
A Domain-theoretic Ap roach to
Integrating Functional and Logic ii atabase Languages

Alexandra Poulovassilis
Department of Computer Science,

King’s College London,
Strand. London WC2R 2LS

Abstract

The advantages of logic languages with respect to
search-based computation are well-understood, while the
advantages of functional languages with respect to dcter-
ministic computation are becoming increasingly rccog-
nised. It is therefore natural to investigate the dcvelop-
ment of languages which reconcile the two paradigms.
As a contribution to this effort, we extend an existing
functional database language called PFL with sets as first
class objects. The resulting language subsumes
Datalog’““+ncs in the sense that any set of Datalogs’“+*
rules can be translated into a set of PFL equations with
the same semantics. Since functional and logic database
languages can be considered as proper sub-languages of
PFL, well-known optimisation techniques from both can
usefully be employed (for example lazy evaluation for
recursive functions and bottom-up evaluation techniques
for recursive predicates).
We motivate our work by reviewing the rcspcctive
advantages of functional and logic programming for
computation, data manipulation and data modelling. An
overview of the previous version of PFL is presented and
the syntax of this language is then extended to incor-
porate sets. We show how the Plotkin powcrdomain con-
struction can be used to assign meaning to set expres-
sions and we give a denotational semantics fof the
extended language. To illustrate its expressiveness, we
show how Datalog rules can be expressed as PFL func-
tions. We discuss the optimisation of these functions.
We also show how integrity constraints can be dclined,
and describe how a particular constraint enforcement
technique developed for logic databases can be adopted
by PFL.

Permission to copy witho~l fee all or prt of thir matrrial i.r
granted provided that rhe copies are not madt ar d&r&ted for
direct commercial ad-p, the VulB copyi& ~&CC and !he
title of the publicadon and its dare pppcor, and noiice is given
th copying ir by permission of the Very Large Data Base En-
dowment. To copy otherwise. or to repzk4isk reqnires a free
andlor special pemtissionf lhe Endowment.

I%vccdnp dibe 19th VLDD Cunfercncq
Dublin, Ireland, 1993.

Carol Small
Dcpartmenl of Computer Scicncc,

Birkbeck College,
Malct St., London WClE 7HX

1. Introduction

Recently we have been investigating the implcmcntation
of dcductivc databases whose inference is based on func-
tional programming rather than the more common
approach of logic progmmming. In particular, we intro-
duced in [29, 331 a functional database language calkd
PFL which supports higher-order functions, rccursivc
data types, and the persistence of factual and procedural
information, both in the form of equations. A unique
feature of PFL is that bulk data is stored using a class of
extensionally-de&d updateable functions called s&c-
tars. Selectors are invertible, in the sense that they simu-
late extensional predicates. We showed in {29) how
functions can be written which draw infcrcnccs from
selectors and which are also invcrtiblc. In particular, WC
examined the cxpressivencss of these invcrlibk functions
and showed how any suatilicd Datalog IDB predicate can
be simulated by a such a function, subject to the proviso
that there exists a pm-determined order of firing the rules
which dcfinc the predicate.
The main aim of the present paper is to remove this rcs-
triction and hence to endow PFL’s invcrtiblc functions
with at least the full cxpressivencss of Datalog. The
result is a language which combines the advantages of
functional programming with rc.specr to deterministic
computations with the advantages of logic programming
with respect to starch-based computations. This was not
achicvcd in the original language since in gcncral rules
can bc dclincd for which no fixed firing sequence gen-
erates all the provable facts. An cxampk of such a set of
rules is the following (from [22i) :

Pow 4- P(X.Y). P(YZ)
P(x*Y) +-- lU.X)

p(ac) is provable from these rules, but not by any depth-
first search strategy with a fixed ordering of trying the
rules, since the last two rules have equally general heads.
In order u, attain at least the expressiveness of Datalog,
we introduce sets into PFL. This allows us to express
rules without any implied order of firing. Our sets arc
first class objects : they can appear arbitrarily ncstcd

416

within cxprcssions and can thcmsclvcs contain arbitrarily
ncslcd cxprcssions; also, functions can bc written which
take sets as arguments and return sets as results. In par-
I.icular, funclions can bc dclincd over .scts ho simulate all
Di)lill()~r~‘“+“es prcdicatcs. WC term such functions inren-
lima1 .u!ler~bf~s. As Wc would cxpccct, lhc new PFL is in
hcl mot-c cxprcssivc than Da&g since aggregation and
counting opcralions can bc defined over sets.
A secondary aim of Lhc paper is to show how semantic
intcflity constrain& can be defmcd and efficiently
enforced in the extended PFL. An immediate consc-
qucncc of supporting sets as first class objccls is that
approaches dcvelopcd for the eflicicnt enforccmeru of
constraints in logic databases can be adopted. As an
cxamplc of this we illustrale how the method of Lloyd
and Topor [21] can be used. In fact, our intcgrily con-
straints are mom expressive than those of logic databases
since cardinalily and other aggregation conslraints are
supported.
Since PFL aims to combine lhe rcspcctivc advantages of
logic and functional programming, we briefly rcvicw
these in the rcmaindcr of lhis introductory section.
One major advantage of functional languages over logic
languages is that they arc higher order and so all cxprcs-
sions nrc first class objects. Higher-order functions can
bc dcfincd which abslmct out recursion patterns over
rccursivc data sLrucIurcs, and which can lhcn bc used in
rhc definition of other functions which do not include
explicit recursion. A second advantage is that Ihe deter-
ministic semantics of functional evaluation can be
cxploilcd for the representation of default rules (SIX
1281). In contrasl, logic languages are monotonic and
hence rcquirc the inlroduclion of exlra-logical constructs
such as the negation as failure rule 1141. Thirdly, by
employing lazy cvaluaGon. infinilc .~proccs.ses and data
struc~~s can bc handled. Finally, dctcrminislic compu-
tations are exprcsscd more succinclly by nested fun&on
applications Lhan by joins of prcdicatcs over common
variables.
Conversely, Lhc main advantage of logic languages is that
search-based computations arc supported directly, while
in functional languages they must be simulated dctermin-
istically. Also, unlike functions, predicates are invertible
in Ihe sense that they can, theoretically, be used with any
of their arguments uninstantialcd, and thus predicates
may bc more versatile than functions. Finally, in Lhc con-
1~x1 of dcductivc databases both facts and dcrivadon rules
arc of&n exprcsscd more naturally in terms of single
predicates than in Icrms of functions and their invcrscs.
The molivalion behind Lhc devclopmcnt of PFL has been
10 combine wilhin one uniform semantic and operalional
framework the rcspeclivc advantages of these two para-
digms for dcductivc databases. In particular, the
cxlcnded PFL exhibits all of the features of functional
languages described above. Furthermore, since sets are
now first class objects, functions can be defined which
play a role similar to intentional predicates. Any set of

Datalog rules (including those incorporating negation and
function symbols) can bc translated into an equivalent set
of PFL cqualions. Finally, all of the query oplimisalion
strategies developed for logic languages - including
oplimisalion techniques dcvclopcd for integrity con-
strainls - can now bc transfcrrctl to a functional contcxl.
The oullinc of the rcmaindcr of the paper is as follows.
In section 2 we brielly describe the features of our origi-
nal language, and in particular iu type system and the
way in which user defined functions are specified. Sec-
tion 3 introduces Ihe syntax and semantics of the
cxtendcd PFL. We first dcfme a kernel functional
language and give the denotational semantics of this
language. We then add set expressions and extend the
dcnotational semantics accordingly. Finally, we describe
how bulk data is stored in a class of exlensionally-defined
set-valued functions. Section 4 then discusses the
evaluation of expressions in the extended PFL. Section 5
considers the expressiveness of the Ian

5
uage. We give a

scheme for translating rules in Datalog u”+ncg into equa-
Lions involving set expressions, and then give an optimi-
salion scheme for thcsc equations. We also show how
higher order functions can bc applied to sets, thus allow-
ing computations LO bc dcfincd which would require
cxlra-logical prcdicatcs such as “set-of” in a logic
language. Finally, we discuss Ihe definition and efficient
enforcement of inlcgrily conslrainls. Section 6 gives our
conclusions and a brief comparison with related work.

