An Active Object-Oriented Database:
A Multi-Paradigm Approach to Constraint Management

Hiroshi Ishikawa and Kazumi Kubota

Fujitsu Laboratories Ltd., Software Laboratory
1015 Kamikodanaka, Nakahara-Ku, Kawasaki 211, Japan

Abstract

We describe the design and implementation of a constraint
management facility for our active object-oriented database
system called Jasmine/A. The facility includes integrity
constraints, events/triggers, and constraint rules, The facility
enables the user to handle both interobject and intraobject
constraints, to define both primitive and composite events,
and to populate databascs with values satisfying specified
constraints. We have taken a multi-paradigm approach to
constraint management. All the paradigms are integrated into
object-oriented databases. We describe the scmantics of the
constraint management facility by extending the conventional
terms of transactions and consistency. Evaluation is done
cfficiently using page buffers for constraints associated with
sel-oriented access and object buffers for those associated with
individual object access. Users are also able to control the
constraint evaluation.

1. Introduction

We developed a prototype object-oriented database system
called Jasmine [ISHI91][ISHI93] for advanced applications such
as cngineering design support and structured document
management. Such advanced applications require more active
functions than are needed by conventional applications. For
example, we must not only model complex structures and
relationships of design objects, but we must also handle design
constraints as design specification and geometric constraints
beiween components. Some constraints can be reduced to a
collection of constraints on single object attributes. Other
constraints inherently span several object atiributes. Since we

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given ihat copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires a
fee andlor special permission from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

must represent both types of constraints, we discuss constraint
management as a new database technology to attain this goal.

Constraint management includes integrity constraint
enforcement, an event/trigger mechanism to propagate updates,
and constraint rules to generate values satisfying specified
constraints. We call databases with such constraint
management facilities active databases by extending the
original term [MORGS83]. There have been attempts to
generalize the event/trigger mechanism such as HiPAC
[MCCAS89] and SAMOS [GATZ91]. Systems such as Postgres
[STON90] and Starburst [LOHM91] aim to extend relational
databases by introducing production rules. Works on derived
attributes and integrity constraints in object-oriented databases
include Cactis [HUDS89] and ODE [AGRA89]. We developed a
research system called HyperCAD ([ISHI91], which supports
engineering tasks by using Jasmine to implement the
constraint management facilities.

We propose a general framework for constraint management
based on the experiences of engineering applications. From
this viewpoint, there are some problems with the previous
approaches. First, conventional production rules are weak both
in generating values which satisfy specified constraints such as
design constraints and in describing complex events such as
design processes. Such facilities are essential to improve
reliability and productivity in design. Second, a single-
paradigm approach is not always better than a multi-paradigm
approach for representing a variety of purposes such as
integrity constraints, triggers, and constraint rules. Third, the
semantics of active databases is not so clear in terms of
transactions and consistency. Lastly, functions, in particular,
triggers and constraint rules must be implemented efficiently.
High performance is vital for engineering applications. We
have implemented an active object-oriented database system
called Jasmine/A (Jasmine Active database system) by
extending Jasmine, a kernel object-oriented database system.

In this paper, we describe the constraint management facility of
Jasmine/A and its implementation. The facility includes
integrity constraints, eventsftriggers, and constraint rules. We
take a multi-paradigm approach to constraint management. We
describe the semantics in terms of transactions and
consistency. Evaluation is done efficiently using page buffers

467

for constraints associated with set-oriented object access and
object buffers for those associated with individual object
access. Users are also able to control the constraint evaluation.
The paper is organized as follows. Section 2 describes active
database issues and compares Jasmine/A with related work.
Section 3 briefly describes Jasmine, Section 4 discusses our
constraint management facility and its semantics, and Section
S describes its implementation.

2. Requirements and Related Work
2.1 Requirements

Our work aims to satisfy the following requirements. First,
constraints must be maintained for object attributes. Such
constraints include those on single attributes and those which
span multiple attributes of one or more objects, where the latter
cannot be reduced to a collection of the former. Second, the
system must not only provide direct support for generic
integrity constraints, such as mandatory and multiple
constraints, but the system must also allow the user to specify
application-specific constraints. Third, the constraint
management facilities must include check and enforcement of
constraints on attributes associated with value updates as well
as atiribute value generation satisfying user-specificd
constraints, that is, awtomatic database population based on
constraint rules. In particular, such automatic database
population is important for engineering applications.

Nexi, we must provide the user with multiple paradigms which
are appropriate for all of these purposes. The appropriate
paradigm must be available for each facility. These paradigms
must be naturally integrated into the object-oriented databases
which we take as a basic framework. The semantics of
constraint management must be described in terms of
transactions and consistency, requiring more generalized
concepts of transactions and consistency. Lastly, we must
efficiently implement the constraint management facilities. In
particular, we must carefully trade off the expressive power of
constraint management against the performance. Since the
system cannot know all the information available for
optimization, the user must also be able to explicitly control
the methods of constraint evaluation, making up for any
limitations in the system. From these points of view, we
describe Jasmine/A in this paper.

2.2 Related Work

Systems such as HiPAC {[MCCAB89] and SAMOS [GATZ91]
altempl to integrate active database concepts into object-
oriented databases. HiPAC introduces the event (E)-condition
(C)-action (A) paradigm. In addition to primitive events, the

user can define time events and composite events. The E-C and
C-A couplings can take immediate, deferred, and separate as
evaluation modes. HiPAC rules mainly provide support for a
trigger mechanism, but unlike Jasmine/A, provides no direct
support for constraint rules to automatically populate
databases. Like HiPAC, SAMOS allows time and composite
events based on the E-C-A paradigm. It provides E-C and C-A
couplings which use the three evaluation modes. SAMOS
focuses on triggers, but not on constraint rules.

