
Performance of Data-Parallel Spat ial Operations* 

Erik G. Hoelt Hanan Samet 
Geography Division Computer Science Department 

Bureau of the Census Center for Automation Research 
Washington, D.C. 20233 Institute for Advanced Computer Sciences 

hoel@cs.umd.edu 

Abstract 

The performance of data-parallel algorithms 
for spatial operations using data-parallel 
variants of the bucket PMR quadtree, R-tree, 
and R+-tree spatial data structures is com- 
pared. The studied operations are data struc- 
ture build, polygonization, and spatial join 
in an application domain consisting of pla- 
nar line segment data. The algorithms are 
implemented using the scan model of paral- 
lel computation on the hypercube architec- 
ture of the Connection Machine. The re- 
sults of experiments reveal that the bucket 
PMR quadtree outperforms both the R-tree 
and R+-tree. This is primarily because the 
bucket PMR quadtree yields a regular dis- 
joint decomposition of space while the Rtree 
and R+-tree do not. The regular disjoint de- 
composition increases the potential for inter- 
processor communication and parallelism in 
the bucket PMR quadtree, thereby enabling 
the execution times to decrease relative to 
those needed by the R-tree and R+-tree. 

1 Introduction 

Parallel database systems have been the subject of in- 
creasing attention. This is due in part to the advent of 
highly parallel architectures, adoption of the relational 
model, and challenges posed by object-oriented 
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systems [lo, 193. Much of the parallel database 
research has focused on multi-attribute declustering 
techniques (such as Bubba’s extended range declus- 
tering [5] and multi-attribute grid declustering [13]), 
data placement [8], and intra-operator parallelization 
[9]. Topics such as algorithms for manipulating rela- 
tions containing highly skewed attribute values, and 
parallel spatial data structures and algorithms remain 
open. 

Prior research in the spatial domain has been lim- 
ited to quadtrees and R-trees, with different goals. 
The quadtree research [3] was conducted under the 
data-parallel SAM model of computation, and its goal 
wss the development of algorithms to operate on the 
data structure in parallel. The R-tree research has con- 
centrated on the development of algorithms for build- 
ing data-parallel R-trees and polygonization [16], as 
well as spatial joins for both dataparallel bucket PMR 
quadtrees and dataparallel R-trees [17]. This work, 
and the results we report here, differs significantly 
from other approaches in that we make use of many 
processors to execute the spatial queries rather than 
merely store the data on parallel disks while operating 
with a single cpu (e.g., [lS]). 

Our emphasis is on the performance of spatial oper- 
ations in a data-parallel environment when the data is 
represented using hierarchical spatial data structures 
[21, 221. Our approach is similar in spirit to an ear- 
lier study [15] in that the same data structures are 
examined (i.e., the R-tree, PMR quadtree, and the 
R+-tree). The difference is that here we test opera- 
tions requiring a significant amount of computation so 
that using paralleliim may be attractive. Thus we do 
not study point operations such as finding the nearest 
line to a point as in [15]. Instead, we examine more 
complex operations such as data structure creation, 
polygonisation, and spatial join. 

In this paper our sample spatial database is one 
that contains collections of line segments (i.e., maps) 
corresponding to features such as roads, railway lines, 
boundaries of political and economic units, utility 
data, etc. Data structure creation is the time neces- 
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sary to build the data structure for a particular map. 
This is an important issue as when the data structure 
is used for just one query, it may not be worthwhile 
to expend much effort in its construction. Polygoniza- 
tion is the process of determining all closed polygons 
formed by a collection of planar line segments. For 
example, it can be used to find the boundaries of all 
countries in the world. Both data structure creation 
and polygonalization involve just one data set. 

In contrast, the spatial join involves two data sets. 
It is one of the most common operations in spatial 
databases. This term is usually used in conjunction 
with a relational database management system [ 111. In 
that context, a join is said to combine entities from two 
data sets into a single set for every pair of elements in 
the two sets that satisfy a particular condition. These 
conditions usually involve specified attributes that are 
common to the two sets. In the spatial variant of the 
join, the condition is interpreted as being satisfied (i.e., 
two elements are joined) when the elements of the pair 
cover some part of the space that is identical. In the 
sequential domain, this problem has been studied al- 
gorithmically and empirically for the R-tree [6], while 
in the data-parallel domain it has only been studied in 
an algorithmic context [17]. 