2. Overview of PFL
PFL has a Milner-style polymorphic, strong, static type
system [lo] that supports a number of built-in types and
provides facilities for the introduction of new user-
dcfmcd types and constants. Functions are defined incre-
mentally through the insertion and deletion of equations.
The ~ypcs of functions are inferred incrementally in the
face of such updates. Function evaluation is lazy,
thcrcby permitting computation with unbounded data
structures. Types, constants and equalions can be defined
and removed at any stage during the life-time of the data-
base subject to certain obvious restriclions (e.g. a con-
stanl cannot be introduced for an as-yet unspecified type).
AII types, constants and equations are stored in the data-
base. We briefly review the structure of the type system
in 2.1, the system defined functions in 2.2, and the
specification of user defined functions in 2.3.

2.1 The Type System

PFL’s type system comprises Lhree layers (c.f. [ll]).
Firstly. there is Lhe meta-level type Type which is the set
of all types; secondly, there are the object-level types,
both built-in and user-declared, which are regarded as
mcta-level values of type Type; and finally there are the
values corresponding LO each object-level type. The
built-in types are Bool, Num, str, and Char which are
populated by booleans, stings, numbers and characters
respectively. In addition, for every type t there is a dis-

417

tinguished constant Any,. We usually write this conslilnt
without its subscript since this can be inferred from con-
text. Certain system-defined functions when applied to
Any will result in a run-time error e.g. the arithmetic
functions (c.f. division by zero).

New types and values are declared using commands of
the form

“type” constant type-variables “:”
“value” constant ‘I::” type “;”

These constant+ are sometimes lcrmed consfruclors 1271
since they consbuct values of the indicated types. For
example, Person, Product and List types logclhcr with
constructors for these types are defined as follows, when:
identifiers starting with an uppercase letter are construc-
tors (me&level or object-kvel), whilst idcntificrs slarting
with a lowercase 1cue.r are variabks :

type Person;
type Prod2 a b;
type List a;
value John :: Person;
value Tuple2 :: a+b+(Prod2 a b);
value (:I : : a+(List a)+(List a);
value [I :: List a;

Thus, Person is a type (or meta-level value), Prod2 tl 12
is a type for all types tl and 1.2, and List t is a type for all
types t. Similarly, John is a value of type Person, and
Tuple2 vl v2 is a value of type Prod2 tl 12, assuming vl
and v2 are of type tl and t2 respectively. Zero argumcnl
types (e.g. Person) and values (e.g. John) can bc regarded
as object types and object values respcclivcly. For syn-
tactic case we adopt a number of abbreviations for lypcs
and values :

List t E [tl
Prodn tl . . . tn z tt1,. . .,tn)
(:) vl v2 t (vl:v2)
vl:(...(vn:[l) . ..I = [vl,...,vnl
Tuplen vl . . . vn = (vl, . . .,vn)

In preparation for adding sets to PFL, we also assume the
availability of a polymorphic set type Set a, and we allow
the syntax (t) in lieu of Set t .for any type expression t
(analogously to [I] for List t).

2.2 System Defined Functions

PFL provides a number of system d&cd functions,
including the usual arithmetic (+, -. *, /, div. mod), rcla-
tional (=, !=, <, >, 2, I, and, or, not) and list processing
operators (++. head, tail). In addition, the operator ?=
(pronounced “malches”) acts on values containing Any.
In particular, ?= determines whether its left operand is
identical to its right operand except with respect to
occurrences of Any in the former. More precisely, for
each n-ary constructor C we have that

(C Xl . . . X”) ?= (C y1 . . . y”) =
True and
(Xl ?- ~1) and . . . and (x, ?= yn)

whik for any other values x and y we have that

x?=y = x = Any

(WC obscrvc hcrc that the first = symbol in a PFL cqua-
lion denoles dclinition while themafter = dcnotcs cqual-
ity). For example, [Any,2,Any] ?= [1.2.31 and 11,2,3] ?=
IAny,2,Any] cvalualc to True and False rcspcclively. WC
note that ?= is rcflcxive, anti-symmcuic and Lransilivc i.c.
il is a partial o&ring.

2.3 User Defined Functions

Functions are dcfincd by means of equations, which arc
inuoduccd by a command of the form

“dcline” Ihs “=” cxpr “;”

For cxampk the 3-ary function if and the 2-ary function
map (which has the properly that map f [x1 ,.,.,x,1 yields
ffx , , f x,]) can bc defined as follows :

define ii True x y = x;
define if False x y = y;
define map f [I = [I;
define map f (x:y) = (f x) :(map f y);

The types of lhcse functions are infcrrcd aulomalically by
the system.

A useful query construcI supported by PFL, as by most
functional languages, is the list abstraction. which is sim-
ply synlaclic sugar for ordinary function applications (set
1271). An cxamplc of lhc use of the list abstraction is the
quick-sort function below (whcrc ++ is the infix append
operation) :

define qsort [I * 11;
define qsort (h:t) =

(qsort [x I x t t ; x < hl) +t
[hl ++
(qsort [x I x t t ; x Z hl);

3. Extending PFL with Sets
In this scclion WC dcscribc how PFL is extended with sets
as first-class objects, and we specify formally the scman-
tics of Ihe resulting language. The formal foundation of
any functional language is the h calculus (of which a
dctaikd account may be found in (19)). Computation in
lhis calculus consists of rewriling expressions lo a normal
form by a series of syntactic transformations calkd p and
q reductions. A formal theory can be constructed for pq
reduction and models of this theory are triples CA,., D>.
where D is a domain of continuous functions (we define
the terms domain and continuous in 3.1 below), A
models the definition of functions by X abstraction and l

models function applicalion. The semantics of functional
languages arc thus usually spccificd using a dcnolahnl

418

-. V z

I
I

cc

-2

jtk
?

‘X

5 3’

u II u + n

For our purposes, we assume that cxprcssions arc
assigned values in the following semantic domain, D :

D = W+Bool+Atom+[D+D]+(DxD)+
(DxDxD)+...+LIST,

Here, Bool and Atom are llat domains reprcscnting
booleans and other constants rcspectivcly, while LIST,
denotes an infinite number of domains such that each
LISTt consists of lists whose clcmcnts arc drawn from
domain I, c.g.

