
Managing Semantic Heterogeneity 
with Production Rules and Persistent Queues 

Stefano Ceri 
Dipartimento di Elettronica 

Politecnico di Milan0 
Piazza L. da Vinci, 32 
I-20133 Milano, Italy 
ceri@cs.stanford.edu 

Abstract. We show that production rules and persis- 
tent queues together provide a convenient mechanism for 
maintaining consistency in semantically heterogeneous multi- 
database environments. We describe a specification language 
and methods for automatically deriving production rules that 
maintain (1) existence dependencies, in which the presence 
of data in one database implies the presence of related data 
in another, and (2) value dependencies, in which the value 
of data in one database is baaed on the value of related data 
in another. The production rules derived from dependency 
specifications use persistent queues to monitor and maintain 
the dependencies automatically, asynchronously, incremen- 
tally, and correctly. 

1 Introduction 

It is quite common for multiple databases to model over- 
lapping portions of the real world. In such cases it is de- 
sirable whenever possible to maintain consistency across 
databases, i.e. to ensure that they do not contradict each 
other with respect to the existence or value of real-world 
entities. Maintaining consistency is particularly difficult 
in the presence of semantic heterogeneity, which occurs 
when the databases model the same real-world entities in 
different ways [3]. Semantic heterogeneity can take the 
form of, e.g., naming conjkts, when different databases 
use different names to represent the same concepts, do- 
main conflicts, when different databases use different val- 
ues to represent the same concepts, meta-data conjlicts, 
when the same concefits are represented at the schema 
level in one database and at the instance level in another, 
and structural conj%cts, when different databases use dif- 
ferent data organization to represent the same concepts. 
These conflicts are baaed solely on data semantics, so 
they can arise even when databases share the same data 
model and query language. In this paper we consider 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed 
for direct commercial advantage, the VLDB copyright notice 
and the title of the publication and its date appear, and no- 
tice ia given that copying is by permission of the Very Large 
Data Base Endowment. To copy otherwise, or to republish, 
requires a fee and/or special permission from the Endowment. 

Proceedings of the 19th VLDB Conference, 
Dublin, Ireland, 1993. 

Jennifer Widom 
IBM Almaden Research Center 

650 Harry Road, K55/801 
San Jose, CA 95120 

USA 
widom@almaden.ibm.com 

multidatabase environments using the relational model; 
our methods can be adapted to other models. 

We show that when a multidatabase environment 
includes facilities at each site for production rules 
and persistent queues, these facilities can be used to 
maintain consistency across semantically heterogeneous 
databases. Production rules in database systems (also 
known aa active database systems) allow specification 
of database operations that are executed automatically 
whenever certain events occur or conditions are met [l 11. 
Persistent queues in multidatabase (or client-server) en- 
vironments provide a mechanism for reliable execution 
of asynchronous transactions on remote data [2,14].l 
We consider multidatabase environments in which each 
database system includes a production rules facility, and 
persistent queues are supported for execution of remote 
transactions from each site. (With the rapid emergence 
of production rules facilities in database prototypes and 
products [ll] and the presence of recoverable queuing 
systems in many database products [2], we do not be- 
lieve that these are exceptionally strong assumptions.) 
In addition, we assume that sites may read remote data 
synchronously. Note that our assumptions do not require 
distributed two-phase commit, which usually is not pro- 
vided in multidatabase environments. 

In a multidatabase environment with production rules 
and persistent queues, consistency across semantically 
heterogeneous databases can be maintained automati- 
cally as follows: Rules are triggered by any changes to 
a database that may create inconsistencies. Triggered 
rules include knowledge of heterogeneous representations 
so they can determine whether consistency actually is vi- 
olated (by reading remote data); they also include and 
implement policies for restoring consistency when viola- 
tions occur (by modifying local data or queuing trans- 
actions to modify remote data). Hence, when rules are 
specified correctly, no inconsistency between related data 
can persist. 

It has been observed that database production rule 
programming can be very difficult [l], and developing 
a correct set of rules to maintain consistency across se- 
mantically heterogeneous databases is no exception. We 
provide a framework that frees the user from the task 

‘Various terms for this and similar mechanisms are used 
in the literature; we have chosen “persistent queue” more or 
less arbitrarily. 

108 



of developing the rule set; rather, the user specifies the 
consistency requirements in a high-level declarative lan- 
guage. These specifications are translated automatically 
into production rules that, once installed, are guaran- 
teed to monitor and maintain consistency efficiently (i.e. 
incrementally) and correctly. 

1.1 Related Work 

In [5] we describe a framework for semi-automatically 
deriving production rules that maintain integrity con- 
straints, where constraints are specified as arbitrary 
predicates over a single database. The derived rules are 
triggered by any changes that may violate a constraint; 
they check if the constraint is indeed violated, and if SO 
they execute user-specified compensating actions that 
restore the constraint. The consistency problem ad- 
dressed in this paper can be expressed as the problem 
of maintaining constraints across databases, and conse- 
quently the methods in this paper are based partly on 
the methods in [5]. However, in this paper we consider a 
particular class of constraints that is expressive enough 
to encode most correspondences and conflicts that arise 
in semantically heterogeneous environments, yet is re- 
strictive enough that rule generation can be fully auto- 
matic. Furthermore, in this paper we consider asyn- 
chronous (multi-transaction) rather than synchronous 
(single-transaction) consistency. 

In [S] we describe a method for deriving, from a view 
definition, a set of production rules that maintain a ma- 
terialization of that view. In certain cases the semantic 
heterogeneity problem can be expressed as maintaining 
the consistency of a materialized view that is stored in 
one database but defined over data in another database. 
Hence, the methods in this paper also are baaed partly 
on results in [S]. Again, however, here we consider a 
variation on the problem that is particular to semantic 
heterogeneity, and we consider asynchronous rather than 
synchronous consistency. 

In [S] we consider production rule processing in par- 
allel and distributed database environments. The fo- 
cus is on tightly coupled homogeneous environments 
and the goal is to provide mechanisms for distributed 
rule processing that guarantee equivalence to central- 
ized rule processing, i.e. that provide distribution trans- 
parency. Here, the focus instead is on loosely coupled 
environments where production rules are processed au- 
tonomously at each site and distribution transparency 
is not required. (For further discussion of this paper as 
related to [S] see Section 6.) 

While there has been considerable work in the area of 
heterogeneous databases [9,16,19] and in semantic het- 
erogeneity in particular [3], we have not seen any other 
proposals for automatically generating active database 
rules that maintain consistency in the presence of se- 
mantic heterogeneity. Our language for specifying con- 
sistency requirements is similar to the language proposed 
in [18]: dependency specifications in [18] are based on re- 
lational algebra while our language is baaed on SQL. [18] 
also suggests a mechanism for specifying mutual consis- 
tency requirements-flexible limits within which related 

data must remain consistent. We do not address this 
issue in our work but it might be a useful extension. 
The framework in [18] includes user-specified consis- 
tency redorahon procedures, and we depart considerably 
from this approach: [18] suggests a special-purpose sub- 
system that will monitor consistency and, as appropri- 
ate, invoke user-specified procedures which are assumed 
to restore consistency. In our approach, monitoring is 
achieved automatically by an existing mechanism (pro- 
duction rules), the operations for restoring consistency 
are generated automatically, and correctness is guaran- 
teed without relying on the user. 

Our method for consistency maintenance relies on the 
notion of persistent queues as described in the context of 
client-server interactions in [2]. In follow-on work [14], 
persistent queues are used as the basis for a transaction 
management paradigm called unilateral commit, and it 
is argued that this paradigm is appropriate for hetero- 
geneous multidatabase systems since such systems usu- 
ally do not provide two-phase commit. Indeed, the same 
properties that make persistent queues appropriate for 
such a transaction paradigm make them appropriate in 
our framework for rule-based consistency maintenance. 

