
Bulk Loading into an OODB: A Performance Study

Janet L. Wiener Jeffrey F. Naughton

Department of Computer Sciences
University of Wisconsin-Madison

1210 W. Dayton St., Madison, WI 53706
{wiener,naughton}@cs.wisc.edu

Abstract

Object-oriented database (OODB) users bring with
them large quantities of legacy data (megabytes and even
gigabytes). In addition, scientific OODB users continu-
ally generate new data. All this data must be loaded into
the OODB. Every relational database system has a load
utility, but most OODBs do not. The process of load-
ing data into an OODB is complicated by inter-object
references, or relationships, in the data. These relation-
ships are expressed in the OODB as object identifiers,
which are not known at the time the load data is gener-
ated; they may contain cycles; and there may be implicit
system-maintained inverse relationships that must also
be stored.

We introduce seven algorithms for loading data into
an OODB that examine different techniques for deal-
ing with circular and inverse relationships. We present
a performance study based on both an analytic model
and an implementation of all seven algorithms on top
of the Shore object repository. Our study demonstrates
that it is important to choose a load algorithm carefully;
in some cases the best algorithm achieved an improve-
ment of one to two orders of magnitude over the naive
algorithm.

1 Introduction

As object-oriented databases (OODB) attract more and
more users, the problem of loading the users’ data into
the OODB becomes more and more important. The cur-
rent methods of loading, i.e., insert statements in a data
manipulation language, or new statements in a database
programming language, are more appropriate for loading
tens and hundreds of objects than tens and hundreds of
megabytes of objects. Yet users want to load megabytes
and even gigabytes of data:

Permission to copy without fee all or part of this material is
gmnted provided that the copies ape not made or distributed for
direct wmmereiol odvantage, the VLDB copyright notice and the
title of the public&ion and its date appear, and notice ia given that
wpting is by pmmiasion of the Very Large Data Base Endowment.
To copy othetise, or to republish, requires a fee and/or special
pemission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

l Users bring legacy data from relational and hierarchical
databases (that is better suited to an OODB).

l Users with data already in an OODB sometimes need
to dump and reload that data, into either the same or
another OODB. The most common need for dumping
and loading arises when a particular database must be
reclustered for performance reasons. If the database
uses physical object identifiers (OIDs), there may be
no good way to recluster the objects online, but if the
objects are dumped to a data file in the order in which
they should be clustered, it is simple to recluster them
properly while reloading. Data must also be dumped
and reloaded if the user is switching OODB products,
or transferring a large quantity of data across a great
distance, e.g., on tape.

l Scientists are starting to use OODB to store their
experimental data. Scientific applications generate a
large volume of data with many complex associations in
the information structure [Sho93]. It is not uncommon
for a single experiment to have input and output pa-
rameters that number in the hundreds and thousands,
and must be loaded into the OODB for each experi-
ment. As an example, the climate modeling project at
Lawrence Livermore National Laboratory has a very
complex schema and generates single data points in
the range of 20 to 150 Megabytes; a single data set
typically contains 1 to 20 Gigubytes of data [DLP+93].
Relational database systems provide a load utility to

bypass the individual language statements; OODB need
a similar facility. Users are currently spending too much
time and effort just loading the data they want to ex-
amine. For example, Cushing reports that loading the
experimental data was the most time-consuming part of
analyzing a set of computational chemistry experiments
[CMR92]. In addition, we know of another commercial
OODB customer who currently spends 36 hours loading
a single set of new data every month.

A load utility takes a description of all the data to
be created, usually in text format, and loads the corre-
sponding objects into the database. Additionally, a load
utility can group certain operations, such as integrity
checks, to dramatically reduce their cost for the load
[Moh93a]. Although a load utility is common in rela-
tional databases, we are aware of only one OODB load
utility, in Objectivity/DB [Obj92], and it is limited in
that it can only load data that already contains system-

120

specific OIDs.

Loading object-oriented data is complicated by the
presence of relationships among the objects; these re-
lationships prevent simply the use of a relational load
utility for an OODB.

l In a relational database, all data stored in a tuple is
either a string or a number. Tuples use foreign keys,
which are part of the user data, to reference other tu-
ples. Objects use relationships to reference each other
by their OIDs. These OIDs are created and maintained
by the database and are usually not visible to the user.
Furthermore, these OIDs are not available at all when
the load file is written, because the corresponding ob-
jects have not yet been created. Relationships must
therefore be represented by some other means in the
load file. We call this representation a surrogate iden-
tifier.

l Relationships may be circular. That is, an object A
may refer to an object B which refers back to object A,
either directly or via a chain of relationships. There
fore, the load utility must be able to resolve surrogate
identifiers to objects that have not yet been created
when the surrogate is first seen.

l Inverse relationships, sometimes called bidirectional re
lationships, are relationships that are maintained in
both directions, so that an update to one direction
of the relationship causes an update to the other.
Many OODB support system-maintained inverse rela-
tionships [Obj92, Ont92, Ver93, OHMS92, WI93], and
they are part of the ODMG standard [Cat93]. As an
example, suppose that object -4 has an inverse relation-
ship with object B. Then when B’s OID is stored in A,
A’s OID should be stored in B. The most obvious way
to maintain inverse relationships - and the only way if
each object is created separately, as by insert or new
- is to update each inverse object immediately after
realizing that the update is needed, e.g, updating B im-
mediately after creating A. There are two reasons why
this method is not always appropriate: first, object B
may not have been created yet; second, this approach
leads to performance several orders of magnitude worse
than is possible using a different approach.

We examine several techniques for dealing with circu-
lar and inverse relationships in our loading algorithms.
We evaluate the performance of these algorithms with
an analytic model and an implementation on top of the
Shore object repository [CDF+94]. We use the analytic
model to explore a wide range of load file and system
configurations. The implementation not only validates
our analytic model, the performance of the algorithms
also highlights several key advantages and disadvantages
of using logical object identifiers. Furthermore, our per-
formance results show that one algorithm almost always
outperforms all the others.

We know of no other work involving loading data into
an OODB. There are several published methods for map-
ping complex data structures to an ASCII or binary file,
and then reading it back in again, including Snodgrass’s
Interface Description Language [Sno89], Pkl [Nelgl] for
Modula3 data, and Vegdahl’s method for Smalltalk im-
ages [VegSS]. However, these methods do not address
the problem of loading more data than can fit into vir-
tual memory, and also ignore the performance issues that
arise when the data to be loaded fits in virtual but not
physical memory.