LIST,,, =
(Atom x LISTA,,) + (NILA,,,,,, 1

LIST AtomxAtom =

((Atom x Atom) x LIST~tt,x~tom) + INlL~t,x~t,m 1

In practice of course atoms arc partitioned into scparatc
domains in most functional languages (one cxccption is
LISP) and lists are constrained to bc homogcncous by the
type checker. Type checking in PFL was discussed in
[29] so we consider it no further hcrc. We mcrcly note
that in the domain equation for D above. W contains a
single clcmcnt, “error”, which is the value of any
incorrectly typed cxprcssion.

Dclining the dcnotational scmanlics of a language con-
sists of identifying the synruclic calegories of the
language, and setting up semcmic funcrions bctwcxx~

these and the domain D (see 131,351). The tbrcc syntac-
tic categories of our kemcl arc Con, Idc and Env E
[Idc-+D], from which constructors, variables and
cnvironmcnts are drawn, rcspcctivcly. In parlicuku. an
environment p is a function that assigns to each variable
in Ide a value in the semantic domain D. Two semantic
functions are rcquircd to map cxprcssions to values in D :
the function K:[Con + D] maps each constructor to its
prcdeIined value, and the function E:(Exp + [Env -+ Dl]
maps any expression to a value, for a given cnvironmcnt.
The dcfmition of E is given below whcrc, by convention,
all expressions enclosed in square brackets, I and L arc in
the syntax of the Ianguagc whose semantics arc being
dclincd i.e. the kemcl. All other expressions arc in the
dcfming notation, in this cast some model of the h cal-
culus that supports i abstraction (whcncc the A on the
right hand side of the third equation) and function appli-
cation (whence the l on the right hand side of the fourth
equation). The notation p[d/id] denotes the cnvironmcnt
obtained by extending p to map tbc variable id lo the
value d. As we would cxpcct, the scmanlic function E
mapping a kernel functional language to a model of the h
calculus is almost trivial. Spccilically, variables arc
mapped to the value assigned to them by p, constants arc
mapped to the value assigned to them by K, h abstrac-
tions are mapped to A abstractions, applications arc
mapped to applications, tuplcs arc mapped to tuplcs, ‘Xx”
results in a lixpoint computation, and “whcrc” clauses
result in the extension of the environment with a new
idcnlificr :

El id If) = p I id 1
El const Ip = K I cons1 I
El X id.cxpr I p = A d.E [cxpr I pld/itll
El cw 1 cxpr2 I p =(EUcxpr, jp)@(Elcxpr,)p)
El@v-~ ,..., expr,) I p = <I:‘[cxpr , I p ,.... I: I cxpr,, 110
ElIixcxprlp = FIX (Sl cxpr Ip)
El cxpr , whcrc id = cxpr2 I p =

Ellcxprl IplWlcxpr2 IpYidI

3.3 Adding Set Abstrucfions

WC XC now ready to add .wI ohsfrrv:lions lo lhc kcrncl
functional language. Wc need to cxtcnd lirsl the synt:iu
of the language to allow set cxprcssions, then the SCIIKIII

tic domain to include values for set cxllrcssions, and
Iinally the semantic function E.

Set abstractions arc similar to list abstractions in that they
construct new sets from existing scls just ilS list abslrnc-
Lions construct new lists from existing lists. As well ;I%
SCL abstractions, WC also introduce empty sets, singicton
sets and set unions. The resulting Iim~ll;l~c SYIII;IX is iI\;
follows :

cxpr = id I coils1 I cxpi~cxpr I
‘I(” cxpr “,” . . . ‘I,” cxpr “)” I h itl.c*xpv I
“lix” cxpr I cxpr “whcrc” id “=” c?cpr i
“0” I “(“cxpr”)” I cxpr”Li”cxI)r I
“(” cxpr ” I ” quillilicrs “) ”

quitliIicrs = qualilicr I qualilicr “8~” qii:llilicrs
qualiner = gCllCrillOr I filter
gcncrator = id “E ” cxpr
filter = expr

WC also allow the notation (s,, s, 1 in lieu of
(S 1) U . . . U (s,) , TWO cxamplcs of SC’I cxprcssions arc

((John,Jane), (Jack,Jane) I
(n I n E nat & (n mnd 2) - 0)

whcrc the second cxprcssion dcnotcs the WI 01‘ CVCII

numbers in nat. In 3.5 b&w WC cxtci~d this syiitax to
allow arbitrary Inttcrns on IIW kl’t-hiltltl sitlc 01’ gcuzratol
cxprcssions, so lhat lhc following set ill~SIril(.llOlls rcspx~-

tivcly return (i) ill1 LhC 1uplC.S in thC scl parents, (ii) ill1 tllc
tuplcs in the set parents which have Bill as their lirst
componcnl, and (iii) the singleton .sct ((Dill,Mary)) if
this tuple is in the set parents, and the empty SCI other-
wise:

I (x,2) I (x,2) E parents)
((Bill,z) I (Bill.,z) E prrcntc;)
((Bill,Mary) I (Bill,Mary) t pa~cr~t:;)

The semantic domain D of 3.2 is cxtcndctl IO include :III
inIinitc number of domains SET, such that each Sli’l’l
consists of sets whose clcmcnts arc drawn from domain I:

D= W + Bool + Alom + [D-D] + (D x D) -t
(D x D x D) + . . . + LIST, + SET,

Three main o&rings have bwn proposed lor srt

420

~It~lllilillS i11 lhc litcri1111rc : the I Ir11lrc. S111yth and Plotkin
c~ltl~*ri11gs (tic I:ISL ()I’ ~hcsc is also known us the Egli-
Milncr c1rtlcri11g), and ;I comparison ol’ them is given in
I.34 I. 01’ thcsc, the Iioarc and Plotkin orderings arc both
cnntlidalcs for our purposes since they consider larger
scls LO bc hctlcr tlclincd than smaller sets. The Hoarc
ordering permits sets to contain an infmitc number of
non- 1.1 clcmcnts whcrcas under the Plotkin ordering sets
arc cithcr finite or contain lI. WC have chosen to use the
Plotkin construction rather than the Hoarc one since, as
wc will see hclow, this allows us to map from scls to lists
and tbcrcby to I’ully intcgratc sets into PFL. This is not
possihlc with the Hoarc ordering (which was adopted by
Silhccrmann and Jayaraman in their integration of func-
tional and logic programming 1321) since such a mapping
would not bc continuous. Marc specifically, the Plotkin
ortlcring, l&,,, , on two scis S and T whose clcmcnts arc
drawn from ;I llat domain I is dclincd as follows :

S I;.:lq,,, T ill
v s c s. ‘-3 1 c. ‘I’ . s L, 1 and V t E T. 3 s E S. s c, t

(‘l‘hc tlclinition for non-llat I is more intricate and can bc
Ibuntl in 13 I I). Thus, the Icast clcmcnt is (11) and the
empty .sct is not part of the domain. This is bccausc the
Plotkin powcrdomain is traditionally used to model non-
dctcmlinism, whcrc all computations have some result
cvcn if this rcsull is non-termination. In our cast WC
wish IO model set-valued funclions and so the empty set
is maminglul. The structure of SET1 is thus the
cc~lcsccd sunl (see 3.1) of the Plotkin powcrdomain with
a singleton domain rcprcscnting the empty set of Lypc I.

