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Abstract

Adopting the blackboard architecture from the area of
Artificial Intelligence, a novel kind of optimizer enabling
two desirable ideas will be proposed. Firstly, using such
a well-structured approach backpropagation of the op-
timized queries allows an evolutionary improvement of
(crucial) parts of the optimizer. Secondly, the A* search
strategy can be applied Lo harmonize two contrary prop-
crties: Alternatives are generated whenever necessary,
and straight-forward optimizing is performed whenever
possible, however,

The generic framework for realizing a blackboard op-
tunizer is proposed first. Then, in order to demonstrate
the viability of the new approach, a simple example op-
timizer is presented. It can be viewed as an incarnation
of the generic framework.

1 Introduction

Query optimizers—no matter whether relational or
object-oriented - are among the most complex software
systems that have been built. Thercfore, it is not sur-
prising that the design of query optimizers is still a
“hot” research issue—cspecially in object-oriented da-
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tabase systems. The following is a list of desiderata that
one may expect of a “good” query optimizer:

1. extensibility and adaptability: As new, advanced
query evaluation techniques and/or index struc-
tures become available the optimizer architec-
ture should facilitate extension or an adaptation—
without undue effort.

2. evolulionary improvability: It should be possible to
tune the query optimizer after gathering experience
over a longer sequence of queries being optimized.
Ultimately, a self-tuning optimizer could be envi-
sioned.

3. predictability of quality: Especially when optimiz-
ing interactive queries, a tradeoff between the time
used for optimization and the quality of the op-
timized result has to be taken into account. It
is, therefore, most useful if we could estimate the
quality of the optimization outcome relative to the
allocated time for optimization.

4. graceful degradation under time constraints: This
desideratum is strongly correlated to the preceding
one. Allocating less time for optimization should
only gracefully degrade the quality of the opti-
mized queries. This, of course, precludes any opti-
mizer that first generates all possible alternatives—
without any qualitative ordering—and then evalu-
ates each alternative in turn.

5. early assessment of alternatives: The performance
of an optimizer strongly depends on the number
of alternatives generated. Typically, a heuristics
is used to restrict the search space. However, a
better, since more flexible, approach is to abandon
the less promising alternatives as soon as possible.
For that, a cost model which enables an estimate
of the potential quality of an alternative already in
an early stage of optimization is required.



6. specialization: As in areas of (human) expertise
the optimizer architecture should support the in-
tegration of highly specialized knowledge to deal
with particular (restricted) parts of the optimiza-
tion process and/or with particular subclasses of
queries, e.g., conjunctive or non-recursive queries.

In order to achieve—some of—these desiderata, differ-
ent query optimizer architectures have been proposed.
Unfortunately, all of the proposals fall short of meeting
all criteria. It even appears that in the attempt of ful-
filling some of the desiderata others had to be neglected,
e.g., rule-based systems emphasize the extensibility, on
the other hand the predictability of the quality in rela-
tion to allocated optimization time becomes extremely
difficult.

To support extensibility, rule-based systeins were pro-
posed [5, 22, 13, 3]). Adaptability is the main concern of
the EXODUS query optimizer generator [6], the VOL-
CANO optimizer generator [7], and the GENESIS tool
box system [2]. Structuring the query optimizer for
maintenance and specialization is a major concern of
proposal [19].

A well-structured architecture will be gained, if the
optimization process is subdivided into single, small
steps [24]. The “wholistic® approaches, e.g., [26, 4],
consider an optimization graph—Ilogical or physical-—
representing the entire query. That is, at each stage
a complete query evaluation plan exists. Then, rules
are applied to transform this representation. However,
in our opinion it is better to segment the query into
building blocks and operations, in order to compose a
query evaluation plan step by step. The building block
approach has already been proposed by Lohman [18].

The cost model is an essential part of a query opti-
mizer in order to assure high-quality output. Since it
is not generally obvious which transformation has to be
applied for approaching the optimal plan, alternatives
are generated [6, 22]. The alternatives are graded by a
cost function which has to be continually improved [18].
In [6] an “expected-cost-factor”, which is controlled by
monitored results of the optimization, is added to each
rule. We extend that idea by introducing a mechanism
of backpropagation into our architecture.

The right choice of the search strategy is essential
for the performance and the extensibility of an opti-
mizer. Randomized optimization algorithms as pro-
posed in, e.g., [10], are very effective, if the shape of the
cost function forms a well, as pointed out in [9]. Fur-
ther, the search strategy should be independent from
the search space [17]. The search strategy—also pro-
posed for multi query optimization [25]—that will be
applied in our sample optimizer is a slight modification

of A*, a search technique which, in its pure form, guar-
antees to find the optimal solution [20)].

In this paper, we present a new architecture for
query optimization, based on a blackboard approach,
which facilitates—in combination with a building block,
bottom-up assembling approach and carly assessment
by utilizing future cost cstiinates—to address all the
desiderata. Qur approach is a gencral one as far as we
first devise the generic blackboard-based architecture
which can be utilized for any kind of optimizer con-
struction. The viability of the proposed generic opli-
mizer architecture is demonstrated by an example query
optimizer which, tough quite simple, demonstrates the
main—that is, we describe one sample instantiation of
the generic framework which, though still incomplete,
adheres to the main principles of the blackboard archi-
tecture.

