
i tect 1

Alfons Kemycr’

11-e for Query Optimization in Object Bases

Guido Moerkotte+ KlausPei t hner*

‘Fakultiit fiir Mathernatik und Informatik
Universitiit Passau

W-8390 Passau, F.R.G.

;,e;h~:r@dW i.uni-passau .de

Abstract

Adoptiag the blackboard architecture from the area of
Artificial lutelligencc, a novel kind of optimizer enabling
1.~0 desirable iderts will be proposed. Firstly, using such
a well-structured approach backpropagation of the op-
timized queries allows an evolutionary improvement of
(crucial) parts of the optimizer. Secondly, the A’ search
strategy can be applied to harmonize two contrary prop-
erties: Alternatives are generated whenever necessary,
and straight-forward optimizing is performed whenever
p:)ssi ble, however.

The generic framework for realizing a blackboard op-
timizcr is proposed first. Then, in order to demonstrate
the viability of the new approach, a simple example op-
timizer is presented. It can be viewed aa an incarnation
of the generic framework.

1 Introduction

Query optimizcrrs--no matter whether relational or
clt).ic?ct-oric?nl,(!d - are among the most complex software
nysl.r*lns that have been built. Therefore, it is not sur-
prising that Ihc design af query optimizers is still a
“hot” research issue-especially in object-oriented da-

Permission to copy without fee all or part of this material is
grurrted provided that the copies arc not made or distributed
for direct rommcrcial advantage, the VLDB copyright notice
und the title af the publication and ita date uppear, and no-
tic*r i.u given that copying ie by permission of the Very Large
Dutu Hose Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission fionz the Endow-
rnf!nt.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993.

+Fakultit fiir Informatik
Universitit Karlsruhe

W-7500 Karlsruhe, F.R.G.

moer@ira.uka.de

tabase systems. The following is a list of desiderata that
one may expect of a “good” query optimizer:

1. exlensibility and adaptability: As new, advanced
query evaluation techniques and/or index struc-
tures become available the optimizer architec-
ture should facilitate extension or an adaptation-
without undue effort.

2. evolutionary improvability: It should be possible to
tune the query optimizer after gathering experience
over a longer sequence of queries being optimized.
Ultimately, a self-tuning optimizer could be envi-
sioned .

3. predictabilily of quality: Especially when optimiz-
ing interactive queries, a tradeoff between the time
used for optimization and the quality of the op-
timized result has to be taken into account. It
is, therefore, most useful if we could estimate the
quality of the optimization outcome relative to the
allocated time for optimization.

4. graceful degradation under lime constrainls: This
desideratum is strongly correlated to the preceding
one. Allocating less time for optimization should
only gracefully degrade the quality of the opti-
mized queries. This, of course, precludes any opti-
mizer that first’generates all possible alternatives-
without any qualitative ordering-and then evalu-
ates each alternative in turn.

5. early assessment of alternatives: The performance
of an optimizer strongly depends on the number
of alternatives generated. Typically, a heuristics
is used to restrict the search space. However, a
better, since more flexible, approach is to abandon
the less promising alternatives as soon as possible.
For that, a cost model which enables an estimate
of the potential quality of an alternative already in
an early stage of optimization is required.

543

6. specialization: As in areas of (human) expertise
the optimizer architecture should support the in-
tegration of highly specialized knowledge to deal
with particular (restricted) parts of the optimiza-
tion process and/or with particular subclasses of
queries, e.g., conjunctive or non-recursive queries.

In order to achieve-some of-these desiderata, differ-
ent query optimizer architectures have been proposed.
Unfortunately, all of the proposals fall short of meeting
all criteria. It even appears that in the attempt of ful-
filling some of the desiderata others had to be neglected,
e.g., rule-based systems emphasize the extensibility, on
the other hand the predictability of the quality in rela-
tion to allocated optimization time becomes extremely
difficult.

To support extensibility, rule-based systems were pro-
posed [5, 22, 13, 31. Adaptability is the main concern of
the EXODUS query optimizer generator [6], the VOL-
CANO optimizer generator [7], and the GENESIS tool
box system [2]. Structuring the query optimizer for
maintenance and specialization is a major concern of
proposal [191.

A well-structured architecture will be gained, if the
optimization process is subdivided into single, small
steps [24]. The “wholistic” approaches, e.g., [26, 41,
consider an optimization graph-logical or physical---
representing the entire query. That is, at each stage
a complete query evaluation plan exists. Then, rules
are applied to transform this representation. However,
in our opinion it is better to segment the query into
building blocks and operations, in order to compose a
query evaluation plan step by step. The building block
approach has already been proposed by Lohman [18].

The cost model is an essential part of a query opti-
mizer in order to assure high-quality output. Since it
is not generally obvious which transformation has to be
applied for approaching the optimal plan, alternatives
are generated [6, 221. The alternatives are graded by a
cost function which has to be continually improved [I 81.
In [S] an “expected-cost-factor”, which is controlled by
monitored results of the optimization, is added to each
rule. We extend that idea by introducing a mechanism
of backpropagation into our architecture.

The right choice of the search strategy is essential
for the performance and the extensibility of an opti-
mizer. Randomized optimization algorithms as pro-
posed in, e.g., [lo], are very effective, if the shape of the
cost function forms a well, as pointed out in [9]. Fur-
ther, the search strategy should be independent from
the search space [17]. The search strategy-also pro-
posed for multi query optimization [25]-that will be
applied in our sample optimizer is a slight modification

of A*, a search technique which, in its pure form, guar-
antaes to find the opt,irnal solution [‘LO].

In this paper, we present a new architecture for
query optimization, based on a blackbonrd xpprowh,
which facilitates-in combination with a building block,
bottom-up arrscrnbling approach and early aqxeasiruc~~l.
by utilizing future cost cstitnates--to address all the
desiderata. Our approach is a general one yrq far its wc
first devise the generic blackboard-baqed architccturt~
which can be utilized for any kind of optimizer con-
struction. The viability of the proposed genaric oplOi-
mizer architecture is demonstrated by an example qut:ry
optimizer which, tough quite simple, dcmonstratcs thtv
main--that is, we describe one sample instantiation of
the generic framework which, though still incornplctc,
adheres to the main principles of the blackboard archi-
tecture.

The rest of the paper is organized a~ follows. In Sec-
tion 2, the basic framework of the optimizer blackboard
is introduced. We conceptually show how the optimixa-
tion process works and how evolutionary improvabi1it.y
is integrated into t,he blackboard architecturr. In See
tion 3, the running example- --i.e., an object bitst? ar~tl
an associated query---is given. In order to establish tht,
general ideas in our specific GOM optimizer, the b:Lqics
m, e.g., the algebra, the organization of our optirnizc*r,
and the search strategy are explained in Section 4. Sinct>
the cost model is essential for every optimizer gt:ncr-
ating alternatives, it is outlined in Section 5. Having
sketched our Blackboard Optimizer. Section 6 dernon-
&rates a sarnplc opt,imizal,ion process. Scctiou 7 c.011

eludes the paper.