For cxamplc. the Icft-hand part of Figure 1 below shows
the structure of SET,,,,, Computation over this domain
comn~cnccs at the lcast clcmcnl (11~~) and proceeds
cithcr to the empty set or to a non-empty set. In the latter
cast the set may contain the clcmcnt lljrol, rcprcscnting
the possibility that more clcmcnts will bc added to the set
or lhat a non-terminating computation will occur, When
no more clcmcnLs can hc added to a set, computation Lcr-
min:\tcs with a set not containing cnoc,l.

‘1’0 stuy wilhin a purely limctional fortnnlis1n (and
thcrcby conrinuc to bcncfit from the advantages ol’ I’unc-
ti()ni1l programming WC discussed in the introduction)
rhcrc arc two key rcquircmcnts for opcralions over sets :
dctcrminism and continuity, To retain dctcrminism WC
assume a total ordering, <, on all clcmcnts of Atom and
Hool cxccpt I&,,,, and ~I1ool, which in turn inducts a
total o&ring on all finite clcmcnls of D (cxccpt the lunc-
tions in l D-+Dl of course). We then USC an operator

.wt to-list1 : SET1 + LIST1

which maps clcmcnts of SET1 to clcments of LISTI (WC
ol’tcn write .sct-to-list without its subscript since this can
bc inrcrrul from context). It dots this by taking

- any set containing a I to ~~~~~~~ and

- any other set to the (unique) list whose components
arc prcciscly those ol’ the set and appear in the order of

c without duplicalcs.

For cxamplc, Figure 1 below shows the SET,,, and
LISTnoD domains and the set-to listBc,,,, mapping
bctwccn them (which assumes that Any,, < False <
True). WC note that set-to-list is continuous, as required.

3.4 Denotational Semantics of Set Expressions

WC now extend the semantic function E of 3.2 to map set
expressions into sets. Bcforc doing so we require three
standard (and continuous) operators from powcrdomain
theory 1311. The singleton operator constructs singleton
sets in SETI from clcmcnts in I:

(-) :I-+SET,

The union operator constructs new sets from pairs of sets:

u _ : (SET1 x SET,)+SET1

Finally the + operator distributes functions of type
I-+SET, over sets of type SET1 and takes the union:

_ + : (I-+SET,)--+(SET1-+SET,)

In particular, for any function F:I-+SET,, the function
F+:SET,+SET, is d&cd as follows:

F+S =u (ifd=l1 then (1~) else(Fd) 1 dE S)

The cxtcndcd semantic function E assigns meanings to
set expressions as follows, where we have explicitly sub-
scripted set expressions with the type of Lheir components
whcrc necessary:

El 01 IP =0,
El (cvll Ip = (Elexprlp 11
El cvl u exv2 Ip =@UcxprI I~)~(~Iwr~lp)
El (cxpr I Iilter-expr dc rest), Ip =

if E I filter-expr I p then E I (cxpr 1 rest) I p else 01
El (cxpr 1 id E set-expr & rest) Ip =

(A d.E I (cxpr 1 rest] I pld/idl)+ l (El set-cxpr I p)

Thus, singleton cxprcssions map to singleton sets. union
cxprcssions 1nap to unions of sets, filters map to condi-
tionals, and gcncralors id E .scl-cxpr map to functions
which gcncratc bindings for the variable id by being dis-
uibutcd over set-cxpr.

WC conclude this section by noting that the ?= operator
of section 2.2 can bc cxtcndcd to match set terms in a
number of ways. Three possibilities are ?=H, which
simulates the Hoare ordering on sets (i.e. every element
in the left-hand operand of ?=11 must match some ele-
mcnt of the right-hand operand) :

Sl ?=a s2 =
{p 1 pesl & ves2 & p?=Hv) = sl

?=s, which simulates the Smyth ordering (i.e. every ele-
ment of the right-hand operand must bc matched by some
clcmcnt of the l&-hand operand) :

Sl ?=s s2 =
(v 1 VES2 & PGSl & p?=svl = s2

421

(A:(::(W ,,
c-

‘I (A:(F:(l:l)))

(A:(L:L))

Figure 1 : Mapping from Se&,, to List a,,,, whcrc A = Any a,,,,l, T I True and F = False.

____ ~-.-- -. ..- - _

and ?=p, which simulates the Plotkin ordering (i.e. cvcry
element of the left-hand operand must match some cle-
ment of the right-hand operand, and every elcmcnt of the
right-hand operand must be matched by some elcmcnt of
the left-hand operand) :

Sl ?=p s2 =
({p I PCS1 & VES2 & p?=pv) = Sl)
and
({v I VES2 & PESl & p?=pv) = S2)

3.5 Extending the Kernel to the Full Language

In common with most functional programming
languages, PFL allows palferns (i.e. expressions in con-
stants and variables) in several places where the kemcl
syntax allows only variables. These are : h abstractions,
left hand sides of equations, and left hand sides of gcn-
erators in list and set abstractions. Peyton Jones [271
discusses how such features can be translated into a ker-
nel language, although not for pattcms in set abstractions.
So for completeness we give the semantics of this
feature. To do so we need to add one mom equation to

the definition of E in order to take cam of gcncrators with
patterns i.e. gcncrators of the form c pat, . . . pat,, E .sct-
cxpr. when: c is a constructor with n 5 0 arguments
which arc thcmsclvcs variables or further patterns. 1%~
cffcct of such gcncrators is to itcratc over only those clc-
mcnts of scl-cxpr that match the pattern c pat, . . . pat,,.
In our scmanlic cquation for this Icaiurc below WC
assume the availability of pattcm-matching h abstractions
[27] i.e. cxprcssions of the form h pat.cxpr which when
applied to an argument, arg, substitute in cxpr the vari-
ables of pat by constants from arg if pat matches arg and
otherwise relum the constant error E W (of section 3.2) :

El (cxpr I c pat, . ..patn E sel-cxpr & rest) I Ip =
(A d.if (El hc pat,...pat,.(exprlrcst) Ip) l d z error

then(EI~cpati...pat,.(cxprIrcst) Ip)*d
else 0,)+ l (E I set-cxpr I p)

3.6 Bulk Ddt8

PFL’s bulk data is storui in a class of functions called
selectors. In 129, 331 WC dcfincd sclcclors as list-valued
functions dcfincd by an cquation of the form

422

’ I’ Iv I v (- r.clatiorl; p ?;- v]

WIICI~~ 111r’ I~cliui()ll was a list without duplicutcs and
WIIC~C ul)tlihICs to the sclcctor COUICI change the order of
ils C~CWICI:LS. tiaving now incorporated sets into PFL we
GUI more properly formal& sclcclors as set-volucd func-
tions. In particular, a scicctor is now dcclarcd by a statc-
mcnt of the form

“sclcclor” name “::” type “;”

whcrc the lypc is rcquircd to bc of tbc form l*(t) for
some first-order monomorphic type t. For cxamplc, the
following statcmcnt dcclarcs a sclcctor that can bc used
to store thuiIs of hw)ks - consisting of their ISBNs,
lillcs. illllh~~rS’ names and year Of publication :

selector books : :
(Num,Str, [Strl,Num) -+
I (Num,Str, [Strl ,Num) 1;

A newly ilcchrcd sclcctor, f, may bc assumed to bc
tic lined by an quntion of the form

f p = (v I v E relation & p ?= v)
where relation = 1)

Updalcs lo a sclcclor resull in the relation expanding or
contracling. In particular, the command

“include” sclcclor value ‘I;”

adds a new value to the relation, while the command

“cxclutlc” sclcctor pMcrn “;”

rcmovcs from the relation all h VUIUCS that tniWh the
pi~ll~Yll. For cxamplc. lhc inclusions

include books (071678158,
"principles of Database and

Knowledge-Base Systems",
["J.D.Ullman"l,
1988) ;

include books (052126896,
"Introduction to Combinators and

Lambda Calculus",
['qJ.R.Hindley","J.P.Seldin"],
1986) ;

include books (020508974,
"Denotational Semantics",
["D.A.Schmidt"],
1986);

result in tbc following dcfmition for the books sclcctor :

books p = (v I v E relation & p ?- v)
where relation =
((071678158,"Principles..."r....~,
(052126896,"Introduction...",....),
(020508974,"Denotational..."r...))

and subscqucntly the exclusion

exclude books (Any,Any,Any,l986)

rcmovcs the Hindlcy & Scldin and Schmidt books.