We examine a variant of the spatial join that seeks 
to find all line segments that lie within a given dis- 
tance of line segments of another type (the line seg- 
ments need not be contiguous). This is the spatial 
analog of a range query (also termed a window) in a 
conventional database where the query region is not 
limited to a rectangle. It is also known as a corridor 
or a buffer zone in GIS, or image dilation in image pro- 
cessing. As an example, suppose that we have one map 
corresponding to the roads in the United States and 
another map corresponding to the border of Colorado 
and we want to determine all roads that lie within 10 
miles of the border of Colorado. 

In this paper we focus on representations that sort 
the data with respect to the space that it occu- 
pies. Thii results in speeding up operations involv- 
ing search. The effect of the sort is to decompose the 
space from which the data is drawn (e.g., the two- 
dimensional space containing the lines) into regions 
called buckets. One approach known as an R-tree [14] 
buckets the data based on the concept of a minimum 
bounding (or enclosing) rectangle. In this case, lines 
are grouped (hopefully by proximity) into hierarchies, 
and then stored in another structure such as a B 
tree [7’j. The drawback of the R-tree is that it does 
not result in a disjoint decomposition of space - that 
is, the bounding rectangles corresponding to diierent 
lines may overlap. Equivalently, a line may be spa- 
tially contained in several bounding rectangles,, yet it 

is only associated with one bounding rectangle. This 
means that a spatial query may often require several 
bounding rectangles to be checked before ascertaining 
the presence or absence of a particular line. 

The non-disjointness of the R-tree is overcome by a 
decomposition of space into disjoint cells. In this case, 
each line is decomposed into disjoint sublines such that 
each of the sublines is associated with a different cell. 
There are a number of variants of this approach. They 
differ in the degree of regularity imposed by their un- 
derlying decomposition rules and by the way in which 
the cells are aggregated. The price paid for the dis- 
jointness is that in order to determine the area cov- 
ered by a particular line, we have to retrieve all the 
cells that it occupies. Here we study two methods: the 
R+-tree [12] and a variant of the PMR quadtree [20]. 

The R+-tree partitions the lines into arbitrary sub- 
lines having disjoint bounding rectangles which are 
grouped in another structure such as a B-tree. The 
partition and the subsequent groupings are such that 
the bounding rectangles are disjoint at each level of the 
structure. The drawback of the R+-tree is that the de- 
composition is dat*dependent. This makes it difficult 
to perform tasks that require composition of different 
operations and data sets (e.g., set-theoretic operations 
such as overlay). In contrast, the PMR quadtree .is 
based on a regular decomposition. The space contain- 
ing the lines is recursively decomposed into four equal 
area blocks on the basis of the number of lines that 
it contains. We use a variant termed a bucket PMR 
quadtree that decomposes the space whenever it con- 
tains more than b lines (b is termed the bucket capac- 
ity). The decomposition process can be implemented 
by a tree structure. It is useful for set-theoretic oper- 
ations as the partitions of the two data sets occur in 
the same positions. 

As mentioned above, R-trees and R+-trees are 
closely related to B-trees. An R-tree or R+-tree of 
order (m, M) has the property that each node in the 
tree, with the exception of the root, contains between 
m 5 [M/2] and M entries. The root node has at 
least 2 entries unless it itself is a leaf node. Thus we 
see that the node capacity A4 in the R-tree and R+- 
tree plays the same role as the bucket capacity in the 
bucket PMR quadtree. We will make use of this anal- 
ogy in our discussion where, at times, the terms will 
be used interchangeably. 