2 Generic Framework

2.1 The Pure Blackboard

The optimizer blnckboard is organized into r succt:ssivt*
regions R,, . , R,- 1. Each region contains a srt of
items representing the advances of the optinlizer to tla-
rive an optimal evaluation plan for a given query. ‘I’ht:
original query is translated into some initial internal
format which is identified by E and placed into rcgiou
Ro ---as its only item.

A knowledge SOU~CC KSi is associated with each pair
(a, &+I) of successive regions. Each knowledge source
KSi retrieves items to process from region &. For c~&
such item, the knowledge source KSi may gcncrate sev-
era1 alternative items which are emitted--in an order
determined by KSi-into the region &+I.

Note that there is no restriction concerning the ad-
ditional data read by a knowledge source. ‘I’hcy art‘

544

Figure 1: Blackboard Architecture

nllowed to read any information at any region, all sta-
tisbical data, schema data, indexing information, and so
forth.

‘l’hc knowledge sources generate sequences of alter-
natives. Therefore, the order in which the alterna-
tive itcrns arc’ generated can be used for identification.
For our abstract blackboard architecture shown in Fig-
ure 1, the items at region Re are identified by six pairs
cnch consisting of the knowledge source identifier-i.e.,
KS”, . . . , KSa----and the sequence number indicating the
position at which the particular item wa8 generated.
For example, the identifier

KS5 K&KS3 KS2 KS1 KS0
102341 1

of an item 1 in region Rs indicates that this particu-
hrr item I-whose identifier is denoted #I---is the fifth
alternative generated by KS1 from the second item gen-
erated by KSO, etc.

In Saction 2.3 we will see that this particular identifi-
cation mechanism is essential for evaluating the quality
and for adapting/calibrating the optimizer blackboard.

2.2 Search Strategy

‘IXc blackboard optimizer utilizes a building block ap-
proach for generating the (alternative) query evaluation
plans (QEPA). Thus, for a given query & the succes-
sive regions of the optimizer blackboard contain more
and more complete query evaluation plans-finally, the
top-most region R,-I contains complete (alternative)
evaluation plans that are equivalent to the user-query
cl.

1t is essential to control the search space of the op-
timizer in order to avoid the exhaustive search over all
possible query evaluation plans. Therefore, items at all
regions have associated costs. There exist two cost func-
tions, co& and cost!, which estimate the hislory and

jut~urr co~tn for avalu;tl.ir~~ ;L cc:rl(ain item. Wit.h c:xch
item two sets of operations are msociated: the set of
operations which are already integrated into the item
(representing a still incomplete QEP) and the set of
operations which still have to be integrated. The for-
mer set determines coslh and the latter cost/. Based
on these cost functions, the optimizer blackboard is ide-
ally controlled by A’ search [20]. That is, at any given
time the knowledge source being applicable to the item
with lowest total cost (cost,, + costf) is allowed to emit
further alternatives.

If c&h corresponds to the actual costs for evaluat-
ing the operations of the first set and costj is a close
lower bound of the future costs, A* search guarantees
to find an optimal QEP efficiently. However, for query
optimization a lower bound estimate of the future costs
is always based on the best case for each operation, i.e.,
the least cost for evaluation is assumed. Hence, the total
estimate of the future costs can be (far) lower than the
actual costs. Then, the A’ search could possibly degen-
erate to an (almost) exhaustive search which leads to
unacceptable optimization times. In order to straighten
the optimization, the proposed A’ search strategy is en-
hanced by the subsequently described ballooning com-
ponent.

As explained before, knowledge sources retrieve an
item I from their associated region and generate an
ordered sequence of items 11, . . . , Ij which are emit-
ted into the successor region. It is one of the major
objectives in the design and subsequent calibration-
cf. Section 2.3, below-of a knowledge source to en-
sure that the most promising alternatives are generated
first. Such-like sophisticated knowledge sources entail
the incorporation of the ballooning control component
to expedite the optimization process. The basic idea of
the ballooning control is to periodically and temporarily
“switch off’ the A* control and to process the first few
alternatives generated by the knowledge sources with-
out any cost control. Thereby, some “balloons” will
“rise” through successive regions-possibly all the way
up to the top-most region where items constitute com-
plete QEPs.

When switching back to A* search only the balloons
at the top of the derivation chains are further consid-
ered; intermediate steps generated during ballooning
are discarded-thereby reducing the resulting search
space and “straightening” the optimization. Since the
blackboard approach allows to assess the sequence of
the items generated by a knowledge source with respect
to its quality for the global optimization, it is expected
that the integration of the ballooning component into
the A* search does not substantially degrade the qual-
ity of the optimization. Ballooning will only process

545

Profilrr

Figure 2: l~~valualion and (!alibral,iou I)y I~ii~kl"Ol'il(r;;tl,ioll

highly-promising items very efficiently -willlout back-
tracking. Further, a reconciliation of the time allo<~ated
for optimization and the quality of the solution--recall
Desideratum 4. of the Introduction--can be achieved
by increasing or decreasing the share of ballooning.

A simplified version of the search algorithm used iu
the GOM Blackboard Optimizer is given in Section 4.4.

2.3 Backpropagation

The structuring of our optimizer blackboard imposed
by the knowledge sources operating on successive re-
gions enables the thorough quantitative evaluation and
subsequent calibration of the quality of the knowledge
sources. This is achieved by backl,ropag;tt,itlg the out,-
come of an extensive set of henclr~nark qurrit>s. ‘HIP
principle of backpropagating is depicted in Figure ‘2.

Let Q = {Ql,Q2,.. .} be a large set of representa-
tive queries-which are either extracted from user sup-
plied queries or are generated by a query generator. For
these queries let the optimizer generate all possible al-
ternative query evaluation plans, i.e., for this purpose
all items are expanded at regions Ro, . . . , I$-?. It. is,
however, essential that the optinlizer obeys the cont,rol
imposed by the pure A* search-except that the sear&
continues even after the optimum has been generat,ed.
For a query Qj a sequence Ii, . . +, Zi, Zi of altcrnat,ive
items specifying a complete QEP at region IL---- the
right-most item being generated first and the left,-most
last-is obtained. Note that the alternatives are already
sorted by their cost. More specifically, &, is the cheap-
c>st C)EF’ identifier and I:. is the niost expensivtl one For
:I query Qj.

This or(lcf(~d nc\queuce ol’ plan identific~m is prol’:l-
gatt,d back I,O the blackboard optimizer in o&r I.0 Carl
uatt: the, iutlividual knowledge sources quality. ‘l’lll~
qualit,y of a knowlcdgc source: is mc*;tqurcd iu (.t:rllls or
the rt\lal.ivc: position at which au alternative was ~CII-
e&cd in U~tllpitrisull to the position of I,his :tlt~wilat.iv~~
in t,he QI:‘/’ sequence ordered by their runuiug t.illlc,x
IIy c~valual~ing il rcprcselltativc nurnbcr of qric+s, il so
called “‘lbp-Rank” profile can be dcrivetl. III I’igurc\ 2.
e.g., the hackpropagaf8ion of Q1 increases ~IIV c,hirtl cot-
umn of (,lle ‘Lop-Rank profile of A’s’~ since the itlcntific~r
#r,!, of the t.op rank QEP states that lhe approllria(,ch
QEP was gt‘ncratod it(l the third alternative> by h’,>‘:s.

