The Rufus System: Information Organization
for Semi-Structured Data

K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, J. Thomas
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120

Abstract

While database systems provide good function for
writing applications on structured data, computer
systemn users are inundated with a flood of semi-
structured information, such as documents, elec-
tronic mail, programs, and images. Today, this in-
formation is typically stored in filesystems that pro-
vide limited support for organizing, searching, and
operating upon this data. Current database systems
are inappropriate for semi-structured information
because they require that the data be translated to
their data model, breaking all current applications
that use the data. Although research in database
systems has concentrated on extending them to han-
dle more varieties of fully structured data, database
systems provide important function that could help
users of semi-structured information.

The Rufus system attacks the problems of
semi-structured data. It provides searching, orga-
nizing, and browsing for the semi-structured infor-
mation commonly stored in computer systems. Ru-
fus models information with an extensible object-
oriented class hierarchy and provides automatic clas-
sification of user data within that hierarchy. Query
access 1s provided to help users search for needed
information. Various ways of structuring user infor-
mation are provided to help users browse. Methods

Permission 1o copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the pub-
lication and ils date appear; and notice is given that
copying ts by permission of the Very Large Data
Base Endowment. To copy otherwise, or to repub-
lish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland 1993

97

associated with Rufus classes encapsulate actions
that users can take on the data. These capabilities
are packaged in a framework for use by applications.
We have built two demonstration applications using
this framework: a generic search and browse applhi-
cation called zrufus and an extension to the Usenet
news reading program {rn. These applications are
in daily use at our research laboratory.

This paper describes the design and imple-
mentation of our framework, our experiences using
it, and their influence on the next version of Rufus

1 INTRODUCTION

The volume and diversity of the information stored
on computer systems have grown with the systems
themselves. Current workstation users store gi-
gabytes of information locally and have access to
far more over local area networks. While some of
this information is highly structured and stored in
databases, most of it is stored in ordinary files ar-
ranged in a directory tree.

It is difficult for people to make effective use
of the information that’s available to them. The
large amount of data makes it difficult to find things
when they are needed, while the diversity of infor-
mation makes it difficult to use the data when it is
found. Since computer systems offer little help lo-
cating and using data, users are compelled to mem-
orize the.location of data and procedures for using
it. The tools provided by current computer systems
are crude and do not scale as needed.

For example, consider the plight of an orga-
nization with hundreds of internetworked worksta-
tions. Users of these workstations write documents
using any of a dozen word processing systems. Al-
though the workstations make use of shared file sys-
temns like NFS [17], users must still locate documents
of interest by filename. The system might offer a
brute force application for searching through files,
but the applications tend to be slow and to make

it difficult to find what a user needs. Once a docu-
ment is found, the user needs to remember how to
browse or print the document using the application
specific for its type. While this example uses word
processor documents, the same situation holds for
computer programs, images, electronic mail, config-
uration files, and so on.

Ideally, computer systems would provide sig-
nificantly better tools for users to manage huge
amounts of data. This ideal system would know
what each piece of data is and how to use it. In the
document example above, the system would know
what application(s) apply to each file and how to
run them. The ideal system would also know what’s
inside each piece of data to allow users to search for
information about a particular subject. The search-
ing should adapt to the data type, with different
techniques available for searching for text, images,
and coded data. The i1deal system would use index-
ing so that queries could be answered quickly. Fi-
nally, the ideal system would know the retationships
between various pieces of data. For example, in a
document that includes figures, the system should
understand the inclusion relationship.

In contrast to the ideal system, today’s users
must choose between storing their data in tradi-
tional filesystems or in database systems. For vari-
ous reasons, filesystems have little or no semantics
attached to stored files. An attempt to add these
semantics to an existing system would likely break
all existing applications and creating a new system
from scratch, with all new applications, is unthink-
ably expensive.

Alternatively, users could store their data in
a database. Unfortunately, database systems are
unprepared to store the semi-structured informa-
tion inundating users. Instead, database systems
are oriented towards providing high integrity stor-
age for structured data. Database research has con-
centrated on supporting the same type of data more
efficiently, with better concurrency, and with bet-
ter integrity. Efforts to extend the scope of data
that database systems can handle have succeeding
in capturing more applications with fully structured
data, but still do not support semi-structured data.

There are two reasons why current database
systems are inadequate for storing semi-structured
data. The biggest inhibitor is that database sys-
tems insist on “owning” the data. When you decide
to use a database system, you convert your data into
its format and access the data exclusively through
the database system. Moving semi-structured infor-
mation into a database abandons all the applications
that were written against the data’s original format.

Another problem is that semi-structured
data is imperfect-—computer programs may have

98

syntax errors or be incomplete, documents may not
format correctly, and electronic mail may be dam-
aged by the delivery system. A database solution de-
signed to store this information must be able to rep-
resent imperfections. Database systems are instead
oriented towards storing perfect information and for
providing facilities for keeping it perfect. This need
to cope with imperfection motivates filesystems to
maintain unintrusive byte-stream models.

In summary, given the choice between byte-
stream filesystems and structured databases, users
have chosen filesystems for storing their semi-
structured data. This is an unfortunate choice, be-
cause database systems offer many features that
could help users cope with information overload.
Database systems need to step up to the problems
of semi-structured data to make these features avail-
able.

