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Abstract 

Object-oriented database (OODB) users bring with 
them large quantities of legacy data (megabytes and even 
gigabytes). In addition, scientific OODB users continu- 
ally generate new data. All this data must be loaded into 
the OODB. Every relational database system has a load 
utility, but most OODBs do not. The process of load- 
ing data into an OODB is complicated by inter-object 
references, or relationships, in the data. These relation- 
ships are expressed in the OODB as object identifiers, 
which are not known at the time the load data is gener- 
ated; they may contain cycles; and there may be implicit 
system-maintained inverse relationships that must also 
be stored. 

We introduce seven algorithms for loading data into 
an OODB that examine different techniques for deal- 
ing with circular and inverse relationships. We present 
a performance study based on both an analytic model 
and an implementation of all seven algorithms on top 
of the Shore object repository. Our study demonstrates 
that it is important to choose a load algorithm carefully; 
in some cases the best algorithm achieved an improve- 
ment of one to two orders of magnitude over the naive 
algorithm. 

1 Introduction 

As object-oriented databases (OODB) attract more and 
more users, the problem of loading the users’ data into 
the OODB becomes more and more important. The cur- 
rent methods of loading, i.e., insert statements in a data 
manipulation language, or new statements in a database 
programming language, are more appropriate for loading 
tens and hundreds of objects than tens and hundreds of 
megabytes of objects. Yet users want to load megabytes 
and even gigabytes of data: 
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l Users bring legacy data from relational and hierarchical 
databases (that is better suited to an OODB). 

l Users with data already in an OODB sometimes need 
to dump and reload that data, into either the same or 
another OODB. The most common need for dumping 
and loading arises when a particular database must be 
reclustered for performance reasons. If the database 
uses physical object identifiers (OIDs), there may be 
no good way to recluster the objects online, but if the 
objects are dumped to a data file in the order in which 
they should be clustered, it is simple to recluster them 
properly while reloading. Data must also be dumped 
and reloaded if the user is switching OODB products, 
or transferring a large quantity of data across a great 
distance, e.g., on tape. 

l Scientists are starting to use OODB to store their 
experimental data. Scientific applications generate a 
large volume of data with many complex associations in 
the information structure [Sho93]. It is not uncommon 
for a single experiment to have input and output pa- 
rameters that number in the hundreds and thousands, 
and must be loaded into the OODB for each experi- 
ment. As an example, the climate modeling project at 
Lawrence Livermore National Laboratory has a very 
complex schema and generates single data points in 
the range of 20 to 150 Megabytes; a single data set 
typically contains 1 to 20 Gigubytes of data [DLP+93]. 
Relational database systems provide a load utility to 

bypass the individual language statements; OODB need 
a similar facility. Users are currently spending too much 
time and effort just loading the data they want to ex- 
amine. For example, Cushing reports that loading the 
experimental data was the most time-consuming part of 
analyzing a set of computational chemistry experiments 
[CMR92]. In addition, we know of another commercial 
OODB customer who currently spends 36 hours loading 
a single set of new data every month. 

A load utility takes a description of all the data to 
be created, usually in text format, and loads the corre- 
sponding objects into the database. Additionally, a load 
utility can group certain operations, such as integrity 
checks, to dramatically reduce their cost for the load 
[Moh93a]. Although a load utility is common in rela- 
tional databases, we are aware of only one OODB load 
utility, in Objectivity/DB [Obj92], and it is limited in 
that it can only load data that already contains system- 
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specific OIDs. 

Loading object-oriented data is complicated by the 
presence of relationships among the objects; these re- 
lationships prevent simply the use of a relational load 
utility for an OODB. 

l In a relational database, all data stored in a tuple is 
either a string or a number. Tuples use foreign keys, 
which are part of the user data, to reference other tu- 
ples. Objects use relationships to reference each other 
by their OIDs. These OIDs are created and maintained 
by the database and are usually not visible to the user. 
Furthermore, these OIDs are not available at all when 
the load file is written, because the corresponding ob- 
jects have not yet been created. Relationships must 
therefore be represented by some other means in the 
load file. We call this representation a surrogate iden- 
tifier. 

l Relationships may be circular. That is, an object A 
may refer to an object B which refers back to object A, 
either directly or via a chain of relationships. There 
fore, the load utility must be able to resolve surrogate 
identifiers to objects that have not yet been created 
when the surrogate is first seen. 

l Inverse relationships, sometimes called bidirectional re 
lationships, are relationships that are maintained in 
both directions, so that an update to one direction 
of the relationship causes an update to the other. 
Many OODB support system-maintained inverse rela- 
tionships [Obj92, Ont92, Ver93, OHMS92, WI93], and 
they are part of the ODMG standard [Cat93]. As an 
example, suppose that object -4 has an inverse relation- 
ship with object B. Then when B’s OID is stored in A, 
A’s OID should be stored in B. The most obvious way 
to maintain inverse relationships - and the only way if 
each object is created separately, as by insert or new 
- is to update each inverse object immediately after 
realizing that the update is needed, e.g, updating B im- 
mediately after creating A. There are two reasons why 
this method is not always appropriate: first, object B 
may not have been created yet; second, this approach 
leads to performance several orders of magnitude worse 
than is possible using a different approach. 

We examine several techniques for dealing with circu- 
lar and inverse relationships in our loading algorithms. 
We evaluate the performance of these algorithms with 
an analytic model and an implementation on top of the 
Shore object repository [CDF+94]. We use the analytic 
model to explore a wide range of load file and system 
configurations. The implementation not only validates 
our analytic model, the performance of the algorithms 
also highlights several key advantages and disadvantages 
of using logical object identifiers. Furthermore, our per- 
formance results show that one algorithm almost always 
outperforms all the others. 

We know of no other work involving loading data into 
an OODB. There are several published methods for map- 
ping complex data structures to an ASCII or binary file, 
and then reading it back in again, including Snodgrass’s 
Interface Description Language [Sno89], Pkl [Nelgl] for 
Modula3 data, and Vegdahl’s method for Smalltalk im- 
ages [VegSS]. However, these methods do not address 
the problem of loading more data than can fit into vir- 
tual memory, and also ignore the performance issues that 
arise when the data to be loaded fits in virtual but not 
physical memory. 

