
Querying and Updating the File*

Serge Abiteboul Sophie Cluet ‘Tova Milot
(Serge.Abiteboul@inria.fr) (Sophie.Cluet@inria.fr) (milo@db.toronto.edu)

I.N.R.I. A., Rocquencourt , France

Abstract

We show how structured data stored in files can bene-
fit from standard database technology and in particu-
lar be queried and updated using database languages.
We introduce the notion of structuring schema which
consists of a grammar annotated with database pro-
grams and of a database schema. We study the trans-
lation from structured strings to databases, and the
converse. We adapt optimization techniques from re-
lational databases to our context.

1 Introduction

Database systems are concerned with structured data.
Unfortunately, data is often stored in an unstructured
manner (e.g., in files) even when it does have a strong
internal structure (e.g., electronic documents or pro-
grams). In this paper, we consider how data stored
as strings can benefit from standard database technol-
ogy and in particular be queried and updated using
database languages.

In actual systems, data is often stored as string for
obvious historical reasons. The problem that we are
considering is thus very general. Tools based on the
ideas developed here would clearly be useful in a num-
ber of classical fields such as software engineering (file
= program) or information retrieval (file = SGML) and
possibly in more exotic ones such as genetic engineering
(file = gene).

‘Partially supported by Esprit Projects Fide2 and GoodStep,
and by the Chateaubriand scholarship.

tcurrently at University of Toronto

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed
for direct commexial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, OT to republish,
Tequires a fee and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference, Dublin, Ire-
land, 1993.

We are interested here in files that have a strict in-
ner structure. Such files are typically accessed with
general editors (e.g., vi, emacs), programs (e.g., awk);
or tailored applications. The general tools take little
advantage of the inner structure and provide no data
abstraction. The application specific tools (e.g., SGML
editors) know of the inner structure. However, they do
not provide many features currently found in database
systems (e.g., high level query facilities). Furthermore,
their lack of generality is a severe limitation for their
larger use.

Our aim is to propose a framework where database
tools can be used to manipulate files based on the inner
structure of the information they contain. In particular,
we consider the following issues:

- How can the implicit structure of files be
described?

- How can the structure be used for defining an
abstract interface to the information stored
in the file?

- How can this interface be used for (i) access-
ing (i.e., querying), (ii) updating, and (iii)
maintaining the integrity of the data.

To this’ end, we introduce the notion of structuring
schema which consists of a grammar annotated with
database programs and of a database schema. A struc-
turing schema specifies how the data contained in a
string should be interpreted in a database.

We can use a structuring schema to translate data
from a file and load it into a database. We can also
understand it as the specification of a database view
of the file. In this second case, to answer queries, one
would like to avoid to load the data of the entire file.
This can be achieved using (variations of) some stan-
dard optimization techniques from relational databases.
We also briefly consider optimizations of a more gram-
matical nature. For updates, we highlight difficulties
and present some solutions.

The second (somewhat inverse) task is to convert
data from a database to files. This is typically what
is performed for instance in (database) report writ-
ers or when transmitting database between distributed
databases. Some of the issues are:

73

- How can the translation be specified?
- What information should be recorded in the

target file, in order to maintain the rela-
tionship with the original data (for further
querying, or updates)?

We present solutions, showing this can be used for the
update problem mentioned above.

The problems of extracting data from files (and en-
coding data onto files to a less extent) have been pop-
ular database topics since the early days of the field.
One should notably cite the system Express in the 70’s
for data extraction and restructuring[l5]. Our contri-
bution obeys the same motivations since the problem
clearly did not disappear over the years. We use now
standard database technology tools (e.g., optimization
techniques; object-orientation) to provide a modern an-
swer to the old problem.

The database language that we consider here is
strongly inspired by OzSQL [4] and the parsing by Yacc
[3]. Indeed, some of the ideas described here were sug-
gested by a first experience gained with the implemen-
tation of a prototype system on the Oz database system
[lo] called OaYacc and with applications developed with
OzYacc.

2 Structuring Schemas

The problem is to connect structured strings with a
database or, more precisely, to get a database represen-
tation of a structured string. We present two solutions
to this problem.

The first only requires the description of the inner
structure of the string. This is done in a very natu-
ral way using a grammar. The connection with the
database is then obtained in a straightforward man-
ner by linking each non terminal of the grammar to a
database type. We call this solution default structuring
and we will see that it is unsatisfactory.

The second solution requires explicit statements on
the links between the non terminals of the grammar
and their database representation. This is done again
in a very standard manner using an annotated grammar
to which we attach a schema definition. We call the
resulting couple a structuring schema.

The database construction ,from a text and a gram-
mar that we propose is somewhat reminiscent of tech-
niques used for automatic synthesis of editors for lan-
guages. They also use annotated grammars to construct
editors and “unparsing” specifications to display pro-
grams. Of course, the problems studied are very differ-
ent but some of the techniques they develop (e.g., in-
cremental evaluation) seem applicable to our context.
(See [13].)

In the sequel, we assume standard knowledge on
object-oriented databases, context-free grammars and
parsing. We will use part of the 02 database type sys-
tem [lo], but (with minor variations), we could have

used any reasonable object-oriented database type sys-
tem.

2.1 Default Structuring

The association between grammars and database defi-
nitions arises quite naturally from an analogy between
non terminals and typed objects. For instance, we may
associate a class A to each non terminal A. Intuitively,
this means that an occurrence of A in a parse-tree will
be represented by an object in class A. This is illus-
trated in the following example.