The remainder of the paper is organized as follows.
We present the loading algorithms in Section 2. In Sec-
tion 3 we describe the analytic cost model. Section 4
describes the parameters of the loading algorithms that
we varied in our studies and in Section 5 we discuss the
performance results obtained from the analytic model.
Section 6 describes our implementation and experimen-
tal results on top of Shore. We conclude and outline our
future work plan in Section 7.

2 Loading Algorithms

We present seven algorithms for loading the database
from data stored in a text file. In all the algorithms,
we read the file and create the objects described in it.
The algorithms differ in the way they handle relation-
ships between objects and in when they create system-
maintained inverse relationships.

2.1 Example database schema
class Experiment {

attribute char scientist CM];
relationship Input input

inverse 1nput::expts;
relationship Output output

inverse 0utput::expt;
1;
class Input {

attribute double temperature;
attribute integer humidity;
relationship Set<Experiment> expts

inverse Erperiment::input;
1;
class Output {

attribute double plantgrovth;
relationship Experiment expt

inverse Experiment::output;
1;

Figure 1: Experiment schema definition in ODL.

We use an example schema, which describes the data
for a simplified soil science experiment, to illustrate our
algorithms. In this schema, each Experiment object has
a many-to-one relationship with an Input object and a
one-to-one relationship with an Output object. Figure 1

121

defines the schema in the Object Definition Language
proposed by ODMG (Cat93].

2.2 Data file description
Input(temperature, humidity) {

101: 27.2, 14;
102: 14.6, 87;
103: 21.5, 66;

1

Experiment(scientist, input, output) {
1: “Lisa", 101, 201;
2: “Alex”, 103, 202;
3: “Alex”, 101, 203;

1

Output (plant-growth) {
201: 2.1;
202: 1.75;
203: 2.0;

1

Figure 2: Sample data file for the Experiment schema.

The data file is an ASCII text file describing the ob-
jects to be loaded’. We illustrate the data file format in
Figure 2. Although we developed it for the Moose data
model [WI93], it fits a generic 00 data model. Further-
more, any existing data file can be converted easily by
a simple script to this format. Such conversions will be
important for loading preexisting data, such as the data
many scientists have previously kept in flat files.

Within the data file, objects are grouped together by
class, although the classes may appear in any order and
a given class may appear more than once. Each class is
described by its name and relationships. If a relationship
of the class is not specified, then objects get a null value
for that relationship. Next, each object in the class is
described by a surrogate identifier and a list of its values.
In this example, all the surrogates are integers, and they
are unique in the data file. In general, however, the
surrogates may be strings or numbers; if the class has a
key they may even be part of the object’s data [PG88].
The values for a collection relationship are listed inside
curly brackets.

Whenever one object references another object, the
data file entry for the referencing object contains the
surrogate for the referenced object. The process of load-
ing includes translating all the surrogates into the OIDs
that the database assigns to the corresponding objects.
To reference objects already in the database, surrogates
may be assigned to them by using queries (either before
the load or inside the load data file) to individually select
the objects; in this study, we do not consider references
to existing objects.

‘Loading from binary data files would be similar. We chose
to use ASCII files because they are transferrable across different
hardware platforms and are easy for the user to examine:

2.3 Mapping surrogates to OIDs
[Surrogatell
I 101 I OIDll

Figure 3: Id table built by the load algorithms.

All the algorithms use an id table to map surrogates
to the database’s OIDs. As each object is created, its
surrogate and OID are entered into the id table. The
OID can subsequently be retrieved from the id table by
using its surrogate as a key. Table 3 shows the id table
built for the Experiment data file.

2.4 Creating relationships from surrogates

For each relationship from an object A to another ob-
ject B, the data file contains the surrogate of B in the
description of A. At some point during the load, the
load utility must store the OID of B inside object A. We
present three techniques for converting that surrogate to
an OID and storing it in A.

The first technique we call two-pass, because the data
file is read twice. On the first pass, the objects are cre-
ated without data inside them and their surrogates and
OIDs are entered into the id table. On the second pass,
we reread the data lile and store the data in the objects.
Since all the objects have already been created, we are
guaranteed to find all surrogates in the id table.

OID for Surrogate for Update
object to update OID to store offset

OID4 201 24
OID5 202 24 t

I OID6 I 203 1 24

Figure 4: Todo list built by the resolve-early algorithms.

The second technique, called resolve-early, employs a
todo list. The data file is read only once, and we try to re-
solve all the surrogates to OIDs at that time. Surrogates
that refer to objects described further down in the file,
however, cannot be resolved immediately. These surro-
gates are placed on a todo list of updates to do later.
Each todo list entry contains the OID of the object to
be updated, the surrogate for the OID to store in the
object, and the offset at which to store the relationship.
Figure 4 contains the todo list created for the Experi-
ment data file in by the resolve-early algorithms. The
todo list is read and the updates performed after the
entire data file has been read.

122

The third technique we call assign-early. Like in
resolve-early, in assign-e&y we try to resolve all surro-
gates on the first and only pass through the data file. Un-
like in resolve-early, when we encounter a surrogate for
an as-yet-uncreated object, we pre-assign the OID. Pre
assigning the OID involves requesting an unused OID
from the database without creating the corresponding
object on disk. This is only possible with logical OIDs.
We believe that any OODB that provides logical OIDs
can also provide pre-assignment of OIDs; we know it is
possible at the buffer manager level in Gemstone [Mai]
and in Ontos, as well as in Shore.

2.5 Creating inverse relationships

Whenever we find a relationship from object A to object
B that has an inverse, we know we need to store the
inverse relationship, i.e., store the OID for A in object B.
We present two methods of performing inverse updates.

In the immediate inverse update algorithms, we up

date the inverse object as soon as we discover the re-
lationship. We note that since surrogates may refer to
objects not yet created, this technique only applies to
the second pass of two-pass algorithms.

I Surrogate for I 1 Update 1
object & update OID to store offset

101 OID4 12
201 OID4 8
103 OID5 12
202 OID5 8
101 OID6 12
203 OID6 a

Figure 5: Inverse todo list built by the inverse-sort algo-
rithms.

In the inverse sort algorithms, we make an entry on
an inverse todo list. Inverse todo entries contain the sur-
rogate for the object to update, the OID to fill in, and an
offset. The inverse todo list created for the Experiment
data file is shown in Figure 5.