In I”igurc, 2, the ‘l’op-Rank profile> of knowltdgc~
source I\‘,\‘:, illdicat(~N tII;ll, aln10Ht8 ;\.I1 t,oo r;ulk C)/:‘/‘N
cnlc*rgct I’ronl IJlca first thrt~t! aII,c~rnativt~N ol’ this know
ledge source. Actually, iu practice we arc usually lnorc
intcrcst8ed in th(> srrcrl.lled “Top-O” proiilcs iii which
all l,llos(* clilcry c~vnlu;\l,iorl I)liUlS with ruuniug I.ilric*
wit.hin c’I’%, of 1,11(? actual optimum are consirlrrctl scami-
optimal-- tvlwc 0 uray lx: sornc npJ)liCi~tiOrl doulilill
specific threshold value.

QuarttSitative analysis of t,hc prolilcs facilitat.c%s pr+
dieting the average quality of thr opt,imizal,ion as c>nvi
sioned in Desideratum 3. stated in t,he lol,roducbioll. I,td
R/l P(I\‘Si, ni) denote the probabilit~y thaI. thtb lirsl. rt,
alternntivc>s emittIed by knowtedgc source IC\‘Si inclutlt,
the optininl one --undo-r the coudition t,ttat /<iSi st.ar1.s
with th(s nlternat,ivc from knowledge source’ /iSi _ 1
which ultimately leads t,o the opt8imum. This rl~llc-
tion cau c\iLqily be computed from t,hc* “‘l’op-Rank” pro.
lilt. 1’1irl,lic~rl~lorc~, let I),(.<, clt*iiot,r a (liilliting) branch
ing factor of knowl+,c~ solIrc(’ /is,, i.cs., thcs Ill;lxilllal

546

facili~,;rtes tuning the individual knowledgr sources----hy
tlemandrd in 1)caitleratum 2. To give an idea of how
1.l~: optimizer can he improved, the three following “hy-
pothf~ticiil” profiles arc depicted:

(4 0)) 69
AII itloal profile is Profile (a)- no improvcrnent can be
ItIitdl’. ‘I%% worst one can think of is Profile (I~). It looks
like l,h(> profile of a “no-knowledge knowledge source”.
llsu;~.lly, il prolilrb like (c) is worth shriving for. It dis-
p1:h.y~ that l.htb knowhadgc source hhq only to gencratc
li*w ;dt(~rnativr:s in order to carry the creation of the
~~l)(~il~lal (‘I+R.;znk) or il. sclni-optimal Q&r (TO@).

Ill~.illl;ttc~ly, WV envision thal, the profiles can be used
I1.v 1.111\ optimixtbr for self-tuning l)enicleratum 2-, since
t.11~ illlnlysi~ of the profiles as well as thtb generation of
thy Iiints may be carried out automatically.