Example 2.1 (Aliases) Consider the following gram-
matical description of aliases:

;;fl”74 + (Aliases) (Alias) 1 E
zas -+ string “, ” string (‘; ”

It corresponds to the following class definitions with
standard methods (e.g., display, edit).

class Aliases= tuple(aliases:Aliases, alias:Alias)
class Alias= tuple(al:string, a2:string)
The list of aliases “m , mail ; 11 , 1s -1 ;” is represented

by an object o with the following association between
objects and values:

class name oid value

Class Aliases : o [aliases : 01, alias : 021
01 [aliases : 03, alias : 041

03 -l

Class Alias 02 [a1 : “11” , a2 : “Is - l”]
04 [al : “m”, a2 : “mail”]

(the empty string is associated to an object with unde-
fined value). 0

It is easy to generalize this drfault structuring. When
considering general context-free grammar, disjunctive
types will naturally arise from non terminals defined dis-
junctively. Since disjunction of types is not supported
in 02, this would not be directly realizable. There are
of course a variety of means of simulating such types
(in particular using inheritance).

The default structuring presents two major defaults.
First, it clearly lacks flexibility: the resulting structure
may be rather inappropriate for querying. Also, it re-
sults in the creation of too many (unnecessary) objects:
e.g., in the above example 01, 0s have no meaningful
semantics.

2.2 Structuring Schemas

As we have seen, the grammar does not provide enough
semantics for the string. Indeed, a more natural way
to see (Aliases) is as a list or a set of tuples (each
representing one alias). An alt,ernative (since we are in
the 02 context) is to consider (Aliases) as a list or a set

74

of objects. Each of these views is related to the default
structuring above. However,

1. nothing in the grammar allows us to
choose between these possible representa-
tions (values or objects, lists or sets); and

2. depending on the application, a particular
choice other than the default may be more
appropriate, e.g., for querying.

Thus, the grammar does not provide enough informa-
tion for interpreting the content of a string. A more pre-
cise and flexible way of specifying its semantics is pro-
vided by a structuring schema. A structuring schema
consists of a schema and an annotated grammar. The
annotated grammar specifies the relationship between
the grammar non terminals and their database repre-
sentation. More precisely, it associates to each deriva-
tion rule A + Al,... ,A,, a statement describing how
the database representation (that may be object or
value) of a word derived from this rule is constructed
using the database representations of the subwords de-
rived from Al, . . . , A,. In the sequel, we use a Yacc-like
notation [3]. In a rule A + Al,. . . , A,, $i denotes the
database image of the string corresponding to Ai, and
$$ the one associated to A.

The schema describes the database types, classes
(types + methods) and inheritance relationship. One
may argue that the type information can be partially or
totally derived from the annotated grammar using type
inference. However, the issue of type inference can be
viewed in a larger context and is not the topic of the
present paper. The next example provides a structuring
schema for aliases.

Example 2.2 (Aliases continued) The schema is the
following:
/* Class definition */
class Alias = tuple(Name: string, Definition: string)

method edit, update-dejjstring);
. . . .

/* Non terminals type definition */
type (Aliases) : set(Alias);
type (Alias) : Alias ;

The schema provides type definitions for the non ter-
minals of the grammar. Note the distinction between
Alias, a class name; and (Alias) which denotes a string.

The annotated grammar is given by:

grammar Alias-Grammar =
(Aliases) + (Aliases) (Alias)

{$$:= $1 U set($2)}

I 6 4
($3 := set()}

(Alias) + string “, ” string “;”
($3 := newtAlias,

tuple(Name : $1, Definition : $2)))

Observe that an object of class Alias will be constructed
each time the rule

(Alias) + string ‘0” string I‘;”

will be used.
Now suppose that we have a file myaliases, we can

load in the database the aliases that it contains using:

aliases := load-string(Alias-Grammar, “myaliases”)

where aliases denotes t,he result. of the parsing, i.e., a
set of objects of class Alias. •I

The language we use in the structuring schema is
strongly inspired from OzSQL [4]. We chose a core
subset of this language (sufficient to our purpose, e.g.,
without aggregate functions) and extended it with up-
date features. We will see more of these new features
in the sequel. A similar development can be done using
other standard 00-database languages as well.

OzYacc

Structuring schemas allow to extract data from a string
in a fairly convenient way. A class OzYacc has been
implemented in the 02 system to provide such a func-
tionality. The actions are written in OzC. The proto-
type was easy to implement. Among other applications,
it has been used to construct a bibliography database
starting from BibTex files. The structuring schema for
the BibTex application was developed in a couple of
days. (A difficulty of this particular application is the
management of duplicate references.)

It is clear when one uses the nrototvne that the only
mode that it provides, loading intire the data
swer any query, is not acceptable. This led to
oping the optimization technique also described
present paper.

to an-
devel-
in the

3 Views and Optimization

All we have so far is a sophisticated use of a database
programming language (OzSQL and/or OzC) with a
parser (Yacc) to transfer data from a file to a database.
Once there, the data can be manipulated using stan-
dard database tools, e.g., query languages [6].

This suffices to transfer data from a file to a database
(and forget about the file). On the other hand, suppose
that we want the file and the database (with data com-
ing from the file) to logically coexist. Then, one may
question the interest of having data physically in two
different stores: (i) the storage cost may be prohibitive
and (ii) the coherence between the database and the
file after updates from one source or the other may be
difficult to maintain. Thus, in this case, it is better to
consider structuring schemas not as a way of extracting
data from a file but as a way of specifying virtual data
that, is loaded only when needed.

75

This leads to distinguishing two ways of using a struc-
turing schema:

1. as a building mechanism to load data, and
2. as a view specification mechanism.

We already addressed the first aspect and are now in-
terested in the second. We are facing two problems
common to standard view definitions: querying and up-
dating. We will address the first in this section. The
latter is considered in Section 7.

Although the notion of view in an object-oriented
database context is a rather new topic, lots of work has
been already devoted to the issue (e.g., [12,9, 11). Many
of the problems that will be found are not new to oo-
databases. In particular, we will meet the malerialized
view problem and the view update problem that are both
now textbook material (see [17]).