The application of a sclcctor to an argument rctums the
scl of the values in the relation that match the argument.
For cxamplc books Any rclurns the cnlirc rclalion
while books (Any,Any,Any,l986) rclums the
details of books publish& in 1986.

4. Implementation
According to the definition of the tixpoint operator FIX
in 3.1, functional languages can evaluate functions by
commencing with least clcmcnts everywhere and con-
tinuing until no more information is inferred. For exam-
plc, the factorial function, fact, of 3.2 is the least fixed
point of the following higher-order function

H = Lf.hx.if (x = 0) I (x * (f (x - 1)))

By the definition of FIX the succcssivc approximations to
H arc as follows :

Ho maps all numbers lo l&,,,
H’ maps all numbers to l&,,, except 0 which is
mapped to 1,

H2 maps all numbers lo LN”,.,, except 0 and 1 which
arc both mapped to 1,

H3 maps all numbers lo LNurn except 0 and 1 which
arc both mapped to 1, and 2 which is mapped to 2,

and so on, obtaining the factorial of a (positive) number i
on the i+l* approximation.

However, the cxprcssion Y E hh.(hx.h(x x)) (hx.h(x x))
has the property that for any cxprcssion H, (Y H) = H (Y
H) i.c. (Y H) is a tixcd point of H. In fact it can be
shown [35] that (Y H) is the leosl fixed point of any con-
tinuous function H i.e. (Y H) denotes FIX(H). Thus,
functional languages typically evaluate functions top-
down using Y rather than bottom-up using FIX. For
example, to evaluate the factorial of 2 we start off with
the expression (Y H) 2, and this is simplified through the
following reductions :

VW2
+ H (Y H) 2
+ (hx.if (x = 0) I (x * ((Y H)(x - 1)))) 2
-2 *
+2 *
+2 *
+2 *
+2 *
+2 *
42 *
+2 *
-+2 *
-+2

((1x.if (x = 0) 1 (x * ((Y H)(x - 1)))) 1)
(1 * (W w (I- 1)))
(1 * NY W 0))
(1 * W WJ-0 0))
;; * I(:hx.lf (x = 0) 1 (x * ((Y H)(x - 1)))) 0)

*

Operationally then, Y has the affect of producing a new
copy of (Y H) (the “meaning” of the factorial function)
upon each recursive call. Notice that we are chasing to
simplify the Icft-most, outermost redex at each step

423

above - this computation rule is known as rwrmuf-order
reduction and it corresponds to the lazy evaluurion of
function arguments. It is ncccssary to adopt normal-
order reduction in order to ensure that (Y H) tcrminatcs.

Evaluation in the presence of sets can proceed in a simi-
lar fashion. Sets are implemented as binary trees with the
u operator at the inner nodes and singktons at the Icavcs.
The operator + applies a function F to a set by distribut-
ing F to all the leaves. The application of F to singletons
can occur asynchronously e.g. in parallel. Howcvcr, the
operator + violates lazy evaluation since it evaluates the
argument to F before applying F (set the definition of F+
in 3.4). Thus, although all the elements of the set arc
eventually discovered, the top-down evaluation of a sct-
valued function may fail to terminate (c-f. the difficulties
in detecting termination when logic rules arc evaluated
top-down). At present we thercforc USC a boltom-up
evaluation strategy for recursive (and mutually-rccursivc)
set-valued functions. This strategy builds up sets
“naively” for “interesting” arguments of the function.
Optimisation to utilisc semi-naive evaluation tcchniqucs
is an ongoing arca of work.

5. Expressiveness
Selectors are the analogue of the EDB prcdicatcs of a
Datalog database, and from now on WC term them exten-
sional selectors. In 5.1 below we introduce the concept
of an intentional selector and show how any Datalog IDB
predicate - including those whose rules include negation
and function symbols - can be translated into a PFL
intentional selector. In 5.2 we discuss the optimisalion of
equations delining intentional sclcctors. In 5.3 WC show
how PFL with sets supcrscdcs Datalog by supporting
aggregation and counting operations. Lastly, in 5.4 WC
show how integrity constraints over sckctors can bc
defined and efficiently enforced.

5.1 Intentional Selectors
We define an intentional selector to bc a function f
defined by an equation of the form

f p =s1 U...US”

where each si is cithcr an application of a sclcctor LO the
pattern p. or a set abstraction (p 1 ql & . . . & q,) all of
whose generators iterate over sclcctors. For cxamplc, the
following function is an intentional sclcctor :

ant (x,2) =
parent (x,2) U
1 (x,2) I (x,yl) E parent (x,Any) &

(y2,z) E ant (Any,z) &
yl = y21

In our translation of Datalog rules into PFL, WC first con-
sider the case of IDB predicates defined by a single rule
of the following form, where each qi is cithcr an EDB or
IDB prcdicatc, and each rj is a built-in prcdicatc :

Without loss of gcncrdlity WC assume that the variahks
of si arc distinct. WC atso make the usual assumption 01
range-renriction 1361 for the rj i.c. any variahk app~trtr-
ing as an argument to an r, is inSt~u~liiUXl by sonC q i.
WC translate such a rule into a PFL equation of TIC lo1111

psi=(‘jTl a,&...dGa,,&h,&...&h,,Rr
Cl &...&c,)

whcrc :

0) each hd qi(yi IJ~ 2$. ..) in the rule rcsuhs in i\

gcncrator ai Of the form
(Vi I rVi 29 ***I E qi(Wi 1 swi 29 *-.)

such that

- a constant or function symbol in a yi , maps 10 the
SNIIC constructor in vi j and w i j,

- a universally quantified variabk in a y, , alaps IO
thC simc WriilhlC in Vi j and W, ,, alltl

- an cxislcntially quantified variable in iI yi , maps
to a new variable in Vi j and LllC cOIlsliMll Any in
Wi j*

(ii) each literal ri(Ji”+i) in the rule results in a scteanti-
tally identical filter bi in the equation; and

(iii) each pair of new variables z i j and %i’ j’ arising from
the same cxistcntially quanlilicd variahlc in (i) result
in a lillcr ck Oflhc form %i j = %,, j.