The rest of the paper is organized as follows. In Sec-
tion 2, the basic framework of the optimizer biackboard
is introduced. We conceptually show how the optimiza-
tion process works and how evolutionary improvability
is integrated into the blackboard architecture. In Sec.
tion 3, the running example--i.e., an object basc and
an associated query-—is given. In order to establish the
general ideas in our specific GOM optimizer, the basics
as, e.g., the algebra, the organization of our optimizer,
and the search strategy are explained in Section 4. Since
the cost model is essential for every optimizer gener-
ating alternatives, it is outlined in Section 5. Having
sketched our Blackboard Optimizer. Section 6 demon-
strates a sample optimization process. Section 7 con
cludes the paper.

2 Generic Framework

2.1 The Pure Blackboard

The optimizer blackboard is organized into r successive
regions I2y,...,R,—,. Each region contains a sel of
items representing the advances of the optimizer to de-
rive an optimal evaluation plan for a given query. The
original query is translated into some initial internal
format which is identified by ¢ and placed into region
Ry —as its only item.

A knowledge source KS; is associated with each pair
(Ri, Ri41) of successive regions. Each knowledge source
KS; retrieves items to process [rom region R;. For cach
such item, the knowledge source KS; may generate sev-
eral alternative items which are emitted—in an order
determined by KS;~—into the region R;y,.

Note that there is no restriction concerning the ad-
ditional data read by a knowledge source. They are
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Figure 1: Blackboard Architecture

allowed to read any information at any region, all sta-
tistical data, schema data, indexing information, and so
forth.

The knowledge sources generate sequences of alter-
natives. Therefore, the order in which the alterna-
tive iteins are generated can be used for identification.
For our abstract blackboard architecture shown in Fig-
ure 1, the items at region Rg are identified by six pairs
cach consisting of the knowledge source identifier—i.e.,
KSo, ..., KSs—and the sequence number indicating the
position at which the particular item was generated.
For exarmple, the identifier

4 = KSg KS4 KS3 KS2 KS1 KSo
- 1 0 2 3 4 1

of an item I in region Rg indicates that this particu-
lar item I-——whose identifier is denoted g/—is the fifth
alternative generated by K'S; from the second item gen-
erated by K Sy, etc.

In Section 2.3 we will see that this particular identifi-
cation mechanism is essential for evaluating the quality
and for adapting/calibrating the optimizer blackboard.

2.2 Search Strategy

The blackboard optimizer utilizes a building block ap-
proach for generating the (alternative) query evaluation
plans (QEPs). Thus, for a given query @ the succes-
sive regions of the optimizer blackboard contain more
and more complete query evaluation plans—finally, the
top-most region R,_; contains complete (alternative)
evaluation plans that are equivalent to the user-query
Q.
It is essential to control the search space of the op-
timizer in order to avoid the exhaustive search over all
possible query evaluation plans. Therefore, items at all
regions have associated costs. There exist two cost func-
tions, cosly and costy, which estimate the history and
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Juture costs for evaluating a certain item. With cach
itern two sets of operations are associated: the set of
operations which are already integrated into the item
(representing a still incomplete QEP) and the set of
operations which still have to be integrated. The for-
mer set determines cosl; and the latter cost;. Based
on these cost functions, the optimizer blackboard is ide-
ally controlled by A* search [20]. That is, at any given
time the knowledge source being applicable to the item
with lowest total cost (costs + costy) is allowed to emit
further alternatives. .

If cosip corresponds to the actuai costs for evaluat-
ing the operations of the first set and cost; is a close
lower bound of the future costs, A* search guarantees
to find an optimal QEP efficiently. However, for query
optimization a lower bound estimate of the future costs
is always based on the best case for each operation, i.e.,
the least cost for evaluation is assumed. Hence, the total
estimate of the future costs can be (far) lower than the
actual costs. Then, the A* search could possibly degen-
erate to an (almost) exhaustive search which leads to
unacceptable optimization times. In order to straighten
the optimization, the proposed A* search strategy is en-
hanced by the subsequently described ballooning com-
ponent.

As explained before, knowledge sources retrieve an
item I from their associated region and generate an
ordered sequence of items I, ..., I; which are emit-
ted into the successor region. It is one of the major
objectives in the design and subsequent calibration—
cf. Section 2.3, below—of a knowledge source to en-
sure that the most promising alternatives are generated
first. Such-like sophisticated knowledge sources entail
the incorporation of the ballooning control component
to expedite the optimization process. The basic idea of
the ballooning control is to periodically and temporarily
“switch off” the A* control and to process the first few
alternatives generated by the knowledge sources with-
out any cost control. Thereby, some “balloons” will
“rise” through successive regions—possibly all the way
up to the top-most region where items constitute com-
plete QEPs.

When switching back to A* search only the balloons
at the top of the derivation chains are further consid-
ered; intermediate steps generated during ballooning
are discarded—thereby reducing the resulting search
space and “straightening” the optimization. Since the
blackboard approach allows to assess the sequence of
the items generated by a knowledge source with respect
to its quality for the global optimization, it is expected
that the integration of the ballooning component into
the A* search does not substantially degrade the qual-
ity of the optimization. Ballooning will only process
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Figure 2: Evaluation and Calibration by Backpropagation

highly-promising items very efliciently —without back-
tracking. Further, a reconciliation of the time allocated
for optimization and the quality of the solution—recall
Desideratum 4. of the Introduction--can be achieved
by increasing or decreasing the share of ballooning.