To answer a query on the database view of a file, one
may construct the database image of the file and then
evaluate the query. This technique will obviously lead
to the construction of many unnecessary objects and
complex values. We will show that this unnecessary ef-
fort can be avoided using standard query optimization
techniques slightly revisited. We start by giving an in-
tuition of the process with a very simple example. We
then present a sketch of the optimization algorithm. In
the next section, we will see that things are somewhat
more complex in general.

Example of Optimization

Suppose that we have a view on a file through the
aliases structuring schema (we use the same structuring
schema, but now we see it as virtual) and suppose also
that we want to evaluate the following query:

select x.Definition
from x in aliases
where x..Name = “lm”.

The corresponding algebraic query is the following:

P(x) E nDefini*ion(ul\r,,,=“l;n” (X)).

To reduce the construction performed for evaluating
the query, we push the query down inside the gram-
mar specification. We leave the grammatical part of
the structuring schema unchanged (the parser must still
recognize the same file) while modifying the data con-
struction part in an appropriate manner. The rule used
to compute the aliases is:

(Aliases) -+ (Aliases) (Alias)
($3 := $1 U set($2)}

I e
{$$:= set())

The desired result is thus obtained using the query cp
above:

(cp(Aliases)) --+ (Aliases) (Alias)

(1)
(88 := ~($1 U set($2))}

I 6
($3 := cp(set())}

Now we are back to (almost standard) algebraic
mization:

cp(setO)
-2

(2) nD,fi,ition(bNorne=,Llrn” (set()))
w

4)

and

~($1 U set(S2))
u

opti-

(3) Cp($l) U nD,,i,i,i,,(~Nome=‘,lm)) (set(S2)))
-4

~($1) U Set(~Definition(~l\rame=~~~m” ($2))).

All this is rather standard (e.g., distributivity of projec-
tion w.r.t. union) except for the pushing of the query
onto a single element ($2 is not a set but an object).
For this, we need to extend the algebra to have our op-
erations also operate on single elements. This is rather
straightforward if we view such an element as a sin-
gleton set. We therefore extend the algebra to single
elements. In particular, the selection on a single ele-
ment is defined as follows: if it succeeds, the result is
the element itself; and if it fails, the result is the single
element I (which is viewed algebraically as the empty
set).

Now, we go on pushing the query down the gram-
mar. The query on $1 and on $2 is pushed down on the
corresponding non terminals:

(cp(Aliases)) --) (cp(Aliases)) (cp(Alias))

(4)
{$$:= $1 U set($2))}

I E
{$$:= set())

We have a definition for the nonterminal (cp(Aliases)).
We obtain a definition for (cp(Alias)) by pushing ‘p in
the grammar rule defining (Alias) in the following way:

(5) ((o(Ali&)) + string ‘0” string “;”
($3 := cp(new(Alias,

tuple(Name : $1, Definition : $2))))

We can use again a rewriting technique:

(6)
II Definition ~~ame,,~c~m” ((
new(Alias, tuple(Name : $1, Definition : $2))))

u
II Definition(new(Alius, ~Nnme=cclm~~ (

tuple(Name : $1, Definition : $2))))
c\/)

n Definition(
tuple(Name : ~~~~~~=~,~~~~~($l), Definition : $2)))

76

This uses a slightly unusual rewrite rule: the absorption
of object creation (new) by projection. The selection
operation has been pushed inside the tuple construction
(that can be viewed as a product). We introduced a
A-expression in order to denote the element $1 in the
algebraic operation. It must be noted that, as before,
we use selection on an element (here a string). If $1
is not lrn, the selection of $1 iS I, the tuple is also
I (since the standard product with an empty set is
the empty set), and the value of the projection is I as
well (since the standard projection of an empty set is
an empty set). The advantage of the above optimized
construction is (i) it does not construct any object, and
(ii) it discards immediately irrelevant tuples.

To conclude with the above example, suppose that we
want to obtain the objects and not only the Definition
attribute (e.g., to edit them). Then we use:

select 2
f rom 2 in aliases
where z.Name = “lmn.

The same optimization (except for the absorption of
new) would yield a structuring scheme which creates
objects only for lm aliases.

The Optimization Algorithm

Let us consider more precisely the algorithm we used for
this query optimization. It consists in applying alterna-
tively two kinds of rewriting rules that we call grammar
rewriting rules and query rewriting rules. For space lim-
itations, the presentation of the rewrite rules is rather
informal.

The grammar rewriting rules push queries down the
grammar specification. In the previous example, they
are the ones used in Steps (1,4,5). Once a query is
pushed into a rule, query rewriting rules are applied.

The query rewriting rules are more traditional and
rely on algebraic equivalences [5, 8, 14, 161. The alge
braic expression assigned to 8% (which is the algebraic
translation of an OzSQL expression) is rewritten in or-
der to cut it into subexpressions on the $i variables. In
the previous example, these rules were applied in Steps
(2,3,6). Once these rules have been suitably applied we
go back to the grammar rewriting rules.

The algorithm stops when no rewriting rules can be
applied. In the best case, the only objects/values con-
structed are the ones returned by the query (e.g., the
previous example). In the worst case, the query re-
mains at the root of the grammar and the whole data
is constructed.

4 Closer Look at the Problems

To give an intuition of the optimization algorithm, we
had to omit important aspects that are considered now.
These are summarized in the following questions:

1.

2.

3.

4.

5.

The grammar rewriting rules generate new non ter-
minals (e.g., (p(Aliases))) and new rules. What
happens to the old ones?

In the previous examples, the result of the view in a
single set ($8 for the start symbol of the grammar).
Is it possible to specify several virtual anchors with
a unique grammar?

In object oriented databases, cyclic data is com-
mon. Does the presence of cyclic data have impact
on our technique?