The problem with using the R-tree and R+-tree 
data structures to perform a spatial join is that they do 
not contain any information to help us in determining 
which bounding rectangles in one map overlap with 
bounding rectangles in the other map. This means 
that little of the search space can be pruned while per- 
forming the operations. The difficulty is that although 

157 



the R-tree and R+ tree’s main utility is to enable the 
user to distinguish easily between occupied and unoc- 
cupied regions in a particular map, they do not provide 
a means of correlating the contents of one map with 
another map. Unfortunately, this is exactly the abil- 
ity that is needed to implement spatial join algorithms 
efficiently. As we will see, this places the data-parallel 
R-tree and R+-tree at a considerable disadvantage in 
comparison to the data-parallel bucket PMR quadtree 
as it reduces the potential for interprocess communi- 
cation thereby resulting in greater execution times for 
the data-parallel R-tree and R+-tree. 

We use the scan model of parallel computation [4]. 
The scan model is defined in terms of a collection 
of primitive operations that can operate on arbitrar- 
ily long vectors (single dimensional arrays) of data. 
Three types of primitives (elementwise, permutation, 
and scan) are used to produce result vectors of equal 
length. A scan operation [4, 3] takes an associative 
operator $, a vector [as,ai, ..., an-r], and returns 
thevector [ao,(ao$al),...,(ao$al$...$a,-l)]. 
The scan model considers all primitive operations (in- 
cluding scans) as taking unit time on a hypercube ar- 
chitecture. This allows sorting operations to be per- 
formed in O(logn) time. 

The rest of this paper is organized as follows. Sec- 
tion 2 gives the construction and polygonisation al- 
gorithms for the data-parallel bucket PMR quadtree. 
The data-parallel R-tree algorithms are not presented 
here as they can be found elsewhere [16, 171. Sec- 
tion 3 is concerned with the data-parallel R+-tree and 
contains a description of the construction, polygonal- 
ization, and spatial join algorithms. Section 4 com- 
pares the three dat+parallel data structures in terms 
of performance data for the specified operations on a 
Thinking Machines CM-5 parallel computer. Section 
5 contains concluding remarks as well as a discussion 
of topics for future research. In our discussion of the 
various data structures, in the interest of brevity, we 
will drop the qualifier data parallel unless the distinc- 
tion needs to be emphasized in the case of a potential 
for misunderstanding a claim. 

2 Bucket PMR Quadtrees 

In this section we discuss the implementation of the 
bucket PMR quadtree algorithms for the spatial op- 
erations that we examined. We give the construction 
and polygonization algorithms as they have not been 
formally presented before. See [17] for the bucket PMR 
quadtree spatial join algorithm. 

Figure 1: Initial bucket PMR quadtree processor as- 
signments. 

2.1 Bucket PMR Quadtree Construction 

A bucket PMR quadtree is built as follows. Initially, 
a single processor is assigned to each line in the data 
set, and one processor to the resultant bucket PMR 
quadtree as depicted for the sample data set in Fig- 
ure 1. Using a downward scan operation, the number 
of lines associated with the single node processor (9 
in the example) is determined and then passed to the 
node processor. If the number of lines associated with 
the node processor exceeds the bucket capacity (2 in 
our example), then the node must be split into four 
subnodes and each of the lines must be regrouped, ac- 
cording to the nodes it intersects. 

Figure 2: Result of applying the un-shuffle o eration 
to the x coordinate value of the center of t % e block 
associated with the node processor. 

The splitting occurs in two stages. The regrouping 
is applied after each split and is achieved with an un- 
shufle operation [3] (where two intermixed types are 
rearranged into two disjoint groups termed segments 
via two monotonic mappings) which is used to con- 
centrate those line processors together into two new 
segments, each of which corresponds to all of the line 
processors lying either in whole or in part to the left 
and right of the x coordinate value of the center of the 
block associated with the node processor. The result of 
this un-shuffle operation is depicted in Figure 2. This 
is achieved by monotonically shifting to the left (right) 
all line processors with a midpoint less (greater) than 
the split coordinate value. Note that a line may span 
two or even three nodes, thus requiring the line to be 
duplicated or even triplicated and hence either one or 
two additional processors in the line processor set are 
allocated for it (termed cloning [3]). For example, con- 
sider line i in the process of subdividing the tlrst node 
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in Figure 2. Here we see that line i intersects both the 
left and right halves of the root node. 