The remainder of the paper is organized as follows. 
We present the loading algorithms in Section 2. In Sec- 
tion 3 we describe the analytic cost model. Section 4 
describes the parameters of the loading algorithms that 
we varied in our studies and in Section 5 we discuss the 
performance results obtained from the analytic model. 
Section 6 describes our implementation and experimen- 
tal results on top of Shore. We conclude and outline our 
future work plan in Section 7. 

2 Loading Algorithms 

We present seven algorithms for loading the database 
from data stored in a text file. In all the algorithms, 
we read the file and create the objects described in it. 
The algorithms differ in the way they handle relation- 
ships between objects and in when they create system- 
maintained inverse relationships. 

2.1 Example database schema 
class Experiment { 

attribute char scientist CM]; 
relationship Input input 

inverse 1nput::expts; 
relationship Output output 

inverse 0utput::expt; 
1; 
class Input { 

attribute double temperature; 
attribute integer humidity; 
relationship Set<Experiment> expts 

inverse Erperiment::input; 
1; 
class Output { 

attribute double plantgrovth; 
relationship Experiment expt 

inverse Experiment::output; 
1; 

Figure 1: Experiment schema definition in ODL. 

We use an example schema, which describes the data 
for a simplified soil science experiment, to illustrate our 
algorithms. In this schema, each Experiment object has 
a many-to-one relationship with an Input object and a 
one-to-one relationship with an Output object. Figure 1 
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defines the schema in the Object Definition Language 
proposed by ODMG (Cat93]. 

2.2 Data file description 
Input(temperature, humidity) { 

101: 27.2, 14; 
102: 14.6, 87; 
103: 21.5, 66; 

1 

Experiment(scientist, input, output) { 
1: “Lisa", 101, 201; 
2: “Alex”, 103, 202; 
3: “Alex”, 101, 203; 

1 

Output (plant-growth) { 
201: 2.1; 
202: 1.75; 
203: 2.0; 

1 

Figure 2: Sample data file for the Experiment schema. 

The data file is an ASCII text file describing the ob- 
jects to be loaded’. We illustrate the data file format in 
Figure 2. Although we developed it for the Moose data 
model [WI93], it fits a generic 00 data model. Further- 
more, any existing data file can be converted easily by 
a simple script to this format. Such conversions will be 
important for loading preexisting data, such as the data 
many scientists have previously kept in flat files. 

Within the data file, objects are grouped together by 
class, although the classes may appear in any order and 
a given class may appear more than once. Each class is 
described by its name and relationships. If a relationship 
of the class is not specified, then objects get a null value 
for that relationship. Next, each object in the class is 
described by a surrogate identifier and a list of its values. 
In this example, all the surrogates are integers, and they 
are unique in the data file. In general, however, the 
surrogates may be strings or numbers; if the class has a 
key they may even be part of the object’s data [PG88]. 
The values for a collection relationship are listed inside 
curly brackets. 

Whenever one object references another object, the 
data file entry for the referencing object contains the 
surrogate for the referenced object. The process of load- 
ing includes translating all the surrogates into the OIDs 
that the database assigns to the corresponding objects. 
To reference objects already in the database, surrogates 
may be assigned to them by using queries (either before 
the load or inside the load data file) to individually select 
the objects; in this study, we do not consider references 
to existing objects. 

‘Loading from binary data files would be similar. We chose 
to use ASCII files because they are transferrable across different 
hardware platforms and are easy for the user to examine: 

2.3 Mapping surrogates to OIDs 
[Surrogatell 
I 101 I OIDll 

Figure 3: Id table built by the load algorithms. 

All the algorithms use an id table to map surrogates 
to the database’s OIDs. As each object is created, its 
surrogate and OID are entered into the id table. The 
OID can subsequently be retrieved from the id table by 
using its surrogate as a key. Table 3 shows the id table 
built for the Experiment data file. 

2.4 Creating relationships from surrogates 

For each relationship from an object A to another ob- 
ject B, the data file contains the surrogate of B in the 
description of A. At some point during the load, the 
load utility must store the OID of B inside object A. We 
present three techniques for converting that surrogate to 
an OID and storing it in A. 

The first technique we call two-pass, because the data 
file is read twice. On the first pass, the objects are cre- 
ated without data inside them and their surrogates and 
OIDs are entered into the id table. On the second pass, 
we reread the data lile and store the data in the objects. 
Since all the objects have already been created, we are 
guaranteed to find all surrogates in the id table. 

OID for Surrogate for Update 
object to update OID to store offset 

OID4 201 24 
OID5 202 24 t 

I OID6 I 203 1 24 

Figure 4: Todo list built by the resolve-early algorithms. 

The second technique, called resolve-early, employs a 
todo list. The data file is read only once, and we try to re- 
solve all the surrogates to OIDs at that time. Surrogates 
that refer to objects described further down in the file, 
however, cannot be resolved immediately. These surro- 
gates are placed on a todo list of updates to do later. 
Each todo list entry contains the OID of the object to 
be updated, the surrogate for the OID to store in the 
object, and the offset at which to store the relationship. 
Figure 4 contains the todo list created for the Experi- 
ment data file in by the resolve-early algorithms. The 
todo list is read and the updates performed after the 
entire data file has been read. 
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The third technique we call assign-early. Like in 
resolve-early, in assign-e&y we try to resolve all surro- 
gates on the first and only pass through the data file. Un- 
like in resolve-early, when we encounter a surrogate for 
an as-yet-uncreated object, we pre-assign the OID. Pre 
assigning the OID involves requesting an unused OID 
from the database without creating the corresponding 
object on disk. This is only possible with logical OIDs. 
We believe that any OODB that provides logical OIDs 
can also provide pre-assignment of OIDs; we know it is 
possible at the buffer manager level in Gemstone [Mai] 
and in Ontos, as well as in Shore. 

2.5 Creating inverse relationships 

Whenever we find a relationship from object A to object 
B that has an inverse, we know we need to store the 
inverse relationship, i.e., store the OID for A in object B. 
We present two methods of performing inverse updates. 

