A Domain-theoretic Approach to

Integrating Functional and Logic

Alexandra Poulovassilis
Dcpartment of Computer Scicnce,
King’s College London,
Strand, London WC2R 2LS

Abstract

The advantages of logic languages with respect to
search-based computation are well-understood, while the
advantages of functional languages with respect to deter-
ministic computation are becoming increasingly recog-
nised. It is therefore natural to investigate the develop-
ment of languages which reconcile the two paradigms.
As a contribution to this effort, we extend an cxisting
functional database language called PFL with sets as first
class objects. The resulting language subsumes
Datalog®™*+"8 in the sense that any set of Datalog®"+o<8
rules can be translated into a set of PFL equations with
the same semantics. Since functional and logic databasc
languages can be considered as proper sub-languages of
PFL, well-known optimisation techniques from both can
usefully be employed (for example lazy evaluation for
recursive functions and bottom-up evaluation techniques
for recursive predicates).

We motivate our work by reviewing the respective
advantages of functional and logic programming for

computation, data manipulation and data modelling. An

overview of the previous version of PFL is presented and
the syntax of this language is then extended to incor-
porate sets. We show how the Plotkin powerdomain con-
struction can be used to assign mecaning to sct expres-
sions and we give a denotational scmantics for the
extended language. To illustraie its expressivencss, we
show how Datalog rules can be expressed as PFL func-
tions. We discuss the optimisation of these functions.
We also show how integrity constraints can be dcfined,
and describe how a particular constraint enforccment
technique developed for logic databases can be adopted
by PFL.

Permission to copy withowt fee all or part of this material is
granted provided that the copies are not made or distribuied for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and nolice is given
that copying is by permission of the Very Large Dala Base En-
dowment. To copy otherwise, or 1o republish, requires a free
andlor special permission from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

416

atabase Languages

Carol Small
Department of Computer Science,
Birkbeck Collcge,

Malet St., London WCIE 7THX

1. Introduction

Recently we have been investigating the implementation
of deductive databascs whose infcrence is based on func-
tional programming rather than thc more common
approach of logic programming. In particular, we intro-
duced in [29, 33] a functional database language called
PFL which supports highcr-order functions, recursive
data types, and the persistence of faciual and procedural
information, both in the form of cquations. A uniquc
feature of PFL is that bulk data is storcd using a class of
extensionally-defincd updateable functions called selec-
tors. Selectors are invertibie, in the sense that they simu-
late exicnsional predicatcs. We showed in {29} how
functions can be written which draw inferences from
sclectlors and which are also invertibic. In particular, we
examincd the expressiveness of these invertible functions
and showcd how any stratificd Datalog IDB predicate can
be simulated by a such a function, subject to the proviso
that there exists a pre-determined order of (iring the rulcs
which definc the predicate.

The main aim of the present paper is 10 remove this res-
triction and hence to endow PFL’s invertible functions
with at least the full expressivencss of Datalog. The
result is a language which combines the advantages of
funclional programming with respect to deterministic
computations with the advantages of logic programming
with respect to scarch-based computations. This was not
achicved in the original language since in general rules
can be defined for which no fixed firing scquence gen-
erates all the provable facts. An cxample of such a set of
rules is the following (from [22}) :

p@b) «

plc,b) «

pX.Z) « p(X,Y), p(Y ,Z)
pX.Y) « (Y, X)

p(ac) is provable from these rules, but not by any depth-
first scarch strategy with a fixed ordering of trying the
rules, since the {ast two rules have cqually gencral heads.

In order to attain at least the expressivencss of Datalog,
we introduce sets into PFL. This allows us to cxpress
rules without any implied order of firing. Our sets arc
first class objects : they can appcar arbitrarily nested

within cxpressions and can themselves contain arbitrarily
nested cxpressions; also, functions can be written which
take scts as arguments and return scts as results. In par-
ticular, functions can be defined over sets to simulate all
Datalog™+¢ predicates. We term such functions inten-
tional selectors. As we would expect, the new PFL is in
fact more expressive than Datalog since aggregation and
counting operations can be defined over sets.

A secondary aim of the paper is to show how semantic
integrity constraints can be defined and efficiently
enforced in the extended PFL. An immediatc consc-
quence of supporting sets as first class objects is that
approaches developed for the efficient enforcement of
constraints in logic databascs can be adopted. As an
cxample of this we illustrate how the method of Lloyd
and Topor [21] can be used. In fact, our integrity con-
straints are morc expressive than those of logic databases
since cardinality and other aggregation constraints are
supported.

Since PFL aims to combine the respective advantages of
logic and functional programming, we bricfly review
these in the remainder of this introductory scction,

Onc major advantage of functional languages over logic
languages is that they arc higher order and so all expres-
sions arc first cfass objects. Higher-order functions can
be defined which abstract out recursion paticrns over
recursive data structures, and which can then be used in
the definition of other functions which do not include
cxplicit recursion. A second advantage is that the deter-
ministic semantics of functional evaluation can be
cxploited for the representation of default rules (see
128]). In contrast, logic languages are monotonic and
hence require the introduction of extra-logical constructs
such as the ncgation as failure rule [14]. Thirdly, by
employing lazy cvaluation, infinitc processes and data
structurcs can be handled. Finally, deterministic compu-
tations are expressed morc succinctly by nested function
applications than by joins of predicates over common
variables.

Conversely, the main advantage of logic languages is that
scarch-based computations arc supported directly, while
in functional languages thcy must be simulated determin-
istically. Also, unlike functions, predicates are invertible
in the sensc that they can, theorctically, be used with any
of their arguments uninstantiated, and thus predicates
may bc more versatile than functions, Finally, in the con-
text of deductive databases both facts and derivation rules
arc often expresscd more naturally in terms of single
predicates than in terms of functions and their inverscs.

The motivation behind the development of PFL has been
to combine within one uniform semantic and operational
framework the respective advantages of these two para-
digms for decductive databases. In particular, the
extcnded PFL exhibits all of the features of functional
languages described above. Furthermore, since sets are
now first class objects, functions can be defined which
play a role similar to intentional predicates. Any set of

417

Datalog rules (including those incorporating negation and
function symbols) can be translated into an equivalent set
of PFL cquations. Finally, all of the query optimisation
stratcgies devcloped for logic languages - including
optimisation techniques developed for integrity con-
straints - can now be transferred to a functional context.

The outline of the remainder of the paper is as follows.
In scction 2 we briclly describe the features of our origi-
nal language, and in particular its type system and the
way in which user defined functions are specified. Sec-
tion 3 introduces the syntax and semantics of the
extended PFL. We first define a kernel functional
language and give the denotational semantics of this
language. We then add set expressions and extend the
denotational semantics accordingly. Finally, we describe
how bulk data is stored in a class of extensionally-defined
set-valued functions. Section 4 then discusses the
evaluation of expressions in the extended PFL. Section §
considers the expressiveness of the language. We give a
scheme for translating rules in Datalog™"* ™ into equa-
tions involving sct expressions, and then give an optimi-
sation scheme for these equations. We also show how
higher order functions can be applied to sets, thus allow-
ing computations to bc defined which would require
cxtra-logical predicatcs such as "set-of’ in a logic
language. Finally, we discuss the definition and efficient
cnforcecment of integrity constraints. Section 6 gives our
conclusions and a bricf comparison with related work.