Figure 3: Result of applying the un-shuffle operation 
to the 9 coordinate value of the center of the block 
associated with the node processor. 

The second stage applies the un-shuffle to the re- 
sulting two segments, thereby creating two sets of two 
segments each of which corresponds to all of the line 
processors which lie either in whole or in part below 
and above the y coordinate value of the center of the 
block associated with the node processor. The result 
of this un-shuffle operation is depicted in Figure 3. 

Figure 4: Result of the first node subdivision, line du- 
plication and un-shuffling. 

Continuing with this iterative process, each line seg- 
ment group determines the number of lines it contains, 
and then communicates the count to the associated 
node processor. For example, in Figure 4, the first 
line segment group transmits a count of three to node 
1, the second line segment group transmits a count 
of two to node 2, etc. Each of the node processors 
then determines whether or not the transmitted line 
count exceeds the bucket capacity. If the bucket ca- 
pacity is exceeded, the node will subdivide, and the 
associated lines will be regrouped according to which 
of the resulting subnodes they intersect. For example, 
in Figure 4, the NW and SE nodes will subdivide. 

This iterative subdivision process continues until all 
nodes in the bucket PMR quadtree have a line count 
less than or equal to the bucket capacity, or the max- 
imal resolution of the quadtree has been reached (i.e., 
a node of size 1 x 1). Note that in the degenerate 
case, even at the maximal resolution of the quadtree, 
it is possible that the number of lines associated with a 
node exceeds the bucket capacity. For practical split- 
ting thresholds (i.e., 8 and above), this situation is ex- 
ceedingly rare and will not cause any algorithmic dif- 

ficulties provided that the bucket PMR quadtree algo 
rithms do not assume an upper bound on the number 
of lines associated with a given node. 

Figure 5: Result of the bucket PMR quadtree build 
process. 

The result of the third and final subdivision for our 
example data set is shown in Figure 5. Note that one 
of the quadtree nodes (node 9) still has its bucket ca- 
pacity exceeded. To facilitate the discussion of the 
algorithms, this node will not be further subdivided. 
The bucket PMR quadtree building operation takes 
O(logn) time, where each of the O(logn) subdivision 
stages requires 0( 1) computations (a constant number 
of scans and reshuffles). 

2.2 Bucket PMR Quadtree Polygonization 

Polygonization proceeds as follows. Identify each poly- 
gon uniquely by the bordering line with the lexico- 
graphically minimum identifier (i.e., line number) and 
the side on which the polygon borders the line. Polygo 
nization can be achieved without a spatial data struc- 
ture. Basically, the lines can be sorted according to 
their identifier in O(logn) time. Next, each line, in 
sorted sequence, transmits its endpoint coordinates, 
line identifier, and current left and right polygon iden- 
tifiers to all following lines via a sequence of O(n) scan 
operations. Each line can independently determine the 
identifiers of the left and right polygons. The draw- 
back is that it is an O(n) operation with a large num- 
ber of scans. Data-parallel variants of spatial data 
structures such as the bucket PMR quadtree, as well 
as the R-tree and R+-tree can reduce the number of 
global scan operations (i.e., a scan across the entire 
processor set) by instead relying upon segmented scans 
executed in parallel. 

Given a bucket PMR quadtree, the polygonization 
process begins by constructing a partial winged-edge 
representation [1] (an association between the incident 
line segments forming the minimal and maximal angles 
at each endpoint of each segment). This representa- 
tion enables us to determine all edges that comprise a 
face (i.e., polygon) and all edges that meet at a ver- 
tex in time proportional to the number of edges. In 
constructing the partial winged-edge representation, 
the endpoints of each line in a node are broadcast to 
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all other lines in the node through a series of scans. 
By broadcast we mean the process of transmitting a 
constant value from a single processor to all other pro- 
cessors in the same node via a scan operation (i.e., 
the vector [as, ~0,. . . , oc]). Locally, each line proces- 
sor maintains the minimal and maximal angles formed 
at each endpoint as well as the identities of the cor- 
responding lines. Once the broadcasts are done, each 
line processor locally assigns an initial polygon iden- 
tifier for the bordering polygon on the left and right 
side (moving from source to destination endpoint). 