The Rufus project brings features tradition-
ally belonging to database systems to bear on
semi-structured information. An object-oriented
database is used to store descriptive information
about file system objects. To preserve existing ap-
plications, Rufus does not modify the file system
objects themselves. An import process automati-
cally categorizes each piece of user data into one of
the Rufus classes and creates an object instance to
represent the data. The underlying database sup-
ports fast querying and object access. Rufus pro-
vides various ways of structuring the objects to sup-
port browsing. This object infrastructure 1s made
available through a client-server interface. We have
built two applications to demonstrate the value of
our infrastructure.

While designing the Rufus system, four par-
ticularly interesting problems were addressed. The
first problem is the automatic classification of a file
into one of the Rufus classes. Such a classifier must
be fast, accurate, and easily extended with new
classes. The second problem is correlating file sys-
tem objects with Rufus objects. The most obvious
approach, using file names, fails when files are re-
named but users expect object identity to be main-
tained for the new file name. The third problem
is the ability to add and delete classes from the
class hierarchy of an existing database. With tra-
ditional approaches, such schema changes break the
class hierarchy, due to the class relationships estab-
lished by inheritance. The fourth problem is that
of maintaining a dynamically-extendible text index
with concurrent readers. This problem is further
complicated by the need to be able to scale text in-
dices to hundreds of thousands or millions of objects.

This paper describes the design and imple-
mentation of the Rufus system. Particular attention
is focused on how the system addresses the four key

problems listed above.

2 RELATED WORK

While existing data management systems do not
support semi-structured information, research in the
areas of object-oriented database systems, informa-
tion retrieval, classification, hypertext, and some
specific applications contribute useful techniques.

Semantic file systems [11] (SFS) provide
transducers that extract attributes from files and
provide them to an indexing system. Queries against
a semantic file system are issued via extensions to
the file naming syntax of the UNIX file system and
are presently limited to conjunctive equality tests
with string prefix matching. Rufus and SFS share
the goal of raising the level of abstraction of the file
system interface. Embedding the query language in
the file naming mechanism provides access to SFS
facilities without changing applications, but can be
unnatural for some queries. As currently described,
SFS does not associate actions with data, nor does it
represent inter-file relationships. Users need richer
data modeling and query capabilities to cope with
the millions of files available to them.

Intelligent mail filtering capabilities, such as
those found in BBN/Slate [5], the Andrew Message
System [25], the Information Lens [18] and Tapestry
[13] give users a large measure of control over their
incoming mail. The term “mail” is used rather
loosely here, as these systems purposely blur the
distinction between traditional point-to-point elec-
tronic mail and point-to-many bulletin-board mes-
sage systems. Tapestry, in particular, advocates re-
placing the notion of sender directed mail by recip-
ient directed content-based retrieval. Thus the re-
ceiver, rather than the sender, controls what the re-
ceiver sees. Tapestry takes an active approach by
providing user-defined intelligent agents to forage
through various mail/message databases for items
of interest. Collaborative retrieval is supported in
Tapestry by associating user annotations with mes-
sages. These annotations can be used by others to
select messages to read.

In many ways Tapestry is an information
retrieval system applied to a limited interactive
mail/message domain. In ¢ontrast, full-text infor-
mation retrieval systems such as RUBRIC [19] and
WALIS [15] provide users with the ability to retrieve
files as the result of queries posed against the docu-
ment text. To facilitate retrieval across a wide vari-
ety of document formats, these systems treat their
data as unformatted text. Information retrieval sys-
tems and specialized systems such as mail handlers
can be thought of as at opposite ends of the “domain
specificity” spectrum. Rufus supports both kinds

99

of use. A general purpose application can provide
access across all data types, while special purpose
applications can be written to exploit the semantics
of specific data types. We describe both kinds of
applications later in this paper.

Object-oriented database systems, such as
ObjectStore [21] and O, [8], provide explicit frame-
works for describing the structure of data types.
These systems provide powerful query languages
that allow users to express retrievals based on the
structures defined in the schema. Object-oriented
systems also provide a simple framework for encap-
sulating an object’s structure together with its se-
mantics, or behavior. As with other database sys-
tems, use of an OODBMS requires that a user’s data
reside in the database.

Database systems do not really concern
themselves with modeling and importing existing file
types and files. Mechanisms are usually provided for
the one-time import of users’ files, but the expecta-
tion is that they will then “live” in the database
world: applications that were used to manipulate
the original data are not applicable to the propri-
etary, internal database formats. Additionally, lit-
tle or no support is provided for refreshing the im-
ported data from native files that may have changed
(through the use of external applications). Users ei-
ther step fully into the database world or are left to
manage the consistency of the two worlds on their
own.

Hypermedia systems [6], which are based on
a browsing metaphor rather than one of retrieval,
also use proprietary internal data formats. Systems
such as Intermedia [29] provide no avenues for inte-
grating existing structured data into a hypermedia
document other than as flat text. Once a hyperme-
dia document or web is created, the systems offer
only limited access paths to the underlying data.
For example, although Intermedia is built on top of
a relational database, the relational query capabil-
ities are not available to Intermedia users. Hyper-
media systems require that the data they operate
upon be brought into the system, as is the case with
database systems. Most of the value is derived from
careful construction of links, which must be added
by hand. Finally, hypermedia systems do not encode
information about how to operate on data once it is
found.