Systems such as Posigres [STONY0] and Starburst [LOHM91])
aim to add production rules to extend relational databases.
Unlike Jasmine/A, Postgres rules provide a unified approsch to
integrity constraint checks, update propagation, and view
facilities. Postgres does not, however, provide any facility for
automatic database population based on consiraint rules. In
general, there are two methods for rule evaluation: forward and
backward chaining. Posigres uses optimization to choose
between them. Production rules are implemented at tuple and
query levels, which correspond to Jasminc/A's evaluation of
constraints on object buffers and on page buffers. Postgres
does not provide composite events. Examining Starburst, it
also provides for production rules. Events are insertion,
replacement, and deletion of values. Conditions and actions can
take queries specified in extended SQL and databasc commands.
Alert, a Starburst subsystem, allows the user to define views as
a kind of production rules. Starburst provides no facility for
compositc events or constraint rules.

ODE [AGRARB9} [GEHAY2) provides integrity constraints and
triggers as separaic functions of object-oricnied databascs.
Cactis [HUDS89] uims a1 active object-oriented databases.
Cactis proposcs rule cvaluation schemes based on the
dependency relationships of method (rule) definitions. ODE
provides composite cvents, but Cactis doesn’t. ODE and Cactis
provide no dircet support for constraint rules.

3. Overview of Jasmine
3.1 Functionality

To describe Jasmine's object model, objects are a collection of
attributes, which are categorized into properties (enumerated
attributes) and methods (procedural atiributes). Propertics are
object structures and methods are operations on those objects.
Objects are categorized into instances and classes. Insiances
denote individual data and classes denote types (i.c., structures)
and operations applicable to instances of the class. Instances
consist of a collcction of atiribute names and values. Classes
consist of attribute names, definitions, and associated
information such as demons. Objects are identificd by values of
the system-defined auribute object identifier (OID). Therefore,
objects with the same object identifier in a consistent database

468

have the same values. On the other hand, while valucs such as
numbers and character strings have no OIDs, they do have
system-defined classes. Objects with OIDs arc called reference
objects and values with no OIDs are called immediate objects.
Objects can include other objects (i.e., OIDs) as auribute
values. This enables the user 1o directly define complex objects
(compuosite objects) |KIM9O].

Classes are organized into a hicrarchy (more strictly, a lattice)
by generalization relationships. This hicerarchy is called a
class hierarchy. A superclass in a class hicrarchy is denoted by
the system-defined autribute, Super. Classes (i.c., subclasses)
can inherit attribute definitions from their superclasscs. Unlike
the features provided for in Smalltalk-80 [GOLDS83], the user
can make instances (i.e., instantiate) from any class in a class
hicrarchy. Such instances arc called intrinsic instances of the
class.

In addition to defining object types and methods, classes are
also interpreted as sets of instances. That is, the instances of a
class are the union of all the intrinsic instances of the class and
all its subclasses. This differentiates Jasmine {rom other
OODBs such as GemStone [MAIE86] where the user must define
separate classes both as a type and as a sci. Objecls can have a

set of objects or just a single object as an attribute value. The:

former are called multiple-valued attributes and the latter
singleton-valued attributes. Specialized functions, called
demons, can be attached o attributes to enable the user to
flexibly implement active databases.

In Jasmine, the user manipulates objects by sending messages
10 objects just as in object-oriented programming languages.
This is called singleton access. The user can assign values to
autributes and reference attribute values. Jasmine allows sel-
oriented access in addition to singleton access. Set-oriented
access is done by object querics. The basic unit of an object
query is an object expression, a class name followed by a series
of attribute names delimited with periods. Object expressions
climinate most of the need for equijoin predicates in relational
datubuses. The user can also specifly methods in object
expressions. An object query consists of a target and a
condition. The target part is a list of object expressions. The
condition part is a logical combination of simple conditions
comparing object cxpressions by comparison operators. For
example, the following query finds the name of coworkers of
an cmployee who works in the shoe department and is over 30
years of age:

EMP.Coworkers.Name wherec EMP.Dept = "shoe”
and EMP.Age > 30

To make application programs, users can combine singleton-
access and sct-oricnted access. An element of a set of objects is
assigned 10 an object variable and is manipulated by scnding

messages to the object variables. The introduction of object
variables reduces impedance mismatch between a programming
language and a database language [MAIE86). As users can
specify object queries as well as simple manipulation of
attributes in methods, virtual objects can be defined using
methods. Since a query on a class retums all the instances of the
class and its subclasses, a single Jasmine query can retricve
what would take multiple relational database queries to retrieve.
By specifying methods in a query, users can retrieve and
manipulate objects in a set-oriented manner. If a superclass is
specified with a method in a query, methods dedicated to
instances of the class and its subclasses can be invoked
simultancously. This facilitates polymorphism [STEF86] in a
sel-oriented manner. A query can also make new instances from
more than one class like joins in a relational database.

Application programs written with Jasmine are precompiled
into C programs. During this process, references to attributes
are statically resolved to reduce the burden of a dynamic search,
allowing the C programs to execute efficiently. A set-oriented
query can also be interpreted interactively. Although objects are
basically persistent, since they exist over program execution,
though users can make temporary objects as in conventional
programming languages, which exist only during program
execution. A Jasmine database usually consists of several
classes and users can access several databases concurrently or
switch among them. Jasmine provides basic database facilities
such as transaction management.

3.2 Implementation

The Jasmine system has a layered architecture consisting of
object management and data management (See Figure 1). The
object management layer allows modeling and manipulation of
objects. In particular, this layer has object buffers that
cfficiently manage objects in main memory. The data
management layer allows transaction management and page
buffer management as database functions.

Compiler interpreter
|]

Object management

Data management

<>

Figure 1. System architecture.

469

The data management layer is a gencral-purpose database
management system that extends relational databases
[YAMAR89]. This enables the usecr to define and access nested
relations [ROTHS88] as wcll as flat relations. This layer
provides nest and unnest operations for relations, in addition
to reference and update. The system provides sequential, B-tree-
based, and hash-based access to both flat and nested relations.
A clustered index can be implemented by storing whole tuples
into B-tree relations. A nonclustered index can be implemented
by storing only keys and tuple identifiers into B-trec relations.