A simplified version of the search algorithm used in
the GOM Blackboard Optimizer is given in Section 4.4.

2.3 Backpropagation

The structuring of our optimizer blackboard imposed
by the knowledge sources operating on successive re-
gions enables the thorough quantitative evaluation and
subsequent calibration of the quality of the knowledge
sources. This is achieved by backpropagating the out.
come of an extensive set of benclunark queries. ‘I'he
principle of backpropagating is depicted in Figure 2.

Let @ = {Q;,Q2,...} be a large set of representa-
tive queries—which are either extracted from user sup-
plied queries or are generated by a query generator. For
these queries let the optimizer generate all possible al-
ternative query evaluation plans, i.e., for this purpose
all items are expanded at regions Ro,..., Re_2. It is,
however, essential that the optimizer obeys the control
imposed by the pure A* search-—except that the search
continues even after the optimum has been generated.
For a query Q; a sequence IZ,--. I}, I] of alternative
items specifying a complete QEP at region R,._-—the
right-most item being generated first and the left-most
last—is obtained. Note that the alternatives are already
sorted by their cost. More specifically, #Ifl is the cheap-
est QLP identifier and I{_ is the most expensive one for
aquery Q;.
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This ordered sequence of plan identifiers is propa-
gated back to the blackboard optimizer in order to eval
ttate the individual knowledge sources’ quality. 'The
quality of a knowledge source is measured in terms of
the relative position at which an alternative was gen-
erated in comparison to the position of this alternative
in the QEP sequence ordered by their running times.
By evalualing a representative number of queries, a so
called “Top-Rank” profile can be derived. In Figure 2,
c.g., the backpropagation of ¢y increases the third col-
umn of the Top-Rank profile of K53 since the identifier
#l], of the top rank QEP states that the appropriate
QEP was generated as the third altecnative hy A'S'3.

In Figure 2, the Top-Rank profile of knowledge
source ANy indicates that almost all top rank QkPs
emerge from the first three alternatives of this know
ledge source. Actually, in practice we are usnally more
interested in the so-called “Top-8” profiles in which
all those query evaluation plans with running time
within % of the actual optitmum are considered semi-
optimal- where & may be some application domain-
specific threshold value,

Quantitative analysis of the profiles facilitates pre-
dicting the average quality of the optimization-  asenvi-
sioned in Desideratumn 3. stated in the Introduction. Let
BAP(KS;, n;) denote the probability thal the first n,
alternatives emitted by knowledge source A'S; include
the optimal one --under the condition that KS; starts
with the alternative from knowledge source NIS;_,
which ultimately leads to the optimum. This func-
tion can casily be computed fromn the “Top-Rank” pro-
file. Furthermore, let bye, denote a (limiting) branch:
ing factor of knowledge source KS,, i.e., the maximal



number of allernatives that knowledge source KNS is
allowed to generate. Then, the following calculation
[Lijo, .. rmay BAP(KS; brs,) derives the probability
that the optimal QEP is among the [Ty o0 brs,
alternatives that cinerge al the Lop-most region K.

Further, a more qualitative analysis of the profiles
facilitates tuning the individual knowledge sources-—as
demanded in Desideratum 2. To give an idea of how
the optimizer can be improved, the three following “hy-
pothetical” profilés are depicted:

Il I
(a) (b) (c)
An ideal profile is Profile (a)--no improvement can be
inade. ‘The worst, one can think of is Profile (b). It looks
like the profile of a “no-knowledge knowledge source”.
Usually, a prolile like (¢) is worth striving for. It dis-
plays that the knowledge source has only to gencrate
few alternatives in order to carry the creation of the
optimal ('Top-Rank) or a semi-optimal QEP ('Top-6).
Ultimately, we envision that, the profiles can be used
by the optimizer for self-tuning  Desideratum 2- -since

the analysis of the proliles as well as the generation of

the hints may be carried out automatically.

2.4 Generalized Optimizer Blackboard

In the discussion of the hypothetical knowledge source
profiles we already observed that it might be useful to
classify queries within the regions. This allows to pro-
cess Lhem more specifically by particular highly cus-
tomized knowledge sources, The classification of queries
depends on the region. As an example, consider clas-
sification of recursive vs. non-recursive queries which is
important to know for applying the right algorithm to
compute join orderings.

In the pure architecture a knowledge source reads
items from region R; and emits the outcome into the
next higher region 1641, We extend this concept such
that an item leaving a special region R, is allowed to
re-enter the blackboard at a lower level R;, (i, < i,).
"Thus, iterns can iterate over the regions Ry, to K;,. An
item will leave that iteration if it comes back to R;,
without being modified.

3 Running Example

In this section, an example object base—-called Com-
pany - -is prescuted. In Figure 3, ten objects belonging
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uame: “Sandes”
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name: “Versace” || name: “Hinault”
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name: “LeMond”
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mgr: tdg mgr: fdg mgr: 1d;q
Manager
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name: “Chief”
wotksln: idg
salary: 280000
sex: ‘M’
backUp: idg

name: “Boss”
warkaln: idg
salary: 150000
sex: ‘M’
backUp: wdgy

name: “Master”
worksin: idy7
salary: 900000
sex: ‘M’
backUp: NULL

Figure 3: Example Extension of Company

to types Emp, Dept, and Manager are shown. The
type definitions are omitted—for the further discus-
sion it is only of importance that each object of type
Iymp has the attributes name : String, worksIn : Dept,
salary : Float, and sex : Char, and each object of type
Dept the altributes name : String and mgr : Manager.
Since Manager is a subtype of Emp it contains all the
attributes of Fmp and, furthermore, it has one attribute
backlUp : EFmp additionally. Further, a type-associated
function skill computing a ranking number for individ-
ual Fmployees is assumed.