In the immediate inverse update algorithms, we up 

date the inverse object as soon as we discover the re- 
lationship. We note that since surrogates may refer to 
objects not yet created, this technique only applies to 
the second pass of two-pass algorithms. 

I Surrogate for I 1 Update 1 
object & update OID to store offset 

101 OID4 12 
201 OID4 8 
103 OID5 12 
202 OID5 8 
101 OID6 12 
203 OID6 a 

Figure 5: Inverse todo list built by the inverse-sort algo- 
rithms. 

In the inverse sort algorithms, we make an entry on 
an inverse todo list. Inverse todo entries contain the sur- 
rogate for the object to update, the OID to fill in, and an 
offset. The inverse todo list created for the Experiment 
data file is shown in Figure 5. 

After reading the data file, we process the inverse todo 
list. The order of the entries is unrelated to the physical 
order of the objects to update. To avoid a large number 
of random disk reads, we first sort the inverse todo list 
so that the order of the entries corresponds to their ob- 
jects’ creation order in the database, which roughly cor- 
responds to their physical order.2 For the two-pass and 
resolve-early algorithms, OIDs are assigned sequentially 
as objects are created; therefore, the OID is the sorting 
key. For the assign-early algorithms, we use a creation 
order counter? store each object’s order in its id table 
entry, and use the creation order as the sorting key. The 

2We predicted that without sorting the inverse todo list, the 
performance would be similar to that of the immediate inverse 
update algorithms. Since immediate inverse updates had unac- 
ceptable performance, we did not implement an unsorted inverse 
todo list. 

creation order is chosen, instead of the actual physical 
order, because it matches the order of the objects seen 
when reading the data file a second time in two-pass al- 
gorithms and it matches the order of the todo entries in 
resolve-early algorithms. 

Sorting is done in two phases. First; for each inverse 
todo list entry? we look up the OID (and creation order) 
of the object to be updated in the id table and add it to 
the entry. In this phase we read the inverse todo list in 
chunks and create sorted runs of 64 Kb. In the second 
phase, we merge the sorted runs. On the final merge 
pass, we perform all the updates, touching each page of 
the database at most once. Figure 6 shows the inverse 
todo list from Figure 5 after sorting. 

OID for Update 
object to update OID to store offset 

‘11 

Figure 6: Inverse todo list after converting to OIDs and 
sorting. 

Integrity checking is very similar to processing inverse 
updates. Doing integrity checks during the course of the 
load corresponds to immediate inverse updates, and de- 
ferring integrity checking until the end of the load corre- 
sponds to building an inverse todo list and then process- 
ing it in a separate phase. For relational integrity check- 
ing, it is known to be faster to load relations when in- 
tegrity checking is deferred, because the integrity checks 
can be reordered to get better sequential I/O [Moh93a]. 

We note that both of our inverse update techniques 
ensure the integrity of the inverse relationship, and could 
be used for other integrity checks that are not part-of an 
inverse relationship. 

2.6 An optimization: clearing the todo liits 

Both the todo and the inverse todo list are initially con- 
structed in memory. As each list exceeds the size of 
memory allotted to it, that portion of the list is writ- 
ten out to disk. An optimization for processing both 
the todo list and the inverse todo list involves check- 
ing the entries on each list before writing them to disk, 
and’ clearing (removing) those entries from the list that 
update objects currently in the buffer pool, as these up- 
dates can be performed with no I/O cost. Note that 
an entry can be cleared from the todo list only if the 
surrogate to store in the object can now be resolved to 
an OID, that is, if the corresponding object has been 
created since the todo entry was written. 

Minimally, the todo lists are cleared only when they 
become full and must be written out to disk. However, in 



our implementation, we clear the todo lists at intervals 
corresponding to a one-quarter turnover of the contents 
of the buffer pool and we keep an old and a new todo 
list. At the end of each interval, we clear both the old 
and the new todo list and write the old list out to disk. 
Therefore, we attempt to clear each todo entry twice 
before writing it to disk. 

Surrogate for Update 
object to update OID to store offset 

201 OID4 8 
202 OID5 8 
101 OID6 12 
203 OID6 8 

Figure 7: Inverse todo list after clearing, with a 3 page 
buffer pool. 

Figure 7 shows the inverse todo list from Figure 5 as 
it would look after clearing, if the buffer pool contained 
three pages (which is half the database). In this example, 
we were able to clear two entries, or one-third of the total 
entries, from the inverse todo list. 

2.7 The algorithms 

We now present the seven algorithms we studied, which 
span all the viable combinations of resolving surrogates 
and handling inverse relationships. 
Naive: Naive is the simplest algorithm. It is a two-pass 
algorithm in which inverse relationships are processed 
with immediate inverse updates. On the first pass, it 
reads the data file, creates all the objects (with empty 
contents), and builds the id table. On the second pass, 
the objects are filled in with the correct data. Updates 
for inverse relationships are performed as they are en- 
countered. 
Smart-invsort: Smart-invsort is also a two-pass algo- 
rithm. However, it uses the inverse-sort technique to 
process inverse relationships. The inverse todo list is 
constructed during the first pass over the data file, and 
then sorted before the second pass. During the second 
pass, the inverse todo updates are read concurrently with 
the data file, and each object is updated only once. 
Late-invsort: Late-invsort is an .optimization of smart- 
invsort that requires logical OIDs. In the first pass of 
smart-invsort, the objects are created simply to obtain 
their OIDs; they are not filled in until the second pass. 
In the first pass of late-invsort, OIDs are preassigned 
to the objects and the database is not touched. On the 
second pass over the data file, the inverse todo updates 
are merged with the object creations. 
Res-early-invsort: Res-early-invsort 
employs the resolve-early technique for surrogates and 
inserse-sort for inverse relationships. It therefore man- 
ages both a todo list and an inverse todo list, and merges 
the entries from the two liits (after sorting the inverse 

todo list) during the update phase so that all updates to 
an object are performed at once. Note that the todo list 
does not need to be sorted. since the order of the entries 
already corresponds to the creation order of the objects. 
Assign-early-invsort: Assign-early-invsort combines 
the assign-early technique for surrogates with inverse- 
sort for inverse relationships. It makes one pass over the 
data file, then sorts the inverse todo list, and makes one 
pass over the database to perform the updates dictated 
by the inverse todo entries. 
Res-clear-invclear: Res-clear-invclear is similar to res- 
early-invsort, except that it employs the clearing opti- 
mization for both the todo and the inverse todo lists. 
Assign-early-invclear: Assign-early-invclear is simi- 
lar to assign-early-invsort, except that it uses the clear- 
ing optimization for the inverse todo list. 