After reading the data file, we process the inverse todo
list. The order of the entries is unrelated to the physical
order of the objects to update. To avoid a large number
of random disk reads, we first sort the inverse todo list
so that the order of the entries corresponds to their ob-
jects’ creation order in the database, which roughly cor-
responds to their physical order.2 For the two-pass and
resolve-early algorithms, OIDs are assigned sequentially
as objects are created; therefore, the OID is the sorting
key. For the assign-early algorithms, we use a creation
order counter? store each object’s order in its id table
entry, and use the creation order as the sorting key. The

2We predicted that without sorting the inverse todo list, the
performance would be similar to that of the immediate inverse
update algorithms. Since immediate inverse updates had unac-
ceptable performance, we did not implement an unsorted inverse
todo list.

creation order is chosen, instead of the actual physical
order, because it matches the order of the objects seen
when reading the data file a second time in two-pass al-
gorithms and it matches the order of the todo entries in
resolve-early algorithms.

Sorting is done in two phases. First; for each inverse
todo list entry? we look up the OID (and creation order)
of the object to be updated in the id table and add it to
the entry. In this phase we read the inverse todo list in
chunks and create sorted runs of 64 Kb. In the second
phase, we merge the sorted runs. On the final merge
pass, we perform all the updates, touching each page of
the database at most once. Figure 6 shows the inverse
todo list from Figure 5 after sorting.

OID for Update
object to update OID to store offset

‘11

Figure 6: Inverse todo list after converting to OIDs and
sorting.

Integrity checking is very similar to processing inverse
updates. Doing integrity checks during the course of the
load corresponds to immediate inverse updates, and de-
ferring integrity checking until the end of the load corre-
sponds to building an inverse todo list and then process-
ing it in a separate phase. For relational integrity check-
ing, it is known to be faster to load relations when in-
tegrity checking is deferred, because the integrity checks
can be reordered to get better sequential I/O [Moh93a].

We note that both of our inverse update techniques
ensure the integrity of the inverse relationship, and could
be used for other integrity checks that are not part-of an
inverse relationship.

2.6 An optimization: clearing the todo liits

Both the todo and the inverse todo list are initially con-
structed in memory. As each list exceeds the size of
memory allotted to it, that portion of the list is writ-
ten out to disk. An optimization for processing both
the todo list and the inverse todo list involves check-
ing the entries on each list before writing them to disk,
and’ clearing (removing) those entries from the list that
update objects currently in the buffer pool, as these up-
dates can be performed with no I/O cost. Note that
an entry can be cleared from the todo list only if the
surrogate to store in the object can now be resolved to
an OID, that is, if the corresponding object has been
created since the todo entry was written.

Minimally, the todo lists are cleared only when they
become full and must be written out to disk. However, in

our implementation, we clear the todo lists at intervals
corresponding to a one-quarter turnover of the contents
of the buffer pool and we keep an old and a new todo
list. At the end of each interval, we clear both the old
and the new todo list and write the old list out to disk.
Therefore, we attempt to clear each todo entry twice
before writing it to disk.

Surrogate for Update
object to update OID to store offset

201 OID4 8
202 OID5 8
101 OID6 12
203 OID6 8

Figure 7: Inverse todo list after clearing, with a 3 page
buffer pool.

Figure 7 shows the inverse todo list from Figure 5 as
it would look after clearing, if the buffer pool contained
three pages (which is half the database). In this example,
we were able to clear two entries, or one-third of the total
entries, from the inverse todo list.

2.7 The algorithms

We now present the seven algorithms we studied, which
span all the viable combinations of resolving surrogates
and handling inverse relationships.
Naive: Naive is the simplest algorithm. It is a two-pass
algorithm in which inverse relationships are processed
with immediate inverse updates. On the first pass, it
reads the data file, creates all the objects (with empty
contents), and builds the id table. On the second pass,
the objects are filled in with the correct data. Updates
for inverse relationships are performed as they are en-
countered.
Smart-invsort: Smart-invsort is also a two-pass algo-
rithm. However, it uses the inverse-sort technique to
process inverse relationships. The inverse todo list is
constructed during the first pass over the data file, and
then sorted before the second pass. During the second
pass, the inverse todo updates are read concurrently with
the data file, and each object is updated only once.
Late-invsort: Late-invsort is an .optimization of smart-
invsort that requires logical OIDs. In the first pass of
smart-invsort, the objects are created simply to obtain
their OIDs; they are not filled in until the second pass.
In the first pass of late-invsort, OIDs are preassigned
to the objects and the database is not touched. On the
second pass over the data file, the inverse todo updates
are merged with the object creations.
Res-early-invsort: Res-early-invsort
employs the resolve-early technique for surrogates and
inserse-sort for inverse relationships. It therefore man-
ages both a todo list and an inverse todo list, and merges
the entries from the two liits (after sorting the inverse

todo list) during the update phase so that all updates to
an object are performed at once. Note that the todo list
does not need to be sorted. since the order of the entries
already corresponds to the creation order of the objects.
Assign-early-invsort: Assign-early-invsort combines
the assign-early technique for surrogates with inverse-
sort for inverse relationships. It makes one pass over the
data file, then sorts the inverse todo list, and makes one
pass over the database to perform the updates dictated
by the inverse todo entries.
Res-clear-invclear: Res-clear-invclear is similar to res-
early-invsort, except that it employs the clearing opti-
mization for both the todo and the inverse todo lists.
Assign-early-invclear: Assign-early-invclear is simi-
lar to assign-early-invsort, except that it uses the clear-
ing optimization for the inverse todo list.

3 Analytic Cost Model
The analytic model measures projected disk I/O costs.
We estimated the disk I/O costs to gauge the overall per-
formance of the algorithms because we felt that loading
data is inherently I/O bound: loading primarily involves
reading a data file and creating (and updating) objects
in the database.

Reading the data file once and creating the database
objects accounts for the minimum number of I/O’s pos-
sible in a load. Except for the assign-early algorithms,
each algorithm had an additional cost for resolving sur-
rogates to OIDs, and all the algorithms had additional
costs for implementing inverse relationships.

We modeled nearest locality of reference among the
objects, which indicates that an object is most likely to
have relationships with objects near it in the data file,
and hence in the database. More specifically, x% of the
relationships from a given object will be to objects within
y% of the data file from it. The remaining (l-x)% will
be to random objects. When x and y are 0, there is no
locality of reference.

Nearest locality models different kinds of complex ob-
jects for a data file clustered by complex object. Y says
how much of the data file each complex object spans.
X says how many relationships are within a given com-
plex object, versus between complex objects. If the data
file were clustered by some other criterion, or randomly,
there would be no locality.