The labels id; for i € {1,2,3,...} denote the system-
wide unique object identifiers (OIDs). References via
attributes are maintained uni-directionally in GOM—
as in almost all other object models. For example,
in the extension of Company there is a reference from
Employee id; to Dept ids via the works/n attribute.

The Example Query For the object model GOM, a
QUEL-like query language called GOMql [13] was de-
veloped. As an example query, we want to know when-
ever there is a Manager—usually called “MCP” —who
pays a female less than a male Employee (in one of his
Depts) even though the female is better qualified. We
want to retrieve the manager and as evidence the fe-
male, the male, and the difference of their salaries. In
GOMgl the query can be formulated as follows:

range u: Emp, o: Emp

retrieve [mcp : u.worksln.mgr, underPaid : u,
overPaid : o, difference : o.salary - u.salary]
u.worksIn.mgr = o.worksIn.mgr and

u.skill > o.skill and

u.salary < o.salary and

u.sex = ‘F’ and o.sex = ‘M’

where



There are three clauses. The range-clause introduces
the needed variables and binds them to finite ranges—-
here, the extensions of the types. The retrieve-clause
specifies the final projection of the query, and the
where-clause contains the selection predicate. Un-
der the assumption that “Sander” has higher skill
than “Versace”, the relation {[mcp : idg, underPaid :
idy, overPaid : idy, difference : 10000]} is the outcome
of the query with respect to the object base Company.

At this point, we would like to stress that even though
we have chosen GOM and GOMq]l as the example data
model and query language, respectively, the results ob-
viously apply to other object-oriented data models and
query languages as well. ‘

The Index Structures The GOM query evaluation
is supported by two very general index structures tai-
lored for object-oriented data models:

e Access Support Relations (ASRs) [12] are used to
materialize (frequently) traversed reference chains,
and

e Generalized Materialization Relations (GMRs) [11]
maintain pre-computed function results.

Since these two index structures have to be taken into
account in the optimization process, two index relations
based on the schema Company are exemplified:

B [Emp.worksIn.mgr} |

#0:0IDgmp | #1:0IDpepe | #2: OIDranager

id; ids ids

id, 1ds ids

id1o id7 idlo

| { Emp.skill)) |
#0:0IDgmp | #1:int

idy 10
1ds 4
id1o 10

The extension of the ASR [Emp.worksIn.mgr] which
contains all paths corresponding to the indicated path
expression, and of the GMR {(Emp.skill)) which main-
tains the pre-computed skill function for each Employee
are depicted. Note that the columns of these index re-
lations are sequentially numbered, i.e., #0, #1, ...

4 GOM Blackboard Optimizer
4.1 The Algebra

The gquery evaluation plans (QEPs) are directed acyc-
lic graphs (DAGs) consisting of algebraic operator ap-
plications. Building blocks standing for sets of OlDs
of a type 7' (denoted by oid(T)), ASRs (denoted by
[..]), and GMRs (denoted by {...))) are the leaves
of the DAGs. The treatment of indexes -like ASRs
and GMRs—as additional sources of information is al-
ready present in the notion of shadow tables as intro-
duced in [23]. In accordance with the building block
approach [18], the DAGs are successively composed
bottom-up—operations are added to the DAG and coni-
mon subexpressions are factorized. In order to compute
a (near-)optimal DAG the optimizer has to detertine
an optimal set of building blocks and an optimal order
of the algebraic operations.

Our algebra mainly copes with relations. Iu order to
refer to single columns of relations, we use so-called in-
Jormation units (IUs). We do not call them attributes,
since we want to avoid any conflict with the attributes
at the GOM object type level. Each /U is unique
throughout the entire optimization process, i.e., over
all alternatives which would be generated, and so an
unambiguous dereferencing mechanism is obtained for
the algebraic operations and the cost functions.

Besides the usual set operations (U, \), the algebra
consists of the common relational selection o, projeclion
7, join X, and renaming o. Further, a mapping operator
(x)—-called ezpansion—belongs to the algebra. Let T’
be a type, v, vy, v}, ..., vn, v} be IUs, ay, ..., as be
attributes, ¢ € {=, <, >, ...} be a comparison operator,
and ¢ be a constant. Then, the building blocks and the
algebraic operators are informally defined as follows:

o building blocks: 'The extension of 7" 0id('1), an ASR
[-] and a GMR {...)) are building blocks. The
columns of the relations retrieved by them are de-
noted by self and #0,...,#n, respectively. We
assume indices on the first and last column of an
ASR and on each column of a GMA.

e erpansions: An expansion Xu,.w.ay,..w.wv.a, deref-
erences sets of OIDs denoted by IU v such that the
attribute values can be obtained and be assigned
to new IUs vy, ..., vy, respectively. 'The input
relation is expanded by new columns denoted vy,

.., Uy. Further, the x operator may also expand
the tuples by function invocations--instead of at-
tribute accesses. The parameters of functions are
enclosed in parentheses following its name.
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o usual relational operations: M, 4, denotes a join,
Ty, e and Tuiv, selections, 7y, . 4, & projection

on the I'lls in the ﬂnhﬁrrlnt and o/

1€ SUDSCHIPE, NG Qyl=y,, .. v, =va a

renaming operation where the column named v; is
renamed to o) (2= 1,...,n).