3 Analytic Cost Model 
The analytic model measures projected disk I/O costs. 
We estimated the disk I/O costs to gauge the overall per- 
formance of the algorithms because we felt that loading 
data is inherently I/O bound: loading primarily involves 
reading a data file and creating (and updating) objects 
in the database. 

Reading the data file once and creating the database 
objects accounts for the minimum number of I/O’s pos- 
sible in a load. Except for the assign-early algorithms, 
each algorithm had an additional cost for resolving sur- 
rogates to OIDs, and all the algorithms had additional 
costs for implementing inverse relationships. 

We modeled nearest locality of reference among the 
objects, which indicates that an object is most likely to 
have relationships with objects near it in the data file, 
and hence in the database. More specifically, x% of the 
relationships from a given object will be to objects within 
y% of the data file from it. The remaining (l-x)% will 
be to random objects. When x and y are 0, there is no 
locality of reference. 

Nearest locality models different kinds of complex ob- 
jects for a data file clustered by complex object. Y says 
how much of the data file each complex object spans. 
X says how many relationships are within a given com- 
plex object, versus between complex objects. If the data 
file were clustered by some other criterion, or randomly, 
there would be no locality. 

We now describe the cost formulas used in the analytic 
model. We present the (much simpler) formulas for when 
the id table fits in memory. We used 8 byte OIDs (this 
is the size used by Shore), so each two-pass and resolve- 
early id table entry is 12 bytes; each assign-early id table 
entry is 16 bytes (including the creation order); and the 
clearing algorithms’ id table entries have an additional 4 
bytes for the page numbers needed to check if an object 
is in the buffer pool. The parameters used in the cost of 
each algorithm are listed in Table 1. 
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Variable Meaning 

Pf ile pages in data file 
pdb pages in database 
Sdb size of database (bytes) 
S mcm size of memory (bytes) 
Sidcntry size of an id table entry (bytes) 
Sidtablc size of id table (bytes) 
P todo pages in todo list 
Pinvtodo pages in inverse todo list 
P cl+todo pages in cleared todo list 
Pcbinvtodo pages in cleared inverse todo list 
Nobjs number of objects to load 
N l-cl number of relationships per object 
Ninvrct average number of inverse 

relationships per object 
2 % relnships to nearby objects 
9 % database considered nearby 
2 % database in buffer pool 
&nmcdupdotcs pages read into memory by immediate 

inverse updates 
Pbnottnmem probability that a page is not in 

memory 
Pbnotel+ probability that a todo entry is not 

cleared 
Pbinvnotclr probability than an inverse todo 

entry is not cleared 

Table 1: Parameters of the cost model. 

The cost for each algorithm is now as follows: 
naive = 2 * pf ile + 3 * Pdb + 2 * &nmedupdotcs 

hnmedupdates = Ndjs * N+wre~ * P~&otintnmn 

PMmnnem =l+*$*w) 
+((1 _ z) * V)] 

Sidtoblc = Sidentry * JJobj 

Naive’s file cost is for reading the data file twice; the 
database cost is for creating the database and then up- 
dating (reading and writing) all the objects, one page at 
a time. 

The cost for the immediite inverse updates is more 
complicated. The number of updates is simply Nobj * 
Ninvrcl- However, an I/O is only incurred when the up- 
dated object is not in the buffer pool. We calculate a 
probability that the object is not in the buffer pool baaed 
on the locality parameters z and y, and use that to de- 
termine the number of I/OS incurred. 
smart-invsort = 2 * Pfilc + 3 * Pdb + 4 * Pinvto& 
Pinvtodo = Nobj * Ninvtc~ 

Smart-invsort’s inverse todo list cost involves writing 
the inverse todo list out to disk, reading it back in and 
writing out sorted runs, and then reading and merging 
the runs to produce the sorted list. If the sort required 
an extra merge pass, the cost would be 6 * Pinvtodo. 

The size of the inverse todo list is bounded by the 
number of inverse relationships per object. Since all in- 
verse relationships are entered onto the inverse todo list, 

the size of the inverse todo list is thus the same as its 
upper bound. 

late-invsmt = 2 * Pf ile + Pdb + 4 * Ptnvtod,, 
The cost for late-invsort is the same as for smart- 

invsort, except that it does not need to update the 
database after creating it. 
res-ead@wsd = Pfil, + 3 * Pdb + 2 * Pt,& 

+ 4 * Pinvtodo 

ptodo = Nobj * Nrcl * O-5 

Res-early-invsort reads the data file only once. How- 
ever, it incurs the cost of writing and reading both a todo 
list and a inverse todo list. The inverse todo list cost is 
the same as for smart-invsort. The size of the todo list 
is bounded by Nobj * Nrel. However, on average, only 
half of the references from each object will be to objects 
described later on in the data file. We therefore model 
the size of the todo list as one-half the potential number 
of entries. 

Assign-early-invsort does not use a todo list, since 
it preassigns OIDs whenever an unresolved surrogate 
appears. The inverse todo list cost is the same as for 
smart-invsort. 
res-dear-indear = Pfilc + 3 * Pdb + 2 * Pclrt& 

+ 4 * Pclrinvtodo 

P clrtodo = Nobj * Nrel * Pl&wtclcared 

P~&totclcated = [(z * 7) + ((1 - 2) * (+=$))I * 0.5 

2= &-S*&&& 
sdb 

Pclrinvtodo = Nobj * Ninwcl * PT&wnotclrated 

P~&nvnotckarcd = (z * 7) + (Cl- z) * (E,, 
assign-early-invdear = pf ilc + 3 * Pdb + 4 * filrinvtodo 

The costs for the inverse-clear algorithms are super- 
ficially the same as for their inverse-sort counterparts. 
The difference lies in the size of the todo and inverse 
todo lists. Since some of the todo list entries are re- 
moved when the todo list is cleared, the cleared todo 
list and cleared inverse todo list are significantly smaller 
than their non-cleared counterparts. 