One important feature that persistent queues provide 
in our framework is the ability for a portion of a rule’s 
action to be executed in a separate transaction from the 
rule’s triggering event. Similar capabilities are provided 
in database rule systems that support coupling modes, 
notably HiPAC [17]. However, the coupling modes sug- 
gested in HiPAC and other systems do not accommodate 
the partly synchronous and partly asynchronous nature 
of the rule actions generated in our framework. Further- 
more, we have found that the properties of transaction 
execution provided by persistent queues are more suited 
than decoupled rule actions for consistency maintenance 
in loosely coupled environments. 

Finally, it is important to distinguish our work from 
approaches in which a rich (e.g., object-oriented or func- 
tional) data model is used to provide high-level integra- 
tion of semantically heterogeneous multidatabases, as in, 
e.g., [10,15]. In our approach we do not introduce a new 
integrating model, but rather manage conflicts using the 
existing data model augmented with production rule and 
persistent queue capabilities. 

1.2 Running Example 

We draw examples from a case study conducted jointly 
by the Politecnico di Milan0 and ENEL, the Energy De- 
partment of Italy. (An initial presentation of this appli- 
cation in the single database setting appears in [5].) Data 
describing power distribution networks-power supplies, 
transportation, and use-are stored in multiple rela- 
tional databases. Some databases model power networks 
within a particular region, while other databases model 
networks over large areas. Here we consider just two 
databases. The first database, which we call MN, sup- 
ports the design and maintenance of a regional power 
network for the area of Milano. MN uses the follow- 
ing (simplified) schema, where the first attribute of each 
table is a key for that table. 

109 



plant(plant-id, location, power) 
user(user-id, location, power) 
node(node-id, location, power-loss) 
uire(aire-id, fr, to, type, voltage, power) 
wire-t.ype(type, mar-voltage, max-power, 

cross-section) 

Database MN includes the power produced by each 
plant, the power required by each user, and the power 
loss incurred at each intermediate node. There are di- 
rected wires between plants, users, and nodes, each of a 
certain type and carrying a certain voltage and power. 

The second database, which we call Zn/, supports 
national-level monitoring of the power network through- 
out Italy. ZN uses the following (simplified) schema, 
where again the first attribute of each table is a key for 
that table. 

node(id, region, location, function, power) 
connection(connection-id, fr, to) 
uire(oire-id, connection-id, type, voltage, 

power, age) 
wire-type(type, mar-voltage, max-power, size) 

Plants, users, and intermediate nodes are represented in 
the single table node. Directional connections between 
pairs of nodes are specified; wires are associated with 
connections, and each wire includes its age. Clearly it is 
desirable if, in this database, the portion of the power 
network pertaining to the region of Milan0 is consistent 
with the power network represented in database MN. 

Although this example uses simplified schemata, there 
are still several sources of semantic heterogeneity, includ- 
ing representatives of each of the four conflict types de- 
scribed in the introduction. 

1.3 Outline of Paper 

The remainder of the paper proceeds as follows. In Sec- 
tion 2 we describe our language for specifying consis- 
tency requirements across databases. A syntax and se- 
mantics is given for each construct; a number of exam- 
ples are included. Section 3 provides necessary prelimi- 
naries to rule derivation: Section 3.1 discusses the multi- 
database environment we consider, including the persis- 
tent queue mechanism; Section 3.2 provides an overview 
of our database production rule facility-the Starburst 
Rule System. (For concreteness it is necessary to con- 
sider a particular rule language, but our techniques could 
easily be used to generate rules in other languages.) Sec- 
tion 4 describes our method for generating production 
rules from consistency specifications. In Section 5 we 
prove the correctness of our approach, showing that the 
rules are guaranteed to maintain consistency. Finally, in 
Section 6 we conclude and discuss future work. Due to 
space limitations, a proof and some examples are omit- 
ted; these appear in [7]. 

2 Dependency Specification Language 

Our language for specifying multidatabase consistency 
requirements is based on two notions of inter-database 
dependencies: 

l Existence dependencies, in which the presence of data 
in one database implies that related data should be 
present in another, and 

l Value dependencies, in which the value of data in 
one database should correspond (in some way) to the 
value of related data in another. 

In addition, each existence or value dependency is either: 

l Directional, so that values in one database are treated 
as primary while values in the other are treated as 
secondary, or 

l Nondirectional, so that values are treated in a sym- 
metric fashion between databases. 

Further details and examples below illustrate the distinc- 
tions between the four forms of dependencies. As will be 
seen, our language is expressive enough that dependen- 
cies can encode most forms of semantic heterogeneity, 
easily handling, e.g., the four conflict types described in 
the introduction. It is important to note that depen- 
dency specifications are declarative-they specify static 
facts about consistency across databases and do not in 
themselves incorporate any notion of how these facts are 
(procedurally) enforced. 

A grammar for specifying dependencies is given in Fig- 
ure 1. The core of the specification language is based on 
the select statements and predicates of SQL, augmented 
with user-defined functions (as in, e.g., the query lan- 
guage of Starburst [13]). Note that our grammar does not 
include aggregate functions or subqueries. It is straight- 
forward to add aggregate functions to our framework, 
though they must be treated separately and cannot al- 
ways be handled efficiently (i.e. consistency cannot al- 
ways be checked or restored incrementally). Subqueries 
complicate the process of determining when consistency 
may be violated [5]; they also can eliminate the possibil- 
ity of incremental consistency restoration [S]. Most SQL 
select statements with subqueries can equivalently be 
expressed without subqueries [4], and we believe that the 
language given here is sufficiently expressive to specify a 
wide class of consistency requirements. If subqueries are 
desired, extending our approach to handle them can use 
results from [5] and should not be difficult. 

Next, we enumerate the four dependency constructs, 
giving semantics, restrictions, and examples for each. 

2.1 Directional Existence Dependencies 

As specified by the grammar of Figure 1, the general 
form of a directional existence dependency is: 

T.(Cl, . . . , Cn) c select Xi, . . . , X, 
fromTl,...,Tk where P 

Additional restrictions require that the right-hand-side 
(RHS) is a semantically well-formed SQL select state- 
ment, that m = n, and that the domain of expression Xi 
matches the domain of column Ci, 1 5 i 5 r~.~ Further- 
more, for meaningful maintenance of this dependency 

‘This domain matching requirement does not preclude en- 
coding domain conflicts: Xi can be any SQL expression, in- 
cluding user-defined functions. 

110 



Dependency ::= Existence-Dependency 1 Value-Dependency 

Existence-Dependency ::= Directional-ExDep 1 Nondirectional-ExDep 
Directional-ExDep ::= T. Columns + Select-Stmt 
Nondirectional-ExDep ::= Tl . Columnsl - Tz . Columns2 

Value-Dependency ::= Directional- ValDep 1 Nondirectional- ValDep 
Directional- ValDep ::= T. Columns + Select-Stmt 
Nondirectional- ValDep ::= Tl . Columnsl # T2. Column82 [where Predicate] 

Columns ::= c 1 (C,,Cz,...,G) 

Select-Stmt ::= select Val-Exps fiorn Table-List [where Predicate] 

Val- Exps i.- ..- * 1 Val-Expl, Val-Exm, . . . , Val-Exp, 
Val- Exp ::= [T.]C 1 constant 1 Function( Val-Exn, . . . , VaEExpn) 

Function ::= + I - I .+ I / I user-defined function 

Table-List ::= TI [&I, T2 [Vz], . . . , ‘T, [K] 

Predicate .I_ .*- Val-Expl Comparison-Op Val-Exm 
( Predicate1 and Predicate2 
I Predicate1 or Predicate2 

[ 
not Predicate 
( Predicate ) 

Comparison-Op ..- ..- =I#l<l>lslr 

Figure 1: Grammar for specifying dependencies 

(see Section 4.1), it is necessary that if T has a key then 
the key is included in columns Cl, . . . , C,, . 

