference), the variable $2 de- 
notes a set of authors. The MAP primitive is used to 
apply the update function on every elements of this set. 
The MAP statement adds the current reference to each 
author in the set of authors. 

The fact that we now allow several assignments in 
the same rule specification forces us to reconsider our 
rewriting rules. In order to simplify the rewriting pro- 
cess, we decided to restrict the specification language 
in the following way: 
Restriction: The construction part of a rule starts 
with an assignment on $8, possibly followed by updat- 
ing assignments on the $i’s and $$. It must be noted, 
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that this restriction does not prohibit any significant 
updates. 

Now, having this restriction, pushing a query into a 
rule is done as before (i.e. the query is applied on the 
right part of the first assignment on $$). The main 
difference relies in the decision of pushing a query or 
not, and whether the updates after the assignment to 
$3 can be removed. Let us illustrate this point with an 
example. Suppose we have the following query on the 
BibTex view. 

Since the rule defining (BibZ’et) contains only one as- 
signment to $$, and no additional updates, the query 
can be pushed into this rule as before. After fur- 
ther (query) rewriting, we would like to push v’(X) = 
IIK~~~~~(X) into the rule defining (Reference). Now, 
having an added update after the assignment on $3, we 
have to make sure that this update does not modify the 
Keyword. In this case, the update on the set of authors 
has no influence on the attribute Keyword. Since the 
update is irrelevant to the query result, it can be re 
moved from the rule, and the query can be pushed as 
before. 

As another example consider the query of Exam- 
ple 4.2. At some point of the optimization process, one 
wants to push the query 

uKeycuord=“ChandraL~B1”hsouree~“Kanellokis91 4X) 

into the rule defining (Reference). This query im- 
plicitly involves attributes other than Keyword and 
Source; the query returns the whole reference, includ- 
ing the Authors attribute. Thus clearly we can not 
remove the update to the set of authors. Note however 
that the Keyword and Source attributes are not mod- 
ified or used in the update to the set of authors. Thus 
we can push the selection into the assignment on $$, 
leave the update on the set of authors unchanged, and 
get the desired result. 

When objects are involved, updates can be very 
tricky. Our goal is not to present the numerous danger- 
ous situations that may arise (and that are very unnat- 
ural). We just present strong conditions that that guar- 
anties pushing a query down the grammar will not lead 
to a wrong result. For lack of space we only present be- 
low the rewrite rules used in the above examples. Other 
cases are handled similarly. 

Given a query Q, and a literal A, assume that we 
want to push Q into a rule where A appears in the 
head. We assume that the construction associated with 
the rule starts with an assignment on $$ of the form 
$$ := new(C, tuple(al : $ir, . . . , a, : $i,)), followed by 
a sequence of updates c. 

Strong Condition A 

1. Let Q be a query of the form & = 

‘P(‘,jI ,...,~j, ($$))’ If 
non of the projected at- 

tributes of $$ and non of the $3~ corresponding 
to those attributes participate in v’, Then, Q can 
be pushed into the rule by applying it on right part 
of the assignment on $$, and removing all the other 
updates. 

2. Let Q be a query of the form Q = cp(u,($$)). 
If non of the attributes of $$ used in the selec- 
tion criteria and none of the $3~ corresponding to 
those attributes participate in fi, Then, the selec- 
tion u, can be pushed into the rule by applying it 
on the right part of the assignment on $$. Note 
that in this case, the other updates in v’ remain 
unchanged. 

It must be noted that this strong condition may, in 
some cases, forbid correct pushing of queries. 

4.4 Avoiding Duplicates of Objects 

As shown in [2], duplicate elimination is a crucial prob- 
lem for languages allowing the creation of objects. We 
will see that it is indeed true in our context. This prob- 
lem is also closely related to cyclic data. Let us consider 
the BibTex view and the new definition of class Author. 
If we leave the annotated grammar as it is, there is no 
way that we can group all the references corresponding 
to one author in the same object. Indeed, an author 
figuring twice in the my-bib file will be represented by 
two objects, each of which will contain the reference in 
which it appears in the file. 

This is not what we would expect and, accordingly, 
we have to give the user the means to avoid duplicates. 
We do that by introducing a new primitive that we call 
conditional new. Let us consider the modifications we 
have to perform on the BibTex annotated grammar in 
order to avoid duplicates. 

(author) + string 

{$$ := new(Author, 
(mame=Sl, 

tuple(name : $l! refs : set()))} 

The conditional new primitive requires three parame- 
ters: the name of a class, a query and a value. The 
query is applied on the extent of the class whose name is 
denoted by the first parameter. If it returns the empty 
set, an object is created and added to the class extent. 
The value (state) of the object is gifren by the third 
parameter. If the query returns a onempty set, the 
“first” object of this set will be as gned to $$ (if the 
program is correct, there will only if e one object in the 
returned set). 