When the entire database fits in the buffer pool, the 
sizes of the todo list and the inverse todo lit drop to zero, 
since all entries will be cleared. At the other extreme, 
when the buffer pool holds only the id table, no entries 
are cleared. In between, the percentage of the database 
in the buffer pool is used in conjunction with the locality 
to determine how many entries can be cleared. Since 
each entry will be checked for clearing shortly after it 
is created, the probability of clearing the entry is much 
greater if the object being referenced (in the case of the 
todo lit) or the object to be updated (in the case of 
the inverse todo list) is physically nearby the object that 
generated the todo or inverse todo entry in the database, 
and therefore in the buffer pool at the same time. We 
model writing each todo list entry out to disk at the same 
time as the object that generated that entry is flushed 
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from the buffer pool. Hence, the formulas for clearing 
the todo and inverse todo lists are very similar. 

We note that only the algorithms that try to update 
objects in a random order are affected by the locality 
of reference. For this purpose, random means any or- 
der that is not the same a6 the data file order. Thus, 
naive, res-clear-invclear and assign-early-invclear are af- 
fected by locality, and by the size of the buffer pool, 
while smart-invsort, late-invsort, res-early-invsort, and 
assign-early-invsort are not. 

We also note that the I/O cost of naive is a multi- 
ple of the number of objects and the number of inverse 
relationships. For all the other algorithms, the cost is 
linear in the number of objects when the id table fits in 
memory. (When the id table does not fit, the cost is also 
a multiple of the number of objects and the number of 
relationships.) 

4 Data file and system parameters 
For most of the analytical and implementation experi- 
ments we used 200 byte objects. Each 200 byte object 
had 10 slots for relationships,-and 10 slots for inverse re- 
lationships to it. Additionally, each object had a 40 byte 
string field. We varied the number of objects to control 
the size of the database. The 5 Mb database has 25,000 
objects; the 20 Mb database has 100,000 objects. The 
data file for the 5 Mb database was actually 2.3 Mb. We 
varied the locality of reference from no locality to hav- 
ing 90% of references stay within the nearest 10% of the 
database (hence called 90-10 locality). In the implemen- 
tation experiments, the locality was built into the actual 
references in the data file. In the analytic experiments, 
it was a parameter. 

5 Analytic model results 
For the first set of experiments with the analytic model, 
we varied the amount of memory available for the load. 
In Figures 8 and 9, we show the predicted number of I/OS 
to load a 5 Mb database with 90-10 locality. We varied 
the memory available from 0.5 Mb to 10 Mb. At 10 Mb, 
the entire database plus all auxiliary data structures, 
such as the inverse todo list, fit in memory. 

Figure 8 illustrates how much worse the naive algo- 
rithm performs relative to the others until the entire 
database fits in memory; when the buffer pool holds 
only 10% of the database, naive performs a full order 
of magnitude worse. Figure 9 shows the differences in 
performance among the remaining algorithms. At 10% 
of the database, or 0.5 Mb of memory, late-invsort is the 
best algorithm. Once 20% of the database, or 1 Mb, 
fits in memory, the clearing algorithms outperform the 
non-clearing algorithms. This is due to their writing and 
reading much smaller versions of the todo list and inverse 
todo list, When both a todo list and an inverse todo list 
are needed, res-clear-invclear is able to perform as well 

as assign-early-invclear because the updates dictated by 
both lists are merged in the same pass over the database. 
Late-k-sort continues to dominate the non-clearing al- 
gorithms. Smart-invsort performs comparably to res- 
early-invsort. Although smart-invsort does not create a 
todo list, it incurs approximately the same number of 
I/O’s because it reads the data file a second time. 

When there is no locality of reference among the ob- 
jects, late-invsort outperforms over the clearing algo- 
rithms until approximately half the database fits in mem- 
ory, as shown in Figure 10. The relative performance of 
the other algorithms remains the same. However, while 
the non-clearing algorithms are unaffected by the lo&l- 
ity, the clearing algorithms perform significantly worse, 
because fewer of the todo list and inverse todo list en- 
tries update objects that are in the buffer pool when the 
entry is generated. We do not show naive’s performance 
in this graph because it is so much worse that the other 
algorithms appear as a single line on the graph. Relative 
to the other algorithms, naive now performs two orders 
of magnitude worse! With 1 Mb of available memory, 
naive requires 427,000 I/O’s, while IatGnvsort performs 
merely 3,700 and res-clear-invclear only 4,800. 

In some cases, such as when an OODB is dumped 
to a file and then reloaded, it is possible to dump both 
halves of an inverse relationship. That is, instead of 
storing only the fact that A has an inverse relationship 
with B in the data file, and letting the load algorithm 
take care of storing the relationship from B to A, it is 
possible to indicate both the relationship from A to B 
and the relationship from B to A explicitly in the data 
file. That way, the load algorithm does not need to per- 
form any inverse updates. Also, in some schemas, there 
are no inverse relationships. We therefore test the al- 
gorithms’ performance for a data file containing twice 
as many relationships, to represent both halves of an in- 
verse relationship but no implicit inverse relationships, in 
Figure 11. For all the algorithms, the performance was 
improved two-to-fourfold. The assign-early algorithms 
achieved the best performance possible: since they re- 
solve all surrogates to OIDs on the first pass over the 
database, they did not need an second (update) pass 
over the database. Naive and smart-mvsort appear as a 
single line, since they differ only in their handling of in- 
verse updates. Res-clear-invclear performs slightly bet- 
ter than smart-invsort because the cost of writing and 
reading the cleared todo list is less than that of rereading 
the data file; res-early-invsort performs slightly worse for 
the opposite reason. 

In the next experiment, shown in Figure 12, we scale 
the database size from 5 Mb to 1 Gb, while keeping 
the buffer pool size equal to 10% of the database. We 
chose 10% since we do not expect more than that to 
be available for loading massive amonnts of data. All 
the other parameters are the same as before. We verify 
with this experiment that the relative performance of the 
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algorithms does not change as we scale the database, and 
that with a corresponding increase in the buffer pool, the 
increase in I/O cost for the algorithms (except naive) is 
linear. 