The interpretation of this dependency is: 

For each tuple of values (VI, . . . , V,) produced by the 
RHS select statement, there is a tuple t in table T 
such that t projected on columns Cl,. . . , C,, has the 
value (VI,...,&). 

Existence dependencies are most useful for specifying 
consistency between exactly two databases: table T re- 
sides in one database while tables TI, . . . , Tk reside in 
another. We make this assumption here, but our frame- 
work is sufficiently general so that, with some modifica- 
tions, tables TI , . . . , Tk could span multiple databases, 
or they could reside in the same database as (and even 
include) table T; see Section 6. 

As a simple example, the following directional exis- 
tence dependency specifies that if there is a node in 
database ZN with region = Milan0 and function = 
plant, then that plant also is in database MN. Note 
that in the specification we qualify each table name with 
mn or in to indicate whether it refers to database MN 
or TN. 

mn. plant, plant-id c 
select id from in.node 
where region = Hilano and function = plant 

2.2 Nondirectional Existence Dependencies 

As specified by the grammar of Figure 1, the general 
form of a nondirectional existence dependency is: 

Z.(C,‘, . . . . CA) *Tz.(Cf ,..., C;) 

Additional restrictions require that m = n and that the 
domains of corresponding columns match. It also is nec- 
essary that if TI has a key it is included in columns 

CL . . . , CA and if Tz haa a key it is included in columns 
C,z,.. . , C$,. The interpretation of this dependency is: 

There is a tuple tl in TI whose projection on columns 
Ci,.. . , CA has the value (VI,. . . , Vn) if and only if 
there is a tuple t2 in T2 whose projection on columns 
CT,.. .,Cialsohasthevalue(Vl,..., I+,). 

Notice that every nondirectional existence dependency 
also can be expressed aa a pair of directional existence 
dependencies: 

Tl.(C;, . . .$A) * Tz.(Cf,. . .,C3 

is equivalent to 

Tl.(C,‘, . . . , CA) + select Cf, . . . , C$ from Tz 

Tz.(C!, . . . , CA) +- select Ci, . . . , CA from Tl 

We believe that such pairs of nondirectional existence 
dependencies are frequent and important enough that 
they merit separate treatment. 

As a simple example, the following nondirectional ex- 
istence dependency specifies that the same set of wire 
types is represented in databases MN and ZN, with 
corresponding cross-sections and sizes (but not neces- 
sarily with corresponding maximum voltage and power). 

mn.oire-type.<type,cross-section> w 
in.vire-type.<type,size> 

2.3 Directional Value Dependencies 

As specified by the grammar of Figure 1, the general 
form of a directional value dependency is: 

T.(Cl,. . . ,Cn)eselectXl,...,Xm 
fromTl,...,Tk whereP 

The RHS must be a semantically well-formed SQL se- 
lect statement, except that predicate P may refer to 

111 



columns of table T. We also require that m = n and 
that the domain of expression Xi matches the domain of 
column Ci, 1 5. i 5 n. For maintenance of this depen- 
dency (see Section 4.3), table T must have at least one 
key, not necessarily included in Cl, . . . , C,,. The inter- 
pretation of this dependency is: 

For each tuple t in T, if evaluating the RHS select 
statement using t produces exactly one tuple of values 
(h,... , V,,,), then t projected on columns Cl,. . . , C,, 
has the value (VI, . . . , Vm) . 

Typically, predicate P ensures that, for each t in T, at 
most one tuple is produced by the RHS select statement 
(as in examples below). When no tuples are produced, 
the dependency is satisfied vacuously, so t may have any 
value. In the case where multiple tuples are produced,3 
t projected on columns Cl,. . . , C,, may have the value 
of any such tuple. Directional value dependencies are 
most useful for specifying consistency between exactly 
two databases, i.e. table T resides in one database while 
tables Tl , . . . , Tk reside in another, but our framework 
is sufficiently general that this restriction can be lifted 
with some modifications. 

As a simple example, the following directional value 
dependency specifies that the voltage of a wire in ZN 
must be low if there is a corresponding wire in MN with 
voltage < 150. (A similar dependency would specify 
that the voltage of a wire in ZN must be high if there is 
a corresponding wire in MN with voltage 1 150.) 

in.aire.voltage * 
select low from mn. wire 
where mn.uire.aire-id = in.aire,aire-id 
and mn.aire.voltage < 160 

2.4 Nondirectional Value Dependencies 

As specified by the grammar of Figure 1, the general 
form of a nondirectional value dependency is: 

Tl.(C,‘, . . . ,CA) ($ Tz.(Cf,. . . ,C$) where P 
Additional restrictions require that m = n, that the do- 
mains of corresponding columns match, and that predi- 
cate P refers only to columns of Tl and T2. The inter- 
pretation of this dependency is: 

For every pair of tuples tl in TI and t2 in T2, if 
P is satisfied using tl and t2, then tl projected on 
columns Ct , . . . , Ci has the same value as t2 pro- 
jected on columns C;, . . . , Ci. 

Similar to directional value dependencies, predicate P 
typically ensures that for each tl in Tl there is at most 
one t2 in T2 such that P is satisfied using tl and t2, and 
vice-versa; see the example below. In the case where a 
tuple in Tl satisfies P with more than one tuple from TZ 
(or vice-versa), only one of the equalities must hold.3 

As with existence dependencies, every nondirectional 
value dependency also can be expressed as a pair of di- 
rectional value dependencies: 

3This is likely to be a specification error and may be de- 
tectable by static analysis. 

Tl.(C;, . . .,CA) eTz.(Cf ,..., C,!3 where P 
is equivalent to 

Tl.(C;, . . . , Ci) G select Cf, . . . , Cz 
from T2 where P 

T2.(C;, . , . , C:) -k select Ct,. . .,Crf 
from TI where P 

Here too we believe that such pairs of nondirectional 
dependencies are frequent and important enough that 
they merit separate treatment. 

As a simple example of a nondirectional value depen- 
dency, suppose that the sets of wire types in MN and 
ZN need not have a one-to-one correspondence. The 
following dependency specifies that, for those wire types 
appearing in both databases, the cross-section in MN 
is equal to the size in ZN. 

mn.uire-type.cross-section* in.uire-type.size 
where mn.aire-type.type = in.uire-type.type 

2.5 Discussion 

There is a clear conceptual difference between existence 
and value dependencies: existence dependencies specify 
that certain data must exist, while value dependencies 
specify that if certain data exists then it must have a 
certain value. However, in the relational model (as op- 
posed to, e.g., some object-oriented models), data exists 
if and only if it has value. Hence, the reader may have 
observed that each existence dependency inherently in- 
cludes a restricted form of value dependency as well. In 
general, some correspondences may require existence de- 
pendencies, some may require value dependencies, and 
some may require both [7]. 