We now describe the cost formulas used in the analytic
model. We present the (much simpler) formulas for when
the id table fits in memory. We used 8 byte OIDs (this
is the size used by Shore), so each two-pass and resolve-
early id table entry is 12 bytes; each assign-early id table
entry is 16 bytes (including the creation order); and the
clearing algorithms’ id table entries have an additional 4
bytes for the page numbers needed to check if an object
is in the buffer pool. The parameters used in the cost of
each algorithm are listed in Table 1.

124

Variable Meaning

Pf ile pages in data file
pdb pages in database
Sdb size of database (bytes)
S mcm size of memory (bytes)
Sidcntry size of an id table entry (bytes)
Sidtablc size of id table (bytes)
P todo pages in todo list
Pinvtodo pages in inverse todo list
P cl+todo pages in cleared todo list
Pcbinvtodo pages in cleared inverse todo list
Nobjs number of objects to load
N l-cl number of relationships per object
Ninvrct average number of inverse

relationships per object
2 % relnships to nearby objects
9 % database considered nearby
2 % database in buffer pool
&nmcdupdotcs pages read into memory by immediate

inverse updates
Pbnottnmem probability that a page is not in

memory
Pbnotel+ probability that a todo entry is not

cleared
Pbinvnotclr probability than an inverse todo

entry is not cleared

Table 1: Parameters of the cost model.

The cost for each algorithm is now as follows:
naive = 2 * pf ile + 3 * Pdb + 2 * &nmedupdotcs

hnmedupdates = Ndjs * N+wre~ * P~&otintnmn

PMmnnem =l+*$*w)
+((1 _ z) * V)]

Sidtoblc = Sidentry * JJobj

Naive’s file cost is for reading the data file twice; the
database cost is for creating the database and then up-
dating (reading and writing) all the objects, one page at
a time.

The cost for the immediite inverse updates is more
complicated. The number of updates is simply Nobj *
Ninvrcl- However, an I/O is only incurred when the up-
dated object is not in the buffer pool. We calculate a
probability that the object is not in the buffer pool baaed
on the locality parameters z and y, and use that to de-
termine the number of I/OS incurred.
smart-invsort = 2 * Pfilc + 3 * Pdb + 4 * Pinvto&
Pinvtodo = Nobj * Ninvtc~

Smart-invsort’s inverse todo list cost involves writing
the inverse todo list out to disk, reading it back in and
writing out sorted runs, and then reading and merging
the runs to produce the sorted list. If the sort required
an extra merge pass, the cost would be 6 * Pinvtodo.

The size of the inverse todo list is bounded by the
number of inverse relationships per object. Since all in-
verse relationships are entered onto the inverse todo list,

the size of the inverse todo list is thus the same as its
upper bound.

late-invsmt = 2 * Pf ile + Pdb + 4 * Ptnvtod,,
The cost for late-invsort is the same as for smart-

invsort, except that it does not need to update the
database after creating it.
res-ead@wsd = Pfil, + 3 * Pdb + 2 * Pt,&

+ 4 * Pinvtodo

ptodo = Nobj * Nrcl * O-5

Res-early-invsort reads the data file only once. How-
ever, it incurs the cost of writing and reading both a todo
list and a inverse todo list. The inverse todo list cost is
the same as for smart-invsort. The size of the todo list
is bounded by Nobj * Nrel. However, on average, only
half of the references from each object will be to objects
described later on in the data file. We therefore model
the size of the todo list as one-half the potential number
of entries.

Assign-early-invsort does not use a todo list, since
it preassigns OIDs whenever an unresolved surrogate
appears. The inverse todo list cost is the same as for
smart-invsort.
res-dear-indear = Pfilc + 3 * Pdb + 2 * Pclrt&

+ 4 * Pclrinvtodo

P clrtodo = Nobj * Nrel * Pl&wtclcared

P~&totclcated = [(z * 7) + ((1 - 2) * (+=$))I * 0.5

2= &-S*&&&
sdb

Pclrinvtodo = Nobj * Ninwcl * PT&wnotclrated

P~&nvnotckarcd = (z * 7) + (Cl- z) * (E,,
assign-early-invdear = pf ilc + 3 * Pdb + 4 * filrinvtodo

The costs for the inverse-clear algorithms are super-
ficially the same as for their inverse-sort counterparts.
The difference lies in the size of the todo and inverse
todo lists. Since some of the todo list entries are re-
moved when the todo list is cleared, the cleared todo
list and cleared inverse todo list are significantly smaller
than their non-cleared counterparts.

When the entire database fits in the buffer pool, the
sizes of the todo list and the inverse todo lit drop to zero,
since all entries will be cleared. At the other extreme,
when the buffer pool holds only the id table, no entries
are cleared. In between, the percentage of the database
in the buffer pool is used in conjunction with the locality
to determine how many entries can be cleared. Since
each entry will be checked for clearing shortly after it
is created, the probability of clearing the entry is much
greater if the object being referenced (in the case of the
todo lit) or the object to be updated (in the case of
the inverse todo list) is physically nearby the object that
generated the todo or inverse todo entry in the database,
and therefore in the buffer pool at the same time. We
model writing each todo list entry out to disk at the same
time as the object that generated that entry is flushed

125

from the buffer pool. Hence, the formulas for clearing
the todo and inverse todo lists are very similar.

We note that only the algorithms that try to update
objects in a random order are affected by the locality
of reference. For this purpose, random means any or-
der that is not the same a6 the data file order. Thus,
naive, res-clear-invclear and assign-early-invclear are af-
fected by locality, and by the size of the buffer pool,
while smart-invsort, late-invsort, res-early-invsort, and
assign-early-invsort are not.

We also note that the I/O cost of naive is a multi-
ple of the number of objects and the number of inverse
relationships. For all the other algorithms, the cost is
linear in the number of objects when the id table fits in
memory. (When the id table does not fit, the cost is also
a multiple of the number of objects and the number of
relationships.)

4 Data file and system parameters
For most of the analytical and implementation experi-
ments we used 200 byte objects. Each 200 byte object
had 10 slots for relationships,-and 10 slots for inverse re-
lationships to it. Additionally, each object had a 40 byte
string field. We varied the number of objects to control
the size of the database. The 5 Mb database has 25,000
objects; the 20 Mb database has 100,000 objects. The
data file for the 5 Mb database was actually 2.3 Mb. We
varied the locality of reference from no locality to hav-
ing 90% of references stay within the nearest 10% of the
database (hence called 90-10 locality). In the implemen-
tation experiments, the locality was built into the actual
references in the data file. In the analytic experiments,
it was a parameter.