Objects are mapped into relations as follows. All intrinsic
instances of a class are stored in a relation by having attributes
correspond to fields. Intrinsic instances include inherited and
non-inherited attributes. Multiple values are stored in multiple-
valued fields, the simplest form of nested relations. Classes are
stored in nested relations because they have nested structures.

The user can specify logical page sizes for each relation. Each
class has its own page size. A class normally inherits the page
size of its superclass. If necessary, however, the page size can
be enlarged. There is no limitation to the number and length of
tuples and fields although whole tuples must be contained in
one page. This enables the user to optimally store and access
large-scale data such as images. Operations and tests on ficlds
of relations are treated as user-defined functions in the data
management layer, called manipulation and predicate
functions, and compiled into operations on data in page
buffers.

Object queries are translated into relational operations such as
selection and join. During this process, they are optimized.
Object expressions generate several joins whose exccution
order is determined dynamically. Joins are usually processed
based on hashing. If an index is attached to fields, it is used for
selection and join.

Page buffers are appropriate for access to homogeneous data,
but inappropriate for access to related heterogeneous data such
as complex objects. Therefore, the object management layer
provides object buffers. Objects, when accessed for the first
time, are fetched from databases in secondary memory to page
buffers in the data management layer. Only the required data
comes to the object buffers from the page buffers. Object
identifiers are represented as a triplet of database, class, and
instance numbers. The identifiers of objects fetched into object
buffers are translated into addresses in main memory. This
eliminates the need for joins of relations and enables direct
access of complex objects. The objects in object buffers also
have twple identifiers. If there are any updated objects in the
object buffers, they arc written back to the page buffers using
the tuple identifiers at the end of the transaction.

Before a set-oriented query is evaluated, any updated objects

associated with the query, that are in the objcct buffers are
moved to the page buffers. The query is then evaluated against
the page buffers. Unlike Jasmine, Orion [KIM90)} evaluates the
same query for both object buffers and page buffers and
integrates the results. Because our approach needs only one
cvaluation scheme, the system is more compact.

A query on nonleaf classes in a class hicrarchy is translated into
multiple queries on relations. Simple methods specified in a
query, such as manipulation of attributes, are transformed into
operations on ficlds of relations. These can be executed more
efficiently on page buffers because unnecessary data transfer
between page and object buffers is reduced. On the other hand,
more complex mcthods, such as manipulation of heterogencous
objects of complex objects, are more cfficiently cvaluated in
object buffers. Methods appearing in the condition part arc
similarly processed. Unlike other QODBs, Jasmine efficiently
executes methods by combining object and page buffers.

4. Constraint Management

4.1 Integrity Constraint

We now describe integrity constraints supported by Jasmine/A.
Basically, constraint management is modeled on the E-C-A
paradigm. We realize integrity constraints by Jasmine demons,
which are essentially the conditions and actions described in
Section 4.2. First, we provide the system-defined demons for
properties such as mandatory and multiple. They ke the
following syntax:

ClassName
PropertyName mandatory
multiple

If a value is inserted into a mandatory property at instantiation,
that is, if insert and instantiate events occur al the same time,
then the instantiate event is successful. Otherwise, the
instantiation is aborted. If & value is deleted from a mandatory
property, that is, a delete cvent oceurs, then an error is induced.
Of course, the replacement of a mandatory property value, or a
replace event, is possible,

If a new value is added to a multiple-valued property, then the
insertion is successful. The insertion to a single-valued
property is prohibited when the property alrcady has a value. Of
course, the replacement of a singleton-valued properly is
possible. All the cvents, conditions, and actions associated
with mandatory and multiple demons are system-defined.

Next we describe constraint demons. The demon has the
following syntax:

470

ClassName

PropertyName constraint {condition)
I the user-defined condition is true when an insert or a‘replacc
cvent occurs, the transaction for the event is committed.
Otherwise, the transaction is aborted. The event and action in
this case arc sysiem-defined while only the condition is user-
defined. The condition is specificd by a subset of the query
language, that is, the condition part of a query. For example,

EMP
Dept mandatory
Coworkers multiple
Age

constraint { Valuc >= 15}

where the variable Value is bound to the value being inserted or
replaced. The constraint demon is mainly for expressing user-
defined constraints on single auributes, that is, intraobject
consiraints. Constraints spanning multiple attributes, that is,
interobject constraints, arc supported by triggers and
constraint rules as described later.

4.2 Triggers and Primitive Events

We describe our basic event and triggering mechanisms called
demons. Jasmine/A allows the user to define demons for
propertics as follows:

ClassName

PropertyName if-referenced {if-referenced demon)
{if-inserted_demon)
{if-deleted_demon)
{if-replaced _demon)

if-inserted
if-deleted
if-replaced

I'roperty demons such as if-referenced, if-inseried, if-deleted,
and if replaced demons modularize user-defined conditions and
actions as follows:

if condition then action
clse if condition then action

The condition syntax corresponds (o that of the condition part
ol a query. The conditions, however, can access database
transitions as well as database states. The actions include both
sctoriented and individual object access. If system-defined
cvents such as reference, insert, delete, or replace occur, the
corresponding user-defined demons are invoked. In general,
production rules consist of conditions and actions, so demons
can represent a set of production rules. Constraint rules for
sutomatic value generation arc described in Section 4.4

The system-defined variables Self and Value can be used in the

demon definitions. The variable Sclf is bound to the instance
where the event occurs. The variable Value is bound to
referenced, inserted, deleted, or replaced values depending on
the cvents. An existing value before replacement is bound to
the variable OldValue.

Mcthods can also take the following demons:

before _demon
method
after_demon

Invocation of user-defined methods correspond to user-defined
events. Method demons, that is, before and after demons also
modularize user-defined conditions and actions like property
demons. Before demons are invoked before the main methods;
after demons are invoked after. Usually, before demons are used
to check or establish the preconditions of the method
invocation. After demons are used to propagate the effects of
the method invocation.