As with database integrity constraints 151, it is possi- 
ble for a set of multidatabase dependencies to be con- 
tradictory, i.e. certain databases cannot possibly satisfy 
all dependencies at the same time. As an example of 
this, consider the following two directional value depen- 
dencies. The first is the example from Section 2.3; the 
second specifies that the voltage of a wire in ZN must 
be high if there is a corresponding wire in MN with 
voltage > 100. 

in.vire.voltage* 
select low from inn. wire 
where mn.uire.aire-id = in.aire.uire-id 
and mn.uire.voltage < 160 

in.aire.voltageG 
select high from mn. wire 
where mn.aire.uire-id = in.aire.aire-id 
and mn.aire.voltage > 100 

If there is a wire in MN with voltage between 100 and 
150 and there is a corresponding wire in ZN, then ac- 
cording to these dependencies the voltage of the wire in 
ZN must be low and it must be high. Contradictory 
dependencies typically result from erroneous specifica- 
tions (ss in this example), and we suspect that static 
criteria can be developed to determine, conservatively 
at least, when a set of dependencies may be contradic- 
tory. Currently we allow contradictory dependencies in 

112 



our framework, and they result in production rules that 
may trigger each other indefinitely. Fortunately, such 
infinite triggering behavior can be detected and an error 
reported; see Section 5.1. 

3 Preliminaries to Rule Derivation 

Our framework takes dependency specifications in the 
language of the preceding section and automatically de- 
rives production rules that monitor and enforce the de- 
pendencies. Before describing rule derivation, it is nec- 
essary to explain certain assumptions about the multi- 
database environment we consider, particularly with re- 
spect to remote operations and persistent queues. In this 
section we also describe the syntax and semantics of the 
language we use for derived rules. 

3.1 Multidatabase Environment 
We consider environments in which relational database 
systems, presumably containing related data, reside at 
relatively autonomous distributed sites. Each database 
system runs transactions consisting of (SQL) operations 
on local data in the usual way. We also assume there 
is support for read-only (select) operations executed on 
remote databases in a synchronous fashion, and support 
for modification (insert, delete, update) operations 
executed on remote databases in a reliable asynchronous 
fashion using persistent queues.4 

For convenience, we denote remote read operations by 

T(Cl, * * * f C”) c Remote-Select(Z)B, “(SQL-Select)“) 

where VB is a (remote) database and (SQL-Select) is an 
SQL select statement. The select statement is executed 
at remote database VB, then the results are returned 
and assigned to local (temporary) table T with schema 
Cl,..., C,,. We denote remote modification operations 
by 

Enqueue-Insert(Z)B, “(SQL-Inseti)“) 
Enqueue-Delete(Z)B, “(SQL-Delete)“) 
Enqueue-Update(Z)B, “(SQL- Updale)“) 

where (SQL-Insert), (SQL-Delete), and (SQL- Update) 
are SQL insert, delete, and update statements, re- 
spectively. The insert, delete, or update statement 
is executed at remote database VB using the persis- 
tent queue mechanism described below; no results are 
returned. In all four remote operations, the SQL state- 
ments may refer to tables of VB; they also may refer 
to tables at the site issuing the remote operation. In 
the latter case, copies of local tables referenced in the 
statement must be transmitted to the remote database 
along with the statement itself.5 Numerous examples of 
remote operations appear in Section 4. 

Since we are considering a loosely coupled environ- 
ment, we assume there is no distributed transaction 

‘Such environments also may support asynchronous read- 
only operations and synchronous modification operations, 
but such capabilities are not needed by our framework. 

‘Consequently, it is important to reference only small local 
tables in remote operations, as in our generated rules. 

manager, i.e. there is no support for multi-site trans- 
actions, two-phase commit, etc. Hence, we assume that 
when a remote operation is issued, it is executed in a 
separate transaction at the remote site. In the case 
of Remote-Select, the remote transaction is executed 
synchronously with the issuing transaction. That is, sup- 
pose a transaction r at database VB1 issues a Remote- 
Select operation for database VBz. The select state- 
ment is executed in its own transaction r’ at VB2. Tram- 
action r at VB1 suspends until r’ completes at VB2 and 
returns its result. 

Remote modification operations are executed through 
persistent queues. Details of persistent queues can be 
found in [2]; here we give a brief overview sufficient to 
understand the mechanics and correctness of their use 
in our approach. Suppose a transaction r at database 
VB1 issues an Enqueue-Insert, Enqueue-Delete, or 
Enqueue-Update operation for database VB2. The ef- 
fect of this is to append a request for the operation to a 
local persistent queue (call it Qi) at the site of VB1, such 
that the append becomes “valid” if and only if trans- 
action r commits. Asynchronously, a queue manager 
dequeues valid operation requests from Q1 and executes 
these operations in their own transactions at appropriate 
remote sites, ensuring that each such transaction even- 
tually commits. Hence, Enqueue-Insert, Enqueue- 
Delete, or Enqueue-Update issued by transaction 7 
at VBI eventually results in successful execution of the 
insert, delete, or update operation in a separate trans- 
action f at database VB2. 

For our method to correctly maintain consistency 
across databases, at each site remote modification op- 
erations must be executed in the same order as they 
are enqueued, both for multiple enqueues within a single 
transaction (we assume transactions are sequential) and 
for multiple enqueues across transactions (where order- 
ing is baaed on commit time). To ensure this property, 
we assume that queue managers execute remote opera- 
tions sequentially using a strict first-in-first-out (FIFO) 
discipline, and that when transactions enqueue opera- 
tions they lock the back of the queue to exclude concur- 
rent enqueues from other transactions (concurrent de- 
queues are allowed). Although we expect that relatively 
few transactions will need to execute remote operations 
and consequently lock the local queue, in Section 5.2 we 
show that queue contention may be reduced if needed. 
Note that our additional assumptions regarding persis- 
tent queues appear quite reasonable in the context of [2]. 

3.2 Production Rule Language 

We provide a brief overview of the Starburst Rule Sys- 
tem [20], a set-oriented, SQL-based production rule lan- 
guage integrated into the Starburst extensible relational 
database system. Examples appear in Section 4. 

Starburst production rules are based on the notion of 
transitions-database state changes resulting from exe- 
cution of a sequence of data manipulation operations. 
Rules consider only the net effect of transitions, as de- 
fined in [20]. The syntax for creating a rule is: 

113 



create rule nanze on table 
when triggering operations 
then action 

(Rules also contain optional if clauses for conditions and 
optional precedes and follows clauses for priority or- 
dering, but these are not needed in our framework.) 
The triggering operations are one or more of inserted, 
deleted, and updated(q, . . . , c,,), where cl,. . . , c,, are 
columns of the rule’s table. The action specifies an ar- 
bitrary sequence of database operations to be executed 
when the rule is triggered, including SQL commands, as- 
signment to temporary tables, and remote operations as 
described in Section 3.1. 

Rule actions may refer to the current state of the 
database through top-level or nested SQL select op- 
erations. In addition, rule actions may refer to tmnsi- 
tion tables, which are logical tables reflecting the changes 
that have occurred during a rule’s triggering transition. 
At the end of a given transition, transition table in- 
serted refers to those tuples of the rule’s table that were 
inserted by the transition. Transition tables deleted, 
new-updated, and old-updated are similar. 

Rules are processed automatically at the commit point 
of each transaction.‘j The state change resulting from 
the transaction creates the first relevant transition, and 
some set of rules are triggered by this transition. A trig- 
gered rule R is chosen from this set and R’s action is 
executed. After execution of R’s action, all other rules 
are triggered only if a triggering operation occurred in 
the composite transition created by the initial transac- 
tion and subsequent execution of R’s action. Rule R is 
triggered again only if a triggering operation occurred 
in the transition created by its action. From the new 
set of triggered rules, a rule R’ is chosen for execution. 
At an arbitrary time in rule processing, a given rule is 
triggered if a triggering operation occurred in the (com- 
posite) transition since the last time it was executed; if 
it has not yet been executed, it is triggered if a triggering 
operation occurred in the transition since the start of the 
transaction. The values of transition tables in rule ac- 
tions always reflect the rule’s triggering transition. Rule 
processing terminates when there are no more triggered 
rules, and the entire transaction then commits. 