It must be noted that this primitive requires that the 
system maintains the extent of the class. Recall that 
we addressed the problem of querying such extents in 
Section 4.2. If one want to optimize queries on class 
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extents, their members should be pushed up the gram- 
mar specification and be also maintained at the root of 
the grammar. 

Now that we have seen how duplicates could be elim- 
inated, let us consider the consequence of having con- 
ditional new in the rewriting process. The problem is 
that objects created in one particular subtree Ti may 
be used in different subtrees Tz, T3, .., T,. Thus, even if 
the query we are considering is not concerned with the 
information generated by Tl, the construction must still 
be performed in order to preserve the structure gener- 
ated in T2, T3, .., T,. 

The solution to this problem consists in distinguish- 
ing a special kind of literals called global. We say 
that a literal whose associated construction specifica- 
tion contains a conditional new is a global literal. In 
order to treat global literals we introduce a new strong 
condition that is added to the one defined in Section 4.3. 

Strong Condition B 

1. A query Q can be pushed on a literal A if A does 
not derive a global literal. 

2. If Q is a query of the form Q = ‘p(IIoj, ,...,oj, (X)), 
Then the projection IIaj ,...,aj, can be pushed into 
the rule. The additionA updates can be removed 
only if all the variables appearing in them corre- 
spond to literals that do not derive global literals. 

3. If Q is of the form Q = cp(ue(X)), and none of the 
literals corresponding to the variables ($i’s) used in 
the selection criteria derives a global literal. Then 
the selection ue can be pushed into the rule. 

Once again, this condition will block some “correct” 
rewriting. However, it can be suitably weakened in 
some particular cases- that we will not consider here 
for lack of space. 

4.5 Complex Queries 

Complex queries are the ones involving several view 
definitions (e.g. the BibTex authors that are cited in 
a LaTex file) or several occurrences of the same view 
(e.g. nested queries). We will not address in details the 
problems they raise because they are similar to that of 
complex queries in any rewriting system. Indeed, as in 
any rewriting system, the problem consists in rewrit- 
ing the query in order to obtain a join involving several 
subqueries on distinct elements. In the 00 context, al- 
gebraic equivalences for performing this rewriting can 
be found in [14, 161. Of course, this is not always feasi- 
ble and, in some cases, we will have to construct more 
data than needed (in the worst case, the whole data 
corresponding to a view will have to be loaded). 

5 Optimizing the grammar 

In the previous section, we assumed that the grammar 
is’not modified which may be an acceptable restriction 
for most practical purposes. In this section, we briefly 
show that it may be possible to achieve more by also 
modifying the grammar. The topic is interesting techni- 
cally and is new to our knowledge. Its practical interest 
is yet unclear. 

We next briefly present a possible optimization based 
on modifying the grammar to illustrate this potential 
direction of research. 

Suppose that we have a rule: 

(A) + LeftDelimiter (Al). . . (An) RightDelimiter 

such that the delimiters are tokens not occurring in 
(AI) . . . (A,) and the information in (AI) . . . (A,,) is not 
used in the query. Then we may replace the parsing of 
(AI) . . . (A,,) by a scan for RightDelimiter. 

Furthermore, between two delimiters, it may be pos- 
sible to switch from an analysis mode to a scanning 
mode when some conditions are met. For instance, sup- 
pose that we are looking for a reference with a given , 
keyword in the bibliography database. When a key- 
word has been tested and the test failed, the parser can 
switch to a scanning mode and start searching for “}” 
(the right parenthesis closing this particular reference). 

Such technique can clearly be automatized, i.e., one 
may analyze the grammar graph to detect such situa- 
tions and apply the relevant parsing optimization. Al- 
though this may yield speed-up in many cases, we be- 
lieve that the gain will be marginal compared to that 
provided by the technique presented in the previous sec- 
tion. 

6 From Databases to Files 

So far, we have been concerned with extracting struc- 
tures from files. In this section, we study the converse. 
This converse is of practical importance and further- 
more, it will prove to be useful when considering up- 
dates in Section 7. 

We assume that we have structured data in a 
database and want to produce a string (with an as- 
sociated grammar) containing some of the database in- 
formation. This may be necessary in many contexts 
such as report generation or transfer of data between 
databases. Not surprisingly, one of the most intricate 
issues will be the naming of database objects. 

To encode data on a string, we need (i) to specify 
the object or value u to encode; (ii) the encodings of its 
components (if any); and (iii) the encoding of u (even- 
tually based on that of its components). This yields the 
following cases: 

Integers, Reals, Strings, etc 
We need some standard encodings of these. 
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The application programmer may define the en- 
coding of tuple (Al : ti, . . . , A, : tn) for instance 
aS: 

enc((A1 :tl,...,A, :t,))= 
“Al : ” . enc(tl) . “; ” . . . “; ” . “A,” . enc(t,) 

where “.” denotes concatenation. 