For the final experiment, shown in Figure 13, we held 
the database size constant and varied the object size 
from 200 bytes to 8 Kb, the size of a Shore page. To 
keep the database size constant, we decreased the num- 
ber of objects as we increased the objects’ size. For this 
test, we used a 100 Mb database with a 10 Mb buffer 
pool. Although the relative performance of the algo- 
rithms does not change, as the objects get larger the in- 
dividual performance of each algorithm improves. There 
are two reasons why the corresponding decline in object 
size causes the improved performance: Fit, the id ta- 
ble shrinks and so more of the database fits in the buffer 
pool. Second, the absolute number of relationships de- 
clines, and so the size of the todo and inverse todo lists 
also declines. 

most of the database fits in the buffer pool. Also, 
the clearing algorithms perform better when there is 
a higher locality of reference. They are then followed 
by assign-early-invsort and then res-early-invsort and 
smart-invsort, and this ranking is fairly consistent re- 
gardless of the locality in the data file or the number 
of objects or relationships. Naive, on the other hand, 
performs very poorly in the presence of inverse relation- 
ships, unless the entire database fits in memory. At that 
point, it doesn’t really matter which algorithm is used. 

The resolve-early and assign-early algorithms have the 
added benefit that since they only read the data tile once, 
they can read the data file from a pipe. Therefore, if the 
program generating the data produces it in the data file 
format, the data file need never be physically stored. 
This can be very important when disk space is tight, 
because the data file tends to be the same order of mag- 
nitude as the database it describes. 

5.1 Discussion 

According to the analytic model, the relative ranking of 
the algorithms is late&sort, followed closely by assign- 
early-invclear and res-clear-invclear, when there is a rela- 
tively small buffer pool available, and the opposite when 

All the algorithms cost significantly less when there 
are no inverse relationships. However, we have already 
noted that most commercial OODB systems (Ontos, Ob- 
jectivity, Versant, ObjectStore) today support inverse re- 
lationships and sometimes it is not feasible to generate 
both halves of the relationship for the data file. For 
example, a dumped relational database would have for- 
eign keys in one relation for one-half of the relationship, 
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but the other relation would most likely store nothing 
that references the first relation. In addition, explicitly 
st.oring twice as many relationships in the data file can 
substantially increase the size of the data file and may 
not be a viable option when disk space is at a premium. 
Furthermore, when the load utility handles inverse re- 
lationships, it also handles all the referential integrity 
checks for the inverse relationships. The cost of doing 
first a load, and then referential’integrity checks, would 
be much higher than doing the checks as part of the load. 
If the data to be stored contains no relationships at all, 
this study does not apply. 

.4lthough we do not present the results for loads when 
the id table does not fit in the buffer pool, we note that 
the I/O cost greatly increases: we do an insert in the id 
table for each object, and a lookup for each relationship 
and inverse relationship. When each of these inserts and 
lookups causes a I/O for the correct id table page, the 
cost skyrockets to the same magnitude as the naive algo- 
rithm, for all algorithms. For example, the predicted cost 
for late-invsort for a 5 Mb database is only 4,900 I/OS 
with 0.5 Mb of memory, which just barely holds the id ta- 
ble, but 524,000 I/OS with 0.1 Mb of memory. All of the 
algorithms exhibit similar one-hundred-fold increases in 
cost. Therefore, we recommend enough memory to store 
the id table as the minimum amount of memory that 
should be made available to the load. This limitation 
does not absolutely constrain the amount of data that 
can be loaded at one time, but rather the number of ob- 
jects that may be loaded: a data file containing 1 Gb of 
8 Kb objects builds an id table of only 2 Mb. 

6 Implementation 

We ran all seven loading algorithms on a Hewlett- 
Packard 9000/720 with 32 Mbytes of physical memory. 
However, we were only able to use about 16 Mb for any 
test run, due to operating system and daemon mem- 
ory requiremex$s. The database was stored under the 
Shore storage manager [CDF+94] on a raw Seagate ST- 
12400N disk controlled exclusively by Shore. The data 
file resided on a separate disk on the local file system, 
and thus did not interfere with the database I/O. For 
these tests, we turned logging off. It is important to be 
able to turn off logging when loading a lot of new data 
[51oh93a]; we found that when we used full logging, the 
log outgrew the database. It is unlikely that users have 
enough disk space to accomodate such a log. 

We used Shore as the underlying persistent object 
manager, even though Shore is still under development, 
for two reasons. First, Shore provides the notion of a 
“value-added server” (VAS), which allowed us to place 
the load utility directly in the server. We feel that this 
is the best place for a load utility; the client-server com- 
munication overhead is greatly reduced. The implemen- 
tors of DB2 experienced significantly better performance 

when the load utility interacted directly with the buffer 
manager, instead of as a client (Moh93b]. Additionally, 
the load algorithms have direct access to the server buffer 
pools and can determine what is in the buffer pool at any 
given time, which was needed by the algorithms that try 
to clear the todo list and inverse todo list. The non- 
clearing algorithms, however, could be implemented at 
the client level. 

Second, Shore provides logical OIDs, which we needed 
to test the late-invsort and assign-early algorithms, as 
well as physical OIDs. Shore uses a logical OID index to 
maps from logical OIDs to physical OIDs. This index is 
stored in the database. 

We stored the todo list as a single large object, and 
the inverse todo list as several large objects, since they 
are too large to keep in main memory. The id table is 
implemented as a open addressing hash table, hashed 
on the surrogate. Our code for all the load algorithms 
combined was about 5000 lines of C++ code, and took 
one person only one month to write. 

6.1 Experimental Results 

We ran experiments to load a database with 5, 20, and 
50 Mb of data. All the objects were 200 bytes and we 
increased the number of objects to increase the database 
size. Due to metadata overhead and Shore’s logical OID 
index, the databases created were actually 7, 27, and 66 
Mb. The memory used by each test reflects the sum of 
the id table (in transient memory) and the buffer pool, 
since in the analytic model we did not distinguish be- 
tween the two. 