5 Analytic model results
For the first set of experiments with the analytic model,
we varied the amount of memory available for the load.
In Figures 8 and 9, we show the predicted number of I/OS
to load a 5 Mb database with 90-10 locality. We varied
the memory available from 0.5 Mb to 10 Mb. At 10 Mb,
the entire database plus all auxiliary data structures,
such as the inverse todo list, fit in memory.

Figure 8 illustrates how much worse the naive algo-
rithm performs relative to the others until the entire
database fits in memory; when the buffer pool holds
only 10% of the database, naive performs a full order
of magnitude worse. Figure 9 shows the differences in
performance among the remaining algorithms. At 10%
of the database, or 0.5 Mb of memory, late-invsort is the
best algorithm. Once 20% of the database, or 1 Mb,
fits in memory, the clearing algorithms outperform the
non-clearing algorithms. This is due to their writing and
reading much smaller versions of the todo list and inverse
todo list, When both a todo list and an inverse todo list
are needed, res-clear-invclear is able to perform as well

as assign-early-invclear because the updates dictated by
both lists are merged in the same pass over the database.
Late-k-sort continues to dominate the non-clearing al-
gorithms. Smart-invsort performs comparably to res-
early-invsort. Although smart-invsort does not create a
todo list, it incurs approximately the same number of
I/O’s because it reads the data file a second time.

When there is no locality of reference among the ob-
jects, late-invsort outperforms over the clearing algo-
rithms until approximately half the database fits in mem-
ory, as shown in Figure 10. The relative performance of
the other algorithms remains the same. However, while
the non-clearing algorithms are unaffected by the lo&l-
ity, the clearing algorithms perform significantly worse,
because fewer of the todo list and inverse todo list en-
tries update objects that are in the buffer pool when the
entry is generated. We do not show naive’s performance
in this graph because it is so much worse that the other
algorithms appear as a single line on the graph. Relative
to the other algorithms, naive now performs two orders
of magnitude worse! With 1 Mb of available memory,
naive requires 427,000 I/O’s, while IatGnvsort performs
merely 3,700 and res-clear-invclear only 4,800.

In some cases, such as when an OODB is dumped
to a file and then reloaded, it is possible to dump both
halves of an inverse relationship. That is, instead of
storing only the fact that A has an inverse relationship
with B in the data file, and letting the load algorithm
take care of storing the relationship from B to A, it is
possible to indicate both the relationship from A to B
and the relationship from B to A explicitly in the data
file. That way, the load algorithm does not need to per-
form any inverse updates. Also, in some schemas, there
are no inverse relationships. We therefore test the al-
gorithms’ performance for a data file containing twice
as many relationships, to represent both halves of an in-
verse relationship but no implicit inverse relationships, in
Figure 11. For all the algorithms, the performance was
improved two-to-fourfold. The assign-early algorithms
achieved the best performance possible: since they re-
solve all surrogates to OIDs on the first pass over the
database, they did not need an second (update) pass
over the database. Naive and smart-mvsort appear as a
single line, since they differ only in their handling of in-
verse updates. Res-clear-invclear performs slightly bet-
ter than smart-invsort because the cost of writing and
reading the cleared todo list is less than that of rereading
the data file; res-early-invsort performs slightly worse for
the opposite reason.

In the next experiment, shown in Figure 12, we scale
the database size from 5 Mb to 1 Gb, while keeping
the buffer pool size equal to 10% of the database. We
chose 10% since we do not expect more than that to
be available for loading massive amonnts of data. All
the other parameters are the same as before. We verify
with this experiment that the relative performance of the

126

\

+naive

-+Iale-invs01I
4.. smart-invmt
- l - rewarly-invsort
-*- res-clew-invch
-+ accign-early-invsofl
-+- assign-early-invclear

1 . , I . I .

0 2 4 6 8 IO

Memory (Mb)
Figure 8: 5 Mb database with 90-
10 locality.

OiTY-TT- IO

Memory (Mb)
0 200 400 @lo mo loo0

DB size (Mb)
Figure 11: 5 Mb database with
20 relationships and 0 inverses.

Figure 12: Scaling database size
to 1 Gb, with 10% in memory.

algorithms does not change as we scale the database, and
that with a corresponding increase in the buffer pool, the
increase in I/O cost for the algorithms (except naive) is
linear.

For the final experiment, shown in Figure 13, we held
the database size constant and varied the object size
from 200 bytes to 8 Kb, the size of a Shore page. To
keep the database size constant, we decreased the num-
ber of objects as we increased the objects’ size. For this
test, we used a 100 Mb database with a 10 Mb buffer
pool. Although the relative performance of the algo-
rithms does not change, as the objects get larger the in-
dividual performance of each algorithm improves. There
are two reasons why the corresponding decline in object
size causes the improved performance: Fit, the id ta-
ble shrinks and so more of the database fits in the buffer
pool. Second, the absolute number of relationships de-
clines, and so the size of the todo and inverse todo lists
also declines.

most of the database fits in the buffer pool. Also,
the clearing algorithms perform better when there is
a higher locality of reference. They are then followed
by assign-early-invsort and then res-early-invsort and
smart-invsort, and this ranking is fairly consistent re-
gardless of the locality in the data file or the number
of objects or relationships. Naive, on the other hand,
performs very poorly in the presence of inverse relation-
ships, unless the entire database fits in memory. At that
point, it doesn’t really matter which algorithm is used.

The resolve-early and assign-early algorithms have the
added benefit that since they only read the data tile once,
they can read the data file from a pipe. Therefore, if the
program generating the data produces it in the data file
format, the data file need never be physically stored.
This can be very important when disk space is tight,
because the data file tends to be the same order of mag-
nitude as the database it describes.

5.1 Discussion

According to the analytic model, the relative ranking of
the algorithms is late&sort, followed closely by assign-
early-invclear and res-clear-invclear, when there is a rela-
tively small buffer pool available, and the opposite when

All the algorithms cost significantly less when there
are no inverse relationships. However, we have already
noted that most commercial OODB systems (Ontos, Ob-
jectivity, Versant, ObjectStore) today support inverse re-
lationships and sometimes it is not feasible to generate
both halves of the relationship for the data file. For
example, a dumped relational database would have for-
eign keys in one relation for one-half of the relationship,

0 .,'I.,', ,
0 2 4 6 8 IO

kmry (Mb)

Figure 9: 5 Mb database with 90-
10 locality, without naive.

l000000-

1

Figure 10: 5 Mb database with
no locality.