BUG Types 
This is also rather simple using iteration, and for 
instance, the structural induction operator of [7]. 
The structural induction cp on a set X with param- 
eters f, g, h is defined by: 

P(f) 99 h)(0) 
cp(f, 9, w4 IJ w 1 &s(4, VW>. 

For instance, to encode a set X with members of 
type T, we can use: (a) a function g encoding T 
elements, (b) the function f returning the empty 
string; and (c) h defined by: for each u, v, 

h(u, v) = concat(u, ‘0” , v). 

Observe that, in this case, the resulting string de- 
pends on the order of the elements that is chosen. 
In that sense, the operation is non-deterministic. 
(This is not surprising since, in general, structural 
induction is non-deterministic.) 

In O&J, structural induction can be realized us- 
ing for each statements. The following programs 
encodes a set X of tuples: 

enc := ““; 
for each x in X 

{enc := concat(enc, “Al : “, enc(x.Al), “;“‘, 
“. n “ 

“‘, ,, A . “, enc(x.A,)); }; n. 
enc := concat(enc, “.“); 

Objects 
When an object is transformed into a string, one 
may want to record both the oid, and the state. 
This leads to the following issues: 

Question 1: How do we encode oid’s? 
Questibn 2: How do we handle data 
cycles? 

To encode oid’s, there are many possibilities. We 
may use some surrogate, or some internal represen- 
tation. Note that some systems consider oid’s as 
data values that can even be printed. In all cases, 
the problem is to guarantee a meaningful seman- 
tics to updates. Suppose for instance that we use 
a conversion table that translates oid’s to say, in- 
tegers. We have then to be very precise on the 
scope of this translation: is it valid for this specific 
output string only? Is this translation persistent? 

Is it general to the system or is it particular to an 
application? Such questions have to be answered’. 

The second issue comes from the transcription of 
object values when data is cyclic. We need to 
flag the objects that have already been considered. 
Suppose that we want to output in a string a ge- 
nealogy database. We want to avoid entering in an 
infinite loop: 

[ 01 : (Name : Adam, 
Spouse : 02 : (Name : Eva, 

Spouse : 01 : (Name : Adam. . .] 

This is easily handled by maintaining an occur 
check. 

The above discussion leads to the following general 
framework. To extract data from a database to a file, we 
must specify how each occurrence of a data constructor 
is handled, i.e., we annotate the database schema with 
indications on the encoding of these occurrences. (Of 
course, a default encoding is provided by the system in 
particular, for oid’s and the base types such as siring.) 

Observe that the previous process only yields a string, 
while we insisted so far that grammars are attached to 
the strings that we consider. It is not difficult to obtain 
automatically a grammar (just by following the genera- 
tion of the string). But, as mentioned above a grammar 
alone is a very limited way of representing a database 
structure. We would like is to obtain automatically 
the inverse structuring schema. This is not possible in 
general. However, if we restrict our attention to a few 
system-supplied (eventually customizable) kinds of en- 
codings, this becomes relatively straightforward. 

What do we mean by “system-supplied encodings”? 
First, there are standards for documents such as SGML 
that the application should preferably adopt. Also, the 
system may offer a few choices for encodings for each 
constructor. For instance, consider a set, say a set of in- 
tegers. For most practical purposes, it suffices to specify 
the encoding of an integer; the delimiters between the 
integers (e.g., a “!“), a string to put at the end (“:end of 
list”); and one to put at the beginning (“list of integers 
separated with commas:“). 

This leads to considering the parsing/encoding prob- 
lem in a more global manner. We will come back to 
this fundamental issue in Section 7. 

7 Updates 

Returning to structuring schemas, suppose that we have 
a file containing data and a database view of that file. 

‘The situationmay be even more complicatedin the context of 
several databases. It is necessary to distinguish between objects 
from different databases. This is of course without mentioning 
the problem of naming of objects migrating from one database to 
another. 
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We now consider updates. A difficulty is that data is 
represented in two forms: files and databases. 

7.1 Updating the Files 

There is a priori no problem in allowing an update to 
a file when a (database) view has been defined on it. 
If the view is materialized, we have to maintain it. We 
run into the classical problem of materialized view up- 
date. One has to provide incremental algorithms to 
avoid having to reparse the entire file. A solution is 
to keep the parse tree and maintain a correspondence 
between nonterminals in the parse tree and indices of 
characters in the file. When updating the file, we try 
to limit the impact of the update to a nonterminal of 
the parse tree corresponding to a minimal substring. 
This update will therefore have minimal effect on the 
materialized database. 