For the tist set of experiments, we created a database 
with 5 Mb of data, which was actually 7 Mb when cre- 
ated and hence first fits in the buffer pool at 7 Mb. In 
the first experiment, shown in Figure 14, we loaded a 
5 Mb of data with 9zCr10 locality. As predicted by the 
analytic model, the times for the naive algorithm domi- 
nate by an order of magnitude. We therefore present the 
results’again without naive in Figure 15. The anoma- 
lous performance of the assign-early algorithms with a 
small buffer pool is caused by the logical OID index. The 
two-pass and res-early algorithms assign OIDs to objects 
as the objects are created, and hence the OIDs are in- 
serted into the logical OID index in clustered order. The 
assign-early algorithms, in direct contrast, assign OIDs 
to objects as the objects’ surrogates are encountered. 
As the objects are created, their OIDs are entered in the 
logical OID index in a random order (i.e., not clustered 
by OID). Since the logical OID index did not fit in the 
buffer pool, each object creation caused (on average) an 
extra disk I/O to insert the OID into the index. 

In all cases, late-invsort is the fastest algorithm. As 
the buffer pool grows to hold nearly the entire database, 
we see the most improvement in perform&nce by the 
algorithms that take advantage of the contents of the 
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buffer pool, namely, the clearing algorithms, assign- 
early-invclear and res-clear-invclear. However, the im- 
provement is not as dramatic as the analytic model pre- 
dicts, and hence late-invsort is still better. This differ- 
ence is explained by the relative CPU costs of the al- 
gorithms, shown in Figure 16. The clearing algorithms 
perform significantly more work to check the buffer pool 
for each entry on the todo and inverse todo lit. In addi- 
tion, while clearing an entry has no associated I/O cost, 
there is a fair amount of overhead involved in pinning 
the corresponding object in the buffer pool and updat- 
ing it. The clearing algorithms pin the object for each 
“free” update. The updates done in the second phase, 
however, only pin each object once, no matter how many 
updates to a given object there are. 

Figure 17 shows the amount of disk space needed by 
each algorithm. The includes the size of the database, 
the logical OID index, and the auxiliary data structures 
(the todo list and inverse todo list) used. (The auxiliary 
data is deleted at the end of the load.) Naive uses the 
least amount of disk because it has no auxiliary struc- 
tures. For the 5 Mb database, the logical OID index 
accounts for approximately 1.5 Mb of the 7 Mb stored. 
Like the size of the id table, the size of the logical OID 
index corresponds to the number of objects, rather than 
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the absolute size of the database. 
In Figure 18 we show the I/O cost of each algorithm; 

in Figure 19 we repeat the results without the naive al- 
gorithm. Except for the anomalies in the assign-early 
algorithms with a small buffer pool, due to the logical 
OID index, we note that the actual I/O cost of each algo- 
rithm is extremely close to the I/O cost predicted by our 
analytic model. For example, in Figure 9 we predicted 
3597 I/OS for late-revsort with 1 Mb memory. In our ex- 
periment, late-revsort took 3667 I/OS, which is less than 
a 5% deviation. 

We next experimented with a 5 Mb data file with no 
locality of reference. As we predicted in the analytic 
model, naive becomes an even worse choice, taking 2 
hours to complete the load with 1 Mb of memory, and 1 
hour with 4 Mb. All the other algorithms, in contrast, 
take 1 to 2 minutes. The relative performance of the 
algorithms is similar to that with 90-10 locality, but the 
assign-early algorithms pay an even greater penalty for 
inserting into the logical OID index out of order. 

We therefore decided to run some experiments to see 
how the algorithms perform with physical OIDs. Fig- 
ure 22 show the results of these experiments. Late- 
invsort and assign-early depend on logical OIDs and 
could not be run; we also omitted naive. Contrary to our 
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expectations, the tests with physical OIDs took longer to 
run than their logical OID counterparts. In Shore, logi- 
cal OIDs are 8 bytes but physical OIDs are 12 bytes. The 
size of the objects thus grew from 200 bytes to 280 bytes 
to store the same information. The physical OID tests 
thus incurred many more I/OS to create the database, 
and since I/O costs dominate loading, the physical OID 
tests were slower. 

In Figure 23 we show how the size of the database, 
todo list, and inverse todo list grew; where we needed 16 
Mb of disk space for smart-invsort with logical OIDs, we 
needed 19 Mb with physical OIDs. The actual database 
grew from 7 Mb (including the logical OID index) to 7.9 
Mb. 

Figures 24 and 25 show the results of loading 20 Mb 
and 50 Mb of data, respectively, with 96-10 locality in the 
data file. We present these graphs primarily to show that 
the performance of the algorithms scales as we increase 
the amount of data to load. Note, however, that because 
of the 16 Mb physical limitations on combined buffer 
pool and heap memory size for the load process, we could 
test only a small and medium buffer pool for 20 Mb, and 
only a small buffer pool for 50 Mb. 

Although we do not present the graphs, when we ran 
experiments with 20 relationships but no inverse rela- 
tionships, we found that the analytic model was correct: 
all the algorithms run much faster. For example, late- 
invsort loaded the 5 Mb database with 0.9 Mb of Memory 
in 38 seconds; naive took 50 and res-early-invsort ran in 
67 seconds. The fastest time to load the same database 
with inverse relationships was 105 seconds. 

6.2 Discussion 

The implementation results con6nn that the analytic 
model predicts the actual disk I/OS for each algorithms 
accurately. However, because the analytic model does 
not account for CPU time, and did not take such factors 
as the logical id index under consideration, it is only a 
moderate predictor of actual algorithm performance. 

For example, although the analytic model predicted 
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that assign-early-invclear would sometimes beat late- 
invsort, the logical OID index imposed substantial I/O 
overhead for assign-early and thus it did not perform 
well. While the analytic model predicted that res-clear- 
invclear would beat late-invsort with high locality and 
a medium or large buffer pool, the CPU time involved 
in clearing made up for the savings in diik I/OS, and 
late-invsort still proved faster. 