- +- he-invson
-a- smart-invsorf
-+m-cady-invm
-+ fes-clcaf-invclcar
-+assign+arly-invml
-+- assign-euly-invcleaf

01 , . , 1 I
0 2m4OaI6m8Mm

Object size (lytes)
Figure 13: Scaling object size for
5 Mb database.

but the other relation would most likely store nothing
that references the first relation. In addition, explicitly
st.oring twice as many relationships in the data file can
substantially increase the size of the data file and may
not be a viable option when disk space is at a premium.
Furthermore, when the load utility handles inverse re-
lationships, it also handles all the referential integrity
checks for the inverse relationships. The cost of doing
first a load, and then referential’integrity checks, would
be much higher than doing the checks as part of the load.
If the data to be stored contains no relationships at all,
this study does not apply.

.4lthough we do not present the results for loads when
the id table does not fit in the buffer pool, we note that
the I/O cost greatly increases: we do an insert in the id
table for each object, and a lookup for each relationship
and inverse relationship. When each of these inserts and
lookups causes a I/O for the correct id table page, the
cost skyrockets to the same magnitude as the naive algo-
rithm, for all algorithms. For example, the predicted cost
for late-invsort for a 5 Mb database is only 4,900 I/OS
with 0.5 Mb of memory, which just barely holds the id ta-
ble, but 524,000 I/OS with 0.1 Mb of memory. All of the
algorithms exhibit similar one-hundred-fold increases in
cost. Therefore, we recommend enough memory to store
the id table as the minimum amount of memory that
should be made available to the load. This limitation
does not absolutely constrain the amount of data that
can be loaded at one time, but rather the number of ob-
jects that may be loaded: a data file containing 1 Gb of
8 Kb objects builds an id table of only 2 Mb.

6 Implementation

We ran all seven loading algorithms on a Hewlett-
Packard 9000/720 with 32 Mbytes of physical memory.
However, we were only able to use about 16 Mb for any
test run, due to operating system and daemon mem-
ory requiremex$s. The database was stored under the
Shore storage manager [CDF+94] on a raw Seagate ST-
12400N disk controlled exclusively by Shore. The data
file resided on a separate disk on the local file system,
and thus did not interfere with the database I/O. For
these tests, we turned logging off. It is important to be
able to turn off logging when loading a lot of new data
[51oh93a]; we found that when we used full logging, the
log outgrew the database. It is unlikely that users have
enough disk space to accomodate such a log.

We used Shore as the underlying persistent object
manager, even though Shore is still under development,
for two reasons. First, Shore provides the notion of a
“value-added server” (VAS), which allowed us to place
the load utility directly in the server. We feel that this
is the best place for a load utility; the client-server com-
munication overhead is greatly reduced. The implemen-
tors of DB2 experienced significantly better performance

when the load utility interacted directly with the buffer
manager, instead of as a client (Moh93b]. Additionally,
the load algorithms have direct access to the server buffer
pools and can determine what is in the buffer pool at any
given time, which was needed by the algorithms that try
to clear the todo list and inverse todo list. The non-
clearing algorithms, however, could be implemented at
the client level.

Second, Shore provides logical OIDs, which we needed
to test the late-invsort and assign-early algorithms, as
well as physical OIDs. Shore uses a logical OID index to
maps from logical OIDs to physical OIDs. This index is
stored in the database.

We stored the todo list as a single large object, and
the inverse todo list as several large objects, since they
are too large to keep in main memory. The id table is
implemented as a open addressing hash table, hashed
on the surrogate. Our code for all the load algorithms
combined was about 5000 lines of C++ code, and took
one person only one month to write.

6.1 Experimental Results

We ran experiments to load a database with 5, 20, and
50 Mb of data. All the objects were 200 bytes and we
increased the number of objects to increase the database
size. Due to metadata overhead and Shore’s logical OID
index, the databases created were actually 7, 27, and 66
Mb. The memory used by each test reflects the sum of
the id table (in transient memory) and the buffer pool,
since in the analytic model we did not distinguish be-
tween the two.

For the tist set of experiments, we created a database
with 5 Mb of data, which was actually 7 Mb when cre-
ated and hence first fits in the buffer pool at 7 Mb. In
the first experiment, shown in Figure 14, we loaded a
5 Mb of data with 9zCr10 locality. As predicted by the
analytic model, the times for the naive algorithm domi-
nate by an order of magnitude. We therefore present the
results’again without naive in Figure 15. The anoma-
lous performance of the assign-early algorithms with a
small buffer pool is caused by the logical OID index. The
two-pass and res-early algorithms assign OIDs to objects
as the objects are created, and hence the OIDs are in-
serted into the logical OID index in clustered order. The
assign-early algorithms, in direct contrast, assign OIDs
to objects as the objects’ surrogates are encountered.
As the objects are created, their OIDs are entered in the
logical OID index in a random order (i.e., not clustered
by OID). Since the logical OID index did not fit in the
buffer pool, each object creation caused (on average) an
extra disk I/O to insert the OID into the index.

In all cases, late-invsort is the fastest algorithm. As
the buffer pool grows to hold nearly the entire database,
we see the most improvement in perform&nce by the
algorithms that take advantage of the contents of the

128

“11
- naive
-*. late-invson

e /I
..a- smart-invson

3orm
- + res-early-invsotl

8
-a-. res-clear-invclear
-*. assign-early-invsort

3

ii

--- &pearly-invclear

u2ooo
E

‘J

‘l:L
0 2 4 6 8 IO

Memory (Mb)
Figure 14: 5 Mb database with
99- 10 locality.

-*- smart-invsofl
- *- res-early-invsort
-*-. res-clear-invclear
-*. assign~ly-invsorx
-+- assign-early-invclear

Oi--mTTT
Memory (Mb)

Figure 17: 5 Mb database: Disk
space used by database and todo
liits.

-*. late-invsort
4.. smart-invsort
- *- res-early-hvsort

1::: ~;:;;;;:$oa
-+- assign-euly-invclear

I. I I. I. I ’
0 2 4 6 8 10

Memory (Mb)
Figure 15: 5 Mb database with
99-10 locality, without naive.