4 Rule Derivation 

Our framework automatically derives several Starburst 
production rules from each specified dependency. The 
derived rules are triggered by those database operations 
that may cause the dependency to be violated. When 
a rule is trigger$d, it reads remote data to determine 
whether the dependency actually is violated and, if so, 
it restores the dependency by modifying local data or en- 
queuing operations to modify remote data appropriately. 
(Note that due to the constructs of SQL, remote reads 

“The system also supports rule processing at arbitrary. 
points within a transaction in response to special-purpose 
commands. The framework in this paper can exploit this 
feature with no additional mechanism. 

and modifications sometimes are combined in a single 
operation.) 

Whereas dependency specifications are declarative, 
the rules derived from them are procedural-the rules 
monitor dynamic changes and specify further dynamic 
changes that enforce consistency. Consequently, each 
rule implements a particular policy for consistency 
restoration. Our rule generation algorithms produce 
what we believe are the most intuitive restoration poli- 
cies based on the semantics of the different forms of de- 
pendencies. A straightforward extension to our approach 
is to offer a choice of policies, allowing the user to guide 
rule generation accordingly; see Section 6. 

We consider each of the four forms of dependen- 
cies, describing the policies for dependency enforcement 
and specifying the generated rules for each. Example 
rules generated from the example dependencies in Sec- 
tions 2.1-2.4 are given in [7]; space limitations preclude 
their presentation here. We sssume that rules for a given 
dependency are installed in each database at a time when 
it is known that the dependency is satisfied. This as- 
sumption is not necessary, however, if when rules for a 
dependency are installed in a database, the rules are pro- 
cessed once in response to an imaginary transaction in 
which each rule’s trigger table is inserted in its entirety. 

4.1 Rules for Directional Existence 
Dependencies 

Consider a generic directional existence dependency: 

T.(Cl,. . .,Cn) c select X1,. . .,X, 
fromTl,...,Tk whereP 

where table T resides at database VB1 and tables 
TI,..., Tk at database VBz. Let Ci, . . .Cj denote all 
columns of tables TI, . . . , Tk appearing in expressions 
Xl,..., X, or in predicate P. Based on the semantics 
of SQL and the semantics of directional existence depen- 
dencies as described in Section 2.1, this dependency can 
become violated by any of the following operations (and 
by no others): 

deletions from table T 
updates to any column Cl, . . . , C,, of table T 
insertions into any table TI , . . . , Tk 
updates to any column Ci, . . .Ci of tables TI, . . . , Tk 

In the case of deletions and updates on table T, if 
the dependency is violated then consistency can be re- 
stored by reinserting the required values that no longer 
exist. Null values are inserted for columns of T not in- 
cluded in Cl, . . . , C,,; we denote this by “select Cl. . Cn 
cnllllsl . . . ” (concrete examples appear in [7]). Hence, 
for deletions and updates on T the following rule is gen- 
erated, to be installed at database DBI.~ 

create rule DelUp on T 
vhen deleted, updated(Cl..Cn) 
then Temp(C1. .Cn) <- 

Remote-Select(DB2, 

‘We often use multi-column in, not in, etc., which is 
available in some but not all SQL implementations; equiva- 
lent expressions in standard SQL can be substituted. 

114 



“select distinct Xl. .Xm from Tl . .Tk 
where P and <Xl. .Xm> in 

(select Cl..Cn from 
(deleted union old-updated) )“) ; 

insert into T 
(select Cl..Cn [nulls] from Temp 
vhere <Cl..Cn> not in (select Cl..Cn from T)) 

Note the use of transition tables deleted and old- 
updated in the remote select statement. The effect of 
this is to make the rule incrementa&rather than return- 
ing all tuples satisfying P, the remote select returns only 
those tuples satisfying P and corresponding to changed 
(deleted or updated) values in T. If it turns out the de- 
pendency is not violated, either because the deleted or 
updated tuples are not required in T or because they 
were reinserted in the same triggering transition, then 
the rule’s action has no effect on T. (An optimization 
pertaining to this case is discussed in Section 4.5.) Fi- 
nally, note the use of select distinct so that duplicates 
are not considered. 

In the case of insertions and updates on tables 
Tl,..., Tk, if the dependency is violated then consistency 
can be restored by inserting the newly required values 
into T. Hence, for each Ti, 1 5 i 5 k, the following rule 
is generated, to be installed at database DBz. 

create rule InsUp on Ti 
vhen inserted, updated(Cl’..Cj’) 
then Temp(Cl..Cn) <- 

select distinct Xl..Xm 
from Tl.. 

Ti’ as (inserted union nev-updated) 
. . Tk vhere P [Ti ‘/Ti] ; 

Enqueue-Insert(DB1, 
“insert into T 

(select Cl..Cn [nulls] from Temp 
vhere <Cl. .Cn> not in 

(select Cl. .Cn from T))“) 

The clause “Ti’ as (inserted union new-updated)” 
in the select statement uses the table expression feature 
of Starburst. In general, the interpretation of “V as 
Exp” is that expression Exp is evaluated to produce a log- 
ical table which is used in the cross-product and assigned 
table variable V; see [13] for details. P[Ti’/Ti] denotes 
predicate P with any (explicit) references to Ti replaced 
by Ti’. Hence, replacing Ti with “Ti’ as (inserted 
union new-updated)” and P with P CTi ‘/Tij has the 
effect that the union of transition tables inserted and 
new-updated is considered everywhere instead of Ti, 
making this rule incremental as well. 

4.2 Rules for Nondirectional Existence 
Dependencies 

Consider a generic nondirectional existence dependency: 

Tl.(C;,.. .,C;) ++ Ts.(C,2,. . .,C;) 
where tables Tl and Tz reside at databases VB1 and 
DBa, respectively. As discussed in Section 2.2, this de- 
pendency is equivalent to a pair of directional existence 
dependencies, so rules could be generated accordingly. 
However, by translating this nondirectional existence de- 
pendency to the equivalent pair of directional existence 

dependencies and then generating rules as in Section 4.1, 
the reader will find that although the generated rules 
are correct, their behavior can be inefficient and coun- 
terintuitive. For nondirectional existence dependencies, 
the consistency restoration policy that seems most intu- 
itive is that if a value is inserted into table Tl then the 
corresponding value is inserted into table Tz, if a value 
is deleted from table Tl then the corresponding value is 
deleted from table T-J, and vice-versa in both cases. This 
is implemented by the following two rules for Tl, along 
with the corresponding rules for T2. 

create rule Ins on Tl 
vhen inserted 
then Enqueue-Insert(DB2, 

“insert into T2 
(select Cll..Cln [nulls] from inserted 
vhere <Cll..Cln> not in 

(select C21. .C2n from T2))“) 

create rule Del on Tl 
vhen 
then 

deleted 
Temp(Cl1. .Cln) <- 

select Cll..Cln from deleted 
vhere <Cll..Cln> not in 

(select Cll..Cln from Tl); 
Enqueue-Delete(DB2, 

“delete from T2 
vhere <C2l..C2m> in 

(select Cll. .Cln from Temp)“) 

Both of these rules are incremental. Note that although 
the not in clause in the select statement of the delete 
rule may appear redundant, it ensures that values are not 
erroneously deleted from TZ when the triggering transi- 
tion at Tl deletes then inserts the same value. 