2.4 Generalized Optimizer Blackboard

In tile discussion of the hypothetical knowledge source
profiles we alrctndy obscbrvcd tha.t it might be useful to
cl&fy qucrics within the regions. This allows t,o pro-
cess r,hcm IIlort? specifically hy particular highly cus-
r.olnixad knowh~tlge sources. l’hc classification of qucricts
tl~~l~~~~tls on the region. As an examplc, consider clw-
silic;ll.ion of recursive vs. non-recursive qlieries which is
irlllbortant, t,o know for applying the right, algorithm to
~~~III~~II~(: join orderings. 

III thf‘ pure architecture a knowledge source reads 
itchliis from region /?i and emits the outcome into thr: 
iic’xt higher rc*gion /&+I, We extend this concept Such 
l,lii11. an il.f‘rii I(taving a special region tl!i<, is allowed ISo 
rf*-f*n(.(*r ~IIC I)lil.ckhoard at a lower level I&, (ic 5 i,). 
‘I’hus, iI.canls can iterate over the regions &, to Ri,. An 
il.ctnI will leave that iteration if it comes back to Ri, 
wilhout hcing modified. 

3 Running Example 

III this sr%ction, an example object base---called Com- 
pa77y is presented. III Figure 3, ten objects belonging 

Figure 3: Example Extension of Company 

to types E’mp, Dept, and Manager are shown. The 
type definitions are omitted-for the further discus- 
sion it, is only of importance that each object of type 
Ernp hits the attributes name : String, worksln : Dept, 
salary : I;‘loc~t, and sez : Char, and each object of type 
Dept r.hc attributes name : String and mgr : Manager. 
Since Manager is a subtype of Emp it contains all the 
attributes of Em.p and, furthermore, it has one attribute 
b&f/p : Emp additionally. Further, a type-associated 
function skill computing a ranking number for individ- 
ual Employees is assumed. 

The labels idi for i E { 1,2,3, . . .} denote the system- 
wide unique object identifiers (OIDs). References via 
attributes are maintained uni-directionally in GOM- 
as in almost all other object models. For example, 
in the ext,ension of Company there is a reference from 
Employee idI to Dept ids via the worksln attribute. 

The Example Query For the object model GOM, a 
QUEL-like query language called GOMql [13] was de- 
veloped. As an example query, we want to know when- 
ever there is a Manager-usually called “MCI”‘-who 
pays a female less than a male Employee (in one of his 
Drpls) cyan though the female is better qualified. We 
want to retrieve the manager and as evidence the fe- 
nlalc, the male, and the difference of their salaries. In 
GOMqI the query can be formulated as follows: 

range u : Emp, o : Emp 
retrieve [mcp : u.worksIn.mgr, underpaid : u, 

overpaid : o, difference : o.saIary - u.sa.lary] 
where u.worksIn.mgr = o.worksIn.mgr and 

u.skill > o.skill and 
u.salary < o.sa.lary and 
usex = ‘F’ and o.sex = ‘M’ 

547 



There are three clauses. The range-clause introduces 
the needed variables and binds them to finite ranges-- 
here, the extensions of the types. The retrieve-clause 
specifies the final projection of the query, and the 
where-clause contains the selection predicate. Iln- 
der the assumption that “Sander” has higher skill 
than “ Versace” , the relation {[mcp : ids, underpaid : 
idl, overpaid : idz, diflerence : lOOOO]} is the outcome 
of the query with respect to the object base Company. 

At this point, we would like to stress that even though 
we have chosen GOM and GOMql as the example data 
model and query language, respectively, the results ob- 
viously apply to other object-oriented data models and 
query languages as well. 

The Index Structures The GOM query evaluation 
is supported by two very general index structures tai- 
lored for object-oriented data models: 

l Access Support Relations (ASRs) [12] are used to 
materialize (frequently) traversed reference chains, 
and 

l Generalized Materialization Relations (GMRs) [l l] 
maintain pre-computed function results. 

Since these two index structures have to be taken into 
account in the optimization process, two index relations 
based on the schema Company are exemplified: 

[Emp.worksIn.mgr] 
#0 : OIDE,, 1 #l : OIDD+ 1 #2 : OID~~~agcr _ 

id1 I ids I ida 

I id2 
I 

ids 
I 

ida 
. . . . . . . . . I 
idlo I id7 I idlo 

The extension of the ASR [Emp. worksIn.mgr] which 
contains all paths corresponding to the indicated path 
expression, and of the GMR ((Emp.skill)) which main- 
tains the pre-computed skill function for each Employee 
are depicted. Note that the columns of these index re- 
Iat,ions are sequentially numbered, i.e., #O, #l, . . 

4 GOM Blackboard Optimizer 

4.1 The Algebra 

The query evaluation plans (QEPs) are directed nryr- 
lit graphs ( DAGs) consisting of algebraic operator np- 
plications. Building blocks standing for sets of 0llI.g 
of a type I’ (denoted by oid('T)), ASRs (denoted by 
[. . .I), and GMRs (denoted by ((. . .))) are the leaves 
of the DA Gs. The treatment of indexeti -like ASRs 
and GMRs--a.s additional sources of information is nl- 
ready present, in the notion of shadow tables as intro- 
duced in [23]. In accordance with the building block 
approach [la], the DAGs are successively composatl 
bottom-up-operations are added to Lhe DAG and COIII- 
mon subexpressions are factorized. In order to comput4e 
a (near-)optimal DAG the optimizer has to det,rrminc~ 
an optimal set of building blocks and an optinlal order 
of the algebraic operations. 

Our algebra mainly copes with relations. In order 1.0 
refer to single columns of relations, we use so-called in- 
formation units (II/s). We do not call them attributes, 
since we want to avoid any conflict with the attributes 
at the GOM object type level. Each IlJ is unique 
throughout the entire optimization process, i.e., over 
all alternatives which would he generated, and so an 
unambiguous dereferencing mechauism is obtained for 
the algebraic operations and the cost functions. 

Besides the usual set operations (U, \), the algclwa 
consists of the common relational selection u, projcclion 
n, join W, and rsnaming e. Further, a mapping operator 
(x)-called ezpansion- belongs to the algebra. Let 7’ 
be a type, v, ~1, vi, . . . , v,,, v; be IUs, (11, . . . , II, IX> 
attributes, 4 E {=, <, >, . . .} be a comparison operator, 
and c be a constant. Then, the building blocks and the> 
algebraic opcrstors are informally defined ltci follows: 

l building blocka: The cxtrnsion of 1’ old(‘l’), an ASR 
I[. ,I, and a CMR ((. . .)) are building blocks. ‘1‘11~ 
columns of the relations retrieved hy them art‘ cl<%- 
noted by self and #O, . . . , #n, respectively. WV 
assume indices on the first and last column of au 
ASR and on each column of a GMR. 

0 expansions: An expansion xu, :v.n, ,...,,, ,,:V.o,, dcrtaf- 
erencas sets of OIDa denoted by 1U v such that. the 
attribute values can be obtained and be assigned 
to new IUs VI, . . . , v,,, respectively. The input. 
relation is expanded by new columns denoted ~1, 
. . . . v,. Further, the ,y operator may also expand 
the tuples by function invocations ---instead of at- 