2. Overview of PFL

PFL has a Milner-style polymorphic, strong, static type
system [10] that supports a number of built-in types and
provides facilitics for the introduction of new user-
defined types and constants. Functions are defined incre-
mentally through the inscrtion and deletion of equations.
The types of functions are inferred incrementally in the
face of such updates. Function evaluation is lazy,
thereby permitting computation with unbounded data
structures. Types, constants and equations can be defined
and removed at any stage during the life-time of the data-
basc subject to certain obvious restrictions (e.g. a con-
stant cannot be introduced for an as-yet unspecified type).
All types, constants and equations are stored in the data-
base. We bricfly review the structure of the type system
in 2.1, the system dcfined functions in 2.2, and the
specification of uscr defined functions in 2.3.

2.1

PFL’s type system comprises three layers (c.f. {11]).
Firstly, there is the meta-level type Type which is the set
of all types; secondly, there are the object-level types,
both built-in and user-declared, which are regarded as
mcta-level values of type Type; and finally there are the
values corresponding to each object-level type. The
built-in types are Bool, Num, Str, and Char which are
populated by booleans, strings, numbers and characters
respectively. In addition, for every type t there is a dis-

The Type System

tinguished constant Any,. We usually write this constant
without its subscript since this can be inferred from con-
text. Certain system-defined functions when applied to
Any will result in a run-time error e.g. the arithmetic
functions (c.f. division by zero).

New types and values are declared using commands of
the form

"lype” constant type-variables ";"

"value" constant "::" type ";"

These constants are sometimes tcrmed constructors {27)
since they construct values of the indicatcd types. For
example, Person, Product and List types togcther with
constructors for these types are dcfined as follows, where
identifiers starting with an uppercase letter are construc-
tors (meta-level or object-level), whilst identificrs starting
with a lowercase letter are variables :

type Person;

type Prod2 a b;

type List a;

value John :: Person;

value Tuple2 a—b— (Prod2 a b):;
value (:) a—(List a)—>(List a)
value [] List a;

Thus, Person is a type (or meta-level value), Prod2 t1 2
is a type for all types t1 and 2, and List t is a type for all
types t. Similarly, John is a value of type Person, and
Tuple2 vi v2 is a value of type Prod2 t1 2, assuming v1
and v2 are of type t1 and 12 respectively. Zero argument
types (e.g. Person) and values (e.g. John) can be regarded
as object types and object values respectively. For syn-
tactic case we adopt a number of abbreviations [or types
and values :

List t = [t]

Prodn tl ... tn = (ti,...,tn)
(:) vl v2 = (vli:v2)
vi:(...(vn:[1)...) = [vli,...,vn)]
Tuplen vl ... vn = (vl, ..., vn)

In preparation for adding sets to PFL, we also assume the
availability of a polymorphic set type Sct a, and we allow
the syntax {t} in lieu of Set t for any type exprcssion t
(analogously to {t] for List t).

2.2 System Defined Functions

PFL provides a number of system defincd [unctions,
including the usual arithmetic (+, —, *, /, div, mod), rcla-
tional (=, !=, <, >, 2, <, and, or, not) and list processing
operators (++, hcad, tail). In addition, thc operator ?=
(pronounced "matches”) acts on values conlaining Any.
In particular, ?= determines whether its left operand is
identical to its right operand except with respect to
occurrences of Any in the former. More preciscly, for
each n-ary constructor C we have that

~e

418

(C x4 . X)) 2=
True and

(x; 2=y} and ...

(C Y1 . Yn)

and (x, ?= y,)

while for any other valucs x and y we have that

X 7=y X = Any

(we obscrve here that the first = symbol in a PFL cqua-
tion denotes definition while thercafter = denotes cqual-
ity). For example, [Any,2,Any] 7= [1,2,3] and [1,2,3] 7=
{Any,2,Any]| cvaluatc to Truc and Falsc respectively. We
note that 7= is rcflexive, anti-symmetric and transitive i.c.
it is a partial ordcring.

2.3 User Defined Functions

Functions are dcfined by means of equations, which are
introduced by a command of the form

"dcfine” lhs "="

For cxample the 3-ary function if and the 2-ary function
map (which has thc property that map f [x,....,.x,] yiclds
if xy, ..., f x,]) can be defined as follows :

"

expr ";

define if True x y
define if False x y
define map £ []
define map £ (x:y)

X;
y:
[1;
(f x):(map £ y):

[

The types of these functions are inferred automatically by
the system.

A uscful query construct supported by PFL, as by most
functional languages, is the list abstraction, which is sim-
ply syntactic sugar for ordinary function applications (scc
1271). An examplc of the usc of the list abstraction is the
quick-sort {unction below (where ++ is the infix append
opcration) : :

define gsort [} = [];

define gsort (h:t) =
(gsort {x | x & t ; x < h]) ++
[(h] ++
(gsort [x | x ¢« t ; x 2 h}):

3. Extending PFL with Sets

In this scction we describe how PFL is extended with scts
as first-class objccts, and we specifly formally the seman-
tics of the resulting language. The formal foundation of
any functional language is the A calculus (of which a
detailed account may be found in [19]). Computation in
this calculus consists of rewriting expressions to a normal
form by a serics of syntactic transformations called § and
1 reductions. A formal theory can be constructed for fin
reduction and modcls of this theory are triples <A, e, D>,
where D is a domain of continuous functions (we define
the terms domain and continuous in 3.1 below), A
models the definition of functions by A abstraction and ¢
models function application. The semantics of functional
languages arc thus usually specificd using a denotational

approach {31, 35| which assigns values in D 1o expres-
sions in the syntax of the language. We 100 take this
route Tor specifying the semantics of PFL. We begin by
reviewing the presequisite hasic domain theory in 3.1, In
3.2 we define the syntax and denotational semantics of a
kernel functional language into which PFL cxpressions
are translated before evaluation. In 3.3 we add sct
expressions to this syntax and in 3.4 we extend the deno-
tational semantics accordingly. In 3.5 we extend the ker-
nel further to allow pauern-matching. Finally, in 3.6 we
discuss a class of sct-valued functions called seleciors
which are used for the storage and update of bulk data.
Rcaders who arc not familiar with denotational scmantics
can safely omit sections 3.1, 3.2, 3.4 and 3.5, and rcad
only 3.3 and 3.6. In this casc, two csscntial concepts that
are required for 3.3 and 3.6 arc that

e |y is the value of type D denoting "no information”
(resulting perhaps from a non-terminating compula-
tion or a run-time crror), and

e continuous Tunctions arc monotonic and information-
preserving (i.c. applying the function o the least
upper bound of a scquence of better-defined argu-
ments is equivalent o applying the function 1o cach
argument individually and then taking the lcast upper
bound of the results).