+ naive
-*. late-invsal
-+ smart-invsort
- +-. res-early-invsat
-*-. m-clear-invclear
-*~~assign-early-invsort
-+- assign-early-invckar

0 2 4 6 8 IO
Memory (Mb)

Figure 18: 5 Mb database: Disk
I/OS.

buffer pool, namely, the clearing algorithms, assign-
early-invclear and res-clear-invclear. However, the im-
provement is not as dramatic as the analytic model pre-
dicts, and hence late-invsort is still better. This differ-
ence is explained by the relative CPU costs of the al-
gorithms, shown in Figure 16. The clearing algorithms
perform significantly more work to check the buffer pool
for each entry on the todo and inverse todo lit. In addi-
tion, while clearing an entry has no associated I/O cost,
there is a fair amount of overhead involved in pinning
the corresponding object in the buffer pool and updat-
ing it. The clearing algorithms pin the object for each
“free” update. The updates done in the second phase,
however, only pin each object once, no matter how many
updates to a given object there are.

Figure 17 shows the amount of disk space needed by
each algorithm. The includes the size of the database,
the logical OID index, and the auxiliary data structures
(the todo list and inverse todo list) used. (The auxiliary
data is deleted at the end of the load.) Naive uses the
least amount of disk because it has no auxiliary struc-
tures. For the 5 Mb database, the logical OID index
accounts for approximately 1.5 Mb of the 7 Mb stored.
Like the size of the id table, the size of the logical OID
index corresponds to the number of objects, rather than

-naive
-co late-invsort

\

“9.. smart-invJon
- l - res-early-invsort
-a-- res-clear-invclear
-+. assign-early-inwsort
-+- assign-early-invcleiu

Ol
0 2 4 6 8 10

Memory (Mb)
Figure 16: 5 Mb database: CPU
time.

25aJo- -*. late-invsort
-+ smart-invsort

? 2oooo-
- + tes-early-invsott

j t

-a’.. res-clear-invclear
-+. assign-early-invsort

91rny \

-+- assign-early-invclear

“i-TTTTT
Memory (Mb)

Figure 19: 5 Mb database: Disk
I/O, without naive.

the absolute size of the database.
In Figure 18 we show the I/O cost of each algorithm;

in Figure 19 we repeat the results without the naive al-
gorithm. Except for the anomalies in the assign-early
algorithms with a small buffer pool, due to the logical
OID index, we note that the actual I/O cost of each algo-
rithm is extremely close to the I/O cost predicted by our
analytic model. For example, in Figure 9 we predicted
3597 I/OS for late-revsort with 1 Mb memory. In our ex-
periment, late-revsort took 3667 I/OS, which is less than
a 5% deviation.

We next experimented with a 5 Mb data file with no
locality of reference. As we predicted in the analytic
model, naive becomes an even worse choice, taking 2
hours to complete the load with 1 Mb of memory, and 1
hour with 4 Mb. All the other algorithms, in contrast,
take 1 to 2 minutes. The relative performance of the
algorithms is similar to that with 90-10 locality, but the
assign-early algorithms pay an even greater penalty for
inserting into the logical OID index out of order.

We therefore decided to run some experiments to see
how the algorithms perform with physical OIDs. Fig-
ure 22 show the results of these experiments. Late-
invsort and assign-early depend on logical OIDs and
could not be run; we also omitted naive. Contrary to our

129

+ naive
-+ late-invwl

3
4.. sman-invsod

.f%‘,

i#Jom

- + m-early-invscd
-a-. res-ckar-invckawt
-+- assign-early-inv.W
-+- assign-euly-invcbr

o-
0 2 4 6 8 IO

Memory (Mb)
Figure 20: 5 Mb database with
no locality.

1
-+. late-invsort
..a-. smart-invsort

3

\

1::. ~~~~:~fsp:,
-+ assign-early-invsort
-+- assign-early-invclear

i

Ob
Memory (Mb)

Figure 21: 5 Mb database with
no locality, without naive.

expectations, the tests with physical OIDs took longer to
run than their logical OID counterparts. In Shore, logi-
cal OIDs are 8 bytes but physical OIDs are 12 bytes. The
size of the objects thus grew from 200 bytes to 280 bytes
to store the same information. The physical OID tests
thus incurred many more I/OS to create the database,
and since I/O costs dominate loading, the physical OID
tests were slower.

In Figure 23 we show how the size of the database,
todo list, and inverse todo list grew; where we needed 16
Mb of disk space for smart-invsort with logical OIDs, we
needed 19 Mb with physical OIDs. The actual database
grew from 7 Mb (including the logical OID index) to 7.9
Mb.

Figures 24 and 25 show the results of loading 20 Mb
and 50 Mb of data, respectively, with 96-10 locality in the
data file. We present these graphs primarily to show that
the performance of the algorithms scales as we increase
the amount of data to load. Note, however, that because
of the 16 Mb physical limitations on combined buffer
pool and heap memory size for the load process, we could
test only a small and medium buffer pool for 20 Mb, and
only a small buffer pool for 50 Mb.

Although we do not present the graphs, when we ran
experiments with 20 relationships but no inverse rela-
tionships, we found that the analytic model was correct:
all the algorithms run much faster. For example, late-
invsort loaded the 5 Mb database with 0.9 Mb of Memory
in 38 seconds; naive took 50 and res-early-invsort ran in
67 seconds. The fastest time to load the same database
with inverse relationships was 105 seconds.

6.2 Discussion

The implementation results con6nn that the analytic
model predicts the actual disk I/OS for each algorithms
accurately. However, because the analytic model does
not account for CPU time, and did not take such factors
as the logical id index under consideration, it is only a
moderate predictor of actual algorithm performance.

For example, although the analytic model predicted

?al- ..a.. smaft-invsort

?*
- + restrrly-invsort

3 -*-. res-clear-invclear

p 150- +,

8 , t. ’
u

, :’ : : ‘*
. I : ---_

;; I()()- L.-i... l ----*-

E
r

U..-‘-~::=~..~--~.~.~~
-- .-x

o-
0 2 4 6 8 IO

Memory (Mb)
Figure 22: 5 Mb database with
physical OIDs.

that assign-early-invclear would sometimes beat late-
invsort, the logical OID index imposed substantial I/O
overhead for assign-early and thus it did not perform
well. While the analytic model predicted that res-clear-
invclear would beat late-invsort with high locality and
a medium or large buffer pool, the CPU time involved
in clearing made up for the savings in diik I/OS, and
late-invsort still proved faster.