The integrity constraints and user-defined demons described
above are specified in the class and are activated on its
instances where associated events occur. Of course, they are
invoked when instances are set-theoretically retrieved,
inserted, deleted, replaced, or accessed with methods
invocation. If there are multiple rules, that is, pairs of
conditions and actions associated with the same event for one
autribute, they are usually prioritized by using if-then-else
constructs within demons. Note that we presently do not
provide support for simultancous firing of multiple rules.

Objects are accessed through system-defined and user-defined
methods. System-defined methods include start, commit, and
abort of transactions in addition to instance operations such as
reference, insert, delete, replace. In general, method invocation
corresponds 1o event occurrence, so the system can directly
recognize the event occurrence. Method invocation
corresponds to basic events. The user can combine primitive
cvents to define composite events as described in Section 4.3.

We illustrate the demon functionality by taking some examples
used in other work such as Postgres [STON90]. The following
demon defined for the Attribute Salary of the class EMP(loyee)
specifies the rule that if Joe’s salary is updated, the new value is
propagated to Sam’s salary.

EMP
Salary if-replaced
{if Self.Name = “Joe” then
EMP.replace (“Salary”, Value) where EMP.Name="Sam"}

The next demon specifies the rule that every time Joe's salary is
referenced, Bill's salary is made equal to Joe's:

471

EMP
Salary if-referenced
{if Self.Name = “Joe” then
EMPreplace(*Salary”, Value) where EMP.Name="Bi11""}

The following demon specifies the rule that Joe is unable to sce
Salaries of employees in the shoe department:

EMP
Salary if-referenced
(If Self.Dept = “shoe” and user() = “Joe” then Value = Null}

Exceptions to rules can be realized by combining if-then-else
constructs within the rules. The following
exception for the above rule for Sam:

includes an

EMP
Salary if-referenced
(If Self.Dept = “shoe” and user() = “Joe” then
{ if EMP.Name = “Sam” then Value = 1000
else Value = Null}}

The next rule registers security audits every time somebody
references salaries:

EMP
Salary if-referenced
{<AUDIT>.instantiate(" Accessor’:user(),
“Object”:Self Name, *Value™:Value)}

Note that rules for handling rules themselves can be realized by
using event objects as described in Section 4.3.

The Postgres rule system can also provide a view facility within
the same mechanism. We realize views as a separate mechanism
in Jasmine/M (Jasmine Multidatabase system) [ISHI92]. That
is, we provide objects for view definition. For example, the
following view class defines TOY_EMP as employces in the
toy department:

TOY_EMP
BaseClass EMP
Property *
Method *
Condition Dept = “toy”

The “*” entries in Property and Method specify that this view
class inherits all the properties and methods of the base class
EMP. Condition specifies the filtering condition against the
base class EMP. Like this, Jasmine takes a multi-paradigm
approach to constraint management because we think there is a
scparate paradigm well suited for each purpose. Note that all the
paradigms including integrity constraints, user-defined

demons, and even vicws are integrated into object-oriented
databases. Demons are inherited through a class hicrarchy.
Polymorphism is also available. If the same event occurs to
instances of different classes in a query including multiple
classes, cach of the demons associated with the same event is
invoked. Users can also activale and deactivate demons.

Next we take some examples of Date’s Hypothetical Integrity
Language [DATES0O].

S
Status if-replaced { if Value <= OldValue then
Self.replace("Status”, OldValue))
if-inscrted { if S.Status.avg() <= 25 then
Sclf.delete (“Status”, Value))

The if-replaced and if-insertcd demons defined for Status of
S(upplier) compensate for the effects of the replace and insent
cvents. Note that the condition of the if-referenced demon is
checked against the database transition rather than the database
state. Jasmine/A maintains primary key constraints through
OIDs. Foreign key constraints are partially maintained by
validating objcct references on object buffers with object
descriptors. Thus, constraints with fixed scmantics can be
clegantly supported by system-defined integrity constraints.
The user has only 1o describe application-specific semantics by
specifying user-defined demons.

4.3 Composite Events

Composite event specification extends triggers by combining
primitive cvents described above. The facility enables users to
flexibly describe enginecring processes, such as design change
notification and propagation, and design tool invocation.
Composite events consist of one or more primitive evenls.
Primitive events include reference, insert, delete, and replace of
attribute values; start, commit, and abort of transactions; and
user-defined methods. We provide composing operators such as
conjunction (&), disjunction (1), ncgation(~), and sequence (;).
The composite event expressions have the following syntax:

evenl_expression = primitive_event |
(event_expression) |
event_expression & event_expression |
even!_expression |event_expression |
~event_expression|
evenl_expression lime_spec

time_spec = before time | after time | at time |

before time after time
time = YMDHMS

Assume that E1, E2, and E3 are primitive events; F1 and F2 arc
compositc events; and T1 and T2 arc times. For example,

472

E1 and E2 occur simultancously:
Fl <Kl & 2

E3 and at least one of E1 and E2 6ccur simullancously:
F1 = (E1 1 E2) & E3

E1 occurs but E3 doesn't:
F1=El & ~E3

El is followed by E2:
F1 = E1;E2

El occurs at T1:
F2=ElatTl

Both E2 and E3 occurs between T1 and T2:
F2 = E2 & E3 afier T1 before T2

E2 occurs after T1 and E3 occurs before T2:
F2 = E2 after T1 & E3 before T2

We describe the timing of evaluation of composite events. The
user can specify coupling modes between events and conditions
and between conditions and actions in the E-C-A paradigm. The
user chooses among immediate, deferred, and separate as
coupling modes. The possible combinations of the E-C and C-A
couplings are: (immediate, immediate), (immediate, deferred),
(immediate, scparate), (deferred, deferred), (deferred, separate),
and (separate, scparate). The immediate mode means that if an
evenl occurs in a transaction, the associated condition or action
is immediately evaluated in the same transaction. The deferred
mode means that the condition or action is cvaluated
immediately before the triggering transaction is completed. If
there is more than onc deferred evaluation in the same
riggering transaction, evaluations are processed on a first-
come-first-served basis. Separalc modc means that the
evaluation is donc in a transaction other than the triggering
transaction. Usually, the deferred mode is specified to evaluate
constraints between several attributes of one or more objects,
that is, interobject constraints. This is used to cnsure the
global consistency described later. The separate mode is
specified in cases when the triggering cevent and triggered
action are separately evaluated, in instances like a fire alarm
and fire fighting.