3.1 Background on Domains

I0 D is a sct and [is a partial ordering on D, then for any
subsct E ¢ D there is at most one clement d € D such
thaVd e D, d[Zd ifandonly if E[Cd" Ifd
exists, it is termed the least upper bound of E, wrillcn
| _IE. The clement |_|@ (if it cxists) is denotcd by { and
satislics | [d, V d € D. D is said to bc a domain if it
has such a lcast clement and if for cvery (possibly
infinite) sequence of clements dy - d, [..., their lcast
upper bound |__[{d,, do, ... } also cxists,

Given two domains, D, and D, a function :D{—D3 is
said 10 be continuous if, for cvery scquence dy £ da 2
in Dy, (L _Hd;da,..}) is cqual o |_I{f d,,da,...).
In other words, continuous [unctions preserve least upper
bounds. Functions are required 10 be continuous in order
o guarantee the existence of a Icast fixed point. In par-
ticular, given a continuous function f:D —» D, the least
fixed point of { exists and is given by
FIX(D = _I(M(1p) | n20)

where 9(x) = x and fi(x) = f(f~' (x)) for i > 0.

The simplest domain is a flat domain which has the pro-
perty that if dy [d, then citherd) =dy ordy = 1. Itis
possible to construct more complex domains from
simpler domains. In particular, given domains D,, ...

D,,, four uscful domains arc the product, sum, coalesced
sum and continuous function domains :

The product domain D = D; x D, x ... x D,, contains
wples of the form <d,, d3, ..., d,> where cach d; € D,

419

and <d,,d,, ..., d.>Cp <€, €2, > ifd, Ep, ¢ V
1 <i<n. The bottom clement is thus <ip , ..., Lp,>.

The (separated) sum domain D=D; + Dy + ...+ D, is
defincd as a union :

({1} xDy) U ({2} xDy) U..u({n}xD,) v {ip}

where 1p Cp d, Vde D, and <i, d>[p <j, ¢> if the
"tags" i and jare equal and d [Cp, e.

The coalesced sum domain D =D, ® ..® D, is also a
union :

(1) x(D; - {1p,}) v ({2} x (D2 - {Ltp,}) V..U
({n) x(D, - {1p,]}) v (1p]}

where Cp is defined as for the scparated sum. The
coalcsced sum is so called because the least element of
cach component space becomes identificd with the least
clement of the sum space. This is in contrast lo the
separated sum wherc a new least element is introduced
into the sum space.

The domain of continuous functions from a domain D; to
adomain Dj, D =[D; — Dj], has fCpg if 1(d) b,
g(d), V d € D;. The lcast clement of D is thus Ad.1p,,
the function which retums the least element of D; for
every element in D;.

The equation defining a domain D may be recursive. An
cxample is the domain of lists of integers, where NIL it
is a distinguished constant :

L[ST[N'[' = (INT X LIST[NT) + {NILM}

The solution of such recursive domain cquations is dis-
cusscd by Stoy [35].

3.2 Denotational Semantics of the PFL Kernel

Functional languages typically have a simple kernel into
which expressions in the full syntax of the language are
translated prior 10 cvaluation. The semantics of the full
language arc thus derived from the scmantics of the ker-
ncl. PFL follows this pattern and the syntax of its kernel
is as follows :

=id | const | exprexpr |
"("expr ", .. ", expr)" | Aid.expr |
"fix" expr

expr "where" id "=" expr

expr

In particular, the "fix" construct allows recursive func-
tions to be defined. For cxample, the equation

fact x = if (x = 0) 1 (x*(fact(x-1)))

is syntactically transformed into the following non-
recursive definition :

fact =
fix AMf.Ax.if 0) 1 (x—-1)))

Mutually recursive functions are handled by packaging
them into a single non-recursive tuple similarly.

(x = (x*(f

For our purposes, we assumc thal cxpressions arc
assigned values in the following scmantic domain, D :

D = W + Bool + Atom + [D->D] + (Dx D) +
(DxDxD)+..+LIST,

Here, Bool and Atom arc flat domains representing
booleans and other constants rcspectively, while LIST,
denotes an infinite number of domains such that cach
LIST; consists of lists whose clements arc drawn from
domain], ¢.g.

LISTA(om =

(Atom X LIST pom) + (NIL piom}
LISTAlomxAlom =

((Alom X Alom) X LlSTAl()mxAlom) + {N“-‘AlomxAu)m }

In practice of course atoms arc partitioncd into scparalc
domains in most functional languagcs (onc cxception is
LISP) and lists are constrained to bc homogencous by the
type checker. Type checking in PFL was discussed in
[29] so we consider it no further here. We mcerely note
that in the domain equation for D above, W contains a
singlc clement, "crror”, which is the valuc of any
incorrectly typed expression.

Dcfining the denotational scmantics of a language con-
sists of identifying thc syntactic categories of the
language, and selling up semantic functions between
these and the domain D (sce {31, 35]). The three syntac-
tic categories of our kernel arc Con, Idc and Env =
[Ide->D], from which constructors, variablcs and
cnvironments are drawn, respectively. In particular, an
cnvironment p is a function that assigns to cach variablc
in Ide a value in the semantic domain D. Two scmantic
functions are rcquircd to map cxpressions (o valucs in D :
the function K:[Con — D] maps cach constructor 1o its
predefined value, and the function E:[Exp — [Env — Dj|
maps any expression to a valuc, for a given cnvironment.
The definition of E is given below where, by convention,
all expressions enclosed in square brackets, | and }, arc in
the syntax of the language whose scmantics arc being
defined i.e. the kerncl. All other expressions arc in the
defining notation, in this casc some model of the A cal-
culus that supports A abstraction (whence the A on the
right hand side of the third equation) and function appli-
cation (whence the e on the right hand side of the fourth
cquation). The notation p[d/id] dcnotes the cnvironment
obtained by extending p to map the variable id to the
value d. As we would cxpect, the semantic function E
mapping a kernel functional language 10 a model of the A
calculus is almost trivial. Specifically, variables arc
mapped to the value assigned to them by p, constants are
mapped to the value assigned to them by K, A abstrac-
tions are mapped to A abstractions, applications arc
mapped to applications, tuplcs arc mapped to tuples, "fix"
results in a fixpoint computation, and "where” clauscs
result in the extension of the environment with a new
identificr :

420

Elidlp =plid]
E] const Jp = K| const |
E1 A id.cxprp = A d.E [expri pld/id]

Elexpr, expry Ip = (Elexpr, Ip) e (Efexpr, Ip)
Ef (cxpry,...expry)bp = <ELexpr; Ip,...L:Jexpr, 1p>
Effix cxpr|p =FIX (Edexprip)

Ejexpry whercid=cxpr, jp =

E]expry 1pl(ENexpry Ip)fid]

33

We arc now ready 0 add set abstractions 10 the kernel
functional language. We need 1o extend first the syntax
of the language to allow sct expressions, then the seman-
tic domain to include values for set expressions, and
finally the secmantic function E.