WC note that the equation resulting from this translation
salislics the criteria for an inlcnlional sckctor. For CxiIIII-
pk, the following Daolog rule linds proper siblings:

sibling(X,Y) f-
parent(Z,X), parcnt(Z,Y), X r Y

and the cquivalcnt PFL equation obtained by our L~iulSla-
tion schcmc is

sibling(x,y) =
((x,y) I (zl,x) E parent(Any,x) b

(z2,y) E parent(Any,y) 6,
X !E Y & 21 = 221

WC nole that the rcpcatcd occurrcnccs of the variahks x
and y in this cquati(bn arc not ambi~:uous sincr. hy lhc
scmanlics 01‘ set ahsuactions, variahk bindings arc inla.r-
itcd initially I’rom the Icft hand side of the cquaIi(Nt or
from the first gcncrator with the variable in its head, atld

arc then ovcriddcn by subscqucnt occurrcnccs in the
heads of gcncralors. This process of i&riling bindings
from one qualifier to the ncxl is, of course. the prccisc
analogue of sideways infortnalion pussin~ [Ml in the
evaluation of logic ruks.

The above translation schcmc is clearly incllicicnl : for
example, rules containing cxistcnlially quantified vari-
abks uanslalc into equations which take c:\rtcsian pro-
ducts of sclcctors and then pcrrornr sclcctions. Marc
sophisticated translation schcmcs which ovcrcomt* IhcW

problems arc possihlc (c.g. the OIIC givc*ll ill I’rOl IIN IIN*

424

previous version of PFL). Howcvcr, WC have used this
particular scheme hcrc because it simplifies our discus-
sion of sclcctor optimisalion in 5.2 below.
WC can cxtcnd the translation schcmc to IDB prcdicatcs
that arc dcfincd by more Ihan one rule. Without loss of
gcncrality wc assume that Lhcsc rules arc recfifred [36]
i.c. that they all have the same head. Each rule is first
scparalcly translated according to the above schcmc. giv-
ing a number of equations with the .samc left hand side.
Thcsc equations arc then combined into a single equation
by forming a union from their right hand sides. For
cxamplc. the standard rules for the ancestor prcdicatc

ant (X,2) t parent(X,z)
anc(X,Z) t- anc(X,Y), anc(Y,Z)

translate into the PFL equation

ant (x, 2) =

parent (x,2) U
((x,2) I (x,yl) E- anc(x,Any) &

(y2,z) E anc(Any,z) &
yl = y2)

Similarly, the rules

nat(X) t is-number(X)
nat(x) t nat(Y), X - succ(Y)

translalc into the equation

nat x =
lx I x E is-number x) U
(x I y E nat Any & x E {Succ y))

assuming that is-number is a sclcctor of type Nat+{ Nat)
ilfld SIJCC iJ COIlSmJCIOr Ol’ lyp.! bkJk+NUl.

WC now cxtcnd our translation schcmc to cover the case
of ncgativc litcrals. WC first make the USIJ~I assumption
that cvcry VilriilhlC appearing in a ncgativc lilcral also
appears in some positive literal which prcccdcs it in the
rule. WC then lranslatc a ncgalivc literal, -,p@J, into a
filter (p Z) = (). For cxamplc, the following Datalog rule
assumes that pcoplc arc malt if they arc not fcmalc

male(X) c- person(X) & 7female(X)

and the cquivalcnt PFL cquaiion is

male x =
(XIX E person x & (female x)=0)

The translation of Datalog rules which arc not stralilicd
with rcspcct to recursion through negation results in func-
tions which yield only the lcast clcmcnl of the .scL
domain. For cxamplc. this occurs if WC dclinc malts as
persons who arc not fcmalc and vice versa :

male x =
(XIX E person x & (female x)=0)

female x =
(XIX c per-son x & (male x)=0)

A similar source of no information being inferrable is
recursion through the set-to-list function of 3.3 (recall
that scl to-list rcquircs its argumcnl to bc fully cvaluatcd
bcforc scan bc applied).

5.2 Transformation of Intentional Selectors

II is possible to apply scvcral syntactic transformations to
the .scl abstractions dclining intentional sclcctors. In par-
ticular, WC USC the following transformations :

Trl: Rcordcring the qualifiers so that each lilter appears
as early as possible and each gcncrator as late as
possible, subject to the constraint that each qualifier
must follow all of the generators which provide
instanliations for its free variables (this is equivalent
to undertaking sclcctions as early as possible in rcla-
tional qucrics).

Tr2: Switching pairs of gcn_crators over the sa-me sclcctor,
p. E s i and pb E s b, whcncvcr 5 ?= b (subject to
the .samc constraint as for Trl).

Tr3: Replacing equality by pat&m-matching (this is
cquivalcnt to pushing sclcctions through joins) i.e.
given a scqucnce of qualifiers

. ..&q"-]&
(*.rXi-JrXivXi+J v***) E s (--*Ji-l Any,yi+lI &

qn+ J & *** & qn+m- 1 & E = xi & qn+m+ J & ***

where E is an expression all of whose variables are
bound by qualilicrs up to qnml, we’ can remove the
qualilicr E = Xi and replace Any by E in q, :

For cxamplc, applying the ant function of 5.1 above to an
argument (Any,B), whcrc B is a constant other than Any,
results in the equation :

ant (Any,B) =
parent (Any,B) U
((x,z) I (x,yl) E ant (Any,Any) &

(y2,z) E ant (Any,B) &
yl = Y2)

By applying Tr2 WC obtain

ant (Any,B) =
parent (Any,B) U
t(x,z) I (y2,z) E ant (Any,B) &

(x,yl) E ant (Any,Any) &
yl = Y2)

and by then applying Tr3 WC obtain

ant (Any,B) =
parent (Any,B) U
((x,z) I (y2,z) E ant (Any,B) &

(x,yl) E ant (Any,y2) I

425

The process we have followed rcscmblcs lhc magic sets
[6] method of rewriting Datalog rules, which gcncratcs a
different set of rules for a prcdicatc depending upon the
binding pattern. WC arc currcnlly invcsligating adapting
the full magic sets method for the bottom-up evaluation
of intentional selectors. A further optimisation would bc
to store evaluated intentional sclcctors in the database
until an update to a dependenifuncfion (XX 5.4 below)
invalidates them.

5.3 Beyond Datalog

As we would expect, PFL is more cxprcssive than Data-
log since set-manipulation functions such as nesting,
counting, and unnesting can bc defined. We give three
examples below : “nest” nests the ant relation, yielding a
set of pairs (x,ancs) such that ants is the set of all the
ancestors of person x; “generation” rctums a set of pairs
(x,g) such that g is the gcncration of person x (which is
calculated by counting the number of fcmalc ancestors of
x); and “unnest” yields a set of pairs (x,a) such that a is
an ancestor of x :

nest =
1 (x,Ial(a,x) E ant (Any,x) 1) I

(y,x) E parent (Any,Any) 1
generation =

((x,lengthS tyly E z &
female y != 01) I

(x,2) E nest)
unnest =

{(x,a) I (x,ancs) E nest & a E ants)

The second of these functions uses an infix operator S
which allows a function expecting a list as an argument
to be applied to a set; % is dcfincd as

f$ s= f (set-to-list s)

5.4 Integrity Constraints over Selectors

We define an integrity consfruinf to be an intentional
selector, f, such that the database stale is incorrect whcn-
ever the expression (f Any) dcnotcs anything other than
the empty set. For example, WC may dcfinc a constraint
icl which states that no-one is both malt and fcmalc and
a constraint ic2 which states that no-one is their own
ancestor :

icl x =
IYl I yl E male x &

y2 E female x &
Yl = y21

ic2 x =
ix I (x, y) E ant (x,Any) 6,

x = Y)