3 RUFUS

This section describes the Rufus approach to sup-
porting semi-structured information. We describe
how each aspect of the design is implemented in our
current prototype, our experiences with the design
choices, and modifications we are making to Ru-

fus based on these experiences. To avoid confusion,
“Rufus™ refers to our general approach, “Rufus 17
refers to our current prototype, and “Rufus 2” refers
to the version that we are in the process of building
based on our experiences.

Rufus augments the file system representa-
tion of user data with persistent objects that retain
information extracted from the original data. The
original data is not modified and remains the author-
itative copy so that existing applications are not af-
fected. Rufus provides a set of classes that describe
types of user files; examples include mail messages,
C language source code, and various image file for-
mats. Rufus includes a classifier that automatieally
determines the Rufus class of a file.

The structured objects that Rufus extracts
are used for querying, organizing, and operating
upon the data. In addition to extracting struc-
tured information about user data, Rufus indexes
the data’s contents. Rufus I supports a full-text in-
dex for textual data; other types of indexing could
be added for non-textual data. Queries on Rufus
data combine search operators on the contents of
data (full-text in Rufus 1) with predicates on the ex-
tracted objects. Rufus uses collections, sub-classing,
composite objects, and hypertext links to represent
structure between objects. Some examples: 1) a
mail folder is modeled as a collection of mail message
objects; 2) a C program is modeled as a compos-
ite object including collections of source and object
code, compilation instructions, and documentation;
and 3) the structure of questions and answers in
bulletin board articles is represented with hypertext
links.

Rufus 1 is implemented on a client/server
model to mimic the location transparency provided
by distributed file systems. Rufus applications are
written using a client library that provides program
access to queries and Rufus data. Rufus 1 includes
a catalog server to locate active Rufus servers. We
have written two applications, one general purpose
and one data-specific, as Rufus clients. These appli-
cations are in daily use at our laboratory.

Figure 1 shows the general structure of the
Rufus system.

3.1 Classifier

The classifier examines a file and guesses what its
Rufus class is, providing the first piece of informa-
tion that a user needs about a piece of data. Given
the volumes of semi-structured data, it is unreason-
able to expect people to classify information manu-
ally. Thus, automatic classification is needed. Suc-
cessful classification permits Rufus to dispatch the
correct import method to extract attributes from
user data.

The classifier uses the presence of keywords,
file name patterns and file type (directory or nor-
mal file), and the presence of constant bit patterns
near the beginning of the file (“magic numbers”).
For efficiency, the classifier scans the file once to
prepare an abstract of sampled keywords from the
beginning, middle, and end of the file. The keyword
samples include the token to the left of the keyword
to pick up punctuation in examples like \section
in ITEX.

Each class supplies an evaluation function
that returns a weight from 0 to 10 according to how
likely the data is a member of the class. For suffi-
ciently nondescript data, the classifier will likely re-
turn TEXT (plain ordinary text) for files that have
mostly printable characters or BINARY for anything
else. In case of error, the user may manually reclas-
sify an object.

For the set of classes we have defined, the
classifier is reasonably accurate and fast. To test
it, we classified 847 examples of various file types.
90% were classified correctly, 8% were editor backup
files that are given unusual names and were classi-
fied as “Text” instead of their actual type (mostly -
C language source code), and 2% were more signif-
icant errors (most were telephone directories clas-
sified as “Text"). A similar test on 100 randomly-
selected user files revealed 4 significant misclassifica-
tions. Two were text formatter documents general-
ized to “Text,” one was an extremely short text ed-
itor command script misclassified as “Binary,” and
the last was a command script misclassified as a spe-
cific kind of script. On these tests, the classifier av-
eraged 55 milliseconds of CPU time per file on an
IBM RISC System/6000, model 350.

The larger problem is that the classifier must
carefully balance the weights returned by the eval-
uation functions to make the right decision in most
cases. It would be difficult or impossible to add
many more classes without upsetting this balance.

To address these limitations, we are building
a new classifier based on a different model. In this
new classifier, the programmer describes salient fea-
tures of a new type, such as binary numbers that
should appear near the beginning or regular expres-
sions that should be found in textual formats and
provides examples of objects of the given type. A
classifier training program collects all the unique
features into a global feature vector and computes
the centroids of the feature vector for each type for
which samples are available.

The actual classification of an object is per-
formed by constructing its feature vector and match-
ing it to the class with the nearest centroid. We
are currently using the cosine coefficient similarity
measure, a dot-product of two feature vectors nor-

100

Applications xrufus rufustrn rufusbld
RPC Interface | | |
Query Method
Engine Dispatch Schema
| -
Import Schema
Methods Compiler ssc::r?:
C
Text
Database | 0ODB I

Figure 1: Structure of Rufus System

malized to remove biases towards classes with many
features.

To date, we have tried this new classifier tech-
nique on a set of about 45 types, including those
that Rufus 1 supports. The results are encouraging:
the new classifier is about as accurate as the pre-
vious version and the process of adding new types
1s simple to it is simple. We now need to improve
the performance of the new classifier (it can take it
several seconds to classify a file) by combining the
regular expression features into a single finite au-
tomaton with an algorithm like that suggested in
[1] and to build the feature vectors for each class in
a single pass through the file.