Adding Set Abstractions

Sct abstractions are similar Lo list abstractions in that they
construct ncw scts from existing sets just as list abstrac-
tions construct new lists from cxisting lists. As well as
sct abstractions, wc also introduce emply scts, singieton
sets and sct unions. The resulting Tanguage syntax is as
follows :

expr =id | const | exprexpr |
"Cexpr)L expr) | Aadexpr |
“fix" expr | expr "where” id =" expr |
0" | rexprt) | oexpr U expr |
(" expr | qualifiers "}

qualificrs = qualificr | qualificr "&" qualiticrs

qualifier = gencrator | filter

gencrator = id "e " ¢xpr

filter = expr

We also allow the notation { s, ..., s, } in licu of
{s;} U..U[s,}. Twocxamples of set expressions are

{ (John, Jane), (Jack, Jane) }

{n | n € nat &§ (n mod 2) = 0}

where the sccond cxpression denotes the set of cven
numbers in nat. In 3.5 below we extend this syntax to
allow arbitrary pattems on the feft-hand side of generator
expressions, so that the [ollowing set abstractions respec-
tively return (i) all the wiples in the sct parents, (i) all the
tuples in the sct parcnts which have Bill as their tirst
component, and (iil) the singleton sct ((Bill,Mary)} if
this tuple is in the sct parcents, and the empty sct other-
wisc:

{(x,2) | (x,2) € parents})

{(Bill,z) | (Bill,z) € parentsi
{(Bill,Mary) | (Bill,Mary) € parcnts)

The semantic domain D of 3.2 is extended to include an
infinitc number of domains SET, such that cach SET,
consists of scts whose clements are drawn from domain 1

D = W+ Bool+ Atom + [D-D]+ (Dx D)+
(DxDxD)+...+LIST, + SET,

Three main orderings have been proposed for set

domains in the literatuse : the Hoare, Smyth and Plotkin
orderings (the Iast of these is also known as the Egli-
Milner ordering), and a comparison of them is given in
{34]. Of these, the Hoare and Plokin orderings are both
candidates for our purposes since they consider larger
sets o be better defined than smaller sets. The Hoare
ordering permits scts 0 conwin an infinitc number of
non-|; ciecments whercas under the Plotkin ordering sets
are cither finite or contain 1;. We have chosen (o use the
Plotkin construction rather than the Hoare onc since, as
we will sec below, this allows us to map from sets to lists
and thereby to fully integrate scts into PFL. This is not
possiblc with the Hoarc ordering (which was adopicd by
Silbcrmann and Jayaraman in their integration of func-
tional and logic programming [32]) since such a mapping
would not be continuous. More specifically, the Plotkin
ordering, [Zpy . on two scts S and T whose clements are
drawn from a flat domain 1 is defined as follows :

S o T iff

Vse S.3te TosSytand Vie T.3se S.s[Tht

(The definition for non-flat T is more intricate and can be
found in [31}). Thus, the lcast clement is {1} and the
cmply sct is not part of the domain. This is because the
Plotkin powerdomain is traditionally used to mode! non-
determinism, where all computations have some result
cven il this result is non-termination. In our casc we
wish o model set-valued functions and so the cmpty sct
is mcaningful. The structure of SET,; is thus the
caalesced sum (see 3.1) of the Plokin powerdomain with
a singleton domain representing the cmpty sct of type 1.
For ¢xample, the Ieft-hand part of Figure 1 below shows
the structure of SET . Computation over this domain
commences at the least clement {1p,) and proceeds
cither to the empty sct or to a non-cmpty sct. In the latter
case the set may contain the clement Lg,,, representing
the possibility that more clements will be added (o the sct
or that a non-terminating computation will occur. When
no more clements can be added 10 a sct, computation ter-
minates with a st not conaining | goqi-

To stay within a purcly functional formalism (and
thereby continue o benefit from the advantages of func-
tional programming we discussed in the introduction)
there are two key requirements for operations over scts ¢
determinism and continuity, To retain determinism we
assume a total ordering, <, on all clements of Atom and
Bool cxcept Laom and 1peo, Which in turn induces a
total ordering on all finite clements of D (except the func-
tions in [D--D] of coursc). We then use an operator

set to_listy : SETy — LIST,

which maps clements of SET) 10 clements of LIST (we

often write sct_to_list without its subscript since this can

be inferred from contexu). It docs this by taking

- any sct containing a { 0 4y, and

- any other set to the (unique) list whose componcnts
are preciscly those of the sct and appear in the order of

421

< without duplicates.

For cxample, Figure 1 below shows the SETy,, and
LISTRoa domains and the sct_to_listg,, mapping
between them (which assumes that Anyg,, < False <
True). We note that sct_to_list is continuous, as required.

3.4 Denotational Semantics of Set Expressions

We now extend the semantic function £ of 3.2 to map set
expressions into sets. Before doing so we require three
standard (and continuous) operators from powerdomain
theory [31). The singleton operator constructs singleton
scts in SET; from clements in I

{_) :I>SET,
The union operator constructs new scts from pairs of sets:
v: (SET] X SET])—)SET[

Finally the + opcrator distributes functions of type
I->SET; over scts of typc SET; and takes the union:

_+ :(I-SET;)—(SET;—SET))

In particular, for any function F:I-SET), the function
F+:SET|—SET) is defincd as follows:

F+S =u (ifd=1, then {1} else (Fd) | de S}

The cxtended scmantic function E assigns meanings to
sct expressions as follows, wherc we have explicitly sub-
scripted sct expressions with the type of their components
where necessary:

E{(}:lp
El {cxpr};lp = Elexprlp }i
Efcxpry wexpralp =(Elcxpry Ip) u (Elexpry Ip)
E{ (cxpr | filter-expr & rest); §p =

if E] filter-expr Jp then E} {cxpr | rest) Ip else O,
E{ (cxpr | id € sct-expr & rest) {p =

(A d.E | {exprlrest)) pld/id])+ e (E sct-exprlp)

Thus, singlcton expressions map to singleton scts, union
cxpressions map 1o unions of scts, filters map to condi-
tionals, and gencrators id € sci-cxpr map to functions
which gencrate bindings for the variable id by being dis-
tributcd over sct-cxpr.

We conclude this section by noting that the 7= operator
of scction 2.2 can be cxtended to match set terms in a
number of ways. Three possibilities are 7=y, which
simulates the Hoare ordering on sets (i.e. every element
in the left-hand operand of 7=y must match some ele-
ment of the right-hand operand) :

sl ?=H S2 =
{p | pESL & vES2 & p?=yV} =

=2,

S1

7=g, which simulates the Smyth ordering (i.e. cvery ele-
ment of the right-hand opcrand must be matched by some
clement of the left-hand operand) :

S1 72=g 82 =

(v | veéS2 & peSl & p?=gv} = S2

{AF, T}
{LAFT)
{AF} (AT {F, T}
{LAF} {LAT} {LF T}
"]
{A} {F} {1}
{LA) {LF} {.T
{}
{1}

N

Figure 1 : Mapping from Sety,y 10 Listpae, where A = Anyg,,, T = Truc and F = Falsc.