In [2], duplicate elimination was shown to be an
important issue for languages allowing the creation
of objects. Can we eliminate duplicates? And does
this have impact with our technique?

We showed the optimization of a simple query.
What happens when considering complex queries?

Each of these questions highlights some limitations of
the technique or subtle issues which force us to com-
plicate this technique. We next address these different
questions. The end of this section is rather technical;
and it is possible to skip it and continue directly with
Section 5. We use a slightly more complicated example.

Example 4.1 we are interested in a database view of
a BibTex file’. For those unfamiliar with BibTex, below
is one BibTex reference:

@Inproceedings{

%

ChandraLM81,
author = “A.K.Chandra and
R.Lewis and J.A.Makowsky”,
source = “Kanellakis91”
title = “Embedded Implicational
. . . their Inference Problem”,
booktitle = stoc,
year = “1981”,
pages = “342 - 354”)

We now give a partial structuring schema.
/* Types and Classes */

Class Reference =
tuple(Keyword : string,

Authors : AuthorSet
Source : string,. . .)

/* Eon terminals type definition */
Type (Re f set) = set(Reference)
Type (Reference) = Reference
Type (String) = string

/* Annotated Grammar */

‘BibTex is a program which, given a file containing biblio-
graphical data (in BibTex format) produces a LaTex bibliography.
The syntax of the bibliographical data should be self explanatory.
We have slightly modified the syntax to simplify the presentation.

77

grammar Alias-Grammar =

(RefSet) --) (Reference) (RefSet)
($8 := set($l) U $2)

I f
{$$:= set())

(Reference) -+ . . .
“@Inproceedings{” (String)
“author = ” (AuthorSet)
“%source = ” (String)

(String)

;ki := new(Reference,
tuple(Keyword : $1,

Authors : $2
Source : $3,

. . .)I
-t string

{$$:= $1)

cl

4.1 Multiplication of Rules

The optimization algorithm applies grammar rewriting
rules whose effect is to modify a rule to obtain a new
rule (e.g., (Aliases) into (cp(Aliases))). What happens
to the old rules? The old rules are kept in the grammar.
The reason for this is that one rule may have different
uses in different places of the grammar. In some cases,
this may yield unreachable nonterminals that are then
just discarded. The nonterminals that are defined in the
annotated grammar for alias after the rewriting process
are the following:

(aliases), (cp(aliases)), (alias), (cp(alias)).

Considering the rules defining these non terminals, it
must be noted that (aliases) or (alias) is not derivable
from the new start symbol (cp(aliases)). Thus, it may
be discarded. However, such nonterminals cannot be
discarded in general:

Example 4.2 Let us now consider the following query:
4-v =
uKeyword=“ChondraLM~l”hsouree=L1Kanellaki~91 1) v>

Suppose that we apply this query on the view

references := view-string(Bib-Grammar, “my-bib”).

In a manner similar to that of the aliases example, the
rewriting process will derive the following rule:

(cp(Reference)) --+ . . .
{$$:= new(Reference,

tuple(Keyword : cpr($l),
Authors : $2,
Source : ‘p2($3),

...J)

with R(X) = bXr.(r=“CharadraLMal”) (W and

$72(X) = fJ X=.(I=“Kanellnkis91”)(X)

Now, if we apply grammar rewriting rules to push the
queries further down, we have:

(p(Reference))

(91 (String))

(v2(Striv))

(String)

0

+ . . .
“@Inproceedings{”

(cpl (String>)
“author = ” (AuthorSet)
“%source = ” (cpa(String))
. . .
(33 := new(Reference,

tuple(Keyword : $1,
Authors : $2,
Source : $3,

. . .))I
+ string

{$$:= $7r($l)}
-+ string

($3 := $o@l)}
--t string

{$$:= $1)

This example shows that several nonterminals may be
derived from the same original one while still needing
that original one. Thus no rule should be discarded
unless one shows (which is rather straightforward to
check) that the nonterminal in the head of the rule is
not reachable.

4.2 Using Several Anchors

If we consider the references view that we defined above,
we may notice that the only access the user has to the
data is through the set, containing all the references.
This does not seem satisfactory. For example, one may
want to be able to access directly the set of all authors
as well. Of course, one can construct first the set of
references, and then specify a set of authors (virtual as
well) defined using the references. This is a possibility
which may be unpractical for many applications. In
this brief section, we consider an alternative that would
allow to construct (again virtually) in the specification
the set of authors and the information concerning them.

Remark: In the 02 OODBMS, the user accesses the
data through names that are explicit in the schema and
that may be considered as global variables. It is then
the user responsibility to assign and update these vari-
ables. In other OODBMS, class extents are automati-
cally maintained by the system. It is not our goal here
to advocate one or the other choices. However, observe
that the maintenance of these extents from the point
of view of the opt#imizer is as complicated as the main-
tenance of global variables (i.e., names, such as set of
authors) that. are constructed in the specification. 0

As we saw, t,he optimization process starts by consid-
ering the rules defining the start symbol of the gram-
mar. This is due to the fact that, using our view defini-
tions, the corresponding $8 variables denote the set of
relevant object/values. Then the optimization process
smoothly pushes (if possible) the projection-selection
down the grammar. Allowing global variables (or ex-
tents) updated at different levels of the grammar re-
quires a preliminary analysis in order to know where
to push the query. The “pushing” must sometimes be
blocked: elements that may be relevant for other parts
of the query should not disappear. This is the difficulty
of performing optimization in presence of side-effects.