3.2 Importing Data

Once a piece of user data has been classified as class
C, it can be imported into Rufus. Importing simply
means that attributes are extracted from the under-
lying data and stored as an object. If the underlying
data is not perfectly formatted, values may be left
out of the extracted object. If the class of the object
is text-oriented, the textual contents of the data are
added to the text index.

Each Rufus class provides an import method
that’s responsible for performing extraction. Al-
though the writers of classes are free to choose any
formalism they wish to analyze the underlying data,
Rufus neither supplies nor dictates the use of any
such formalism. We have used plain C code for ex-
traction in the classes we have implemented so far.

When a file is imported into Rufus for the
first time, a new object identifier is created for it. If
the file is modified and re-imported, its object iden-
tity is retained. When files are renamed, it can be
difficuit to maintain object identity. To cope with
this problem, Rufus uses a type-specific unique iden-

tifier to track file identity, rather than the file name.
For example, mail messages have unique “message
identifiers” associated with them. Plain Unix files
can be identified by their “inode” and “device” num-
bers. When a file is imported, its unique identifier
is discovered by its class’s constructor. A persis-
tent mapping from unique identifier to object iden-
tifier is consulted; if the unique identifier is already
known to Rufus, then the existing object identifier
is reused. Rufus converts the varying-length unique
identifiers to fixed-size object identifiers for conve-
nience.

The Rufus strategy for unique identifiers
works well for data that has an intrinsic unique iden-
tifier. For cases where Rufus must rely on the Unix
file identification, our scheme works as long as file
identity and object identity remain in sync.

Rufus includes a utility for importing data
called rufusbld. Rufusbld reads a user-written spec-
ification that describes the files to be imported, clas-
sifies the files, and imports them into Rufus. Rufus-
bld does little work for files that are already “cur-
rent” in the Rufus database, so an affordable way to
keep Rufus current is to periodically run rufusbld.
We decided against a strategy of hooking Rufus into
the operating system’s file system interface to avoid
non-portable, system-dependent programming.

We tested rufusbld on a sample of 1,000
USENET articles. On our IBM RISC/System 6000
model 350, it takes about 130 milliseconds of CPU
time per article imported, exclusive of classification.
The real time to import is about 2.5 times the CPU
time, due to waiting for database disk 1/0’s.

3.3 Data Model

The Rufus data model represents structured infor-
mation observed about user data. The structured

101

view describes what the data is, interesting values
deterinined about the data, and what operations can
be performed on it. We chose an object-oriented
(OO) model [12]. The classes in the hierarchy are
recognizable to users as types of information that
they use. Rufus creates an object to represent each
piece of information that a user might think of as
distinct. For example, Rufus creates an object for
each file of C source code, as well as an object for
the makefile (compilation instructions) and an en-
compassing object for the entire program that refers
to the constituent source code, makefile, documen-
tation, etc.

A Rufus class is defined by a set of atiributes
ociated with each instance of the class and a set
of methods that can be applied to any instance of
the class. Rufus supports substitutability, where
instances of a class can be used in places that ex-
pect instances of a superclass. This capability allows
users to take a specific or general view of a piece of
data. For instance, one might seek a document that
contains a particular phrase, without regard to the
type of formatter used to compose it.

Attributes of type conlert define parts of the
underlying real data for text indexing, similar to lo-
cation restrictions in information retrieval systems
like STAIRS [14]. For example, a document class
might define the context abstract to refer to the
words in the up-front summary of a paper. Con-
texts allow users to restrict the locations that words
or phrases must appear in so that more accurate
results are possible. For convenience, a class may
indicate that particular string-valued attributes are
to be indexed as contexts.

Every Rufus class includes a set of standard
attributes and methods. The standard attributes in-
clude the object identifier, the document identifier
(used to cope with new versions of the object in the
text index), a unique identifier derived from the un-
derlying object for correlation, the object’s class, the
date the object was last refreshed, and a string de-
scription of the object for browsing. Standard meth-
ods display an object, import an object into Rufus,
and print an object. The standard methods pro-
vide the set of basic services that any Rufus object
is expected to support.

Although methods defined for a Rufus class
may choose to modify the underlying data, Rufus
provides no built-in mechanism for mapping mod-
ifications to Rufus objects to the underlying data.
Such a mapping would be difficult to provide, given
that Rufus objects do not typically model all the
information in the underlying data.

Our prototype currently has 34 classes, in-
cluding a few formats of electronic mail, several
formats of documents, C language source code, a

ass

102

C
__ s /
T TOBTAMIINE . FORTRAN
T
H— Document< Nroff
, \\ , LaTeX
File Mail
/\)
/A _-Object code
Object Binary
\ AN TIFF
Collection Image < GIF
~ PostScript
Directory

Figure 2: Subset of Rufus class hierarchy

few image types, bibtex citations {16}, and employee
records from IBM telephone books. Figure 2 shows
a subset of the supported classes.

We chose the object-oriented (OO) model
because its features closely follow a user’s mental
model of data. For example, OO data models fea-
ture a strong notion of object identity, while other
data models are oriented around values. Object
identity gives us an easy way to refer to objects in
different contexts; in particular, it allows us to or-
ganize the same objects in different ways. Object
identity is also useful for modeling complex objects
made up of simpler ones. Rufus uses the attributes
of objects to describe features extracted from the
underlying data (e.g., author, title, and date writ-
ten). Rufus uses the methods of an object to de-
scribe both user-visible operations that can be per-
formed, as well as operations needed by the Rufus
infrastructure, such as display and import.