[AF,T] (A(F:(T:(0)3)))

(A:(F:(T1))

-
-
-

[AF] (A(F:(1:1)))

(A:(F:1))

L”’,,

[A] (A:(1:1))
\\\
(A1)
\\[l (1:1)
S— ~]

and ?=p, which simulates the Plotkin ordering (i.e. cvery
element of the left-hand operand must match some cle-
ment of the right-hand operand, and every element of the
right-hand operand must be matched by some element of
the left-hand operand) :

S1 ?=p 82 =
({p | pES1 & veES2 & p?=pv} = S1)
and

({v | veS2 & peSl & p?=pv} = S2)

35

In common with most functional programming
languages, PFL allows patierns (i.e. expressions in con-
stants and variables) in several places where the kemncl
syntax allows only variables. These are : A abstractions,
left hand sides of equations, and left hand sides of gen-
erators in list and set abstractions. Peyton Joncs [27]
discusses how such features can be translated into a ker-
nel language, although not for patterns in set abstractions.
So for completeness we give the scmantics of this
feature. To do so we need to add one more equation ©

Extending the Kernel to the Full Language

422

the definition of E in order to take carc ol gencrators with
pattems i.e. gencrators of the form ¢ pat, ... pat,, € scl-
cxpr, where ¢ is a constructor with n 2 (0 argumcnts
which arc themsclves variables or (urther patiems. The
cffect of such gencrators is to iterate over only those cle-
ments of scl-expr that match the pattern ¢ paty ... pat,.
In our scmantic cquation for this feature below we
assume the availability of patcm-matching A abstractions
[27} i.c. expressions of the form A pat.cxpr which when
applicd to an argument, arg, substitutc in cxpr the vari-
ables of pat by constants from arg if pat matches arg and
otherwisc return the constant crror € W (of scction 3,2) ¢

El {cxpr | c pat,...pat, € sel-cxpr & rest); Ip =
(A dif (E1 A c pat,...pat,.{exprirest) Ip) d # crror
then (E A ¢ pat,...pat,.{exprlrcst) §p) o d
else @)+ o (E| sct-cxpr | p)

3.6 Bulk Data

PFL’s bulk data is storcd in a class of functions called
selectors. In |29, 33] we dcefined sclectors as list-valued
functions defincd by an equation of the form

b p [v | v ¢ 1elation; p 7= v]

where the relation was a list without duplicates and
where updates o the selector could change the order of
its clements. Having now incorporated scts into PFL we
can more properly formalise sclectors as sct-valued func-
tons. In particular, a sclector is now declared by a state-
ment of the form

"o "on

type
where the type is required 1o be of the form 1—(t) for
some first-order monomorphic type 1. For cxample, the
following statcment declares a selector that can be used
10 store details of books - consisting of ihcir ISBNs,
titles, authors’ names and ycar of publication :

"sclector” name

selector books
(Num, St r, [Str],Num) —
{ (Num, Str, (Str],Num) };

A ncewly declared sclector, f, may be assumed to be
defined by an cquation of the form

f p= (v | v e relation & p ?= v}
where relation = {}

Updatcs 10 a sclector result in the relation expanding or
contracting. In particular, the command

"include” sclector value ™;

adds a ncw valuc o the rclation, while the command
"exclude” sclector pattern)"

removes [rom the relation all the values that match the

pattern. For example, the inclusions

include books (071678158,
“Principles of Database and
Knowledge-Base Systems",
["J.D.Ullman"],
1988) ;

include books (052126896,
"Introduction to Combinators and
Lambda Calculus",
{*J.R.Hindley",“J.P.Seldin"]},
1986) ;

include books (020508974,
"Denotational Semantics",
[*D.A.Schmidt"™],
1986) ;

result in the following definition for the books sclector

books p = (v | v € relation & p 2= v}
where relation =
{(071678158, "Principles...",...),
(052126896, "Introduction...",...),
(020508974, "Denotational...",...)}
and subscquently the exclusion
exclude books (Any, Any,Any,1986)

removes the Hindley & Scldin and Schmidt books.

The application of a sclector 10 an argument returns the
sct of the valucs in the relation that match the argument.
For cxample books Any rcturns the cntire rclation
while books (Any,Any,Any,1986) rcwrns the
details of books published in 1986.

4. Implementation

According to the definition of the fixpoint operator FIX
in 3.1, functional languages can evaluate functions by
commencing with lcast elements everywhere and con-
tinuing until no more information is inferred. For exam-
ple, the factorial function, fact, of 3.2 is the lcast fixed
point of the following higher-order function

H = AMAxif (x=0) 1 (x*{f(x-1))

By the definition of FIX the successive approximations 1o
H arc as follows :

HO maps all numbers 10 § ngm,

H' maps all numbers to Lngm except O which is
mapped to 1,

H2 maps all numbers 10 num except 0 and 1 which
arc both mapped to 1,

H3 maps all numbers 10 Ly,m cXcept 0 and 1 which
arc both mapped to 1, and 2 which is mapped to 2,

and so on, obtaining the factorial of a (positive) number i
on the i+1'" approximation.

However, the expression Y = Ah.(Ax.h(x x)) (Ax.h(x x))
has the property that for any expression H, (Y H) = H (Y
H) i.c. (Y H) is a fixed point of H. In fact it can be
shown {35] that (Y H) is the least fixed point of any con-
tinuous function H i.c. (Y H) denotes FIX(H). Thus,
functional languages typically cvaluate functions top-
down using Y rather than bottom-up using FIX. For
example, to evaluate the factorial of 2 we start off with
the expression (Y H) 2, and this is simplificd through the
following reductions :

(YH)2

- H(YH)2

- (il (x=0) 1 (x * ((Y H)(x - 1)))) 2

-2 * (YH)(2-1)

-22*(YHD

-2*H(YHID

22 * (Axifx=01Ex*(YH)E-1))1)
-2*(A*(YH)(Q-1D)

-2 * (1*(YH)O0)

-2 * 1*(H(YH)0)

S2* I*(AXifx=0)1*(YH)(x-1)0)
—>52*(1*1)

-2

Operationally then, Y has the affcct of producing a new
copy of (Y H) (thc "mcaning” of the factorial function)
upon cach recursive call. Notice that we are chosing 1o
simplify the left-most, outermost redex at each step

above - this computation rule is known as normal-order
reduction and it corresponds to thc lazy evaluation of
function arguments. It is nccessary to adopt normal-
order reduction in order to cnsure that (Y H) terminates.

Evaluation in the presence of scts can proceed in a simi-
lar fashion. Sets are implemented as binary trees with the
v operator at the inner nodes and singlctons at the leaves.
The operator + applies a function F to a sct by distribut-
ing F to all the leaves. The application of F to singlctons
can occur asynchronously e¢.g. in parallcl. However, the
operator + violates lazy evaluation since it evaluatcs the
argument to F before applying F (sce the definition of F+
in 3.4). Thus, although all the elements of the set arc
eventually discovered, the top-down evaluation of a sct-
valued function may fail to terminatc (c.f. the difficultics
in detecting termination when logic rules arc evaluated
top-down). At present we thercforc usc a bottom-up
evaluation strategy for recursive (and mutually-recursive)
set-valued functions. This strategy builds up scis
"naively” for "interesting” arguments of the function.
Optimisation to utilisc scmi-naive cvaluation technigucs
is an ongoing arca of work.

5. Expressiveness

Selectors are the analogue of thc EDB predicates of a
Datalog database, and from now on we term them exten-
sional selectors. In 5.1 below we introduce the concept
of an intentional selector and show how any Datalog IDB
predicate - including those whose rules include ncgation
and function symbols - can be translated into a PFL
intentional selector. In 5.2 we discuss the optimisation of
equations defining intentional sclcctors. In 5.3 we show
how PFL with scts superscdes Datalog by supporting
aggregation and counting opcrations. Lastly, in 5.4 we
show how integrity constraints over sclcctors can be
defined and efficiently enforced.