We propose the following solution. Suppose that we
want to maintain two anchors (say references and ou-
thors). We define these anchors as fields of the $8 corre-
sponding to the start symbol. The elements contained
in these anchors are pushed up the parsing tree to the
top. To illustrate this idea, we modify the BibTex struc-
turing schema as follows:

/* Types and Classes */
Class Author = string

/* Non terminals type definition */

Type(BibTex) = tuplec
references : set(Reference)
authors : set(Author))

. . .
Type(Author-set) = set(Author)
Type(Author) = Author

/* Annotated Grammar */

(BibTex) + (Reference) (BibTex)
{$$:= tuple(

references : $2.re f erences
U set(U),

authors : $2.authors
U $l.authors)}

If
($3 := tuple(

references : set(),
authors : set())}

(Reference) + . . .
Author “ = ” !AuthorSet)
. . .
{$$:= new(Reference,

tuple(...,
Authors : $2,
. ...))

(authorset) --) (author)“,“(authorset)
($3 := set($l) U $2)
1 (author)
{$$:= set($l)}

(author) + string
{$$:= new(Author, $1))

As we may see, the set containing the authors is
accessible from the rules defining the start symbol
(BibTex). Thus, a query defined on the set of authors
can be pushed down the grammar from these rules.

Let us reconsider the view definition:
BibTex=view(Bib-Grammar, Nmy-bib”‘)

The parsing returns a tuple with two attributes denot-
ing a set of references and a set of authors. In order to
formulate the query given in Example 4.2, we now need
an extra projection operation in order to access the set
of Am3ms (p(X) = u,,ur,,=...(nreferenees(X)))

4.3 Dealing with Cyclic Data

To simplify’ the exposition of the previous issues, we
deliberately simplified the BibTex example. We did not
consider cyclic data. In an 00 context, cyclic data is
common. For instance, a more natural way to view the
class author will be the following:

Class Author = tuple(name : string,
refs : set(Reference))

This definition introduces a cycle between the refer-
ences and the authors. A Reference will be linked to
a set of authors and an Author to a set of references. In
order to maintain this cyclic data, the user will have to
create objects in one rule and update their values in an-
other. Before we illustrate that, it is important to note
that this issue is closely related to the issue of duplicate
elimination which is postponed to the next subsection.

The annotated grammar corresponding to the new
definition of Class Author is as follows:

(Reference) + . . .
“author = “(.4uthorSet)

ii$:= new(Reference,
tuple(..., Authors : $2,

(author)

. . .
MAp~,.(,.,,~~:=~.~.fj’u set(.w))(W)
--f string
($3 := new(Author,

tuple(name : $1,
refs : set())}

In the rule defining (Reference), the variable $2 de-
notes a set of authors. The MAP primitive is used to
apply the update function on every elements of this set.
The MAP statement adds the current reference to each
author in the set of authors.

The fact that we now allow several assignments in
the same rule specification forces us to reconsider our
rewriting rules. In order to simplify the rewriting pro-
cess, we decided to restrict the specification language
in the following way:
Restriction: The construction part of a rule starts
with an assignment on $8, possibly followed by updat-
ing assignments on the $i’s and $$. It must be noted,

79

that this restriction does not prohibit any significant
updates.

Now, having this restriction, pushing a query into a
rule is done as before (i.e. the query is applied on the
right part of the first assignment on $$). The main
difference relies in the decision of pushing a query or
not, and whether the updates after the assignment to
$3 can be removed. Let us illustrate this point with an
example. Suppose we have the following query on the
BibTex view.

Since the rule defining (BibZ’et) contains only one as-
signment to $$, and no additional updates, the query
can be pushed into this rule as before. After fur-
ther (query) rewriting, we would like to push v’(X) =
IIK~~~~~(X) into the rule defining (Reference). Now,
having an added update after the assignment on $3, we
have to make sure that this update does not modify the
Keyword. In this case, the update on the set of authors
has no influence on the attribute Keyword. Since the
update is irrelevant to the query result, it can be re
moved from the rule, and the query can be pushed as
before.

As another example consider the query of Exam-
ple 4.2. At some point of the optimization process, one
wants to push the query

uKeycuord=“ChandraL~B1”hsouree~“Kanellokis91 4X)

into the rule defining (Reference). This query im-
plicitly involves attributes other than Keyword and
Source; the query returns the whole reference, includ-
ing the Authors attribute. Thus clearly we can not
remove the update to the set of authors. Note however
that the Keyword and Source attributes are not mod-
ified or used in the update to the set of authors. Thus
we can push the selection into the assignment on $$,
leave the update on the set of authors unchanged, and
get the desired result.

When objects are involved, updates can be very
tricky. Our goal is not to present the numerous danger-
ous situations that may arise (and that are very unnat-
ural). We just present strong conditions that that guar-
anties pushing a query down the grammar will not lead
to a wrong result. For lack of space we only present be-
low the rewrite rules used in the above examples. Other
cases are handled similarly.

Given a query Q, and a literal A, assume that we
want to push Q into a rule where A appears in the
head. We assume that the construction associated with
the rule starts with an assignment on $$ of the form
$$:= new(C, tuple(al : $ir, . . . , a, : $i,)), followed by
a sequence of updates c.

Strong Condition A

1. Let Q be a query of the form & =

‘P(‘,jI ,...,~j, ($$))’ If
non of the projected at-

tributes of $$ and non of the $3~ corresponding
to those attributes participate in v’, Then, Q can
be pushed into the rule by applying it on right part
of the assignment on $$, and removing all the other
updates.

2. Let Q be a query of the form Q = cp(u,($$)).
If non of the attributes of $$ used in the selec-
tion criteria and none of the $3~ corresponding to
those attributes participate in fi, Then, the selec-
tion u, can be pushed into the rule by applying it
on the right part of the assignment on $$. Note
that in this case, the other updates in v’ remain
unchanged.

It must be noted that this strong condition may, in
some cases, forbid correct pushing of queries.