Observe that structuring schemas can serve as the ba- 
sis for providing concurrency control on files with a finer 
level of granularity than the whole file. Suppose that 
the database provides object-level concurrency control. 
Then by specifying a structuring schema, we specify the 
level of concurrency that we allow on a given file: it is 
necessary to “lock” only the minimal substring corre- 
sponding to a pair nonterminal/database-object which 
is affected by the update. This lock can be achieved (at 
least virtually) by locking the corresponding database 
object. 

To illustrate this technique, consider C programs. 
Suppose that the structuring schema associates an ob- 
ject to each C function. This will allow two users to 
modify concurrently two distinct functions in the same 
file. 

7.2 Updating the Database 

We now run into a much more challenging problem, Ihe 
view update problem There is a-priori no requirement 
on the function from the file to the database; and in 
particular it does not have to be a one-to-one mapping. 
Thus, an update to the database may have zero, one or 
many translations on the file. Clearly, one should not 
expect miracles and, in most cases, such updates will 
7;k impossible. 

We consider two modest ways of allowing such up- 
dates, a very limited one for arbitrary structuring 
schemas, and an extremely powerful one for very con- 
strained structuring schemas: 

Arbitrary structuring schema 
Consider first a lexical token of the parser, say a 
string. Given an occurrence w of this token in the 
text, one can find where this particular string is 
kept in the database (it may be in zero, one or 
more than one places). An update to one of these 
database strings may be allowed and would lead 
to the update to the corresponding string in the 
file. (An example of such an update would be the 

modification of the definition of some alias.) This 
is very modest in the sense that it would be limited 
to specific lexical units. 

It seems difficult to offer more automatically. It 
is even difficult to allow application programmers 
to explicitly specify the meaning of database up- 
dates when the database is the view of a file. For 
instance, suppose that we would like to write in 
the database environment a method that would in- 
sert a new alias in the list of aliases. This would 
involve the specification of the modification of the 
file. There are few available tools for that and these 
tools (e.g., pushdown translation [ll]) are very 
heavy compared to database update tools. A possi- 
bility is use the transformations from databases to 
files of Section 6: the new state of the file is entirely 
obtained (at least logically) from the database. 
(Optimization is clearly necessary to avoid recon- 
structing entirely the file.) 

Constrained structuring schema. 
We restrict our attention to structuring schemas 
such that (i) there are one-to-one correspondences 
between substrings and database portions, (ii) 
these correspondences are easily extracted from the 
specifications, and (iii) inverse mapping can easily 
be obtained as well. 

This leads to reconsidering entirely the problem 
which we do next. 

7.3 Reconsidering the Issue 

In this section, we argue that some of the issues raised 
by updates disappear in an (open to debate) different 
way of addressing the problem. 

A major limitation of our approach so far is that we 
started from the string and from there went to data. 
The grammar tells us something about the data struc- 
ture and an analysis of the actions of the structuring 
schema tells us a little more. But still, our knowledge 
of the data is limited. 

We will argue that we should not start with the gram- 
matical specification: 

l Firstly, if we handle a large quantity of data, 
it seems more appropriate to do it directly in a 
database rather than in a file. Clearly, nowadays 
large quantities of data (e.g., large programs or 
documents) are still stored in file systems. How- 
ever, this should be considered more as a tempo- 
rary aberration than as a desirable state. 

l Secondly, in other motivating examples for study- 
ing “structured strings” such as data transfer be- 
tween databases, the data is originally structured 
before being on a string medium. 

So, we will now adopt the following law: 
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Law 1: the specification of the database 
schema precedes that of the grammar. 

When we considered the issue of translating from a 
database to a file, we saw that it is not immediate to 
obtain the “inverse structuring schema”, i.e., the struc- 
turing schema which would reconstruct the database 
from the file. However, as mentioned above, this is pos- 
sible if we restrict our attention to a few system supplied 
(eventually customizable) encoding schemes. 

So, we will also adopt the following law: 

Law 2: the specification of the database 
schema should include choices of encodings of 
the database constructs occurring in it. 

Observe that by these two laws, the structuring 
schema is now automatically generated. In particular, 

Consequence: the grammar is a by-product 
of the specification of the database. 

Note that this does not prevent from considering ap- 
plications such as BibTex where we have to load data 
from a file. However, we do not start by specifying a 
grammar. Instead, we specify the intended database 
schema and encodings which should yield the underly- 
ing grammar. It is now necessary to experiment these 
ideas to see whether this would entail unacceptable limi- 
tations compared to the direct specification of the gram- 
mar. 

The optimization techniques described in the paper 
are of course still relevant. Furthermore, with this ap- 
proach, we can support some nontrivial updates since 
the system is now aware of one-to-one transformations 
between subdatabases and substrings. Indeed, we be- 
lieve that this global database-driven approach to the 
couple (database ++ structured string) is the only seri- 
ous answer to the problems raised by updates. Clearly, 
this requires further work and, it is important, in par- 
ticular, to elaborate on the work of Section 6. 
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