5.1

We define an intentional selector to be a function {
defined by an equation of the form

fp=s,U..Us,

where each s; is cither an application of a selcctor to the
pattern p, or a set abstraction (p | q; & ... & q,,} all of
whose generators iterate over sclectors. For example, the
following function is an intcntional sclector :

Intentional Selectors

anc (x,z) =
parent (x,z) U
{(x,2) | (x,yl) € parent (x,Any) &
(v2,z) € anc (Any,2) &
vyl = y2}

In our translation of Datalog rules into PFL, we first con-
sider the case of IDB predicates defincd by a singie rule
of the following form, where cach q; is cither an EDB or
IDB predicate, and cach r; is a built-in predicate :

424

p(i) « ql(yl)v erey qn(yn)' rl(yn+l)') rm(YnOm)

Without loss of gencrality we assume that the variables
of X arc distinct. We also make the usual assumption of
range-restriction [36] for the r; i.c. any variable appear-
ing as an argument to an r; i$ instantiated by some g;.
We translate such a rule into a PFL equation of the form

a, &...&a“&bl &...&hm&
¢ & .. &e,)

px=(x|

where :

(i) each literal q;(y; ;.Y 25 ..) in the rule results in a
generator a; of the form
(Vi1Vize) € Gi(wi 1 Wiy,)
such that
- aconstant or function symbol in a y; ; maps to the
same constructor in v; j and w; j,
- a universally quantified variable in a y; ; maps to
the same variable in v, ; and w, j, and
- an cxistentialty quantificd variablc in a y; , maps
to a ncw variable in v, ; and the constant Any in
Wi je
(ii) cach literal r{(¥ 54;) in the rule results in a semanti-
cally identical filter b; in the equation; and
(iii) cach pair of new variables z; ; and z;- ;- arising from
the same existentially quantified variable in (1) result
inafilter ¢y of the form 7, 5 = 7, .
We note that the equation resulting from this translation
satisfies the criteria for an intentional sclector. For exam-
ple, the following Datalog rule finds proper siblings:

sibling (X, Y) -

parent (2,X), parent(Z,Y), X # ¥

and the equivalent PFL cquation obtained by our transla-
tion scheme is

sibling(x,y)
{(x,y) | (zl,x) € parent (Any,x) &
(z2,y) € parent (Any,vy) &

x '=y & 21 = 22}

We note that the repeated occurrences of the variables x
and y in this cquation arc not ambiguous since, by the
semantics ol st abstractions, variable bindings arc inher-
ited initially (rom the left hand side of the cquation or
(rom the first gencrator with the variable in its head, and
arc then overidden by subscquent occurrences in the
heads of gencrators. This process of inheriting bindings
from one qualificr o the next is, of course, the precise
analogue of sideways information passing 136} in the
evaluation of logic rulcs.

The above translation scheme is clcarly incfficient @ for
cxample, rules containing cxistentially quantificd vari-
ables wranslale into cquations which take cartesian pro-
ducts of sclectors and then perlorm selections. More
sophisticated translation schemes which overcome these
problems are possible (¢.g. the one given in {291 for the

previous version of PFL). However, we have uscd this
particular scheme here because it simplifics our discus-
sion of selector optimisation in 5.2 below.

We can exiend the translation scheme 1o IDB predicates
that arc defined by morc than onc rule. Without loss of
gencerality we assumce that these rules are rectified [36)
i.c. that they all have the same head. Each rule is first
scparately translated according to the above scheme, giv-
ing a number of cquations with the same lcft hand side.
These cquations are then combined into a single equation
by forming a union {rom their right hand sidcs. For
example, the standard rules for the ancestor predicale

anc (X, 2) ¢« parent(X,z)
anc(X,2) « anc(X,Y), anc(Y,2)

translate into the PFL equation

anc (x,z) =
parent

{(x,2)

(x,z) U

| (x,yl) € anc(x,Any) &
{y2,2) € anc(Any,z) &
yl = y2}

Similarly, the rulcs

nat (X) & is_number (X)
nat (X) ¢« nat(Y¥), X = succ(Y)

translate into the equation

nat x =
{x | x € is_number x} U

{x | vy € nat Any & x € {Succ y}}

assuming that is_number is a sclector of type Nat—{Nat)
and Succ a constructor of type Nat—>Nat.

We now extend our translation scheme to cover the case
of ncgative litcrals. We first make the usual assumption
that cvery variable appearing in a negative literal also
appears in some positive litcral which precedes it in the
rule. Wc then translate a negative litcral, —p(), into a
filier (p 7) = (). For cxample, the following Datalog rule
assumcs that people arc male if they arc not female

male(X) ¢ person(X) & —female (X)

and the cquivalent PFL cquation is

male x =

{xlx € person x & (female x)={}}

The translation of Datalog rules which are not stratificd
with respect to recursion through negation results in func-
tions which yicld only the Icast clement of the sct
domain. For example, this occurs if we definc malcs as
persons who arc not female and vice versa :

male x =

{x|{x € person x & (female x)={}}
female x =

{xIx € person x & (male x)={}}

425

A similar source of no information being inferrable is
recursion through the set_to_list function of 3.3 (recall
that set_to_list requires its argument to be fully evaluated
before it can be applicd).

5.2 Transformation of Intentional Selectors

It is possiblc to apply scvcral syntactic transformations to
the sct abstractions dcfining intentional sclectors. In par-
ticular, we usc the following transformations :

Trl: Reordering the qualificrs so that each filter appears
as carly as possible and each generator as late as
possible, subject to the constraint that each qualifier
must follow all of the generators which provide
instantiations for its frce variables (this is equivalent
10 undertaking sclcctions as carly as possible in rela-
tional querics).

Switching pairs of generators over the same selector,
Pa € saand p, € s b, whenever a2 7= b (subject to
the same constraint as for Trl),

Replacing cquality by patiern-matching (this is
cquivalent 10 pushing sclections through joins) i.e.
given a scquence of qualifiers

Tr2:

Tr3:

& Qn-1 &
CorXio15XiXi4100ee) € 8 (Y io 1 ANYYi k150 &
Qo+t & . & Gnam-1 EE=X; & quim+1 & ...

where E is an expression all of whose variables are
bound by qualificrs up to q,-;, we can remove the
qualificr E = x; and replace Any by E inq, :

& Qo &
(..,Xi_l XX+l) €8 (---sYi—l ,E,yi...l) &
Qn+1 &..& Jn+m-1 & Qn+m+1 &..

For example, applying the anc function of 5.1 above to an
argument (Any,B), where B is a constant other than Any,
results in the equation :

anc (Any,B) =
parent (Any,B) U
{(x,2z) | (x,y1l) € anc (Any,Any) &
(y2,2z) € anc (Any,B) &
yl = y2}
By applying Tr2 we oblain
anc (Any,B) =
parent (Any,B) U
{(x,2z) | (y2,2) € anc (Any,B) &
(x,yl) € anc (Any,Any) &
yl = y2}

and by then applying Tr3 we obtain

anc (Any,B) =

parent (Any,B) U
{(x,2) | (y2,z) € anc (Any,B) &
{(x,yl) € anc (Any,y2))}

The process we have followed rescmbles the magic scts
{6] method of rewriting Datalog rules, which gencrates a
differcnt set of rules for a predicate depending upon the
binding pattern. We are currently investigating adapting
the full magic scts method for the bottom-up cvaluation
of intentional selectors. A further optimisation would be
to store evaluated intentional sclectors in the databasc
until an update to a dependent function (scc 5.4 below)
invalidates them.