4.4 Avoiding Duplicates of Objects

As shown in [2], duplicate elimination is a crucial prob-
lem for languages allowing the creation of objects. We
will see that it is indeed true in our context. This prob-
lem is also closely related to cyclic data. Let us consider
the BibTex view and the new definition of class Author.
If we leave the annotated grammar as it is, there is no
way that we can group all the references corresponding
to one author in the same object. Indeed, an author
figuring twice in the my-bib file will be represented by
two objects, each of which will contain the reference in
which it appears in the file.

This is not what we would expect and, accordingly,
we have to give the user the means to avoid duplicates.
We do that by introducing a new primitive that we call
conditional new. Let us consider the modifications we
have to perform on the BibTex annotated grammar in
order to avoid duplicates.

(author) + string

{$$:= new(Author,
(mame=Sl,

tuple(name : $l! refs : set()))}

The conditional new primitive requires three parame-
ters: the name of a class, a query and a value. The
query is applied on the extent of the class whose name is
denoted by the first parameter. If it returns the empty
set, an object is created and added to the class extent.
The value (state) of the object is gifren by the third
parameter. If the query returns a onempty set, the
“first” object of this set will be as gned to $$ (if the
program is correct, there will only if e one object in the
returned set).

It must be noted that this primitive requires that the
system maintains the extent of the class. Recall that
we addressed the problem of querying such extents in
Section 4.2. If one want to optimize queries on class

80

extents, their members should be pushed up the gram-
mar specification and be also maintained at the root of
the grammar.

Now that we have seen how duplicates could be elim-
inated, let us consider the consequence of having con-
ditional new in the rewriting process. The problem is
that objects created in one particular subtree Ti may
be used in different subtrees Tz, T3, .., T,. Thus, even if
the query we are considering is not concerned with the
information generated by Tl, the construction must still
be performed in order to preserve the structure gener-
ated in T2, T3, .., T,.

The solution to this problem consists in distinguish-
ing a special kind of literals called global. We say
that a literal whose associated construction specifica-
tion contains a conditional new is a global literal. In
order to treat global literals we introduce a new strong
condition that is added to the one defined in Section 4.3.

Strong Condition B

1. A query Q can be pushed on a literal A if A does
not derive a global literal.

2. If Q is a query of the form Q = ‘p(IIoj, ,...,oj, (X)),
Then the projection IIaj ,...,aj, can be pushed into
the rule. The additionA updates can be removed
only if all the variables appearing in them corre-
spond to literals that do not derive global literals.

3. If Q is of the form Q = cp(ue(X)), and none of the
literals corresponding to the variables ($i’s) used in
the selection criteria derives a global literal. Then
the selection ue can be pushed into the rule.

Once again, this condition will block some “correct”
rewriting. However, it can be suitably weakened in
some particular cases- that we will not consider here
for lack of space.

4.5 Complex Queries

Complex queries are the ones involving several view
definitions (e.g. the BibTex authors that are cited in
a LaTex file) or several occurrences of the same view
(e.g. nested queries). We will not address in details the
problems they raise because they are similar to that of
complex queries in any rewriting system. Indeed, as in
any rewriting system, the problem consists in rewrit-
ing the query in order to obtain a join involving several
subqueries on distinct elements. In the 00 context, al-
gebraic equivalences for performing this rewriting can
be found in [14, 161. Of course, this is not always feasi-
ble and, in some cases, we will have to construct more
data than needed (in the worst case, the whole data
corresponding to a view will have to be loaded).

5 Optimizing the grammar

In the previous section, we assumed that the grammar
is’not modified which may be an acceptable restriction
for most practical purposes. In this section, we briefly
show that it may be possible to achieve more by also
modifying the grammar. The topic is interesting techni-
cally and is new to our knowledge. Its practical interest
is yet unclear.

We next briefly present a possible optimization based
on modifying the grammar to illustrate this potential
direction of research.

Suppose that we have a rule:

(A) + LeftDelimiter (Al). . . (An) RightDelimiter

such that the delimiters are tokens not occurring in
(AI) . . . (A,) and the information in (AI) . . . (A,,) is not
used in the query. Then we may replace the parsing of
(AI) . . . (A,,) by a scan for RightDelimiter.

Furthermore, between two delimiters, it may be pos-
sible to switch from an analysis mode to a scanning
mode when some conditions are met. For instance, sup-
pose that we are looking for a reference with a given ,
keyword in the bibliography database. When a key-
word has been tested and the test failed, the parser can
switch to a scanning mode and start searching for “}”
(the right parenthesis closing this particular reference).

Such technique can clearly be automatized, i.e., one
may analyze the grammar graph to detect such situa-
tions and apply the relevant parsing optimization. Al-
though this may yield speed-up in many cases, we be-
lieve that the gain will be marginal compared to that
provided by the technique presented in the previous sec-
tion.

6 From Databases to Files

So far, we have been concerned with extracting struc-
tures from files. In this section, we study the converse.
This converse is of practical importance and further-
more, it will prove to be useful when considering up-
dates in Section 7.

We assume that we have structured data in a
database and want to produce a string (with an as-
sociated grammar) containing some of the database in-
formation. This may be necessary in many contexts
such as report generation or transfer of data between
databases. Not surprisingly, one of the most intricate
issues will be the naming of database objects.

To encode data on a string, we need (i) to specify
the object or value u to encode; (ii) the encodings of its
components (if any); and (iii) the encoding of u (even-
tually based on that of its components). This yields the
following cases:

Integers, Reals, Strings, etc
We need some standard encodings of these.

81

The application programmer may define the en-
coding of tuple (Al : ti, . . . , A, : tn) for instance
aS:

enc((A1 :tl,...,A, :t,))=
“Al : ” . enc(tl) . “; ” . . . “; ” . “A,” . enc(t,)

where “.” denotes concatenation.

BUG Types
This is also rather simple using iteration, and for
instance, the structural induction operator of [7].
The structural induction cp on a set X with param-
eters f, g, h is defined by:

P(f) 99 h)(0)
cp(f, 9, w4 IJ w 1 &s(4, VW>.