We do not provide logical events of ODE [GEHA92] because we
do not yet have an efficient implementation of general logical
expressions for databases. Of course, general logical
expressions could be simulated by defining user-defined
methods. Instead, we restrict the expressive power of event
specification to efficiently process the event cvaluation.
Similarly, we do not allow regular expressions of composite
cvents because basic events are more data-intensive operations
than conventional programming operations and because we
have not determined what expressive power is sufficient for
database operations, Currently, we have enginecring design
applications in mind, which do not require the regular
expressions or more expressive notations needed by real-time
applications.

In general, we assume that the triggering transaction and the
scparated-mode triggered transaction are independent. There are
cases, however, where failure of a triggered transaction requires
that the triggering transaction be aborted. Furthermore, if the
riggering transaction fires other triggered transactions, this
may requirc additional transactions to be aborted. Such cascade
effects are undesirable, however. That is, the unconditional
abort strategy based on dependency is particularly unacceptable
for cngineering applications. Qur approach to solve this
problem allows the user to specify the transaction
compensating for the effects of the committed transactions if
necessary. For example, in design applications we can consider
the design phase as a triggering transaction and the subsequent
drawing phase as the triggered transaction. Even if the drawing
phase fails due to some design errors, the whole design phase
will never be aborted. Instead, the transaction is compensated
to remedy the design.

We provide event objects for primitive events and composite
events. Primitive events have the following structure:

PRIMITIVE_EVENT

STRING Name

TIME Time
COMPOSITE_EVENT Composite multiple
OBIECT Object

METHOD Method

PROPERTY Property

OBIJECT Value

The attribute Name specifies an event name. The attribute Time
denotes the time when the event occurs and Composite denotes
composite cvents whose components include this primitive
event. Other attributes are used o record the context where the
event occurs.

Composite events have the following structure:

COMPOSITE_EVENT

STRING Name
TIME Time
PRIMITIVE_EVENT Primitive multiple
EVENT_EXPRESSION Event

CONDITION_EXPRESSION Condition

ACTION_EXPRESSION Action
ACTION_EXPRESSION Compensation
MODE E-C-mode
MODE C-A-mode

The attribute Primitive denotes primitive events which
constitute this composite event. Event holds an event
expression and Action holds an action expression. The
atiribute Compensation holds an action expression
compensating for the effect of the events. E-C-mode and C-A-

473

mode attributes denote E-C and C-A coupling modes.

Concrete events arc instantiated and named in advance.
Primitive events constituting composite cvents are recorded in
demons or methods by the following query:

PRIMITIVE_EVENT.insert(“Time”, time)
where PRIMITIVE_EVENT.Name = eveni-name

For example, to ensure the rule “if Joe's salary is replaced,
replacing Sam’s salary with the same value is the only way to
change Sam’s salary,” the user defines the following composite
events:

COMPOSITE_EVENT1

Event { ~EVENT1 & EVENT2 }
Condition { True }
Action { Value = PRIMITIVE_EVENT. Value

where PRIMITIVE_EVENT.Name = “EVENT2",
deactivate_demon;
EMPreplace (“Salary”, Value)
where EMP.Name = “Sam™;
activate_demon }
E-C-mode immediate
C-A-mode immediate

where EVENT1 and EVENT?2 are invoked as follows:

EMP
Salary if-replaced
(if Self. Name = *“Joe” then
{ EMP.replace (“Salary”, Value) where EMP.Name="Sam"” ;
PRIMITIVE_EVENT.insert(“Time”, Time)
where PRIMITIVE_EVENT.Name = “EVENT1"}
clse if Self. Name = “Sam” then
{ PRIMITIVE_EVENT.insert(*Value”, OldValue)
where PRIMITIVE_EVENT.Name = “EVENT2";
PRIMITIVE_EVENT.insert(*Time”, Timc)
where PRIMITIVE_EVENT.Name = “EVENT2"}}

Note that deactivate_demon in the composite cvent action
suppresses the invocation of EVENT2 10 avoid an infinite loop.
Events are first-class objects. The user can use object-oriented
facilities such as inheritance and polymorphism to customize
the event mechanism.

We conclude this subsection by describing the interpretation of
event expressions. We assume the following:

Tg: Time interval specified for the event E.
Hy: History or a set of events during Tg.

P: Primitive event.
E, E1, E2: Events

The interpretation [of event expressions is defined as follows:

I (P) = | P belongs to "T }

T(EVIE2) = I(EN 11 (E2)

I1(E1 & E2)=[(E1) & I (E2)

I1(~E)=~1(E)

1(E1; E2)=1(El) & I (E2) & EL.Time < E2.Time

4.4 Constraint Rules

We describe constraint rules, a generalization of the design
goals whose validity we have verified in enginecring
applications [ISHI91]. The main objective of integrity
constraints and triggers is to check and propagate updates of
properly values while the main objective of constraint rules is
o generate values salisfying the specified constraints. In other
words, constraint rules are mainly used to automatically
populatc databases. Constraint rulcs enable uscrs to describe
constraint conditions on atributes of objects and methods for
generating candidate solutions 1o conditions. They help
explicitly describe engineering knowledge such as design
constraints. The system determines a collection of database
values satisfying the constraints, based on a nciwork
consisting of constraint rules and dependency relationships
among them. Such automatic database population using
constraint rules is vital for cestablishing high reliability and
productivity in engincering design. To our knowledge, there is
no work on automatic database population based on constraint
rules. The constraint rules arc firsi-class objects with the
following structlure:

CONSTRAINT_RULE
STRING Name
STRING Parameter multiple
GENERATE_METHQOD generate
CONDITION_CLAUSE condition-action multiple
INCREASE_METHOD increase
DECREASE_METHOD decrease

where
GENERATE_METHOD = gencrate (init, cond, dif)|
calculate (exp) | retrieve (db, cond, order) | ask ()
CONDITION_CL.AUSE = condition |
condition advice actions
actions = action | actions | action
INCREASE_METHOD = gencrate_incr | retrieve_incr |
ask_incr | rule.increase() | rule.decrease()
DECREASE_METHOD = generate_decr | retrieve_deer |
ask_decr | rule.increase() | rule.decrease()

Name is the rule name denoting the name of the property whose
value this rule aims 10 determine. Parameter denotes the names
of other rules on which this rule depends. The generate attribute

474

specifics methods for generating candidate values satisfying
the specified constraints, which include genceration based on
initial and difference values, caleulation based on other rules,
database retrieval, and user input. Condition-action consists of
zero or more condition and action pairs. Actions for failure
advice are invoked when the preceding condition is not
satisfied by the candidate value. The actions are invocations of
their own or other rules with an increase or decrease message.
They arc evaluated from left to right. If one action is successful,
the following actions are not evaluated. The actions correspond
1o user-specified backiracking of rules. When there are multiple
conditions, the rule is only successful il all the conditions are
satisfied. Otherwise, the rule is aborted.

Events in this case are rule invocations such as generate,
increase, and decrcase. Conditions and advice actions
correspond to the conditions and actions in the E-C-A
paradigm. While events are system-defined, conditions and
actions are uscr-defined. As described later, the order of rule
invocation is determined by the rule scheduler based on rule
dependencies. During scheduling, loop detection of rules is
done statically. Loop detection is also done dynamically during
rule cxecution.

For example,

Name PistonHeadThickness
Parameter ExplosionPower CylinderDiameter
PistonDiameter

generale gencrate (init: 3.7, cond: Value < 3.9, dif: 0.01)
condition-action

(1) Value > 0.06* CylinderDiameter advice Sclf.increase()

(2) Value < 0.065* CylinderDiameter advice Scif.decrease()

(3) power (PistonDiameter, 2) * ExplosionPower /

power (Value, 2)< 80.0
advice Seclf.increase() | PistonDiameter.decreasce ()

increase generate_incr
decrease gencrate,_decr

This rule determines the value of PistonHcadThickness
dependent on other parameters, such as ExplosionPower and
CylindcrDiameter, by using the generation method. Three
condilion-action pairs are specified. The last condition’s action
for advice in the event of failure specifies disjunctions of
actions.

Like triggers, our constraint rules are basically set-oriented. In
general, there is more than one combination of parameters
satisfying the same set of constraints. However, we don’t take
the approach where all solutions are automatically generated,
because all of them are not always interesting. It is more
desirable that the user can modify the initial solution to get an
alternative if it is unsatisfactory. In a word, the user must be
able 10 control the exploration of alternatives in a stepwise

fashion. In Jasmine/A, the user can modify the initial solution
by invoking the constraint rules again with some constraints
changed. The user can specify constraints such as fix, increase,
decrease, loose fix, and don’t care for the current values.

4.5 Semantics

We describe the semantics of integrity constraints, triggers
including primitive and composite events, and constraint rules
in terms of transactions and consistency. In general, a
transaction causes transition from one consistent database state
to another consistent database state. Transactions under
consideration consist of events, conditions, and actions as
follows:

C { event condition action } C*

where C and C” denote consistent database states. First, we
consider integrity constraints, such as mandatory, multiple, and
constraint. When the cvent such as insert or instantiate, occurs,
the transition from C to C'is committed only if the condition,
system-defined or user-defined, is true. Otherwise, the
transaction including the triggering event is aborted. As a
result, the state C still holds. In case of primitive events such
as reference, insert, delete, and replace, the action is invoked
within the associated demons to result in the state C’ if the
condition holds. Otherwise, in case of insert, delete, and
replace events, the action compensating for the effect of the
cvent is invoked within the demons. At that time, the resultant
slale C* is semantically equal to the state C.

These semantics are also true for constraint rules. If the
conditions of one rule are satisfied, the transaction
establishing the property value as the action of the rule is
committed to reflect the event effect to the database. Otherwise,
the action compensating for the event effect is committed and
another rule is invoked. Note that even then, all the rules are
not aborted.

Until now, we have used the term transaction to mean a
conventional short transaction. The consistency associated
with a short transaction is application-independent, or a local
consistency. In general, an application is a sequence of such
short transactions. Such an application constitutes a long
transaction as a whole. The associated consistency is
application-dependent, or a global consistency. The purpose of
applications is to establish global consistency. Integrity
constraints focus more on local consistency while composite
events and constraint rules focus more on global consistency.
In particular, there are cases where events, conditions, and
actions are separate transactions. That is, there are application-
independent consistent states between C and C'. The coupling
modes of the E-C-A paradigm are used to specify such cases.

475

S. Implementation
5.1 Integrity Constraints and Primitive Events

This section describes the implementation of system-defined
integrity and user-defined demons (primitive events). For
multiple integrity for a property, the following codc is
embedded into predicate functions of the insert operation of the
data management subsystem only if multiple is not specificd
for the property by the user, that is, only if the property is
singleton-valued:

if the property is empty, then return True
else return False

The insert operation is performed only if the predicate is true.

The insertion to a mandatory property is needed at instantiation
of the instance with the property. Deletion is prohibited while
replacement is allowed. So the instantiate mecthod checks the
insertion to the mandatory properties. The delete method
checks the deletion of the mandatory propertics. These checks
can be done at the object management layer without accessing
actual values. The user-defined constraint is embedded into
predicate functions of the insert and replace operations of the
data management. The insert and replace operations arc
performed only if the predicate is true.