Late-invsort is the clear best choice according to the
implementation results. Of the other algorithms, both
smart-invsort and res-early-invsort are good choices.
Neither is affected much by the logical OID index, and
neither wastes CPU time trying to clear entries on the
todo lists when there are very few objects in the buffer
pool that could be updated. We expect that res-early-
invsort will be better when there are relatively few re-
lationships in the data file, e.g., if much of the file de-
scribes images or other bulk data. There is not much
advantage to implementing the more complicated res-
clear-invclear. We therefore recommend that users im-
plement late-invsort if pre-assigning of OIDs is possible,
and either smart-invsort or res-early-invsort if not.

7 Conclusions

A bulk loading utility is critical to users of OODBs with
significant amounts of data. These users include those
switching from a relational or hierarchical database;
those switching OODB products; those who want to
recluster their OODB data for better performance; and
scientists running applications that continually gener-
ate vast amounts of new data. However, loading in an
OODB may be very slow due to relationships among the
objects; inverse relationships exacerbate the problem. In
our performance study we showed that the best algo-
rithms solve the problems due to relationships by (1) us-
ing a sorted inverse todo list to avoid random reads and
updates and (2) using pre-allocation of OIDs to avoid
updates in the first place. Of the algorithms we ex-
plored, we recommend that users implement late-invsort
if logical OIDs are available, and either smart-invsort or

130

- + res-early-lnvson
-a-. resclew-invcleu

0, I I . 1 I I -
0 2 4 6 8 IO

Memory (Mb)
Figure 23: DB size, including
auxiliary structures, with physi-
cal OIDs.

-+I;le-invscn
41
\\

-a- smut-invsorl

\’
rt

- + res-erly-invson
-+ rcs-cleu-invcleiu

‘5), -+assign+arly-invsort
! \ -- assign-early-invclear
‘i\

O-5
Memory (Mb)

Figure 24: 20 Mb database with
90-10 locality.

res-early-invsort otherwise. We also note that naive’s
abominable performance is to be expected if objects are
loaded one at a time, e.g., by insert or new statements,
since inverse updates cannot be batched.

Our future work includes running experiments that
load 1 Gb of data (when we get a larger disk to store
the database); looking at techniques to decrease the cost
of loading when the id table does not fit in memory;
investigating algorithms for a loading in parallel on one
or more servers with multiple database volumes; looking
into reclustering algorithms that dump and then reload
objects; and adding smart integrity checking to the load
algorithms. In addition, we plan to integrate the load
implementation with the higher levels of Shore and turn
it into a utility to be distributed with Shore.

8 Acknowledgements

We would like to thank David Maier for the original in-
spiration to study loading and for feedback on our early
algorithm ideas; Mike Zwilling and C. K. Tan for advice
and support for our implementation as a Shore value-
added server; and Mark McAuliffe, Praveen Seshadri,
Yannis Ioannidis, C. Mohan, and Dan Weinreb for their
helpful comments on the content and presentation of this
paper.

References
[Cat931 R. G. G. Cattell, editor. The Object’ Database Stan-

dard: ODMG-93. Morgan-Kaufman, Inc., 1993.

[C!DF+94] M. Carey, D. Dewitt, M. Franklin, N. Hall,
M. McAuliffe, J. Naughton, D. &huh, M. Solomon, C. Tan,
0. Tsatalos, S. White, and M. Zwilling. Shoring Up Per-
sistent Applications. In Proc. of SIGMOD, pages 383-394,
May, 1994.

[CMR92] J. B. Cushing, D. Maier, and M. Rao. Computa-
tional Proxies: Modeling Scientific Applications in Object
Databases. Technical Report 92-020, Oregon Graduate In-
stitute, December 1992. Revised May, 1993.

[DLP+93] R. Drach, S. Louis, G. Potter, G. Richmond,
D. Rotem, H. Samet, A. Segev, and A. Shoshani. Opti-

-+- he-invson
-\ -\, ‘4

..a.. smut-invsoft
- *- res-early-invsorl
-a-. fes-clear-invclear
-+- assign-early-invson
-+- assign-early-invclear

&.“p
.

$ ‘,I _. _, ;;I., _. .~o

0 5

Memo: (Mb;

Figure 25: 50 Mb database with
90-10 locality.

mizing Mass Storage Organization and Access for Multi-
Dimensional Scientific Data. In Proc. IEEE Symposium on
Mass Storage Systems, Monterey, CA, April 1993.

[Mai] David Maier. Private conversation, January 27, 1994.

[Moh93a] C. Mohan. A Survey of DBMS Research Is-
sues in Supporting Very Large Tables. In Pmt. Founda-
tions of Data Organization and Algorithms, pages 279-300,
Chicago, Il., 1993. Springer-Verlag.

[Moh93b] C. Mohan. IBM’S Relational DBMS Products:
Features and Technologies. In Pmt. of SIGMOD , pages
445-448, 1993.

[Nelgl] G. Nelson, editor. Systems Programming with
Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Obj92] Objectivity, Inc. Objectivity/DB Documentation, 2.0
edition, September 1992.

[OHMS921 J. Orenstein, S. Haradhvala, B. Margulies, and
D. Sakahara. Query Processing in the ObjectStore
Database System. In Pmt. of SIGMOD, pages 463-412,
1992.

[Ont92] Ontos, Inc. Ontos DB Reference Manual, release 2.2,
February 1992.

[PG88] N. W. Paton and P. M. D. Gray. Identification of
Database Objects by Key. In K. R. Dittrich, editor, PTUC.
2nd Int. Workshop on Object-Oriented Database Systems,
pages 286-285, Berlin, Germany, September 1988.

[Sho93] A. Shoshani. A Layered Apporach to Scientific Data
Management at Lawrence Berkeley Laboratory. IEEE
Data Engineering Bulletin, 16(1):4-8, March 1993.

[Sno89] R. Snodgrass. The Interface Description hnguage:
Definition and Use. Computer Science Press, 1989.

[VegSS] S. R. Vegdahl. Moving Structures between Smalltalk
Images. In Pnx. OOPSLA, pages 466-471, 1986.

[Ver93] Versant Object Technology. Versant Object Database
Management System C++ Versant Manuals release 2, July
1993.

[WI931 J. L. Wiener and Y. Ioannidis. A Moose and a Fox
Can Aid Scientists with Data Management Problems. In
Proc. Int. Wor$shop on Database Programming Languages,
pages 376-398, New York, NY, 1993.

131