For instance, to encode a set X with members of
type T, we can use: (a) a function g encoding T
elements, (b) the function f returning the empty
string; and (c) h defined by: for each u, v,

h(u, v) = concat(u, ‘0” , v).

Observe that, in this case, the resulting string de-
pends on the order of the elements that is chosen.
In that sense, the operation is non-deterministic.
(This is not surprising since, in general, structural
induction is non-deterministic.)

In O&J, structural induction can be realized us-
ing for each statements. The following programs
encodes a set X of tuples:

enc := ““;
for each x in X

{enc := concat(enc, “Al : “, enc(x.Al), “;“‘,
“. n “

“‘, ,, A . “, enc(x.A,)); }; n.
enc := concat(enc, “.“);

Objects
When an object is transformed into a string, one
may want to record both the oid, and the state.
This leads to the following issues:

Question 1: How do we encode oid’s?
Questibn 2: How do we handle data
cycles?

To encode oid’s, there are many possibilities. We
may use some surrogate, or some internal represen-
tation. Note that some systems consider oid’s as
data values that can even be printed. In all cases,
the problem is to guarantee a meaningful seman-
tics to updates. Suppose for instance that we use
a conversion table that translates oid’s to say, in-
tegers. We have then to be very precise on the
scope of this translation: is it valid for this specific
output string only? Is this translation persistent?

Is it general to the system or is it particular to an
application? Such questions have to be answered’.

The second issue comes from the transcription of
object values when data is cyclic. We need to
flag the objects that have already been considered.
Suppose that we want to output in a string a ge-
nealogy database. We want to avoid entering in an
infinite loop:

[01 : (Name : Adam,
Spouse : 02 : (Name : Eva,

Spouse : 01 : (Name : Adam. . .]

This is easily handled by maintaining an occur
check.

The above discussion leads to the following general
framework. To extract data from a database to a file, we
must specify how each occurrence of a data constructor
is handled, i.e., we annotate the database schema with
indications on the encoding of these occurrences. (Of
course, a default encoding is provided by the system in
particular, for oid’s and the base types such as siring.)

Observe that the previous process only yields a string,
while we insisted so far that grammars are attached to
the strings that we consider. It is not difficult to obtain
automatically a grammar (just by following the genera-
tion of the string). But, as mentioned above a grammar
alone is a very limited way of representing a database
structure. We would like is to obtain automatically
the inverse structuring schema. This is not possible in
general. However, if we restrict our attention to a few
system-supplied (eventually customizable) kinds of en-
codings, this becomes relatively straightforward.

What do we mean by “system-supplied encodings”?
First, there are standards for documents such as SGML
that the application should preferably adopt. Also, the
system may offer a few choices for encodings for each
constructor. For instance, consider a set, say a set of in-
tegers. For most practical purposes, it suffices to specify
the encoding of an integer; the delimiters between the
integers (e.g., a “!“), a string to put at the end (“:end of
list”); and one to put at the beginning (“list of integers
separated with commas:“).

This leads to considering the parsing/encoding prob-
lem in a more global manner. We will come back to
this fundamental issue in Section 7.

7 Updates

Returning to structuring schemas, suppose that we have
a file containing data and a database view of that file.

‘The situationmay be even more complicatedin the context of
several databases. It is necessary to distinguish between objects
from different databases. This is of course without mentioning
the problem of naming of objects migrating from one database to
another.

82

We now consider updates. A difficulty is that data is
represented in two forms: files and databases.

7.1 Updating the Files

There is a priori no problem in allowing an update to
a file when a (database) view has been defined on it.
If the view is materialized, we have to maintain it. We
run into the classical problem of materialized view up-
date. One has to provide incremental algorithms to
avoid having to reparse the entire file. A solution is
to keep the parse tree and maintain a correspondence
between nonterminals in the parse tree and indices of
characters in the file. When updating the file, we try
to limit the impact of the update to a nonterminal of
the parse tree corresponding to a minimal substring.
This update will therefore have minimal effect on the
materialized database.

Observe that structuring schemas can serve as the ba-
sis for providing concurrency control on files with a finer
level of granularity than the whole file. Suppose that
the database provides object-level concurrency control.
Then by specifying a structuring schema, we specify the
level of concurrency that we allow on a given file: it is
necessary to “lock” only the minimal substring corre-
sponding to a pair nonterminal/database-object which
is affected by the update. This lock can be achieved (at
least virtually) by locking the corresponding database
object.

To illustrate this technique, consider C programs.
Suppose that the structuring schema associates an ob-
ject to each C function. This will allow two users to
modify concurrently two distinct functions in the same
file.

7.2 Updating the Database

We now run into a much more challenging problem, Ihe
view update problem There is a-priori no requirement
on the function from the file to the database; and in
particular it does not have to be a one-to-one mapping.
Thus, an update to the database may have zero, one or
many translations on the file. Clearly, one should not
expect miracles and, in most cases, such updates will
7;k impossible.

We consider two modest ways of allowing such up-
dates, a very limited one for arbitrary structuring
schemas, and an extremely powerful one for very con-
strained structuring schemas:

Arbitrary structuring schema
Consider first a lexical token of the parser, say a
string. Given an occurrence w of this token in the
text, one can find where this particular string is
kept in the database (it may be in zero, one or
more than one places). An update to one of these
database strings may be allowed and would lead
to the update to the corresponding string in the
file. (An example of such an update would be the

modification of the definition of some alias.) This
is very modest in the sense that it would be limited
to specific lexical units.