5.3 Beyond Datalog

As we would expect, PFL is morc expressive than Data-
log since set-manipulation functions such as ncsting,
counting, and unnesting can be defined. We give threc
examples below : "nest” nests the anc relation, yiclding a
sct of pairs (x,ancs) such that ancs is the sct of all the
ancestors of person x; "generation” rcturns a sct of pairs
(x.g) such that g is the gencration of person x (which is
calculated by counting the number of female anceslors of
x); and "unnest” yields a set of pairs (x,a) such that a is
an ancestor of x :

nest =
{(x,{al (a,x) € anc
(y,®) € parent
generation =
{(x,length$ {(yly € z &
female y !=

(Any, x) }) |
(Any, Any) }

{(ry
(x,2z) € nest}
unnest =

{(x,a) | {x,ancs) € nest & a € ancs}

The second of these functions uses an infix opcrator $
which allows a function expecting a list as an argument
to be applied to a sct; $ is defined as

£$ s= £ (set_to_list s)

5.4 Integrity Constraints over Selectors

We define an integrity constraint 0 be an intcntional
selector, f, such that the database state is incorrect when-
ever the expression (f Any) dcnotcs anything other than
the empty set. For example, we may dcfine a constraint
icl which states that no-one is both malc and fcmale and
a constraint ic2 which states that no-onc is thcir own
ancestor :

icl x =
{yl | vyl € male x &
y2 € female x &
vl = y21}
ic2 x =
{x | (x,y) € anc (x,Any) &

x = vy}

Since the filters of set abstractions in an intentional sclec-
tor can contain arbitrary functions, we can also cnforce
cardinality constraints. For example, ic3 ensurcs that
anyone who is recorded as having parents (the first gen-

426

erator) has preciscly two parents (the sccond generator) :

ic3 x =
{x | (y,x) € parent (Any,x) &

length$ (parent (Any,x))!=2}

It is clearly desirable to usc the updates to the database (o
restrict the amount of computation required to validate
constraints. A number of constraint optimisation tech-
niques have been developed for logic languages (sce [15)
for a review of them) any of which could be adapied for
our integrity constraints. Here we show how onc such
mcthod - that of Lloyd and Topor [21] - can be uscd. Our
account roughly follows that of {30} for thc handling of
intcgrity constraints in thc previous version of PFL,
modificd 1o utilisc sct-valucd rather than list-valued con-
straints.

We say that a function (1 directly depends upon a func-
tion {2 if 12 occurs in an cquation that defines f1; we use
thc term depends upon for the transitive closure of the
directly depends upon rclationship. This "call graph” is
alrcady automatically maintaincd by PFL as cquations
are inscricd and deleted since we need it to infer the types
of functions. Wc can now put it to further use for the
enforcement of intcgrity constraints.

We recall from 5.1 that an intentional sclector (and hence
an inlegrity constrain) is a function of the form :
fp= (Cl | qi1 & ...] U..U {Cm ' Um 1 & ..}

where, without loss of gencrality, we have converied
summands of the form s p in the syntax of 5.1 to sct
abstractions of the form {p | p e s p}. We distinguish
between three different forms of qualificr occurring in
such an intcntional sclector :

Type 1:q;jisof the form pl € s p2,
Type 2:q; jisof the formsp = {}, and
Type 3 : any other form of qualificr,

where s is a selector and p, pl and p2 are paticmns. Notc
that the three types of qualifier correspond to positive,
ncgative and built-in predicates of Datalog rules respec-
tively. Inclusion or cxclusion of tuples in extensional
sclectors trigger implicit inclusions and cxclusions from
intentional sclectors. In particular, the (explicit or impli-
cit) inclusion of a vatue t1 = (u,,...,u;) into onc sclector,
s1, may affect another sclector, s2, in one of three ways :

(i) Inclusion of values into s2 : 1f 2 dircctly depends
upon sl via a Type 1 qualificr i.c.

2p=
LUl & (Vv € sH(wpaw,) & L) UL

lct t be the value obtained from c by replacing v; by
uj, for all 1 £ j <, and any othcr (rce variables of ¢
by Any. Then for any valuc 2 implicitly included
into s2 as a rcsult of the inscrtion of t1 into sl, we
have t 7= 12 holds.

(ii) Exclusion of values from s2 : 1f s2 dircctly depends
upon s1 via a Type 2 qualificr i.c.

2p=..Ufel..&sl (vyv,)={}&..JU..

again, let t be the valuc obtained from ¢ by replacing
v; by u;, for all 1 < j < r, and any other frcc vari-
ables of ¢ by Any. Then for any tuplc 12 implicitly
excluded from s2 as a result of the insertion of (1
into s1, we have t 7= (2.

(iii) Both inclusion into and exclusion from s2 : 1If s2
dcpends upon sl via a Type 3 qualificr then arbitrary
values may implicitly have been included and
excluded. Let t be the value obuined from ¢ by
replacing any free variables by Any. Then for any
tuple 2 implicitly included or excluded from s2, we
have t 7= 12.

The exclusion of a valuc from one sclector may similarly
affect another : in this casc the roles of Type 1 and Type
2 qualifiers are intcrchanged. Thus, in our description of
the constraint enforcement algorithm below, we assume
the availability of two functions : "includes(s,v,u)" takes
a sclector s, a value v and a flag u indicating whether v
represents a possible inclusion or a possible exclusion
from s, and returns a sct of pairs (s,v") such that s is a
sclector cither directly depending upon s via a Type | or
Type 2 qualificr or indirccily via a Type 3 qualificr, and
the v' match all the inclusions into the s; similarly,
"excludes(s,v,u)" rcturns a sct of pairs (s",v") such that the
v" match all exclusions from the s”.

To optimise thc cnforccment of constraints, the system
automatically associatcs with cach selcctor, s, affected by
an update two scts, s; and s, which respectively contain
tuples matching all wples included into (or cxcluded
from) s. These scts arc built recursively using the func-
tion "update” given below, In particular, after the inclu-
sion (or exclusion) of a valuc into an cxlensional sclector
s, update(s,v,"i") (or update(s,v,"c")) is called to maintain
these sets ¢

update(s,v,i_or_e)

{

if Vv € S0
return;

Siore = Siore U {V};

for ((s’,v’) € includes(s,v,i_or_e))
update(s’,v’',"i");

for ((s’,v’) € excludes(s,v,i_or_e))
update(s ", v, "e");

}

The database is validatcd with respect to the constraints
when a commit point is reached, Validity is ascertained
by evaluating the cxpression (ic t) for cach constraint ic
and cach value t in ic;. In general, a sct ic; may contain
redundant tuplcs : whencver there are tuples t1, 12 € ic;
such that t1 7= 12, then 12 may safely be removed from
the set since ic 12 ¢ ic t1. Thus constraints necd only be
validated with respect to these reduced sets of tuples.

427

6. Conclusions

We have described how the functional databasc language
PFL can be extended with scts as first class objects. Our
support of the value Any and the ?= operation then al-
lows any Datalog™*"® predicate to be expressed as a
PFL function. We thus combinc the respective advan-
tages of functional and logic databasc languages within
onc scmantic and opcrational framework. Our work can
also be considered as contributing to the formalisation of
databasc concepts using powerdomain theory, as
excmplificd by Buneman et al [8].