tribute accesses. The parameters of functions a.rt* 
.encloscd in parentheses following its Ililtlle. 

548 



0 usual rdnlianal operutions: W,,+uy dcnotc23 a join, 
(I,,,#~ and f7ur6ua selections, i7”, ,...,un a projection 
on I,he IUs in the subscript, and eu;=v,,..,,v;=vn a 
rt:ntimitlg operation where the column named vi is 
rc-nrtmcvl lo 1~: (i = 1 , . . , , fb). 

I~cdying heavily on ordinary relatioual operators allows 
us to exploit relational optimization techniques [16, 141. 

4.2 The Normal Forms 

In object-oriented query processing it is common to 
trauslnte the query into an internal representation as 
close to the original query as possible-witness, e.g., 
[l* 4, 13, 141. This is also valid for relational query pro- 
cc?asing where, e.g., an SQL query is translated into a 
roC+axpression. However, this representation exhibits 
another property which the initial internal reprasenta- 
lion of object-oriented queries very often lacks: It is an 
(c*xpensive) well-structured term facilitating a straight- 
forward splitting into building blocks and operations. 

Our proposed startiug point-called Most Cosily 
Narttrnl Form (MCNF) [14].--has one additional x- 
c*xpaneion directly following the cu resulting in a ra~W 
nc~quence. All the extensions whose instances are needed 
for the query evaluation are joined with trve as join 
predicate. x-expansions follow enhancing each tu- 
plc of the resulting relation by further information 
uecdetl to evaluate the selection predicate solely on 
the basis of this result. Thus, two vital concepts of 
object-orientation --access via OIDs (implicit derefer- 
cancintion) and hmction invocation-are integrated into 
t.hc* MCNY, and are prepared for their optimization. 
‘I’hc*n, the selections accompanied by the final projec- 
t.iorl onto the required IUs are appended. 

‘l’hc MCNF repro!entation of the example query 
“MC:l”’ is shown below: 

kmrp:urn,underl’a:d:u,oue~Pai~o,di~erence:o~a-”*~ ( 
u O*.f’= ‘M’(bUsr=‘~“(Ousa<ora(buJk>oak(bum=om( 

Sum,ud.mgr Xom:od.mgr ( ( 

~~rrd.~c.tuorksl,r,uso:u.aala,y,usr:u.ser 

~~ud:u,workrln,ona:o.snlo,~y,o8s:o.srx ( 
Yuak:u rkrll(X.osk:u.rkclI( 

eurreff(oi4 EmP)) W true Bo=aelj (tM~~ttP)J * + .) 

‘I‘he MCNF is further enhanced [15] in order to ob- 
tain a conveuient basis for composing the query evalu- 
ation plans. A table combining the building blocks and 
the opt:rations with catalog information is derived such 
that, it contains all information relevant for optimizing 
the query. Thus, we can, e.g., efficiently retrieve the 
building blocks and the operations in which a given III 

is involved. This elaborated normal form is obtained by 
decomposing the MCNF term into its building blocks 
and operations. Each piece is then enriched by statisti- 
cal data being relevant to the query. For example, the 
cardiualities of the building blocks and the selectivities 
of the operations are attached. The fact which columns 
of a building block are supported by an index is impor- 
tant for an exact cost estimate. Hence, this information 
is also maintained. 

4.3 Regions and Knowledge Sources 

The blackboard of our GOM Blackboard Optimizer is 
subdivided into seven regions-each one completing the 
QEP in a particular way: Ro (MCNF), RI (Decompo- 
sition), R2 (Anchor Sets), RB (Introduce x), RJ (In- 
troduce a), Rg (Introduce W), and R6 (Introduce r). 
Each region supplies items, each of which possesses an 
entry currentDAGs and an entry future work where the 
DAGs composed so far and the remaining operations, 
respectively, are stored. 

The knowledge sources of type KSi read items at re- 
gion R+ and write items at region &+I. What follows 
is an informal description of the knowledge sources at 
each region. We assume that the query is represented 
in MCNF format at region Ro. 

KS0 (to “Decomposition”): The MCNF term is de- 
composed into building blocks and operations. The 
additional information is obtained from the schema 
manager which also manages the statistical data. 
Additionally, the ASRs and GMRs which can be 
integrated into the query are determined. There 
exists only one knowledge source of this type and 
it does not produce any alternatives. 

KS1 (to “Anchor Sets”): A knowledge source of this 
type determines which building blocks are chosen 
for evaluating the query. We call such a minimal 
(i.e., non-redundant) set of building blocks contain- 
ing enough information for answering the query an 
anchor set. KS1 generates several anchor sets and 
sorts them according to special heuristics, e.g., con- 
sidering the number of joins or the number of op- 
erations left in the future work entry. 

KS2 (to “Introduce x”): Expansions are added to the 
currentDAGs entry. In the current implemen- 
tation, the following heuristics is applied: An 
expansion--or a pair of expansions-is integrated 
into the DAGs if (and only if) a selection or a join 
directly depends on it, or the future Work entry of 
the item only contains expansions and projections. 

549 



KS3 (to “Introduce 6”): According to the heurisbics 
“introduce selections as early as possihlc”, seloc- 
tions are integrated into the query whenever it, is 
possible. 

KS4 (to “Introduce W”): At each iteration the know- 
ledge source of type KS4 introduces at most one 
join. As a consequence, for each item a join or- 
der is obtained by repeated iterations. Alternatives 
might have different join orderings. 

KS5 (to “Introduce r”): Finally, projections are added 
to the DAG. We rule out the following two se- 
quences: (TX W and U?TX, since a 7ru W and a nax 
sequence can be replaced by only one single physi- 
cal operation. 

The blackboard is re-entered from region Rs to Rx until 
all expansions, selections, and joins are processed, that 
is, the future Work entry is empty except for a single 
projection. 

In order to avoid evaluating equal expressions twice, 
items leaving regions RI, R2, Rs, R4, and Rs are fac- 
torited. For example, if KS1 selects e,,=3,1,( oid( F:ncp)) 
and ~~=~~rf(oid(Ew)) as elements of an anchor set, 
they will be factorized as follows: 

The full set of factorization rules applied can be found 
in [15]. As a result, the optimizer generates a DAG 
which is a “logical” query evaluation plan. 

4.4 Search Algorithm 

The search strategy in the GOM Blackboard Optimizer 
consists of two parts. On the one hand, A’ search ad- 
vances the alternative with the minimal sum of history 
(COS~J,) and future costs (coslf), and on the other hand, 
ballooning proceeds the alternative(s) emitted first by 
a knowledge source. The actual search strategy com- 
bines these two techniques by allowing a certain ratio 
of optimization steps to be done under A* search and 
under the ballooning control, respectively. The search 
strategy is outlined as follows: 

Insert the starting state (item) E into the list 
OPEN of unexpanded states. 

Sort the elements Z of OPEN by increasing f(Z) := 
costh (Z) + cost/ (I) values. 

If the ballooning flag is raised, do 