It seems difficult to offer more automatically. It
is even difficult to allow application programmers
to explicitly specify the meaning of database up-
dates when the database is the view of a file. For
instance, suppose that we would like to write in
the database environment a method that would in-
sert a new alias in the list of aliases. This would
involve the specification of the modification of the
file. There are few available tools for that and these
tools (e.g., pushdown translation [ll]) are very
heavy compared to database update tools. A possi-
bility is use the transformations from databases to
files of Section 6: the new state of the file is entirely
obtained (at least logically) from the database.
(Optimization is clearly necessary to avoid recon-
structing entirely the file.)

Constrained structuring schema.
We restrict our attention to structuring schemas
such that (i) there are one-to-one correspondences
between substrings and database portions, (ii)
these correspondences are easily extracted from the
specifications, and (iii) inverse mapping can easily
be obtained as well.

This leads to reconsidering entirely the problem
which we do next.

7.3 Reconsidering the Issue

In this section, we argue that some of the issues raised
by updates disappear in an (open to debate) different
way of addressing the problem.

A major limitation of our approach so far is that we
started from the string and from there went to data.
The grammar tells us something about the data struc-
ture and an analysis of the actions of the structuring
schema tells us a little more. But still, our knowledge
of the data is limited.

We will argue that we should not start with the gram-
matical specification:

l Firstly, if we handle a large quantity of data,
it seems more appropriate to do it directly in a
database rather than in a file. Clearly, nowadays
large quantities of data (e.g., large programs or
documents) are still stored in file systems. How-
ever, this should be considered more as a tempo-
rary aberration than as a desirable state.

l Secondly, in other motivating examples for study-
ing “structured strings” such as data transfer be-
tween databases, the data is originally structured
before being on a string medium.

So, we will now adopt the following law:

83

Law 1: the specification of the database
schema precedes that of the grammar.

When we considered the issue of translating from a
database to a file, we saw that it is not immediate to
obtain the “inverse structuring schema”, i.e., the struc-
turing schema which would reconstruct the database
from the file. However, as mentioned above, this is pos-
sible if we restrict our attention to a few system supplied
(eventually customizable) encoding schemes.

So, we will also adopt the following law:

Law 2: the specification of the database
schema should include choices of encodings of
the database constructs occurring in it.

Observe that by these two laws, the structuring
schema is now automatically generated. In particular,

Consequence: the grammar is a by-product
of the specification of the database.

Note that this does not prevent from considering ap-
plications such as BibTex where we have to load data
from a file. However, we do not start by specifying a
grammar. Instead, we specify the intended database
schema and encodings which should yield the underly-
ing grammar. It is now necessary to experiment these
ideas to see whether this would entail unacceptable limi-
tations compared to the direct specification of the gram-
mar.

The optimization techniques described in the paper
are of course still relevant. Furthermore, with this ap-
proach, we can support some nontrivial updates since
the system is now aware of one-to-one transformations
between subdatabases and substrings. Indeed, we be-
lieve that this global database-driven approach to the
couple (database ++ structured string) is the only seri-
ous answer to the problems raised by updates. Clearly,
this requires further work and, it is important, in par-
ticular, to elaborate on the work of Section 6.

Acknowledgment: We thank Sophie Gamerman,
Bernard Lang, and Laurent Herr for discussions on the
topic. Laurent is also thanked for implementing Oz-
Yacc.

References

[l] S. Abiteboul and A. Bonner. Objects and views.
In Proc. ACM Sigmod Conference, 1991.

[2] S. Abiteboul and P. Kanellakis. Identity as a query
language primitive. In Proc. SIGMOD, Portland,
Oregon, 1989.

[3] A. V. Aho and S. C. Johnson. Programming util-
ities and libraries lr parsing. Computing Surveys,
June 1974.

[4] F. Bancilhon, S. Cluet, and C. Delobel. Query lan-
guages for object-oriented database systems: the
02 proposal. In Proc. DBPL, Salishan Lodge, Ore-
gon, June 1989.

[5] C. Beeri and Y. Kornatzky. Algebraic optimization
of object-oriented query languages. In Proc. ICDT,
Paris, France, 1990.

[6] C. Beeri and T. Milo. Functional and predica-
tive programming in oodb’s. In Proc. 11th Symp.
on Principles of Database Systems - PODS, San-
Diego, 1992.

[7] V. Breazu-Tannen, P. Buneman, and S. Naqvi.
Structural recursion as a query language. In Conf
on Database Programming Languages, DBPL,
1991.

[8] S. Cluet and C. Delobel. A general framework
for the optimization of object-oriented queries. In
Proc. Sigmod, San Diego, USA, 1992.

[9] U. Dayal. Queries and views in an object-oriented
data model. In Proc. Internal. Workshop on
DBPL, 1989.

[lo] 0. Deux et al. The story of 02. IEEE Transaction
on Knowledge and Data Engineering, 2(l), March
1989.

[ll] J.E. Hopcroft and J.D. TJllman. Introduction to
Automata Theory Languages and Computation.
Addison-Wesley, 1979.

[12] W. Kim. A model of queries for object-oriented
databases. In Proc. VLDB, 1989.

[13] T.W. Reps and T. Teitelboum. The Synthesizer
Generator, A system for Constructing language
based editors. Springer-Verlag, 1989.

[14] G. Shaw and S. Zdonik. Object-Oriented Queries:
Equivalence and Optimization. In Proc. DOOD,
Kyoto, Japan, 1989.

[15] N.C. Shu, B.C. House& R.W. Taylor, S.P. Ghosh,
and V.Y. Lum. Express: a data extraction, pro-
cessing, and restructuring system. ACM Transac-
tions on Database Systems, 2(2), June 1977.

[16] D. Straube and T. Czsu. Queries and Query
Processing in Object-Oriented Database Systems.
Technical report, Department of computing sci-
ence, university of Alberta, Edmonton, Alberta,
Canada, 1990.

[17] J.D. Ullman. Principles of Database and Knowl-
edge Base Systems: Volume I and II. Computer
Science Press, 1988.

84