More specifically, in common with functional database
languages such as [3, 4, 5, 7, 16, 18, 23, 28] we support
deterministic computations over large volumes of data.
We also support the storage of all types and functions in
the database, a feature found only in [28). In common
with logic databasc languages [12, 13, 25] we also sup-
port search-bascd computations over large volumes of
data. Sevcral functional languages provide relational
processing by incorporating rccords (2, 9, 23, 24, 26] but
it is not clear how full deduclive capabilitics can be
achicved in these languages. FAD [4] does add sets to a
functional compulation modcl, but rclics upon the ability
o "call out” to an external, computationally complete,
language in order to dcfine arbitrary functions. Several
logic-based languages also incorporatc sets [20]. In par-
ticular, COL [1, 17} integratcs both functions and sets
into a logic framework and thus has similar expressive-
ncss to our language. However, it too achieves this by
assuming the ability to call out to an cxternal language to
define arbitrary functions. In contrast wec use one
language and onc databasc to store all information.

We have indicated how optimisation echniques
dcveloped for both functional and logic languages can be
transferred to PFL, for cxample for recursive query pro-
cessing and for integrity constraint enforcement. These
arc areas of on-going rescarch. We are also investigating
suitable bulk data structures to efficiently support the 7=
operation. Finally, PFL is currently being used to
analyse road traffic accident data, which requires both
scarch-based computation, e.g. to find the nearest site
(junction, roundabout elc.) to a given accident location,
and deierministic computation, e.g. to group accidents by
sitc and to producc accident statistics.

Acknowledgements

We are grateful 1o Swarup Reddi for discussions on
incorporating integrity constraints into PFL. The work
described in this paper has becn supported by the UK.
Science and Enginecring Research Council (grant no.
GR/G 19596).

References

[11 Abitcboul S. and Grumbach S. A Rule-Based
Language with Functions and Sets, ACM TODS
16(1), 1991.

{2] Albano A., Cardelli L. and Orsini R. Galileo: A
Strongly-Typed, Interactive Concepiual Language,

ACM TODS 10(2), 1985.

Annevelink J. Database Programming Languages:
A Functional Approach, Proc. ACM SIGMOD,
1991,

Bancilhon F. et al. FAD, A Powerful and Simple
Database Language, Proc. 13th VLDB Confcrence,
1987.

Batory D.S., Leung T.Y. and Wisc T.E. Implemen-
tation Concepts for an Extensible Data Model and
Data Language, ACM TODS 13(3), 1988.

Beeri C. and Ramakrishnan R. On the Power of
Magic, Proc. ACM PODS, 1987.

Becch D. A Foundation of Evolution from Rela-
tional 10 Object Databases, in Advanccs in Databasc
Technology (EDBT 88), LNCS 303, Springer-
Verlag, 1988.

Buncman P., Jung A. and Ohori A. Using Power-
domains to Generalise Relational Daiabases,
Theoretical Computer Science, Vol. 91, 1991.

Cardelli L. Amber in Combinators and Functional
Programming Languagcs, G.Cousincau et al. (cds.),
LNCS 242, Springer-Verlag, 1985.

[10] Cardelli L. and Wegner P. On understanding types,
data abstraction and polymorphism, ACM Comput-
ing Surveys, 17(4), 1985.

(11] Cardelli L. Types for Data-Oriented Languages, in
Advances in Databasc Technology (EDBT 88),
LNCS 303, Springer-Verlag, 1988,

{(12] Ceri S., Gottlob G. and Tanca L. Logic Program-
ming and Databases, Surveys in Computcr Scicnce,
Springer-Verlag, 1990.

[13] Chimenti D. et al. The LDL System Prototype,
IEEE Trans. on Knowledge and Data Engincering,
2(1), 1990.

{14] Clark K.L. Negation as Failure, in Logic and Data-
bases, Eds. H. Gallairc and J. Minker, Plcaum
Press, 1978.

[15] Das S.K. and Williams M.H. [Integrity checking
methods in deductive databases, Proc. 7th British
National Conference on Databascs (BNCOD-7),
C.U.P., 1989,

[16] Dayal U. et al., Simplifying Complex Objects: The
PROBE Approach to Modelling and Querying
Them, Workshop on the Theory and Applications of
Nested Relations and Complex Objects, Darmstadt,
April 1987,

{17 Grumbach S. Integration of functions defined with
rewriting rules in Datalog, Proc. DOODS9, 1989.

{18] Hciler S. and Zdonik S. Views, Data Abstraction
and Inheritance in the FUGUE Data Model, in
Advances in Object-Oricnted Database Systems,

(3]

4]

[5]

(6]

(71

(8]

(9]

428

LNCS 334, Springer-Verlag, 1988.

[19] Hindlcy J.R. and Scldin J.P. Introduction 1o Combi-
nators and the A calculus, C.U.P., 1986,

[20] Kuper G.M. On the Expressive Power of Logic Pro-
gramming Languages with Sets, Proc. ACM PODS,
1988.

(21] Lloyd J.W. and Topor R.W. A basis for deductive
database systems, Joumal of Logic Programming,
Vol 2, 1985.

122] Lloyd J.W. Foundations of Logic Programming,
Springer-Verlag, 1987.

[23] Mannino M., Choi IJ. and Batory D.S. The
Object-Oriented Functional Data Language, IEEE
Transaclions on Softwarc Engincering 16(11), 1990.

[24) Matuthes F. and Schmidi JL.W. The type system of
DBPL, Proc. DBPL-2, 1989.

125] Morris K., Ullman J.D. and van Gelder A, Design
Overview of the NAIL! System, Proc. 3rd Intcrna-
tional Conference on Logic Programming, LNCS
225, Springer-Verlag, 1980.

[26] Ohori, A. Buncman, P. Breazu-Tannen, V. Data-
base Programming in Machiavelli - a Polymorphic
Language with Static Type Inference, Proc. ACM
SIGMOD Confcrence, 1989,

[27] Pcyton-Joncs, S.L. The Implementation of Func-
tional Programming Languages, Prentice Hall, 1987
[28] Poulovassilis A. and King P. Extending the Func-
tional Data Model to Computational Completeness.
Proc. EDBT-90, LNCS 416, Springer-Verlag, 1990.

[29] Poulovassilis A. and Small C. A functional pro-
gramming approach to deductive datahases, Proc.
17th VLDB Confcrence, 1991,

130} Reddi S. Integrity constraint enforcement in the
functional database language PFL. To appear in
Proc. 11th British National Conference on Data-
bases (BNCOD-11), Springer-Verlag, 1993.

(31} Schmidt D.A. Denotational Semantics, Allyn and
Bacon, 1986.

[32] Silbermann F.S. and Jayaraman B. A domain-
theoretic approach to functional and logic program-
ming, Journal of Functional Programming, 2(3),
1992.

133] Small C. and Poulovassilis A. An Overview of PEFL,
Proc. DBPL-3, 1991,

[34] Sondcrgaard H. and Sestoft P. Non-determinism in
Functional Languages, The Computer Joumal,
35(5), 1992.

(35] Stoy J.E. Denotational Semantics, MIT Press, 1977

[36] Ullman J.D. Principles of Database and
Knowledge-Base Systems, Computer Science Press,
1988,