(a) remove: the first, 6, lnifiol elemenls front OI’KN 
and insert them into the sc% f? 

(h) perform the following steps ~i(r~~~i,,~ra timc*s 

i. cxpd each I E f? I)y iax appropriat.c* 
knowledge source to II, . . , Ij for j < 
6 bunch 

ii. remove 1 from D and inserl. t.hc* itf‘lu into 
CLOSGD 

iii. insert II, . . . , fj into 11 

(c) transfer the items in 8 to OPEN, :wd go 1.0 
step 2. 

4 

5. If I is a goal state, i.e., T.FW = Q1, exit s~~cc~~sslully 

Remove the left-most, item 1 from OPClN i.c*., 
the item for which f(l) := co&(Z) + coslj( I) is 
minimum (ties brokeu arbitrarily). and p1ac.c’ if, 
011 CLOSEI). 

with the solution I. 

6. Let t)hc, appropriate knowledge source expand s(.at.t> 
1, gencrnting all its suc.cessors. 

7. ITor cvc’ry swcfwwr 1’ of I: 

(a) ius& I’ illto OPCIN unlcse 

(h) tllere exists Z” E OPEN U ~~/,O,SIII~ wit,11 
I’.E’W = l”.fi’W then 

i. if eontl,( r’) < cosl/,( I”), 1.liw1 ins(*rl. I’ 
into OPEN and transfer I” lo I’R UN1511 

ii. else, if cost,,(P) 2 cosl,,( I”), thw ins4. 
I’ into PRUNlW 

a. Go to Slap 2. 

The A* search algorithm is a bcsl first algorithm [%(I]. 
It starts with inserting 6, the initial state, into OI’EN. 
OPEN contains all states which have been reach4 I)II(. 
havo not, beeu fully expanded, i.e., it contains all itt*lIIs 
waiting for their further processing. In each ilaratiotl, 
A’ search continues with the item of OPEN which IIW 
khc leash f-?&e, i.e., the minimal sum of costs, :UI~ 
COSlj. ‘I’M, itfm is expanded, i.e., ita succf!ssors ;w 

put into OI’EN, and thrrl it is promoted to C:LO,SI:‘/), 
the set of all fully expanded states. ‘l’hc algorithtll 
will successfully terminate a3 soon a8 iLIl itrlrl is gm 
erated whose future work- ,denotcd by F’W-- is anlpt,y 
and whose costs are minimal. 

In Step 3. the control is temporarily switched frown 
A* search to ballooning. Ballooning might, for ex;tw 
ple, be triggered after a certain number of itc>rationx 
in the A* starch have been performed. ‘l?hen, I~IIC first, 

binrtral items of OP1,‘N are expanded biteru~,o~~s I,irnon, 

550 



I ‘b’,tl,l~ll which should by! ont! in most C.WC*H -clemtWs 
td twtl lisd ar(’ Iticn ~~xpa,n~t~*d, and HO on. The numbers 
b r,,t~r,,lr I ~,~,,,.,,lron,, , and be,.n,,c~r rau be set, tlepcuding on 
1.11~ analysis ol’ rstw mtiw query and the current. state 
of thaw opbimizing process. For example, lhc> optimiz- 
illg l)roc:t3n of a query containing many l-expansions 
a~~tl st!locl,iolts may be expedit.t:d by low bZtrrrra,. high 

~~rtmrL*on..9 and low 6brnrlch pa.ramcterx, sit1c.a generating 
III~IIY aII~t~rll;\~Sivc~s is unncccssary for int)cgrating t,hcsc 
otwral~icms. ‘t’hun, by balloouing fast opl.imizing can br 
switctrt*cl on whcuavc~r it seems acceptable. 

For Llw prllning ronditior~~s in Step (Th), a special 
C&SC of tIhc optimalit,y criterion [20] is presupposed: 
If there are Lwo items II aud fz with equal future 
work cntries both containing an operation op and, fur- 
&r, ~st,,(ll) < coslh(1~) holds, then int(egrating op 

iulo 1.he history work entry of 11 and f2 will keep the 
cos(, order brtwarn the two items invariant,. There- 
li)rcs, all items (states) which produce higher costs than 
;III il.c,ln with the same future work arc pruned by 
1.tl(s pruning condition (7b) and transferred to a set 
P/t//NED since, due to Ihe optimality criterion, they 
c;rtlnot possibly yield a better item. Thus, the suc- 
cessor ilcrn 1’ will cause the pruning of some items 
I” f- OPEN U C,‘f,O,SRD, if it is less “crxpensive”, and it 
will hi pruucbd itstalf by an item I” E OYENUCLOSED, 
il’ it. is inore “expensive”. 

‘I’bc pruning conditions can bc st.rengtht~nc~tl, if some 
furtlittr propt~rticm arc’ cuwurcd by ltie cost fuuctions [15]. 

5 Cost Model 

From specific dat,a extracted from the object base, the 
~osls for scauniug the building blocks and evaluating 
Ihr opcrabions arc estimat,ed. 

For t,he calculation of the hisfory cosls its well as the 
future c~osls, two parameters are assigned to each DAG 
node: the cardinality #o of the output relal,ion, and the 
Ilrrmbrrs #P = (c,, , . . :, e,,) of distinct values belong- 
ing to the 1U.v ‘fj1 , . . . , v,, of the output relation-- called 
(l-,tr&Cs. Their calculation from s+called basic num- 
berH is explained below. The number of page faults #p 
and t.hc CPU costs #c----additionally to #o and #e as- 
sigued to each DAG node--are derived from #o, #e, 
;mtl I.hc basic numbers. For estimating #p, the well- 
kuowr~ formula of Yno (271 is used. 

‘i’tlr> rstiIrlntjr for #c is based on system-dependent 
functions which estimate the CPU costs for the building 
Mocks and lha appropriate operations with #o and #e 
a~ input,. 

‘I’&, t#hc calculation of t,he history costs is fairly 
Rl,r;lighl-forwa,r(l. The fut,urc: cost estimate of an op- 
cratiou is th~nlandod to be a lower bound of the act.ual 
c0sl.s. For that,, we drrivo a lower bound of the size and 
(he e-values of the input relations (see below). Then, 
we can calculate the future costs in basically t,he same 
way as the history costs. 

Assigning a quadruple 7 = (#p, #c, #o, #e) to each 
DAG node, the costs of a DAG are computed by sum- 
ming up the costs of its nodes. Then, we compute the 
his(,ory cost of an item by adding up the costs of the 
DA& in the currentDAGs entry of the item and the 
future costs by adding up the costs of the operations in 
the Juture Work entry. 

The data used for the cost calculations is stored as 
basic numbers in three levels: “Values from the Object 
Base”, “Single Selectivities” , and “Combined Selectiv- 
itirs”. 

For every object type T, the cardinality cT of its ex- 
tension and the values pgd and ptbJect--which denote 
the number of pages occupied by the extension, i.e., 
the set of OIDs, and by the objects, respectively-are 
available as values from the object base. Let a be an 
attribute of an object type T. If a refers to an object 
t,ype, def,,, denotes the probability that the attribute 
is defined (f NULL)., For each attribute a of type T, 
the paramrtcr CT,a denotes the size of its range. For 
each method m, the size of its range cT,m and its aver- 
age execution time’ eaecT,,(n)-for executing 12 times 
the method ~14 on OlDs of lype T-is maintained. The 
cardinality of an ASR [. .I and a GMR ((. . .))---which 
is deuoted c[,,,] and c((,,,)), respectively-and the num- 
ber of pages they occupy-denoted PI...] andp((.,,))-are 
also available as values from the object base. 

The sclecGvity s for a unary operation op,(R) is de- 
fined as s(opl(R)) = lop,(R)I/IRI, and for a binary op- 
eration op2 a.9 s(op2(R1, R2)) = lOP2(&, Rz)ll(lR11 * 
[&I). These single selectivities can be estimated in 
three different ways with increasing accuracy: 

1. As in [24], the selectivities might be derived 
from simple estimates. Thus, if the basic num- 
bers CIZ~~~,~A+I~ = 10, cEmp,salory = 10.000, and 
CMMotrager = 150 are given, the selectivity for 
uusk>oskl u,,,<,,,, and ~um=om will be (1 - 

(1/Cfi;mp,&;ll))/2 = 0.45, (1 - (1/CEtnp,s&ry))/2 = 