Effective exploitation of the class system re-
quires high quality, detailed class definitions. For ex-
ample, Rufus | extracts the sender, newsgroup, sub-
ject, line count, summary, and organization fields
from USENET articles, as well as creating links that
show the “question and answer” relationship be-
tween articles. In contrast, the C source code class
does not provide the same level of detail: it only
distinguishes between string and comment contexts
and does not distinguish between function defini-
tions and references. As a result, Rufus 1 i1s more
helpful for manipulating USENET articles than for C
source.

While the object-oriented model has served
our purposes well, some things are difficult to de-
scribe in a single-inheritance hierarchy. For exam-
ple, in Rufus, embedded PostScript is a sub-class
of IMAGE, which in turn is a subclass of BINARY.
PostScript is textual rather than binary, though. In

addition, while most people probably think of em-
bedded PostScript as an image format, others see
it as a programming language, requiring different
treatment.

Schema changes in our prototype are discour-
aged because they invalidate existing databases. We
note that schema evolution is a common problem in
object-oriented database systems.

We are adopting a significantly different OO
data model to address the above problems. Our new
system uses the conformity data model of Emerald
(3] and Melampus [22]. In this data model, only the
inethods of an object are visible outside its class defi-
nition. For convenience, an attribute can be marked
so a method will be generated to return its value.
In the conformity model, the suitability of an object
for a purpose is dictated by whether it implements
the necessary method names with the right param-
eter lists. For example, a user might be looking for
objects that have an Author and a Title. In the
system, objects of type IATRX, TROFF -MM, and
SGML might conform to this specification by im-
plementing these two methods.

In the conformity model, inheritance is de-
coupled from subtyping. Schema evolution is sim-
plified by the resulting independence between class
definitions. Inheritance is not used to structure the
class hierarchy, but rather as a modularity and reuse
aid. When a class definition changes, the old defi-
nition of the class will be retained as long as there
are object instances of the old class. All new object
instances will use the new class definition.

In the new data model, class definitions are
machine independent, so that client applications can
retrieve class definitions from servers to interpret ob-
jects, even on different architecture hosts.

We have a working class compiler for the new
data model and modifications to Rufus that fetch
and store the new types of objects, keep track of the
types of collections, dispatch methods on objects,
and execute simple queries. We have so far imple-
mented a few types in the conformity model, includ-
ing FILE, TEXT, and RFc822 (mail messages).

3.4 Example of a Class Definition

This section presents an example of a Rufus class
definition. The definition of the RFc&822 class (elec-
tronic mail as passed over the Internet) is used.
RFc822 is a subclass of MAIL. The table below
lists some of the attributes extracted from Rrc822
format methods:

Attribute Data Type Meaning

length integer Length of message
filename string File message stored in
messageid string Unique identifier
posted date Date written

subject string Subject of message

to string list List of recipients

from string Message sender

In addition, RFC822 supports contexts that
contain the header fields of the message, the “Sub-
Ject:” field of the message, the sender of the mes-
sage, and the body of the message.

The RFc822 class supports several methods,
among them:

Method Meaning

display Format message for display

edit Edit the file containing the message
reply Compose a reply to the message
forward Forward message to someone else

The “reply” and “forward” methods bring up
parts of a pre-existing application to perform these
tasks. Users like to locate a message with Rufus,
then apply their usual mail-reading tools to it.

In the original Rufus classifier, RFc822 for-
mat messages were recognized by the existence of
“Received” and “To” fields in the header of the mes-
sage. In the new classifier, RFc822 format mes-
sages are required to have a line beginning with “Re-
ceived:” or “Delivery-Date:”; other features indica-
tive of the format are lines beginning with “From:”
“To:” and “Message-Id.” We currently use about
30 samples of RFC822 format messages to train the
classifier.

3.5 Structuring Concepts

While it is important for users to be able to under-
stand facts about an individual object, it is also im-
portant to understand the relationships between ob-
Jects. By making these relationships explicit, users
are freed from having to know or discover them.
Structure information is particularly helpful to ap-
plications that support browsing.

Rufus provides collections, object composi-
tion, subclassing, and hypertext links [6] to repre-
sent inter-object structure. Collections are sets of
objects. An object can be in several collections at
once. Collections themselves are objects and can be
stored in collections as well. For each class, Rufus
maintains a collection of all instances of the class,
called the class ertent. Collections are also used to
store the results of queries. The objects in a collec-
tion can be from arbitrary classes.

Rufus uses object composition to represent
complex things made up of other objects. For ex-
ample, a C program is modeled as the composition

103

of a makefile, C source code, and documentation.
Rufus complex objects are represented by allowing
the use of object identifiers as object attributes.

Subclassing is used in Rufus to indicate the
specialization of object types. For example, an im-
plementation might model filesystem directories as
a subclass of collections. A filesystem directory
does everything that a collection does, in addition
to which it has file system attributes like filename,
owner, modification date, etc.