Relying heavily on ordinary relational operators allows
us to exploit relational optimization techniques [16, 14].

4.2 The Normal Forms

In object-oriented query processing it is common to
translate the query into an internal representation as
close to the original query as possible—witness, e.g.,
[1. 4, 13, 14]. This is also valid for relational query pro-
cessing where, e.g., an SQL query is translated into a
mwod-expression. However, this representation exhibits
another property which the initial internal representa-
tion of object-oriented queries very often lacks: It is an
(expensive) well-structured term facilitating a straight-
forward splitting into building blocks and operations.

Qur proposed starting point—called Most Costly
Normal Form (MCNF) [14])--has one additional x-
expansion directly following the ™ resulting in a roy™
sequence. All the extensions whose instances are needed
for the query evaluation are joined with frue as join
predicate.  x-expansions follow enhancing each tu-
ple of the resulting relation by further information
needed to evaluate the selection predicate solely on
the basis of this result. Thus, two vital concepts of
object-orientation --access via OIDs (implicit derefer-
enciation) and function invocation——are integrated into
the MCNF, and are prepared for their optimization.
Then, the selections accompanied by the final projec-
tion onto the required JUs are appended.

The MCNF representation of the example query
“MCP” is shown below:

"mrp:um,underl’aid:u,ouev'Paid:o,diﬁercnce:osa—usa(
”oa.x::‘M’(o'usx=‘l"’(ausa< om(auak> osk(aum=om(
,\'um:ud.mgr(Xom:od.mgr(
.\‘ud:u.morkslu,uaa:u.salary,ua:c:u‘uw(
,\'ud:o.wark.cln,oaa:o.aalary,aam:o.ac:c(
Xusk:u..nktll(Xosk:o.lkill(
9u=aalj(0id( Emﬂ)) Mirue Qo=sel}(m'd(E"‘p)) . )

The MCNF is further enhanced [15] in order to ob-
tain a convenient hasis for composing the query evalu-
ation plans. A table combining the building blocks and
the operations with catalog information is derived such
that it contains all information relevant for optimizing
the query. Thus, we can, e.g., efficiently retrieve the
building blocks and the operations in which a given IU

549

is involved. This elaborated normal form is obtained by
decomposing the MCNF term into its building blocks

and nnnrnhnna Fach nlarn i then enriched bv statisti-
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cal data being relevant to the query. For example, the
cardinalities of the building blocks and the selectivities
of the operations are attached. The fact which columns
of a building block are supported by an index is impor-
tant for an exact cost estimate. Hence, this information
is also maintained.

4.3 Regions and Knowledge Sources

The blackboard of our GOM Blackboard Optimizer is
subdivided into seven regions—each one completing the
QEP in a particular way: Ry (MCNF), R; (Decompo-
sition), R2 (Anchor Sets), R3 (Introduce x), R4 (In-

troduce U}, 1(,5 \Inurﬁddce M), and Rs (Iﬁtfﬁddce ﬁ')

Each region supplies items, each of which possesses an
entry currentDAGs and an entry future Work where the
DAGs composed so far and the remaining operations,
respectively, are stored.

The knowledge sources of type KS; read items at re-
gion R; and write items at region R;4,. What follows
is an informal description of the knowledge sources at
each region. We assume that the query is represented
in MCNF format at region Rp.

(So (to “Decomposition”): The MCNF term is de-
composed into building blocks and operations. The
additional information is obtained from the schema
manager which also manages the statistical data.
Additionally, the ASRs and GMRs which can be
integrated into the query are determined. There
exists only one knowledge source of this type and
it does not produce any alternatives.

KSy (to “Anchor Sets”): A knowledge source of this
type determines which building blocks are chosen
for evaluating the query. We call such a minimal
(i.e., non-redundant) set of building blocks contain-
ing enough information for answering the query an
anchor set. KS, generates several anchor sets and
sorts them according to special heuristics, e.g., con-
sidering the number of joins or the number of op-
erations left in the future Work entry.

KS4 (to “Introduce x”): Expansions are added to the
currentDAGs entry. In the current implemen-
tation, the following heuristics is applied: An
expansion——or a pair of expansions—is integrated
into the DAGs if (and only if) a selection or a join
directly depends on it, or the future Work entry of
the item only contains expansions and projections.



KS3 (to “Introduce ¢”): According to the heuristics
“introduce selections as early as possible”, selec-
tions are integrated into the query whenever it is
possible.

KS4 (to “Introduce M”): At each iteration the know-
ledge source of type KS4 introduces at most one
join. As a consequence, for each item a join or-
der is obtained by repeated iterations. Alternatives
might have different join orderings.

KSs (to “Introduce 7”): Finally, projections are added
to the DAG. We rule out the following two se-
quences: ox M and oy, since a mo X and a moy
sequence can be replaced by only one single physi-
cal operation.