Since the filters of set abstractions in an intentional .sclcc-
tor can contain arbitrary functions, we can also cnforcc
cardinality constraints. For example, ic3 cnsurcs that
anyone who is recorded as having parents (the iirst gcn-

erator) has prcciscly two parents (the second gcncrator) :

ic3 x =
tx I (y,x) E parent (Any,x) &

length$ (parent (Any,x)) !=21

It is clearly dcsirablc to USC the updates to the database to
restrict the amount of computation rcquircd to validate
constraints. A number of constraint optimisadon tcch-
niqucs have been dcvclopcd for logic languages (.scc [IS]
for a rcvicw of them) any of which could bc adapted for
our integrity constraints. Here we show how one such
method - that of Lloyd and Topor 12 I I - can be u.scd. Our
account roughly follows that of [301 for the handling of
integrity constraints in the previous version of PFL,
modified to utilisc set-valued rather than list-valued con-
strainls.

WC say that a function fl direcdy &pcnds upon a func-
tion I2 if I2 occurs in an equation that dclincs fl; WC USC
Ihc term depends upon for the transitive closure of the
directly depends upon relationship. This “call graph” is
already automatically maintained by PFL as equations
arc inscrtcd and dclctcd since WC need it to infer the types
of functions. Wc can now put it lo furlhcr use for the
cnforccmcnt of integrity constraink

WC recall from 5.1 that an intentional sclcctor (and hcncc
an integrity constraint) is a function of the form :

fp= (c, I qI , 84 . . . 1 u . ..u (c,, Ill,“, iyr . . . 1

whcrc. without loss of gcncrality, WC have convcrtcd
summands of the form s p in the syntax of 5.1 to set
abstractions of the form (p 1 p E s p). WC distinguish
bclwccn three diffcrcni forms of qualifier occurring in
such an intentional sclcctor :

Typcl :qij isofI.hcfomIpl E SPY.

Type 2 : q i j is of the form s p = () , and

Type 3 : any other form of qualilicr,

whcrc s is a sclcctor and p, pl and p2 are paucms. Note
that the three types of qualifier corrcslx)nd lo posit&.
ncgativc and built-in prcdicatcs of Datalog rules respcc-
tivcly. Inclusion or exclusion of tuplcs in cxtcnsional
sclcctors iriggcr implicit inclusions and exclusions from
intentional sclcctors. In particular, the (explicit or impli-
cit) inclusion of a value tl = (u I ,...a,) into one sclcctor.
sl, may affect another sclcctor, ~2, in one of three ways :

(0

(ii)

Inclusion of vulues into s2 : If s2 directly dcpcnds
upon sl via a Type 1 qualilicr i.c.

s2 p =
. . . u (c I . . . cyr (v , ,..., Vr) E sl (w I)...) w,) & . ..) u . . .

let t bc the value obtained from c by replacing Vj by
Uj, for all 1 I j 5 r, and any other free variables of c
by Any. Then for any value t2 implicitly includccl
in10 s2 as a result of the insertion of 11 into sl, wc
have I ?= t2 holds.
Exclusion of values from s2 : If s2 directly dcpcnds
upon sl via a Type 2 qunlilicr i.c.

426

s2 p L= . . . u (c I .I. & sl (VI ,...I v,) = () & . ..) u . . .

again, Icl 1 bc the value oblaincd from c by replacing
v, by u ‘. for all I I j s r, and any other free vari-
ablcs o f’ c by Any. Then for any tuplc 12 implicitly
cxcludcd from s2 as a result of the insertion of tl
into sl, WC have I ?= 12.

(iii) Bolh inclusion inlo and exclusion from s2 : If s2
dcpcnds upon sl via a Type 3 qualifier Lhcn arbitrary
values may implicitly huvc been included and
cxcludcd. La t bc lhc value oblaincd from c by
replacing any free variables by Any. Then for any
luplc 12 implicitly included or excluded from s2, WC
have L ?= 12.

The exclusion of a value from one sclcctor may similarly
affect another : in Lhis cast the roles of Type I and Type
2 qualifiers are intrchangcd. Thus, in our dcscriplion of
the constraint enforccmcnt algorithm below, WC assume
lhc availability of two functions : “includcs(s,v,u)” takes
a sclcctor s. a value v and a llag u indicating whcthcr v
rcprcscnls a possible inclusion or a possible exclusion
from s. and returns a set of pairs (s’.v’) such that s’ is a
sclcctor cithcr directly dcpcnding upon s via a Type I or
Type 2 quulilicr or indirccdy via a Type 3 qualifier. and
the v’ match all the inclusions into the s’; similarly,
“cxcludes(s,v,u)” rctums a set of pairs (s’,v’) such that the
v’ match all exclusions from the s’.

To optimise the cnforccment of constraints, Ihc system
automatically assoeiatcs with each sclcctor, s, affcctcd by
an update two sets, si and s,, which rcspcctivcly contain
tuplcs matching all tuples included into (or cxcludcd
from) s. Thcsc sets arc built rccursivcly using the func-
tion “update” given below. In particular. after lhc inclu-
sion (or exclusion) of a value into an cxlcnsional sclcclor
s, updatc(s,v,“i”) (or updatc(s,v,“c”)) is cnllcd to maintain
1hcsc scks :

update(s,v,i-or-e)
t
if V E Si wO

return;
si or 6 = Si or 63 U IV);

for' ((9' ;v') E includes
update(s',v',"i") ;

for ((s', v') E excludes
update(s',v',"e");

1

(s,v,i-or-e))

(s,v,i-or-e))

The databmc is validated with rcspcct to the constraints
when a commit point is rcachcd. Validity is asccrtaincd
by evaluating the cxprcssion (ic t) for each constrain1 ic
and each value I in ici. In general, a set ici may contain
redundant tuplcs : whenever there are luples tl,t2 E ic i
such that 11 ?= t2, then 12 may safely be removed from
the set since ic t2 c ic ~1. Thus constraints need only be
validated with respect to thcsc rcduccd .scts of luplcs.

6. Conclusions
We have dcscribcd how the functional database language
PFL can bc cxtcndcd with SCIS as first class objects. Our
support of the value Any and the ?= operation then al-
lows any Da(alogf”“+“fg predicate to bc expressed as a
PFL function. WC thus combine the rcspcctive advsn-
lagcs of functional and logic dolabasc languages within
one scmanlic and opcralional framework. Our work can
also bc considcrcd as conuibuting to the formalisation of
database concepts using powerdomain theory. as
cxcmplificd by Buneman el al [8].

More specifically, in common with functional database
languages such as [3,4, 5, 7, 16, 18,23,28] we support
dctcrministic computations over large volumes of data.
WC also support the storage of all types and functions in
the database, a feature found only in [28]. In common
with logic database Ianguagcs [12, 13, 251 we also sup-
port search-based computations over large volumes of
data. Scvcral functional languages provide relational
processing by incorporating records [2,9,23,24,26] but
it is not clear how full dcductivc capabilities can bc
achicvcd in thcsc languages. FAD [4] does add sets to a
functional computation mod& but relics upon Lhe ability
to “call out” to an cxtemal, compuiationally complete,
language in order to dcfinc arbiuary functions. Several
logic-based Ianguagcs also incorporate sets [20]. In par-
ticular, COL [l, 171 integrates both functions and sets
into a logic framework and thus has similar expressive-
ncss to our language. However, it too achieves this by
assuming the ability LO call out to an cxtcmal language to
dclinc arbitrary functions. In contrast WC use one
language and one daubasc to store all information.