Finally, hypertext links model system-
discovered and user-specified connections between
otherwise unrelated objects. For example, entries in
the traditional Unix manual refer to other entries.
The import method for Unix manual entries can
create links to represent the cross-references. Like-
wise, a user writing a textual annotation of an image
might establish a link to represent the relationship.
In Rufus, links are separate objects that point to the
linked objects. Fine granularity of link endpoints
is achieved using type-specific selection identifiers,
which are fixed length bit strings that an object’s
class can convert into a specific part of the underly-
ing nativé data. In contrast with traditional hyper-
media systems, Rufus does not modify the original
data to represent links.

3.6 Query Language

The Rufus query language extends content-based ac-
cess to semi-structured data. Rufus queries combine
predicates on the objects extracted from the under-
lying data with predicates on the underlying data
content. Rufus 1 supports simple object predicates
and text search.

A Rufus 1 query searches a collection or class
extent and returns objects that match a predicate.
The predicate contains boolean combinations of con-
ditions on the objects’ attributes and text search
predicates on the underlying real data. Attribute
conditions are simply relational tests against con-
stants, such as posted > date(12/10/92).

More powerful query capabilities would be
useful. For example, suppose one were looking for
a message written during an electronic mail conver-
sation with a colleague. In order to find the set of
messages that comprise the conversation, one would
like the query language to be able to follow the links
established by the “In-Reply-To” fields of the mes-
sages and compute the transitive closure. We chose
a sumple subset to implement for expediency and to
capture the most immediate needs. We are consider-
ing a new query language based on the set-oriented
operators of the Melampus query language [23] to
address these needs. '

For text predicates, we implemented near
{words close to each other) and adjacent (words close

to each other in the right order). The boolean com-
binations supported by the query language provide
the usual and, or, and not. A special optimiza-
tion is made to execute text predicates like “phrasel
and not phrase2” efficiently. The proximity and
boolean operators can be nested to pose queries like
near(adj(San Francisco) earthquake).

Rufus supports stemming [27] and flexible
capitalization. Stemming is based on a dictionary
of 10,000 root forms and allowable stems. Users can
state that they wish to ignore capitalization, want
an exact match, or want at least the first letter cap-
italized.

Boolean and proximity text search have been
thoroughly criticized [4]. We selected them as our
initial text search capability because the results are
easily explained to users. We are adding approx-
imate searching based on term weighting [24] and
relevance feedback [26] (“find me more documents
like these™) to Rufus.

3.7 Text Indexing

Rufus maintains an index on the text content of im-
ported files to support fast searching on their con-
tent. We implemented a text index due to preva-
lence of textual data. For flexibility, we selected
inverted files with word locations. Inverted files sup-
port both traditional boolean and proximity search-
ing [27] and term-weighted searching [24]. We used
fixed-size small blocks to represent the inverted file
so that it can be updated incrementally. For our
intended applications, we find that most of the ob-
Jects indexed are unchanged from day to day, so
incremental indexing makes refreshing the Rufus
database significantly faster than a complete re-
build. The inverted file can also be updated con-
currently with query access. A B-tree is used to
store the starting block number of the inverted list
for each indexed word.

For the sake of experience, we support two
large Rufus databases. One covers a week’s worth
of Usenet articles (about 35,000); the other covers
many weeks of IBM internal bulletin board articles
{about 130,000). We found that the text index dom-
inated the size of the Rufus data, the time to refresh
the Rufus databases, and query performance. We
were able to realize significant improvements with
some simple modifications. Further improvement is
expected when we change our stored structures.

When we measured the Rufus text index, we
found that a huge number of words were being in-
dexed. As a test, we selected 20,000 random arti-
cles from the Usenet article base. When indexed,
they yielded more than 400,000 unique words and
more than 8,000,000 word occurrences. We devel-
oped a stop list of the 280 most common words

104

that eliminates 44% of the word occurrences. Ran-
dom sampling of the vocabulary revealed that many
time-stamp based identifiers and meaningless words
derived from textual encoding of binary data were
being indexed. Refinement of the constructor for
the USENET class to avoid indexing such material
reduced the vocabulary by one half. This example
illustrates the advantage of specializing import ac-
cording to the data’s class.

We took a small random sample of the re-
maining vocabulary and classified each word by
hand. Here's what we found:

Category %
Proper names 20%
Real words 18%
Machine names, userid’s 18%
Program symbols 13%
Misspellings 8%
Addresses, ZIP codes, phone numbers 7%
Other junk 5%
Acronyms 1%
Message-1D’s 1%
Codes 3%

In our text database, we also found that the
storage scheme of using fixed size blocks suffered
from internal fragmentation and poor locality. Due
to the distribution of word frequencies, many words
have few occurrences. These infrequent words take
up an entire small block, wasting space. Other
words are more common and take up many small
blocks, requiring many seeks to resolve a query. We
are replacing our fixed block text inverted list imple-
mentation with a variable length block scheme such
as that described in [9]. Briefly, this scheme uses
small initial blocks, then scales up to larger blocks
as the list of occurrences for a word grows. Efficient
storage is achieved for infrequent words, while longer
word lists are clustered better, reducing seeks.

While textual data is prevalent, indices ori-
ented towards other data types would be useful.
For example, the QBIC (Query by Image Content)
project [20] at IBM Almaden is working on search-
ing medical images. Their algorithms could be pro-
vided in Rufus for image data in addition to the text
search capabilities already supported.