The blackboard is re-entered from region Rs to R, until
all expansions, selections, and joins are processed, that
is, the future Work entry is empty except for a single
projection.

In order to avoid evaluating equal expressions twice,
items leaving regions R, Ry, R3, R4, and Rs are fac-
torized. For example, if KS1 selects gy=qcif(0id( Emp))
and go=qeif(08d(Emp)) as elements of an anchor set,
they will be factorized as follows:

Qu=self Lo=self
oid( Emp)

The full set of factorization rules applied can be found
in [15]. As a result, the optimizer generates a DAG
which is a “logical” query evaluation plan.

4.4 Search Algorithm

The search strategy in the GOM Blackboard Optimizer
consists of two parts. On the one hand, A* search ad-
vances the alternative with the minimal sum of history
(costy) and future costs (costs), and on the other hand,
ballooning proceeds the alternative(s) emitted first by
a knowledge source. The actual search strategy com-
bines these two techniques by allowing a certain ratio
of optimization steps to be done under A* search and
under the ballooning control, respectively. The search
strategy is outlined as follows:

1. Insert the starting state (item) ¢ into the list
OPEN of unexpanded states.

2. Sort the elements I of OPEN by increasing f(I) :=
costy(I) + costy(I) values.

3. If the ballooning flag is raised, do
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(a) remove the first b;n a1 elements from OPEN
and insert them into the sct B

{b) perform the following steps biepations Litnes

i. expand each I € B by its appropriale

knowledge source to [, ..., [; for j <
bbranch
ii. remove [ from B and inserl the itenn into
CLOSED
iii. insert [, ..., [; into B
(c¢) transfer the items in B to OPEN, and go to

Step 2.

4. Remove the left-most item [ from OPEN ..,
the iteru for which f(7) := costn(J) + costy(1) is
minimum (ties broken arbitrarily)--- and place it
on CLOSED.

5. If 1 is a goal state, i.e., .FW = 0, exit successlully
with the solution I.

6. Let the appropriate knowledge source expand state
1, generating all its successors.

7. For every successor I’ of I

(a) insert I’ into OPEN unless

(b) there exists I € OPEN U CLOSED with
I'FPW = 1".IF'W then

i. if costy(I') < costy(I"), ihen insert /!

into OPEN and transfer /” to PRUNED

il. else, if costy(I') > costy(I"), then insert,
I' into PRUNED

8. Go to Step 2.

The A* search algorithm is a best first algorithin [20).
It starts with inserting ¢, the initial state, into OPKN.
OPEN contains all states which have been reached but
bave not. been fully expanded, i.e., it contains all items
waiting for their further processing. In each iteration,
A” scarch continues with the item of OPEN which has
the least f-value, i.e., the minimal sum of cost;, aund
costy. That item is expanded, i.e., its successors are
put into OPEN, and then il is promoted to CLOSED,
the set of all fully expanded states. The algorithm
will successfully terminate as soon as an itan is gen
erated whose future work--denoted by F'W--is empty
and whose costs are minimal.

In Step 3. the control is temporarily switched from
A”* search to ballooning. Ballooning might, for exam-
ple, be triggered after a certain number of iterations
in the A* search have been perforined. Then, the first
binstiar items of OPEN are expanded bjeratsons Limes,



i.c., the items are expanded to lists, the first, at most
byranen  which should be one in most cases -elernents
of cach list are then expanded, and so on. The numbers
bonstsats Vaterations, and byyanen can be set depending on
the analysis of the entire query and the current state
of the optimizing process. For example, the optimiz-
ing process of a query containing many y-expansions
and selections may be expedited by low b,,,,4, high
byteratsons, and oW bprancn paranieters, since generating
many alternatives is unnecessary for integrating these
operations. Thus, by ballooning fast optimizing can be
switched on whenever it seems acceptable.

For the pruning conditions in Step (7h), a special
case of the optimality criterion [20] is presupposed:
If there are two items [y and [ with cqual future
work entries both containing an operation op and, fur-
ther, costy(ly) < costy(ls) holds, then integrating op
into the history work entry of /; and [ will keep the
cost, order between the two items invariant. There-
fore, all items (states) which produce higher costs than
an item with the same future work are pruned by
the pruning condition (7b) and transferred to a set
PRUNED since, due to the optimality criterion, they
cannot possibly yield a better item. 'Thus, the suc-
cessor item I’ will canse the pruning of some items
1" € OPENUCLOSED, if it is less “expensive”, and il
will be pruned itself by an item I’ € OPENUCLOSED,
if it is more “expensive”.

The pruning conditions can be strengthened, if some
further properties are ensured by the cost functions [15].

5 Cost Model

Iromn specific data extracted from the object base, the
costs for scanning the building blocks and evaluating
the operalions are estimated.

For the calculation of the history costs as well as the
future cosls, two parameters are assigned to each DAG
node: the cardinality #o of the output relation, and the
numbers #e = (ey,,..., €y, ) of distinct values belong-
ing to the IUs vy, ..., v, of the output relation--called
e-values. Their calculation from so-called basic num-
bers is explained below. The number of page faults #p
and the CPU costs #c-~additionally to #o0 and #e as-
signed to each DAG node—-are derived from #o, #e,
and the basic numbers. For estimating #p, the well-
known formula of Yao [27] is used.