Now consider updates to columns C:, . . . , CA of table 
Tl. To restore consistency, some values may need to be 
deleted from T2 and other values may need to be inserted 
into T2. This can be achieved simply by modifying the 
pair of rules above to include updated triggering oper- 
ations and transition tables. Hence, the following two 
rules are installed at database DB1, along with the cor- 
responding rules generated for T2 and installed at VB2. 

create rule InaUp on Tl 
vhen inserted, updated(Cll..Cln) 
then Enqueue-Insert(DB2, 

“insert into T2 
(select Cll..Cln [nulls1 
from (inserted union nev-updated) 
vhere CC11 . .Cln> not in 

(select C21. .C2m from T2))“) 

create rule DelUp on Tl 
vhen deleted, updated(Cll..Cln) 
then Temp(Cl1. .Cln) <- 

select Cll..Cln 
from (deleted union old-updated) 
vhere <Cll..Cln> not in 

(select Cll. .Cln from Tl); 
Enqueue-Delete(DB2, 

“delete from T2 
vhere <C2l..C2r> in 

(select Cll. .Cln from Temp)“) 

115 



4.3 Rules for Directional Value Dependencies 

Consider a generic directional value dependency: 

T.(Cl,... ,Cn) *select X1,...,Xm 
fromZ’l,...,T’whereP 

where table T resides at database VBi and tables 
TIT..., Tk at database D&. Let Ci, . . . , C, denote col- 
umn list Ci, . . . , C, augmented to include any other 
columns of table T appearing in predicate P, and let 
Ci,... Cj denote all columns of tables Tl, . . . , Tk ap- 
pearing m expressions Xi,. . . ,X,,, or in P. Based on 
the semantics of SQL and the semantics of directional 
value dependencies as described in Section 2.3, this de- 
pendency can become violated by any of the following 
operations (and by no others): 

insertions into table T 
updates to any column Ci, . . . , C, of table T 
insertions into any table Tl , . . . , Tk 
updates to any column Cl,. . .Cj of tables TI, . . . , Tk 

In the case of insertions and updates on table T, if the 
dependency is violated then consistency can be restored 
by modifying values in the inserted or updated tuples as 
appropriate. Hence, for insertions and updates on T the 
following rule is generated for Df3i , where <hey> denotes 
a set of columns that form a key for table T. 

create rule InsUp on T 
when inserted, updated(C1. .Cx) 
then Temp(C1’ . .Cj ’ ,<key>) <- 

Remote-Select(DB2, 
“select distinct Cl’. .Cj ‘, <key>[T’/Tl 
from Tl. .Tk. 

T’ as (inserted union neo-updated) 
where P[T’/T]“) ; 

update T 
set Cl..Cn = (select one(Xl..Xm) from Temp) 
vhere <key> in (select <key> from Temp) 

(Recall that CT ‘/Tl denotes replacing all references to 
T by T’.) The remote select statement considers the 
cross-product of TI , . . . , Tk with the inserted or updated 
tuples from T (making the rule incremental), returning 
relevant values of all tuples in this cross-product satisfy- 
ing P. The update statement then modifies the inserted 
or updated tuples in T accordingly. Aggregate function 
one in the set clause is present to handle the case when 
the RHS select statement of the dependency produces 
multiple values for a tuple in T (recall the semantics of 
directional value dependencies from Section 2.3): func- 
tion one arbitrarily selects exactly one value. 

In the case of insertions and updates on tables 
Tl,... , Tk., if the dependency is violated then consistency 
can be restored by modifying values in T accordingly. 
Hence, for each Ti, 1 5 i 2 k, the following rule is gen- 
erated, to be installed at database VBz. 

create rule InsUp on Ti 
when inserted, updated(Cl’..Cj’) 
then Temp(Cl’..Cj’) <- 

select distinct Cl’..Cj’ 
from Tl.. (inserted union nev-updated) ..Tk; 

Enqueue-Update(DB2, 

“update T 
set Cl. .Cn = (select one(X1. .Xm) 

f ram Temp where P [Temp/Tl . .Tk] ) 
where exists 

(select * from Temp vhere P[Temp/Tl. .Tk] )I’) 

Here we use CTemp/Ti . . TIKI to denote replacing any ta- 
ble reference in Tl, . . . , Tk by Temp. The exists clause 
in the update statement ensures that a tuple is not up- 
dated unless a (new) required value for that tuple actu- 
ally exists. 

4.4 Rules for Nondirectional Value 
Dependencies 

Consider a generic nondirectional value dependency: 

Tl.(Cf,..., CA> e Tz.(CF, . . . , CA) where P 

where tables Tl and T2 reside at databases D& and 
DBf, respectively. As with existence dependencies, we 
could generate rules for these nondirectional dependen- 
cies by translating them into the equivalent pairs of 
directional dependencies, then generating rules accord- 
ingly. We can, however, generate rules with a more 
intuitive restoration policy for the nondirectional case: 
changes to table Tl are propagated to table T2 as appro- 
priate (only insertions and updates can cause consistency 
to be violated) and vice-versa.8 

Let C:,..., Cj denote column list Ci, . . . , C,r, aug- 
mented to include any other columns of table Tl ap- 
pearing in predicate P. The following rule is generated 
for insertions and update8 on TI; a corresponding rule is 
generated for T2. 

create rule InsUp on Tl 
when inserted, updated(Cll..Clj) 
then Temp(Cll..Clj) <- 

select distinct Cll..Clj 
from (inserted union nev-updated); 

Enqueue-Update(DB2, 
“update T2 

set C2l..C2m = (select one(Cll..Cln) 
from Temp where P[Temp/Tl] ) 

share exists 
(select * from Temp vhere P[Temp/Tl] )“> 

4.5 Discussion 

From Sections 4.1-4.4 we see that production rules can 
be derived from dependency specifications by a relatively 
straightforward algorithm. Now consider the efficiency 
of the derived rules. Each rule performs exactly one re- 
mote operation and, in some cases, one local operation. 
All rule actions are incremental-whenever possible they 
consider the modified tuples in a table rather than the 
entire table. This is particularly important for remote 
operations, since tuples must be queued and transmit- 
ted to a different site. In all of our rule actions, the 
transmitted tuples are derived partly or entirely from 

‘If we generated rules for the equivalent directional depen- 
dencies, then changes to TI would either be propagated to Tz 
or would be undone, depending on which rule was chosen first 
for execution. 

116 



transition tables, which we expect to be relatively small. 
Note that in many of the derived rules, the rule action 
first performs a local or remote select operation to pro- 
duce a temporary table Temp, then performs a local 
or remote modification operation based on Temp. In- 
tuitively, Temp contains data that may violate consis- 
tency; hence, when consistency is not violated, Temp 
may be empty. A simple optimization to our rule ac- 
tions checks after the select operation whether Temp 
is empty and, if so, skips execution of the modification 
operation. 

5 Correctness 

Correctness entails showing that the rules generated 
for any set of dependencies are guaranteed to main- 
tain consistency across databases with respect to those 
dependencies through arbitrary modifications to the 
databases. Since we are considering loosely coupled en- 
vironments in which different databases may be modified 
asynchronously and continuously by different users, we 
must carefully define the correctness requirement. 
Definition 5.1 Let Di, . . . , 0, be a set of dependen- 
cies over databases VBi, . . ., I)&,,, and let RI,. . . , Rk 
be a set of rules derived from the dependencies. 
RI,..., Rk are correct with respect to Dl, . . . , D,, if 
the following holds. Let S be any global state of 
databases IVB1, . . . ,2)B, such that S satisfies depen- 
dencies D1 , . . . , D,. Consider any set of user transac- 
tions executed on databases VB1, . . . , VB,,, from state 
S. Suppose the transactions all commit, including their 
rule processing, and all persistent queues at all sites 
are empty (i.e. all enqueued operations have been ex- 
ecuted), producing a new global state S’. Then S’ sat- 
isfies D1,...,Dn. 0 

That is, the rules are correct if they guarantee that when- 
ever the databases begin in a global state in which all 
dependencies are satisfied, then any future “quiescent” 
global states also will satisfy all dependencies9 The fol- 
lowing theorem shows that our method for rule deriva- 
tion produces correct rules according to this definition. 