3.8 Client/Server

Since users are provided access to much of their data
through distributed file systems, the Rufus capabil-
ities described in the foregoing are implemented by
servers to provide the same connectivity to data.
Each Rufus server mediates access to a single Rufus
database. Access to Rufus server functions is pro-
vided through a client-callable library of routines.
These routines provide the ability to connect to Ru-

105

fus servers; create, destroy, and modify objects; it-
erate through collections; invoke methods; and pose
queries. In turn, the client library routines invoke
functions in the Rufus server using an RPC mecha-
nism.

Rufus servers provide their own concurrency
control to allow queries and data import to run in
parallel without threatening the physical integrity
of the Rufus database. The concurrency control
that Rufus wields does not apply to the underly-
ing files. Due to the asynchronous updating of the
Rufus database with respect to the underlying data,
it is possible to locate files via queries that should no
longer match the query predicate. We have consid-
ered additional processing to drop query results that
should not match due to changes that occurred since
import but have not done so. The larger problem is
locating query results that now sheuld be included in
the answer but do not due to a stale Rufus database;
for that we have no answer without modifying the
operating system.

In Rufus 1, client applications can connect to
a single Rufus server at a time. This limitation puts
the burden on the user to figure out the correct Ru-
fus server to use. We are removing this restriction
in Rufus 2 so that clients will be able to connect to
several servers at once. Objects in one database will
be able to point to objects in other databases. The
new system will also be able to access servers sup-
porting other remote protocols, such as WAIS [15]
with Z39.50 [2]. Conversely, our system will export a
739.50 protocol itself, so that its databases can also
be searched by WAIS clients. Servers will be able
to swap class definitions between themselves, using
the same mechanism as is used to inform clients of
class definitions.

Servers will be able to publish a summary
of the information they store to permit automatic
routing of queries to only those servers that might
have useful information.

4 Applications

We wrote two applications to demonstrate the Rufus
capabilities. Xrufus, an X-windows [28] application,
provides querying, browsing, and operation execu-
tion over any of the data types known to Rufus. An
object found by querying or browsing is displayed in
xrufus according to the object’s class. In addition,
a menu of operations is prepared specific to the type
of object. For example, the menu for electronic mail
objects contains actions like “reply” and “forward.”
Users can create buttons that represent com-
monly useful queries. For example, a user might
define a “Callup” button that looks up a name in
the site telephone book. Then, the user can select

a name with the mouse in most X-windows applica-
tions, and click the button to run the query.

With more class definitions and integration,
xrufus could be extended into the “researcher’s
workbench.” Activities like processing mail, read-
ing bulletin boards, program development, docu-
ment processing, appointment scheduling, and talk
preparation could all be provided in a seamless envi-
ronment. The Rufus infrastructure would help users
find and organize their information and to drop into
the right applications at each step without having
to think about them.

We’ve also developed an extension of the pop-
ular trn news reading program [7] called rufusirn.
Rufustrn works just like trn, in addition to which
users can define virfuel newsgroups that contain all
the articles that match a Rufus query. For example,
a user might select specific articles from a newsgroup
based on content to cut down the number of articles
that must be examined. Alternatively, a subject of
interest might appear in several newsgroups. This
subject can be collected into a single virtual news-
group for convenience. Rufustrn also allows users to
pose queries of “one time” interest and browse the
results. A nice feature of rufustrn is that articles
are always displayed with the standard trn user in-
terface. The result is a news reader enhanced with
query capabilities, rather than a completely new ap-
plication. The approach of rufustrn differs some-
what from that used in Infoscope [10]. Infoscope
defines virtual newsgroups in a DAG structure based
on the contents of other virtual newsgroups and of
header fields. In contrast, rufustrn defines virtual
newsgroups as the result of a query. Rufustrn pro-
vides a single mechanism for both one-time queries
and for topics of continuing interest.

We envision supporting further applications
beyond rufustrn. For example, a mixed database
of text and multimedia data could allow users to
search for film clips by searching through textual
descriptions and tnvoking methods to view related
clips. To support such an application, Rufus only
needs to have a “film clip” data type added with
a method that invokes a video viewer on the user’s
v&:orkstation.

5 CONCLUSIONS

Users are inundated with semi-structured informa-
tion. Current database systems do not handle such
information well. As a result, users are forced to
turn to specialized applications that improve access
to particular kinds of data. Each specialized appli-
cation is forced to re-invent and re-implement basic
infrastructure to support flexible access. For struc-
tured information, database systems provide stan-

dard capabilities that make applications easier to
write. The same leverage must now be applied to
semi-structured information.

The Rufus project has developed an infras-
tructure based on object-oriented database and text
search principles to support applications using semi-
structured information. Applications built with the
Rufus infrastructure remember key information that
users would otherwise be forced to memorize, such
as the relationship between files, how to find them,
and what to do with them when you find them. Ru-
fus raises the level of abstraction so that users no
longer have to deal with their data as simple se-
quences of characters. We have built a prototype to
demonstrate the Rufus ideas and deployed it for use
at Almaden. Early experience with the prototype
has been promising and has suggested important ar-
eas for further work. While we built our prototype
on a UNIX system, we expect the Rufus concepts to
be useful in other operating system environments as
well.