WC have indicalcd how optimisation techniques
dcvcloped for both functional and logic languages can be
vansfcrrcd to PFL, for example for recursive query pro-
cessing and for integrity constraint enforcement. These
arc areas of on-going research. We are also investigating
suitable bulk data svuclurcs to efficiently support the ?=
operation. Finally, PFL is currently being used to
analyse road traffic accident data, which requires both
search-based computation, e.g. to find the nearest site
(junction, roundabout etc.) to a given accident location,
and dctcrminiaic computation. e.g. to group accidents by
site and to product accident stalisdcs.

Acknowledgements

WC arc grateful to Swamp Rcddi for discussions on
incorporating integrity constraints into PFL. The work
dcscribcd in this paper has been supported by the U.K.
Science and Engineering Research Council (grant no.
C&/G 19596).

References

[I] Abitcboul S. and Grumbach S. A Rule-Bused
Language wilh Functions and Sets, ACM TODS
16(l), 1991.

427

[2] Albano A., Cardclli L. and Orsini R. Galileo: A
Strongly-Typed, lnleraclive Conccpluul Language,
ACM TODS lO(2), 1985.

133 Annevelink J. Darabasc Programming Languages:
A Funcrional Approach, Proc. ACM SIGMOD,
1991.

I41 Bancilhon F. el al. FAD, A Powerful and Simple
Database Language, Proc. 13th VLDB Confcrcncc,
1987.

[51 Batory D.S., Lcung T.Y. and Wi.sc T.E. Implcmen-
tarion Concepts for an Exlensible Dala Model ond
Dafa Language, ACM TODS 13(3). 1988.

[6] Becri C. and Ramakrishnan R. On the Power of
Magic, Proc. ACM PODS, 1987.

[7] Beech D. A Foundation of Evolurion from Rclu-
rional lo Object Databares. in Advances in Database
Technology (EDBT 88). LNCS 303. Springcr-
Vcrlag, 1988.

[8] Buneman P., Jung A. and Ohori A. Using Power-
domains lo Ceneralisc Relulional Databases,
Theoretical Computer Science, Vol. 91, 1991.

[9] Cardelli L. Amber in Combinators and Functional
Programming Languages, G.Cousineau cl al. (cds.),
LNCS 242, Springer-Vcrlag, 1985.

[lOI Cardelli L. and Wcgncr P. On underslunding types.
data absrraction and polymorphism, ACM Comput-
ing Surveys, 17(4), 1985.

[1 I] Cardclli L. Types for Dam-Orienled Languages, in
Advances in Database Technology (EDBT 88),
LNCS 303, Springer-Vcrlag. 1988.

[12] Ceri S.. Gottlob G. and Tanca L. Logic Progrum-
ming and Databases, Surveys in Computer Science,
Springer-Verlag, 1990.

[13] Chimenti D. et al. The LDL Syslem Prololypc,
IEEE Trans. on Knowlcdgc and Data Engineering,
2(l), 1990.

[14] Clark K.L. Negulion us Fuilure, in Logic and Data-
bases, Eds. H. Gallairc and J. Minker, Plenum
Press, 1978.

[15] Das S.K. and Williams M.H. lnregrify checking
methods in deductive databases, Proc. 701 British
National Confercncc on Databases (BNCOD-7),
C.U.P., 1989.

[16] Dayal U. et al., Simplifying Complex Objects: The
PROBE Approach to Modelling and Querying
Them, Workshop on the Theory and Applications of
Nested Relations and Complex Objects, Darmstadl,
April 1987.

[171 Grumbach S. Inlegralion of funclions defined wilh
rewriting rules in Da~alog, Proc. DOOD89, 1989.

[181 Hcilcr S. and Zdonik S. Views, Dula Absrraclion
and Inherilance in the FUGUE Dara Model, in
Advances in Object-Oricntcd Datahasc Syslcms,

LNCS 334, Springer-Vcrlag, 1988.

[I91 Hindlcy J.R. and Scldin J.P. Inlroduction 10 Combi-
nalors und (he h calculus, C.U.P. 1086.

1201 Kupcr G.M. On (he Expressive Power of Logic Pro-
grumming Languages with SCIS, Proc. ACM PODS.
1988.

I211 Lloyd J.W. and Topr R.W. A basis for deductive
dalabase syslems, Journal ol’ Logic Programming,
Vol2. 1985.

1221 Lloyd J.W. Foundurions of Loxic I’ro~rammin~.
Springer-Vcrlag, 1987.

[23) Mannino M.. Choi I.J. and Batory D.S. ‘/‘he
Objecl-Orienled Functional Dotu Language, lEEE
Tramsactions on Software Engineering 16(11), 1990.

[24] Matthcs F. and Schmidt J.W. ‘IAe fypc! sysrem of
DBPL, Proe. DBPL-2, 1989.

1251 Morris K., Ullman J.D. and van Gchjcr A. Design
Overview c$ lhe NAIL! Sysrcm. Proc. 3rd Intcrna-
tional Confcrcncc on Logic Programming, LNCS
225, Springer-Vcrlng, 1986.

[261 Ohori, A. Buncman, P. Brcazu-Tanncn, V. Da&z-
base Programming in Machiavelli - a I’olymorphic
Language with Slutic Type I~fercrrrcc, Proc. ACM
SIGMOD Confcrcncc, 1989.

[27 I Pcyton-Jones, S.L. The Implemen~arion of Func-
lional Programming Languages, Prcnticc Hall. 1987

1281 Poulovassilis A. and King P. Exfcnding the Func-
tional Dam Model to Compu~o~ional Complc~cne.~.
Proc. EDBT-90. LNCS 4 16, Springer-Vcrlag, 1990.

1291 Poulovassilis A. and Small C. A finctiontrl pro-
grumming approach to deduclivc daruhascs, Proc.
17Lh VLDB Confcrcncc, 1991,

1301 Rcddi S. lnlegrily consrrninl cnforccanenl in (hc
.funclional database language PkL. 1’0 i\plXXU in
Proc. I I th British National Conlilrcncc on DaIa-
bases (BNCOD-1 I), Springer-Vcrlug, 1993.

(3 11 Schmidt D.A. Denolalionnl Sernanfics. Allyn and
Bacon, 1986.

[32] Sijbcrmann F.S. and Jayaraman B. A domain-
lheorelic approuch (0 functional und logic pro#runr-
ming, Journal of Functional Programming, 2(J),
1992.

1331 Small C. and Poulovassilis A. An Overview off’l:L,
Proc. DBPL-3, 1991.

[34] Sondcrgaard H. and Scstoft P. Non-dctcrminism in
Functional Lunguages, The Computer Journal,
35(5), 1992.

1351 Stay J.E. Denowlional Semanlics, MIT Press, 1977

1361 Uljman J.D. Principles of Dalabasc and
Knowledge-Base Sysrems, Compulcr Scicncc Press,
1988.

428