Late-invsort is the clear best choice according to the 
implementation results. Of the other algorithms, both 
smart-invsort and res-early-invsort are good choices. 
Neither is affected much by the logical OID index, and 
neither wastes CPU time trying to clear entries on the 
todo lists when there are very few objects in the buffer 
pool that could be updated. We expect that res-early- 
invsort will be better when there are relatively few re- 
lationships in the data file, e.g., if much of the file de- 
scribes images or other bulk data. There is not much 
advantage to implementing the more complicated res- 
clear-invclear. We therefore recommend that users im- 
plement late-invsort if pre-assigning of OIDs is possible, 
and either smart-invsort or res-early-invsort if not. 

7 Conclusions 

A bulk loading utility is critical to users of OODBs with 
significant amounts of data. These users include those 
switching from a relational or hierarchical database; 
those switching OODB products; those who want to 
recluster their OODB data for better performance; and 
scientists running applications that continually gener- 
ate vast amounts of new data. However, loading in an 
OODB may be very slow due to relationships among the 
objects; inverse relationships exacerbate the problem. In 
our performance study we showed that the best algo- 
rithms solve the problems due to relationships by (1) us- 
ing a sorted inverse todo list to avoid random reads and 
updates and (2) using pre-allocation of OIDs to avoid 
updates in the first place. Of the algorithms we ex- 
plored, we recommend that users implement late-invsort 
if logical OIDs are available, and either smart-invsort or 
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res-early-invsort otherwise. We also note that naive’s 
abominable performance is to be expected if objects are 
loaded one at a time, e.g., by insert or new statements, 
since inverse updates cannot be batched. 

Our future work includes running experiments that 
load 1 Gb of data (when we get a larger disk to store 
the database); looking at techniques to decrease the cost 
of loading when the id table does not fit in memory; 
investigating algorithms for a loading in parallel on one 
or more servers with multiple database volumes; looking 
into reclustering algorithms that dump and then reload 
objects; and adding smart integrity checking to the load 
algorithms. In addition, we plan to integrate the load 
implementation with the higher levels of Shore and turn 
it into a utility to be distributed with Shore. 

8 Acknowledgements 

We would like to thank David Maier for the original in- 
spiration to study loading and for feedback on our early 
algorithm ideas; Mike Zwilling and C. K. Tan for advice 
and support for our implementation as a Shore value- 
added server; and Mark McAuliffe, Praveen Seshadri, 
Yannis Ioannidis, C. Mohan, and Dan Weinreb for their 
helpful comments on the content and presentation of this 
paper. 

References 
[Cat931 R. G. G. Cattell, editor. The Object’ Database Stan- 

dard: ODMG-93. Morgan-Kaufman, Inc., 1993. 

[C!DF+94] M. Carey, D. Dewitt, M. Franklin, N. Hall, 
M. McAuliffe, J. Naughton, D. &huh, M. Solomon, C. Tan, 
0. Tsatalos, S. White, and M. Zwilling. Shoring Up Per- 
sistent Applications. In Proc. of SIGMOD, pages 383-394, 
May, 1994. 

[CMR92] J. B. Cushing, D. Maier, and M. Rao. Computa- 
tional Proxies: Modeling Scientific Applications in Object 
Databases. Technical Report 92-020, Oregon Graduate In- 
stitute, December 1992. Revised May, 1993. 

[DLP+93] R. Drach, S. Louis, G. Potter, G. Richmond, 
D. Rotem, H. Samet, A. Segev, and A. Shoshani. Opti- 

-+- he-invson 
-\ -\, ‘4 

..a.. smut-invsoft 
- *- res-early-invsorl 
-a-. fes-clear-invclear 
-+- assign-early-invson 
-+- assign-early-invclear 

&.“p 
. 

$ ‘,I _. _, ;;I., _. .~o 

0 5 

Memo: (Mb; 

Figure 25: 50 Mb database with 
90-10 locality. 

mizing Mass Storage Organization and Access for Multi- 
Dimensional Scientific Data. In Proc. IEEE Symposium on 
Mass Storage Systems, Monterey, CA, April 1993. 

[Mai] David Maier. Private conversation, January 27, 1994. 

[Moh93a] C. Mohan. A Survey of DBMS Research Is- 
sues in Supporting Very Large Tables. In Pmt. Founda- 
tions of Data Organization and Algorithms, pages 279-300, 
Chicago, Il., 1993. Springer-Verlag. 

[Moh93b] C. Mohan. IBM’S Relational DBMS Products: 
Features and Technologies. In Pmt. of SIGMOD , pages 
445-448, 1993. 

[Nelgl] G. Nelson, editor. Systems Programming with 
Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991. 

[Obj92] Objectivity, Inc. Objectivity/DB Documentation, 2.0 
edition, September 1992. 

[OHMS921 J. Orenstein, S. Haradhvala, B. Margulies, and 
D. Sakahara. Query Processing in the ObjectStore 
Database System. In Pmt. of SIGMOD, pages 463-412, 
1992. 

[Ont92] Ontos, Inc. Ontos DB Reference Manual, release 2.2, 
February 1992. 

[PG88] N. W. Paton and P. M. D. Gray. Identification of 
Database Objects by Key. In K. R. Dittrich, editor, PTUC. 
2nd Int. Workshop on Object-Oriented Database Systems, 
pages 286-285, Berlin, Germany, September 1988. 

[Sho93] A. Shoshani. A Layered Apporach to Scientific Data 
Management at Lawrence Berkeley Laboratory. IEEE 
Data Engineering Bulletin, 16(1):4-8, March 1993. 

[Sno89] R. Snodgrass. The Interface Description hnguage: 
Definition and Use. Computer Science Press, 1989. 

[VegSS] S. R. Vegdahl. Moving Structures between Smalltalk 
Images. In Pnx. OOPSLA, pages 466-471, 1986. 

[Ver93] Versant Object Technology. Versant Object Database 
Management System C++ Versant Manuals release 2, July 
1993. 

[WI931 J. L. Wiener and Y. Ioannidis. A Moose and a Fox 
Can Aid Scientists with Data Management Problems. In 
Proc. Int. Wor$shop on Database Programming Languages, 
pages 376-398, New York, NY, 1993. 

131 