The extensions being made in our new Ru-
fus prototype will support applications on a signif-
icantly larger scale. Improvements in the storage
structures will support databases with millions of
objects. The work in distributed access will free
users from specifying where to search for informa-
tion and will integrate users’ environment with in-
formation available in external information servers
and libraries. The new conformity data model will
allow new classes to be written and refined to sup-
port new kinds of data.

Acknowledgemenis Eli Messinger wrote both ver-
sions of the Rufus classifier. This paper benefited
from the helpful feedback given by the reviewers.

References

[1] A.Aho and M. Corasick. Efficient string match-
ing: An aid to bibliographic search. Communi-
cations of the ACM, 18(6), 1975.

[2] ANSI/NISO, New Brunswick, NJ. Information
Retrieval Service and Protocol, 1989,

[3] A. Black, N. Hutchinson, E. Jul, and H. Levy.
Object structure in the Emerald system. In
Proceedings of ACM Conference on Object Ori-
ented Programming Systems, Languages and
Applications, September 1986.

[4] D. Blair and M. Maron. An evaluation of
retrieval effectiveness for a full-text retrieval
system. Communications of the ACM, 28(3),
March 1985.

[5] Bolt, Beranek, and Newman, Inc., Cambridge,
MA. BBN/slate Topics Manual, 1990.

106

[6] J. Conklin. Hypertext: An introduction and
survey. IEEE Computer, 20(9), 1987.

[7] W. Davison. TRN—Threaded Read News Pro-
gram, 1992.

[8] O. Deux et al. The O2 system. Communica-
tions of the ACM, 34(10), October 1991.

[9] C. Faloutsos and H. Jagadish. On B-tree indices
for skewed distributions. In VL DB Conference,
1992.

(. Fischer and C. Stevens. Information ac-
cess in complex, poorly structured information
spaces. In Proceedings 1991 CHI Conference,
1991.

David K. Gifford, Pierre Jouvélot, Mark A.
Sheldon, and Jr. James W. O'Toole. Seman-
tic file systems. In SOSP91, October 1991.

A. Goldberg and D. Robson. Smalltalk-80: The
Language and Its Implementation. Addison-
Wesley Publishing Company, 1983.

D. Goldberg, D. Nichols, B. Oki, and D. Terry.
Using collaborative filtering to weave an infor-
mation tapestry. Communicalions of the ACM,
35(2), 1992.

(14] IBM. STAIRS General Information Manual.

[15] B. Kahle and A. Medlar. An information sys-
tem for corporate users: Wide area information
servers. Technical Report TMC-199, Thinking
Machines Corporation, Cambridge, MA, 1991.

(10]

[11]

[12]

(13]

[16] L. Lamport. IATpX: A Document Preparation
System. Addison-Wesley Publishing Company,

1986.

Eliezer Levy and Abraham Silberschatz. Dis-
tributed file systems: Concepts and exam-
ples. ACM Computing Surveys, 22(4), February
1990.

T. Malone, K. Grant, F. Turbak, S. Brobst,
and M. Cohen. Intelligent information-sharing
systems. Commaunications of the ACM, 30(5),
May 1987.

B. McCune, R. Tong, J. Dean, and D. Shapiro.
RUBRIC: A system for rule-based information
retrieval. TEEE Transactions on Software En-
gineering, 11(9), September 1985.

W. Niblack, R. Barber, W. Equitz, M. Flickner,
E. Glasman, D. Petkovic, P. Yanker, C. Falout-
sos, and G. Taubin. The QBIC project: Query-
ing images by content using color, texture, and
shape. SPIE 1993 International Symposium
on Electronic Imaging: Science & Technology,

(17]

[18]

[19]

[20]

107

Conference 1908, Storage and Retrieval for Im-
age and Video Dalabases, February 1993.

Object Design, Inc., Burlington, MA. Object-
Store User Guide, 1991.

J. Richardson and P. Schwarz. Aspects: Ex-
tending objects to support multiple, indepen-
dent roles. In Proceedings of ACM SIGMOD
Conference, 1991.

J. Richardson and P. Schwarz. MDM: An
object-oriented data model. In Proceedings of
the Thard International Workshop on Database
Programming Languages, August 1991. Also
available as IBM Research Report RJ 8228, San
Jose, CA, July 1991.

S. Robertson and K. Sparck Jones. Relevance
weighting of search terms. Journal of the Amer-
ican Sociely for Information Science, 27(3),
1976.

J. Rosenberg, C. Everhart, and N. Borenstein.
An overview of the Andrew Message System. In
Proceedings of SIGCOMM 87 Workshop, Au-
gust 1987.

[26] G. Salton. Relevance Feedback and the Opti-
mization of Retrieval Effectiveness, chapter 15.
Prentice Hall, 1971.

[27] G. Salton. Automatic Text Processing: The
Transformation, Analysis and Retrieval of In-
formation by Computer. Addison-Wesley, 1989.

(28] R. Scheiffler and J. Gettys. The X window
system. ACM Transactions on Graphics, 5(2),
April 1986.

[29] N. Yankelovich, B. Haan, N. Meyrowitz, and
S. Drucker. Intermedia:. The concept and con-
struction of a seamless information environ-
ment. IEEE Computer, 21(1), January 1988.

[21]

(22]

[23]

[24]

r

[25