Next we describe the implementation of user-defined demons.
The conditions and actions of demons if-referenced, if-inserted,
if-deleted, and if-replaced are compiled respectively into the
predicate and manipulation functions of the select, insert,
delete, and replace operations in data management. The
predicate and manipulation functions are directly evaluated on
page buffers. This reduces unnecessary data transfer between
application programs and page buffers. This scheme is used for
set-oriented access of objects. For individual access of objects,
the conditions and actions are evaluated on the object buffers.
We provide separate evaluation schemes appropriate for each of
the two types of access. The demons for the user-defined
methods (events) are also compiled into predicate and
manipulation functions. In this way, the conditions and actions
associated with the events can be efficiently processed. The
detection of events themselves can be also efficiently done.
That is, the system can directly detect the occurrences of
events, system-defined or user-defined, because they are
invoked only through method invocation.

In general, there are two evaluation schemes for triggers or
production rules: forward chaining and backward chaining
[STON90]. Assume that A and B are attributes of objects and
that A is dependent on B. If A is rarely refcrenced and B is often
updated, the if-referenced demon should be specified for A.
Conversely, if A is often referenced and B is rarely updated, if-

inserted, if-delcted, and if-replaced demons should be specificd
for B. The former case corresponds to backward chaining and
the latter case corresponds to forward chaining. Like this,
Jasminc/A allows the user to control cvaluation because we
assume that the user knows access patterns better than the
system does.

5.2 Composite Events

We realize composite events by using methods and demons of
objects in a bootstrap manner. To check events for immediate
or scparate evaluation, the PRIMITIVE_EVENT class has the
following demon specified for the property Time:

PRIMITIVE_EVENT
Property
TIME Time multiple
if-inscrted
{ Seclf.Composite.check_immediate_or_scparate ()
where Self Composite.E-C-mode = immediate
or Sell.Composite.E-C-mode = scparatc

For defcrred cvaluation, the system exccutes the following
query belore the end of the transaction:

COMPOSITE_EVENT.sort(*Time", Ascending).check_deferred()
where COMPOSITE_EVENT.E-C-mode = deferred
or COMPOSITE_EVENT.C-A-mode = deferred

The expression sort(Time", Ascending) means that composite
events are evalualed in a first-come-first-scrved manner. It is
implemented by embedding the above query in the before
demon of the transaction commit method.

The six combinations of the two coupling modes are interpreted
by the methods check_immediate_or_scparate and
check_deferred of COMPOSITE_EVENT, where the
spawn_transaction operation creates a new transaction whose
execution may be postponed until the triggering transuction
commit or abort methods are aclivalcq (Sce Figure 2).

5.3 Constraint Rules

Constraint rule processing is divided into rule analysis,
execution planning, and rule execution. Constraint rules are
used to determine property values of objects satisfying the
specified constraints. Basically, the execution order of rules is
determined by the dependency between rules, that is, between
properties. The dependency between rules is called a
dependency network. The uppermost nodes in the dependency
network are properties which are not dependent on other nodes.

476

COMPOSITE_EVENT
Method
check_immediate_or_separate()
{ if Sclf.E-C-mode = immediate then
{if Scif.C-A-mode = immediate then
{if Sclf.event_eval() & Self.condition_cval()
then Scif.action_eval()}
else if Self.C-A-mode = deferred then
{ if Sclf.event_eval() & Self.condition_cval()
then Self.Condition_value = True
clse Sclf.Condition_valuc = Falsc)
clse if Sclf.C-A-mode = separate then
{ il Self.eveni_eval() & Sell.condition_cval()
then spawn_transaction {Self.action_cval()}}}
clse if Self . E-C-mode = separate &
Sclf.C-A-mode = separate then
{if Self.cvent_eval() then
spawn_transaction
{ if Self.condition_eval() then Self.action_cval()})
else error())

check_deferred()
{ if Self.E-C-modc = immediate & Sclf.C-A-mode = deferred
then
{ if Self.Condition_value = Truc then Self.action_eval() }
clse if Self E-C-mode = deferred & Self.C-A-mode = deferred
then
{ if Scll.event_eval() & Self.condition_cval ()
then Sclf.action_eval()}
clse if Sclf [E-C-mode = deferred &
Self.C-A-mode = separate then
{ il Self.event_cval() & Self.condition_eval()
then spawn_transaction { Self.action_cval() }})
clse error())

Figure 2. Methods of COMPOSITE_EVENT.

Basically, rule execution or constraint satisfaction is done from
top to bottom in the dependency network. If one rule is
excecuted successfully, another rule is fired. One rule corresponds
10 a short transaction and establishes local consistency. Global
consistency is only established as a whole if all the rules
corresponding o a long transaction are successful.

Of course, candidate values do not nccessarily satisfy the

constraint condition initially. That is, the backtracking is

usually needed for constraint satisfaction. When backtracking
occurs, the effects of unsuccessful rules are compensated and
alternative rules are invoked. The backtracking method is
specified in the advice part of the constraint rules by the user.
Loop detection is done statically during dependency network
development. As is described later, dynamic loop detection is
done during rule cxecution. For generality, constraint

satisfaction is based on the generate and test scheme.
(1) Rule analysis

The sysiem determines the level of rules according to the
dependency between rules. Rules at level 1 depend on no other
rules. Rules at level 2 only depend on level 1 rules. In general,
rules at level n depend on at least one rule at level n-1. We can
detect loop dependencies by using developed and undeveloped
rule lists. Initially, the undeveloped rule list contains all rules
at level 1 and the developed rule list contains no rules. The rules
at level 1 are developed into the rules dependent on the rules at
level 1. The developed rules are put in the developed rule list.
The dependent rules are put in the undeveloped rule list.
Similarly, the rules taken from the undeveloped rule list are
developed into the rules dependent on the taken rules. If, during
rule analysis, the same rule appears both in the undeveloped and
developed rule lists at the same time, a loop occurs. This is
brought 1o the user's attention for further processing.