The estimate for #e is based on system-dependent
functions which estimate the CPU costs for the building
blocks and the appropriate operations with #o and #e
as input.
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Thus, the calculation of the history costs is fairly
straight-forward. The future cost estimate of an op-
cration is demanded to be a lower bound of the actual
costls, For that, we derive a lower bound of the size and
the e-values of the input relations (see below). Then,
we can calculate the future costs in basically the same
way as the history costs.

Assigning a quadruple T = (#p, #c, #0, #e) to each
DAG node, the costs of a DAG are computed by sum-
ming up the costs of its nodes. Then, we compute the
history cost of an item by adding up the costs of the
DAGSs in the currentDAGs entry of the item and the
future costs by adding up the costs of the operations in
the future Work entry.

The data used for the cost calculations is stored as
basic numbers in three levels: “Values from the Object
Basc”, “Single Selectivities”, and “Combined Selectiv-
tlies”.

For every object type T', the cardinality cp of its ex-
tension and the values p2'¢ and p;.b’m——which denote
the number of pages occupied by the extension, i.e.,
the set of OIDs, and by the objects, respectively—are
available as values from the object base. Let a be an
attribute of an object type T. If a refers to an object
type, defr , denotes the probability that the attribute
is defined (# NULL). For each attribute a of type T,
the parameter er, denotes the size of its range. For
each method m, the size of its range cr m and its aver-
age execution time! erecy ,,(n)—for executing n times
the method m on OIDs of type T—is maintained. The
cardinality of an ASR [.. ]} and a GMR {...))—which
is denoted cf..} and ¢..y, respectively—and the num-
ber of pages they occupy—denoted pf..) and py. y—are
also available as values from the object base.

‘The selectivity s for a unary operation op,(R) is de-
fined as s(op,(R)) = |op,(R)|/|R|, and for a binary op-
eration op, as s(op,y(R1, R2)) = |opy(Ri, Ra)|/(|Ra| *
|R2]). These single selectivities can be estimated in
three different ways with increasing accuracy:

1. As in [24], the selectivities might be derived
from simple estimates. Thus, if the basic num-
bers ¢pmpskin = 10, CEmp, satary = 10.000, and
CManager = 150 are given, the selectivity for
Tusk>osky Ousalosar and Oym=om Wwill be (1 -
(I/C[.'Jmp,skill))/2 = 0.45, (l - (l/cEmp,salary))/2 ~
0.5, and 1/¢panager % 0.007, respectively.

2. The selectivities can also be determined by his-
tograms [21]. For that, histograms are generated
by sampling the object base. The selectivities for

1We know that this is only a rough estimate. Future versions
of the cost model will refine this.



Oosr=F and Oyer=p can be determined in this
way.

3. During the evaluation of a query, one can gain
more accurate selectivity estimates for use in fu-
ture query optimization by monitoring.

Since, in the current implementation, the indepen-
dence of attribute values is presupposed, combined sel-
ectivities are the product of their single selectivities. In
the future, this will be refined.

Knowing the selectivity s of an operation, we are able
to derive the output size #o of that operation by mul-
tiplying s with the cardinality of the input relation(s).
The output size of a building block, i.e., type exten-
sions, ASRs, and GMRs, is given by the basic numbers.
Thus, the cardinalities of the (intermediate) relations of
a DAG are calculated bottom-up.

Since not the total number, but the number of dis-
tinct OIDs is essential for cost estimates considering
x-expansions and retrieving building blocks with an in-
dex, an e-value e, defined by |7,(R)| is assigned to each
IU v in a relation R. The bottom-up calculation of the
e-values is performed as follows: The initialization is
done by the basic numbers of the building blocks. The
further calculation is mainly based on a formula also
used for generating join orderings [8]. For example, let
an expansion xy.y,.q be applied on a relation R where
the e-values are known. Let cr, . be the cardinality
of the range of the attribute/type-associated function a
and e, be equal to |7,(R)|. Then, the following formula
determines the number e;, of values being referenced:

Ty,a ¥ (1= (1~ 1/cr,,a)*")

Since the e-values decrease with each operation ap-
plication, we can determine a non-trivial lower bound
on all e-values. Let R be the relation obtained by evalu-
ating the DAG of the MCNF where the last projection
is cut off. Then, |m,(R)| gives a lower bound on all
e-values of the IU v in all (possibly unfinished) DAGs
representing the query. Using the formulas for history
costs and applying these to the operations in the future-
Work entry of an item, we arrive at a lower bound on
the future costs.

eul =

6 Sample Optimization

Performing the optimization process for the running ex-
ample, some decisions individually made at each region,
factorization, and pruning will be demonstrated.