Theorem 5.2 (Correctness) Let DI, . . . , D, be any 
set of dependencies in the language of Section 2 and let 
RI,..., & be the rules derived from D1 , . . . , D, as spec- 
ified in Section 4. RI, . . . , & are correct with respect to 
D1,...,Dn. 

Proof: Omitted due to space limitations; see [7]. 

5.1 Infinite Triggering 

Definition 5.1 specifies the correctness requirement as 
an implication: if all transactions commit and all per- 
sistent queues are empty then all dependencies are sat- 
isfied. We have no control over successful completion of 

‘This correctness definition does allow the existence of 
inconsistent global states, just not the persistence of such 
states. Hence, it is possible for retrieval operations on mul- 
tiple sites to yield data that does not satisfy the consistency 
requirements. This seems unavoidable in loosely coupled en- 
vironments such as those considered here. 

user transactions, and we rely on the system to eventu- 
ally execute all enqueued operations. However, we would 
like to ensure that our methods do not introduce dead- 
lock, and that rules cannot trigger each other and conse- 
quently perform or enqueue new operations indefinitely. 
Regarding deadlock, transactions with rule processing 
and transactions spawned by remote operations certainly 
may participate in deadlocks, but such deadlocks are not 
of any special nature and can be broken in the standard 
way. Infinite rule triggering is a more complex problem. 
As we will show, infinite rule triggering can occur, but 
it indicates certain error conditions and can be detected 
through a limited amount of additional mechanism. 

There are two scenarios in which infinite rule trigger- 
ing may occur: 

When the user has specified contradictory dependen- 
cies, say D1 and D-J (recall Section 2.5). In this case, 
a rule RI may modify data to satisfy DI, invalidat- 
ing D-J and triggering a rule Rz. Rz will then modify 
data to satisfy Dz, invalidating D1 and triggering RI, 
and so on. 

When simultaneous modifications are performed to 
data items, say Xi and X2, at different sites, and 
Xi and X2 are mutually value dependent. In this 
case, suppose Xi is modified from V to VI and X2 is 
modified from V to V2. It is possible for rule behavior 
to be such that X2 is modified to be consistent with 
VI, then X1 is modified to be consistent with Vz, then 
X2 is modified to be consistent with Vz, then Xi is 
modified to be consistent with VI, and so on. 

Both of these cases are considered as errors. For case (l), 
as mentioned in Section 2.5, we would like to detect con- 
tradictory dependencies at compile-time through static 
analysis, but if this is not possible we certainly should de- 
tect the resulting infinite rule triggering at run-time. For 
case (2), simultaneous modifications to mutually depen- 
dent data should be avoided by applications since this 
corresponds to unresolvable loss of serializability, but if 
such modifications occur we should detect the resulting 
infinite triggering at run-time. 

In case (l), infinite rule triggering may occur within a 
single transaction at a single site, or it may occur across 
sites (i.e. remote modification operations trigger rules 
that enqueue new operations that trigger rules and so 
on). In case (2)) infinite rule triggering occurs only across 
sites. In the Starburst Rule System [20], infinite trigger- 
ing at a single site is detected by the rule processor as 
follows. Based on the set of rules present in the system, 
the system administrator establishes an upper limit on 
the number of rule triggerings within each transaction. 
If this limit is reached, it is assumed that infinite rule 
triggering has occurred, rule processing ceases, and an 
error condition is raised. 

A related approach can be taken for detecting infinite 
rule triggering across sites in the context of our method 
for consistency maintenance. Assume that each depen- 
dency has an identifier, and that attached to each en- 
queued remote operation is a list of identifiers indicating 
the “history” of dependencies producing that operation. 

117 



For example, suppose a rule RI derived from a depen- 
dency D1 is triggered by user modifications and enqueues 
an operation 01; then list [Dl] is attached to 01. If 01’s 
execution triggers a rule R2 derived from a dependency 
D2, and Rz enqueues an operation 02, then list [Dz, DI] 
is attached to 02, and so on. There may be terminating 
rule executions in which the same dependency appears 
multiple times in a single history, so when a dependency 
appears twice in a list we do not immediately deduce 
that rules will trigger each other indefinitely. However, 
the system administrator can establish an upper limit 
on the number of times a single dependency may appear 
in a history, or perhaps on the length of each history. 
(In the latter case a simple counter can be used in place 
of the history.) If this limit is reached, it is assumed 
that infinite rule triggering has occurred, the operation 
is prevented from triggering additional rules, and an er- 
ror condition is raised. 

5.2 Queue Contention 

In Section 3.1 we explained that at each site remote op- 
erations must be enqueued and dequeued in the commit 
order of the enqueuing transactions, and that this can 
be implemented by transactions locking the back of the 
queue when enqueue operations are performed. Since 
each transaction locks only its local queue, no dead- 
lock can occur, but the queue may become a point of 
contention between transactions, reducing concurrency. 

. To lessen this contention, multiple local queues may be 
used-one for each remote site-without compromising 
the correctness of our approach. When an enqueue op- 
eration is issued, the request is appended to the ap- 
propriate queue. Contention obviously is reduced, but 
deadlocks may now occur. Such deadlocks can be bro- 
ken in the standard way. Alternatively, deadlock can 
be avoided by establishing an ordering on the queues, 
then specifying priorities between rules [20] to ensure 
that each transaction enqueues operations in an order 
consistent with the queue ordering. 

5.3 Additional Rules 

Finally, observe that correctness is guaranteed even 
when one or more databases include arbitrary produc- 
tion rules in addition to those generated for consistency 
maintenance. Recall the semantics of rule execution 
(Section 3.2): a rule is triggered if a triggering oper- 
ation occurred in the transition since the last time it 
was executed; if it has not yet been executed, it is trig- 
gered if a triggering operation occurred in the transition 
since the start of the transaction. Hence, the first time 
a dependency-maintaining rule R is triggered during 
rule processing, it considers all changes since the start 
of the transaction. Suppose that, subsequently during 
rule processing, changes are made by a non-dependency- 
maintaining rule that may violate R’s dependency. Then 
R will be triggered again and will restore the dependency 
according to the new set of changes. When rule process- 
ing terminates, no rules are triggered, so all dependency- 
maintaining rules have processed all relevant changes. 

6 Conclusions and Future Work 

We have described a framework whereby users spec- 
ify consistency requirements across semantically hetero- 
geneous databases using an expressive SQL-based lan- 
guage. Consistency requirements are translated auto- 
matically into production rules to be installed at indi- 
vidual databases. The rules are triggered by any local 
modifications that may cause consistency to be violated; 
they check consistency by performing remote queries and 
restore consistency by executing local modifications or 
enqueuing remote modifications. The rules are guaran- 
teed to maintain consistency incrementally and correctly. 

An important consideration for the usability of our 
approach is the environment in which dependencies are 
specified (and revoked), and the method by which de- 
rived rules are installed (and deleted) in appropriate 
databases. For an initial prototype, we believe it is ade- 
quate if dependencies are parsed and checked for seman- 
tic correctness, rules are generated by a simple compiler, 
and generated rules are installed “off-line” when it is 
known that relevant dependencies are satisfied. Subse- 
quently, it would be useful to incorporate static analysis 
algorithms to aid dependency specification, similar to 
those given for rule definition in [l]. In particular, we 
would like to predict whether dependencies may be con- 
tradictory (Section 2.5) and whether value dependencies 
may involve multiple values (Sections 2.3 and 2.4). It 
also would be useful to incorporate a mechanism for in- 
stalling rules when dependencies may not be satisfied, as 
suggested in Section 4. 