0.5, and l/CManoger M 0.007, respectively. 

2. The selectivities can also be determined by his- 
tograms [21]. For that, histograms are generated 
by sampling the object base. The selectivities for 

1 We know that this is only a rough estimate. Future versions 
of the cost model will refine this. 

551 



u osz= ‘F’ and busz= WI J can be determined in this 
way. 

3. During the evaluation of a query, one can gain 
more accurate selectivity estimates for use in fu- 
ture query optimization by monitoring. 

Since, in the current implementation, the indepen- 
dence of attribute values is presupposed, combined sel- 
ectivities are the product of their single selectivities. In 
the future, this will be refined. 

Knowing the selectivity s of an operation, we are able 
to derive the output size #o of that operation by mul- 
tiplying s with the cardinality of the input relation(s). 
The output size of a building block, i.e., type exten- 
sions, ASRs, and GMRs, is given by the basic numbers. 
Thus, the cardinalities of the (intermediate) relations of 
a DAG are calculated bottom-up. 

Since not the total number, but the number of & 
tinct OIDs is essential for cost estimates considering 
x-expansions and retrieving building blocks with an in- 
dex, an e-value e, defined by 17rV(R)I is assigned to each 
IU v in a relation R. The bottom-up calculation of the 
e-values is performed as follows: The initialization is 
done by the basic numbers of the building blocks. The 
further calculation is mainly based on a formula also 
used for generating join orderings [S]. For example, let 
an expansion xvj:v.a be applied on a relation R where 
the e-values are known. Let CT,,a be the cardinality 
of the range of the attribute/type-associated function a 
and e, be equal to Ivrv(R)I. Then, the following formula 
determines the number el of values being referenced: 

ed = CT,,a * (1 - (1 - l/CT.,a)e”) 

Since the e-values decrease with each operation ap- 
plication, we can determine a non-trivial lower bound 
on all e-values. Let R be the relation obtained by evalu- 
ating the DAG of the MCNF where the last projection 
is cut off. Then, In,( R)I gives a lower bound on all 
e-values of the IU v in all (possibly unfinished) DAGs 
representing the query. Using the formulas for history 
costs and applying these to the operations in the juture- 
Work entry of an item, we arrive at a lower bound on 
the future costs. 

6 Sample Optimization 

Performing the optimization process for the running ex- 
ample, some decisions individually made at each region, 
factorization, and pruning will be demonstrated. 

The normal forms were already explained in Sec- 
tion 4.2. Thus, the sample optimization starts at gener- 
ating anchor sets. Each non-redundant set which binds 

the IUs u and o is a potential anchor set Ibr our exam- 
ple. The values for the other IUs can bc ret,ric!vcd by 
x-expansions. Because of symmetry of u and o, WC? only 
give the sets resulting in bindings for u: 

A1 = { eu=se~~ (oid( Emp))} 
A2 = tetr=#o,c‘sb=#l(((Emp.s~~ll)))} 
A3 = {gu=#o,ud=#l,um=#2(1[~m.p.~orksZ~~..~~.gr~)) 

A4 = b=# o,usb=#l(((Emy.skill))), 

AS = {@I“=# o,udt,#l(((Emp.skill))), 

Due to the: corresponding sets for o, the appropriate 
knowledge source generates at most 5 + 5 = 25 $tc,r 
native anchor sets. Because? of the cost functions, 1.11~ 
GOM Blackboard Optimizer favors the following :Incllor 
set A~J originated from As: 

A2,2 = 
{eu=#o,usb=#l(((~mp.sk~ll))), 

Though A* search might backtrack to one of the xltcr- 
native anchor sets the example optimization is lirnitcd 
to Az,z. Factorizing this anchor set results in the fol- 
lowing currd DAGs entry: 

Qu=#o.urkr#l Qon+O,mkr#l 

(( izg&)) 

Now, WC want to sketch the search space originaLing 
in the item 10 containing the DAG above. In order 
to simplify the following consideration, t,he future work 
for that item is reduced to the operations x,161.,1, .,F.s, 
xoa2:o.dcz 3 Qu%c=‘F’ I and b,,r,&M’. The GOM Hlack- 
board Optimizer doesn’t usually open the wholn sc:wh 
space as it is depicted in Figure 4. There, the posni- 
ble paths leading from lo to an item II containing th(. 
future work of 10 in its currentDAGs entry arc iilux- 
trated. If pure A* search is applied and the evaluation 
costs of the operations differ hardly, all six paths from 
lo to 11 are examined. Although some of the six altnr- 
natives arc pruned every time edges come together, a 
further reduction of the expense can be achieved. Sinc(% 
for integrating expansions and selections, the knowledgr 
sources deliver a good sequence of the items, the trig- 
ger condition of the ballooning component can be R(+ 
to true and the branching factor bbr,,nCh to one. ‘I’llon, 
only one alternative is produced. 

The other expansions by workdn and salary arc-: also 
integrated. Since we assume that an attribute access or 
an object already resident in the buffer is fret! of COH(,, 
the expansions dereferencing u and o, respectively, arc* 

552 



Figure 4: Example Search Space from 10 to II 

put together. F’urther, the two expansions are factorized 
a.q the lower part of the DAG in Figure 5 shows. 

Two expansions, three joins, and one projection are 
left in the fvZure Boric entry. The joins buJo<osa, 
~,,,,t>~~t, or u~~=~,,, can be added to the actual cur- 
rrntl)AG8 entry 2. Thus, the state expansion-Step 6 
of the starch strategy (cf. Section 4.4)--leads to three 
items I[, fr, and I?. 

The history costs of the three items I{, Zr, and Ii” dif- 
fcr hardly. In contrast to that, the future cost estimates 
difTer substantially, since the selectivities and, therefore, 
thcb estimates of the cardinalities are very different. As 
pointed out in Section 5, the selectivity estimate of the 
operation ~um=om is far less than the other two selec- 
tivities. Thus, the future costs and consequently the 
J-value of the item where that operation is integrated 
into its CurrentDAGs entry is lowest. Hence, this item 
is further processed and the two remaining joins are 
added to its CwrentDAGe entry aa selections. 

The final projection completes the DAG. Further- 
Illore, projections which reduce the size of the inter- 
nlc:diat,c? relations are integrated into the DAG. 

‘l’hc resultiug DAG is given in Figure 5. Further op- 
timizatious will map the operations to physical oper- 
;rt.ionN. Since every AU x and every 17 W x sequence 
cutails only one physical operation, the resulting DAG 
is divided by dashed horizontal lines. 

7 Conclusion 

A novel architecture for query optimization based on a 
blackboard which is organized in successive regions has 
been devised. At every region knowledge wurces are ac- 
t ivatad consecutively completing alternative query eval- 
uation plans. Starting from basic building blocks a fi- 
uitr set of algebraic operations is added such that a 
D/1 G finally results in a (logical) query evaluation plan. 

” Ac~tucd~y, in order to introduce oum=om the expansions XUd 