(2) Execution planning

After the levels of rules are determined, the rules are grouped
into disjoint sets of related or connected rules. Within one rule
group, the rules are ordered according to increasing level. If
there is more than one rule with the same level, order is
determined based on the number of rules upon which the rules
depend. That is, the smaller the number, the higher the
execution priority. In the final step, the disjoint sets of rule
groups arc merged into a linear list.

(3) Rule exccution

A plan is a list of rules pushed onto the stack. Individual rules
are popped from the stack. A candidate value is generated
through the generate method of the constraint rule. If a pattern
of partially determined values including the candidate value is
already in the history hash table, a rule execution loop occurs.
That is, the system can detect the loop dynamically. In other
words, the system can guarantee the termination of rule
execution. If the pattern is not in the history table, then the
constraint condition is evaluated. If the condition is satisfied,
then all the advice actions associated with this rule are popped
off the stack. Otherwise, the advice action of the condition is
pushed on the stack. If all the conditions are satisfied, the
dependent rules are pushed on and the control is given to the
beginning of this process.

When the user has specified alternative solutions or alternative
sets of values, the system modifies the constraints according to
these specifications. For example, if the user specifies
“Increase the current value”, the condition *“Value >
CurrentValue” is inserted 1o the constraint rules. The execution
of rules is done in the same order as the initial plan.

477

6. Conclusion

We have described the design and implementation of the
constraint management facility for our active object-oriented
database system called Jasmine/A. The facility includes
integrity constraints, events/triggers, and constraint rules. The
facility enables the user to handle both interobject and
intraobject constraints, to define both primitive and composite
events, and to populate databases with values satisfying
specified constraints. We have taken a multi-paradigm approach
to constraint management. All the paradigms are integrated
into object-oriented databases. We have described the semantics
of the constraint management facility by extending the
conventional terms of transactions and consistency. Evaluation
is done efficiently using page buffers for constraints associated
with set-oriented object access and object buffers for those
associated with individual object access. Users are also able to
control the constraint evaluation.

We plan to apply Jasmine/A to various practical applications to
verify the validity of our approach and give experience
feedback to the system. We also plan to include cnhancements
such as extension of composite event specification, extension
of constraint rule description, and the addition of a graphical
user interface.

Acknowledgments

We thank the anonymous referees for their helpful suggestions.

References

[AGRAB89] Agrawal, R., et al.: ODE: The language and the data
model, Proc. the 1989 ACM-SIGMOD Conference, pp.36-
45(1989).

[DATE90] Date, J.C.: An Introduction to Database Systems,
vol. 1, Addison-Wesley, 1990.

[GATZ91] Gatziu, S., et al.: Integrating Active Concepts into
an Object-Oriented Database System, Proc. the 3rd
International Workshop on Database Programming Languages
(1991).

[GEHA92) Gehani, N.H., et al.: Event Specification in an
Active Object-Oriented Database, Proc. the 1992 ACM.
SIGMOD Conference, pp. 81-90 (1992).

[GOLD83] Goldberg, A., et al.: Smalltalk-80: The Language and
Its Implementation, Addison-Wesley, Reading, MA., 1983.
[HUDS89] Hudson, S., et al: Cactis: A Self-Adaptive,
Concurrent Implementation of An Object-Oriented Database
Management System, ACM Trans. Database Syst., vol. 14,
no.3, pp.291-321(1989).

{ISHI90] Ishikawa, H.: An Object-Oriented Knowiedge Base
Approach 10 a Next Generation of Hypermedia System, Proc.
IEEE COMPCON Spring 90 Conference, pp. 520-527 (1990).

[ISHI91] Ishikawa, H., et al.: An Object-Oriented Database:
System and Applications, Proc. the IEEE Pacific Rim
Conferecnce on Communications, Computers, and Signal
Processing, pp.288-291 (1991).

{ISHI92] Ishikawa, H., et al.: An Object-Oriented Database
System and its View Mechanism for Schema Integration, Proc.
the 2nd Far-East Workshop on Future Database Systems,
pp.194-200 (1992).

[ISHI93] Ishikawa, H., ct al.: The Model, Language, and
Implementation of an Object-Oriented Multimedia Knowledge
Base Management System, ACM Trans. Database Syst.,
vol.18, no.1, pp.1-50 (March 1993).

[KIM90] Kim, W., et al.: Architecture of the QRION Next-
Gencration Database, IEEE Trans. Knowledge and Data
Engineering, vol. 2, no.1, pp. 109-124 (1990).

fLOHM91] Lohman, G., et al.: Extensions to Starburst:
Objects, Types, Functions, and Rules, Comm. ACM, vol.34,
no.10, pp.94-109 (1991).

[MAIES86] Maicr, D., et al.: Development of an object-oriented
DBMS, Proc. the 1st OOPSLA Conference, pp. 472-482
(1986).

[MCCA89] McCarthy, D., et al.: The Architecture of An Active,
Object-Oriented Database System, Proc. the 1989 ACM.
SIGMOD Conference, pp.215-224 (1989).

IMORG83] Morgenstem, M.: Active Databases as a Paradigm
for Enhanced Computing Environments, Proc. the 9th VLDR
Conference, pp. 34-42 (1983).

|IROTHS8] Roth, M. A, ct al.: Extended Algebra and Calculus
for Nested Relational Databases, ACM Trans. Database Syst.,
vol.13, nod, pp.389-417 (Dec. 1988).

ISTEF86] Stefik, M., et al: Object-Oricnted Programming:
Themes and Variations, Al MAGAZINE, vol.6, no.4, pp.40-62
(winter 1986).

[STON90} Stoncbraker, M., et al.: On Rules, procedures,
caching and views in databasc systems, Proc. the 1990 ACM-
SIGMOD Conference, pp.281-290 (1990).

(YAMAS89] Yamane, Y., ct al.: Design and Evaluation of a
High-Speed Extended Relational Database Engine, XRDB,
Proc. Intcrnational Symposium on Database Systems for
Advanced Applications, pp.52-60 (1989).

478