The normal forms were already explained in Sec-

tion 4.2. Thus, the sample optimization starts at gener-
ating anchor sets. Each non-redundant set which binds
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the IUs u and o is a potential anchor set for our exam-
ple. The values for the other JUs can be retrieved by
x-expansions. Because of symmetry of u and o, we only
give the sets resulting in bindings for u:

A {Qu:ael_f (md(Emp))}

Az = {ou=gousk=¢1({Emp.skill)))}

As {ou=#0,ud=#1,um=g2([Emp.worksin.mgr])}
Ay = {u=g0,usk=g1({ Emp.skill))),
Ou'=#0,ud=#1,um=#2([Fmp.worksIn.ingr])}
{9u’=#0,uak=#1(«E'mp.ski”»),
Ou=#0,ud=#1,um=#2([Emp.worksn.mgr]))

It

A5:

Due to the corresponding sets for o, the appropriate
knowledge source generates al most 5 * 5 = 25 alter
native anchor sets. Because of the cost functions, the
GOM Blackboard Optimizer favors the following anchor
set A9 originated from Aj:

Agy = {eu=go,use=g1((Emp.skill))),

' Qo=#0,0sk=#1({Emp.skill}))}

Though A* search might backtrack to one of the alter-
native anchor sets the example optimization is limited
to Az 2. Factorizing this anchor set results in the fol-
lowing currcntDAGs entry:

Quz#0,usk=#1 Qom#0,05k=#1
{(Emp.sksll))

Now, we want to sketch the search space originating
in the item Iy containing the DAG above. In order
to simplify the following consideration, the future work
for that item is reduced to the operations Yuss.u ser,
Xosz:0.sx) Tusz='F", 8nd Oopz=mp. The GOM Black-
board Optimizer doesn’t usually open the whole search
space as it is depicted in Figure 4. There, the possi-
ble paths leading from Iy to an item I; containing the
future work of Iy in its currentDAGs entry are illus-
trated. If pure A* search is applied and the evaluation
costs of the operations differ hardly, all six paths from
Iy to I) are examined. Although some of the six alter-
natives arc pruned every time edges come together, a
further reduction of the expense can be achieved. Since
for integrating expansions and selections, the knowledge
sources deliver a good sequence of the items, the trig-
ger condition of the ballooning component can be set
to true and the branching factor bprancn t0 one. Then,
only one alternative is produced.

The other expansions by worksn and salary are also
integrated. Since we assume that an attribute access of
an object already resident in the buffer is free of cost,
the expansions dereferencing u and o, respectively, are



Figure 4: Example Search Space from Ij to I,

put together. Further, the two expansions are factorized
as the lower part of the DAG in Figure 5 shows.

Two expansions, three joins, and one projection are
left in the futureWork entry. The joins Gusscosas
CTusk> osky OF Oym=om cah be added to the actual cur-
rentDAGs entry?. Thus, the state expansion—Step 6
of the scarch strategy (cf. Section 4.4)—leads to three
items I, I, and IY".

The history costs of the three items I7, I{, and I{” dif-
fer hardly. In contrast to that, the future cost estimates
differ substantially, since the selectivities and, therefore,
the estimates of the cardinalities are very different. As
pointed out in Section 5, the selectivity estimate of the
operation Fym=om is far less than the other two selec-
tivities. Thus, the future costs and consequently the
f-value of the item where that operation is integrated
into its CurrentDAGSs entry is lowest. Hence, this item
is further processed and the two remaining joins are
added to its CurrentDAGs entry as selections.

The final projection completes the DAG. Further-
more, projections which reduce the size of the inter-
mediate relations are integrated into the DAG.

The resulting DAG is given in Figure 5. Further op-
tumizations will map the operations to physical oper-
ations. Since every wo x and every m X x sequence
entails only one physical operation, the resulting DAG
is divided by dashed horizontal lines.

7 Conclusion

A novel architecture for query optimization based on a
blackboard which is organized in successive regions has
been devised. At every region knowledge sources are ac-
tivated consecutively completing alternative query eval-
uation plans. Starting from basic building blocks a fi-
nite set of algebraic operations is added such that a
DAG finally resulis in a (logical) query evaluation plan.

2 Actually, in order to introduce dum=om the expansions x4
and \ ,4 have to be added before. This detail is omitted, since
the comparison of the items obtained after incorporating the joins
gives an idea about the importance of the future cost estimates.

Tmep:um, under Paid:u,over Paid:o,di f ference:osa—usa

Tusa<osa

Ousk>osk
i

+
Tusk,usa,um,u,08k,08a,0m,0
Num:om

Xum::ad.mgr Xom:od.mgr
1

L L)
Tud,usk,usa,u Tod,0sk,0sa,0

Ousz="'F* Tosz=‘M’

Qox=0,0sk=4#1,0d=id,0sa=tsa,06T=isx
Qu=#0,usk=#1,ud=id,usaxisa,usr=isx

Xid:#0.worksIn,i.sa:l#o.aalnry,c'sz:#o.aez

(Emp.skill)

Figure 5: Resulting DAG of the Sample Optimization

Due to this well-structured approach, the optimizer
can continually be improved. By backpropagating the
optimized queries, each knowledge source can be cali-
brated and assessed. Thus, the weak points of the op-
timizer can be determined and eliminated. An evolu-
tionary improvement takes place.

As a search strategy, A* search enriched by balloon-
ing has been proposed. By subdividing the costs for
each alternative into history and future costs, A* search
is able to compare the possibly unfinished plans with
each other. However, even in states where the way
of building efficient plans is obvious, pure A* search
might generate a large number of alternatives. To al-
leviate this, ballooning was designed to accelerate the
optimizer without degrading its quality.

The viability of our approach was shown by the GOM
Blackboard Optimizer. Based on an object-oriented al-
gebra, a blackboard optimizer was specified. It was
shown how a blackboard, its regions, and its knowledge
sources could be designed. The search algorithm was
explained and the basics of a cost model were described.

For illustration purpose a sample optimization was
demonstrated.
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