MMI xorl have to be added before. This detail is omitted, since 
I IW ~.omgarison of the items obtained after incorporating the joins 
sivw nu idea about the importance of the future cost ertimates. 

((Emp.skiZl)) 

Figure 5: Resulting DAG of the Sample Optimization 

Due to this well-structured approach, the optimizer 
can continually be improved. By backpropagating the 
optimized queries, each knowledge wurce can be cali- 
brated and assessed. Thus, the weak points of the op- 
timizer can be determined and eliminated. An evolu- 
tionary improvement takes place. 

As a search strategy, A* search enriched by balloon- 
ing has been proposed. By subdividing the costs for 
each alternative into history and future costs, A* search 
is able to compare the possibly unfinished plans with 
each other. However, even in states where the way 
of building efficient plans is obvious, pure A* search 
might generate a large number of alternatives. To al- 
leviate this, ballooning was designed to accelerate the 
optimizer without degrading its quality. 

The viability of our approach was shown by the GOM 
Blackboard Optimizer. Baaed on an object-oriented al- 
gebra, a blackboard optimizer was specified. It was 
shown how a blackboard, its regions, and its knowledge 
sources could be designed. The search algorithm was 
explained and the basics of a cost model were described. 

For illustration purpose a sample optimization was 
demonstrated. 

Acknowledgement This work was supported by 
the German Research Council DFG under contracts 
Ke 401/6-l and SFB 346/Al. 

We thank the participan.ts of the Dagstuhl seminar on 
query processing organized by J. C. Freytag, D. Maier, 
and G. Vossen, and the attendees of a talk one of the 
authors gave on invitation by U. Dayal for fruitful dis- 
cussions. We also gratefully acknowledge our students 
K. Hauten, A. Roemer, S. Voss, and R. Waurig who 
have implemented the first prototype. 

553 



References 

[l] J. Banerjee, W. Kim, and K. C. Kim. Queries in ohjc~c:t,- 
oriented databases. In Proc. IEEE Conj. on Data bin- 
gineering, pages 31-38, LA., USA, Feh 1988. 

[2] D. S. Batory. Extensible cost models and qucary op- 
timization in GENESIS. IEEE Dotnbasc Errginc~~~~i~u~, 
10(4), Nov 1987. 

[3] L. Becker and R. II. Giiting. Rule-based optimina- 
tion and query processing in an extensible geometric: 
database system. ACM Trans. on Dotubasr Syntwls, 
17(2):247-303, Jun 1992. 

[4] S. Cluet and C. Delohel. A general framework for the 
optimization of object-oriented queries. In Proc. of t/w 
ACM SIGMOD Conf. on Management of Data, pages 
383-392, San Diego, IJSA, Juu 1992. 

[5] J. C. Freytag. A rule-based view of query optimizat.ion. 
In Proc. of the ACM SIGMOD Conj. on Monngrmcnt 
OJ Data, pages 173.-180, San Francisco, IJSA, 1987. 

[S] G. Graefe and D. J. Dewitt. The EXOl)US optimixrr 
generator. In Proc. oj the ACM SIGhlOU Conj. on 
Management of Data, pages 160- 172, San Francisco, 
IJSA, 1987. 

[7] G. Graefe and W. J. McKenna. The Volcano opti- 
mizer generator: Extensibility and efficient search. It: 
Proc. IEEE Conf. on Data Engineering, pagrs 209 2 18, 
Wien, Austria, Apr 1993. 

[8] T. Ibaraki and T. Kameda. Optimal nesting for com- 
puting N-relational joins. ACM Trans. on Datnbanr 
Systems, 9(3):482-502, 1984. 

[9] Y. E. Ioannidis and Y. C. Kang. Cost wells in random 
graphs. Submitted for publication, Jun 1992. 

[lo] Y. E. Ioannidis and E. Wong. Query optimization by 
simulated annealing. In Proc. of the ACM SIGMOD 
Conj. on Monogement of Datu, pages 9 32, San Frau- 
cisco, USA, 198’7. 

[ll] A. Kemper, C. Kilger, and G. Moerkotte. Function 
materialization in object bases. In Proc. of the .4CM 
SIGMOD Conj. on Management of Dnto, pages 258 
268, Denver, USA, May 1991. 

[12] A. Kemper and G. Moerkotte. Access.support in ol)jc:c:t 
bases. In Proc. of the ACM SIGMOD Conf. on Mnn- 
ogement of Data, pages 364.-374, Atlant,ic City, IfSA, 
May 1990. 

[la] A. Kemper and G. Moerkotte. Advanced query process- 
ing in object bases using access support relations. In 
Proc. of the Conj. on Very Large Doto Bases (VLDW), 
pages 290-301, Brisbane, Australia, Aug 1990. 

[14] A. Kemper and G. Moerkotte. Query optimization in 
object bases: Exploiting relational techniques. In J.- 
C. Freytag, D. Maier, and G. Vossen, editors, Query 
Optimization in Nezt-Generation Database Systems. 
Morgan-Kaufmann, 1993. (forthcoming). 

[I”] A. Krulp(xr, (‘i. Moc*rkot,t+a, and Ii I’c:ithnc~r. A I~l;t~.k 
board architekture for query optimiaat.ion in ol~j(~( I 
bases. ‘li:chuical Report #92-31, RW’I’H Aac:hc:tl, I !I!)?. 

[16] R. I,auzt!lotte aud J.-l’. Chciney. Atla,l)ting rc~lrt.ional 
optimisal.icm technology for claduct,ivc* ~IICI c,l),i,sc.l. 
oric*nt.c:cl tleclarativc: databanc: lauguaKc*s. In Ihrlrlhrlsr 

/‘rr)gfumrtrmg Longugfv Woddw~~, pq:“~ 322 Wi, N;tI 
plion, (:rcac*c:c!, August. I99 I. 

[17] H. S. (:. I,anzc*lotte and I’. Valcluric*a. I’:xt.c*nding ~II(s 
starch st.rategy in a query optimizer. III /‘ro(.. CJ/ /ht. 

~~OI&j. Ori vrry ~WCJF /hItO kJScS (VI,/)/)), IBilK<'> :)(i.i 

373, Barc~loua, Spain, Sop 1991. 

[18] G. M. Lohmnn. Grammar-like functional rn1c.s for rc’1, 
resenting query optimization all,erualivcw. III /‘rw. o/ 
the ACM SI(iMOD Conf, on Mrrnwgemrut oj I)tr/rc. 
pages lP-27, Chicago, I&h, 1988. 

[I!)] G. Mitchell, S. R. Zdonik, and 11. I)ayal. AII archi- 
tect.ure for query procc:ssing iii persistent otl,jc*c:t st.orc*s. 
111 f’roc. flatrmii /rd. Cor~jrrmrc on .SfpIf.rf~ Svtw~f Y, 
1992. 

[2O] J. I’c:arl. Ncuriullcs. Addison- Wcmlcy, Rc*act irIg, hl as- 
sac.husrt.ts, 1!)84. 

[2l] (:. Pialc:tsky-Shapiro and (:. Con t~<%ll. hccura1.c c*sl.i tnil 
tiotl of thr numbc~r of tuplcs satisfying a conclitiou. I II 
f’rw. aj the A C’M Sl(:MOD fbnj. on hfatrc~~grw~w/ 01 
Da/a, pages 256 276, Ikdon, lJSA, <IIIII 84. 

[22] A. 1~oscntha.l and U. S. Chakravarthy. A~~at.omy 01 
a modular nililtiplr query optimizc*r. III /‘ro(,. oj IItf, 
Conj. on Very Large Da/d f?nwa (VLDR), PilRt’S Z:1(1 
239, IA., USA, Scp 1988. 

[23] A. R.osc~tlthal a.nd D. Reincr. Au architrcturc for qut*ry 
optimization. In I’roc. of the ACM Sl(iMOD Con/. on 
Managcmcnl of Dala, pagrs 246 255, Jun I!!H’J. 

[24] P. cl. Sc!linger, M. M. Asdrahan, I). I). (%atnbctrliu, 
R.. A. t,orir, and 1’. G. I’ricc!. Ac,t.c*wn path svte(.t,1o11 
in a rt!tatloi~al database tnanagetnc*tit H~H~~III. I II I’Iw. 
of l/w A CM SIGMOD Con/. O?I ~f~JIM/~'tWI&~ oj /h/rc. 

page‘s %:1--31, Boston, IJSA, Jun 1!)7!). 

[%5] ‘I‘. K. St~llis. Multiple-query optituizal.iorl. I\ (!hl li7ot.q. 
on /hlo6rrsc .‘iyskrrrs, 13( I):23 .52, Ma.r 1!)8H. 

[26] I). D. Strauhe and M. ‘I’. &SU. Excc~~l~iw 1)1;1Ib KC’II. 
eration for an object-oriented c1at.a model. III f’rw. tjj 
the Intl. Conf. on Dato6asr Theory (fcf)?‘), I)>lRPs .I:1 
67, Munich, F.R.G., Dee 1991, L(:NS # 470, Spritlkc*r- 
Vrrlag. 

[27] S. t3.Y ho. Approximating block act*essrr i II ctat.al~.mc~ OI 
ganizat.ione. (l0nrmunic.ot:orl.y oj t/w A (‘M. ~0(~1):2611 
261, Apr 1977. 

554 