In Section 4 we discussed allowing the user to choose 
from a number of alternative consistency restoration 
policies on a rule-by-rule basis, i.e. one policy for each 
type of modification that may cause inconsistency. For 
this extension we must identify reasonable alternatives 
and ensure that the implementation of each alternative 
indeed restores consistency. When this holds, any com- 
bination of policies selected by the user is guaranteed 
to behave correctly. Allowing rollback as a restora- 
tion policy also guarantees consistency, but in our frame- 
work this requires a transaction model that supports roll- 
back across related transactions (i.e. across transactions 
spawned by enqueue operations). Note that many of the 
proposed extended transaction models support this or 
similar capabilities; see [12]. 

A number of extensions to the dependency specifica- 
tion language are possible. We have restricted our de- 
pendencies to operate over exactly two databases, since 
this appears to be the most common requirement. How- 
ever, there certainly are scenarios in which the existence 
or value of data in one database depends on related data 
in several other databases. If we permit such dependen- 
cies, then unless the environment supports select oper- 
ations that span multiple databases (which is unlikely), 
the generated rules must execute multiple remote select 
operations and combine the results to determine whether 
consistency is violated and how it should be restored. 
If dependencies instead operate over only one database, 
then all generated operations are local and our methods 

118 



amount to a mechanism for managing a restricted form of 
single database integrity constraints. A substantial ex- 
tension would be to make our language sufficiently pow- 
erful that arbitrary constraints across databases could 
be expressed, but user interaction is then required for 
generating consistency restoration actions [5], and rule 
generation is no longer fully automatic. 

Our framework is designed for loosely coupled envi- 
ronments in which distributed transactions are not sup- 
ported. However, there may be scenarios in which a 
heterogeneous multidatabase environment does support 
transactions across sites. In such environments, produc- 
tion rule processing might proceed in a more tightly cou- 
pled, synchronous fashion, e.g. as in [8]. By replacing all 
asynchronous Enqueue operations by synchronous Re- 
mote operations, our framework can be used to generate 
rules for such environments that maintain consistency in 
a synchronous (single-transaction) fashion. 

Finally, our framework is based on environments in 
which all databases use the relational model. Although 
our specification language and generated rules clearly are 
model-dependent (since the language is based on SQL 
and the rule system operates on relational databases), 
the same approach can be used for other data models if 
an appropriate specification language is designed and ap 
propriate production rule facilities are available. Even in 
multidatabase environments with several different data 
models, our approach can be used to monitor and main- 
tain consistency provided that production rules, remote 
operations, and persistent queues are supported. 

Acknowledgements 

Thanks to Alex Aiken for valuable discussions about cor- 
rectness, to Bobbie Cochrane for careful reading and use- 
ful contributions, to Bill Cody for suggested improve- 
ments, to Linda DeMichiel for helpful comments on het- 
erogeneity, and to Hector Garcia-Molina for advice on 
transactions. 

References 

PI 

PI 

PI 

[41 

A. Aiken, J. Widom, and J.M. Hellerstein. Behav- 
ior of database production rules: Termination, conflu- 
ence, and observable determinism. In Proceedings of 
the ACM SIGMOD Intl. Conference on Management of 
Data, pages 59-68, San Diego, California, June 1992. 

P.A. Bernstein, M. Hsu, and B. Mann. Implementing 
recoverable requests using queues. In Proceedings of 
the ACM SIGMOD Intl. Conference on Management of 
Data, pages 112-122, Atlantic City, New Jersey, May 
1990. 

N. Cercone, M. Morgenstern, A. Sheth, and W. Litwin. 
Resolving semantic heterogeneity. In Sizth Intl. Confer- 
ence on Data Engineering (panel), Los Angeles, Califor- 
nia, February 1990. 

S. Ceri and G. Gottlob. Translating SQL into relational 
algebra: Optimization, semantics, and equivalence of 
SQL queries. IEEE Transactions on Software Engineer- 
ing, 11(4):324-345, April 1985. 

151 

[61 

PI 

PI 

PI 

PO1 

WI 

P21 

[I31 

P41 

P51 

P31 

P71 

Pf4 

w-J3 

PO1 

S. Ceri and J. Widom. Deriving production rules for 
constraint maintenance. In Proceedings of the Sizteenth 
Intl. Conference on Very Large Data Bases, pages 566- 
577, Brisbane, Australia, August 1990. 
S. Ceri and J. Widom. Deriving production rules for 
incremental view maintenance. In Proceedings of the 
Seventeenth Intl. Conference on Very Large Data Bases, 
pages 577-589, Barcelona,mSpain, September 1991. 

S. Ceri and J. Widom. Managing semantic heterogeneity 
with production rules and persistent queues. IBM Re- 
search Report RJ 9064, IBM AImaden Research Center, 
October 1992. 
S. Ceri and J. Widom. Production rules in parallel and 
distributed database environments. In Proceedings of the 
Eighteenth Intl. Conference on Very Large Dota Bases, 
pages 339-351, Vancouver, British Columbia, August 
1992. 

IEEE Computer. Special Issue on Heterogeneous Dis- 
tributed Database Systems, 24(12), December 1991. 
U. Dayal and H.-Y. Hwang. View definition and gen- 
eralization for database integration in a multidatabase 
system. IEEE Tmnsactions on Software Engineering, 
10(6):628-645, November 1984. 

U. Dayal and J. Widom. Active database systems. 
In ACM SIGMOD Intl. Conference on Management of 
Data (tutorial), San Diego, California, June 1992. 

A. Elmagarmid, editor. Special Issue on Unconven- 
tional Tmnsaction Management, Data Engineering Bul- 
letin 14(l), March 1991. 

L.M. Haas et al. Starburst mid-flight: As the dust clears. 
IEEE Tmnsactions on Knowledge and Data Engineer- 
ing, 2(1):143-160, March 1990. 

M. Hsu and A. Silberschatz. Unilateral commit: A new 
paradigm for reliable distributed transaction processing. 
In Proceedings of the Seuenth Intl. Conference on Data 
Engineering, pages 286-293, Kyoto, Japan, April 1991. 

W. Kent. Solving domain mismatch and schema mis- 
match problems with an object-oriented database pro- 
gramming language. In Proceedings of the Seventeenth 
Intl. Conference on Very Large Data Bases, pages 147- 
160, Barcelona, Spain, September 1991. 

W. Litwin, L. Mark, and N. Roussopoulos. Interoper- 
ability of multiple autonomous databases. ACM Com- 
puting Surveys, 22(3):267-293, 1990. 

D.R. McCarthy and U. DayaI. The architecture of an 
active database management system. In Proceedings of 
the ACM SIGMOD Intl. Conference on Management of 
Data, pages 215-224, Portland, Oregon, May 1989. 

M. Rusinkiewicz, A. Sheth, and G. .Karabatis. Specify- 
ing interdatabase dependencies in a multidatabase en- 
viionment . IEEE Computer, 24( 12):46-53, December 
1991. 

A. Sheth and J.A. Larson. Federated database sys- 
tems for managing distributed, heterogeneous, and 
autonomous databases. ACM Computing Surveys, 
22(3):183-236, September 1990. 
J. Widom, R.J. Cochrane, and B.G. Lindsay. Imple- 
menting set-oriented production rules as an extension 
to Starburst. In Proceedings of the Seventeenth Intl. 
Conference on Very Large Data Bases, pages 275-285, 
Barcelona, Spain, September 1991. 

119 