Figure 6: Selecting the initial polygon identifiers. 

In Figure 6, the left polygon identifier for line seg- 
ment z is selected from the minimum identifiers of the 
source endpoint minimal angle (WR, where w is the 
line identifier and R denotes the right side of w), the 
destination endpoint maximal angle (ye), and the line 
identifier itself (zt). For the right polygon identifier, 
select the minimum identifier among the source end- 
point maximum angle (zR), the destination endpoint 
minimal angle (UR), and the line identifier (%R). In 
Figure 6, line z is assigned WR as the initial left poly- 
gon identifier, and VR as the right polygon identifier. 

Rm 

Figure 7: Initial polygon sssignments. 

Figure 7 shows the initial polygon assignment for 
the depicted example where the left and right polygon 
identifiers are contained in LID and RID, respectively. 

line3 
Lm 

Rm 

Figure 8: Polygon assignments after the first round of 
leaf node mergmg. 

Starting at the leaf level, sibling nodes are then 

merged together into their parent nodes (i.e., in Fig- 
ure 7, leaf nodes 4-7 are merged together, resulting in 
leaf node 4 in Figure 8). All the lines in the merged 
sibling leaf nodes are sorted, and any duplicate lines 
are marked. In Figure 7, the merging of sibling leaf 
nodes 4-7 will result in one pair of duplicate lines (line 
b) as there is a line b in nodes 5 and 7. In order to 
ensure that each duplicate line has consistent polygon 
identifiers as well as correct winged-edge represent+ 
tions, each duplicate line has its endpoints and polygon 
identifiers broadcast to the other duplicate lines in the 
merged node. If any of the duplicates’ polygon iden- 
tifiers are updated, the identifier updates must also 
then be broadcast among all other lines in the merged 
nodes. By update, we mean assigning a lexicographi- 
tally smaller polygon identifier. For instance in Fig- 
ure 8 the merging of sibling leaf nodes 2-5 will result in 
two pairs of duplicate lines (i.e., lines b and e). With 
the duplicate line b in the merged node, initially one 
instance has left and right polygon identifiers aL and 
a& and the second instance has polygon identifiers bL 
and bR. The left and right polygon identifiers of the 
second instance of line b are updated from bL to aL, 
and bR to aR respectively. 

When the second instance of line b is updated, the 
two identifier updates are then broadcast to all other 
lines in the merged node. For each other line in the 
merged node, if the transmitted polygon identifier up- 
date matches either of its current left or right polygon 
identifiers (i.e., the bL to ar, update matches any line’s 
left or right polygon identifier having value bL) the 
line’s polygon identifier is changed to aL in order to 
reflect the broadcast update and the lexicographically 
smaller identifier. 

Similarly, the duplicate line e results in two addi- 
tional identifier updates - that is, CR to bL, and 8~ 
to CL. Actually, line e’s bL was previously updated to 
aL during line b update broadcasts. 

Figure 9: (a) Example of two leaf nodes A and B merg- 
ing (the contents of sibling nodes C and D are not 
shown), and (b) the result of the merge operation. 

Finally, when merging four sibling nodes together, 
any line whose endpoint falls on the shared node 
border (i.e., lines a and b in Figure 9a), must also 
have their endpoints and polygon identifiers broadcast 
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among the merged nodes. Consider the example in 
Figure 9a where four sibling nodes labeled A-D are be 
ing merged (for sake of clarity, the contents of nodes C 
and D are not shown). There are no duplicate lines in 
the merging nodes, but lines a and b have an endpoint 
that intersects the common node border. The end- 
point coordinates and polygon identifiers of these two 
lines are broadcast among the merged lines, and any 
appropriate winged-edge updates are made (i.e., the 
source endpoint of line b is updated to reflect the inci- 
dence of line a). For all lines whose winged-edge rep- 
resentations are updated, the polygon identifiers are 
checked for possible updates. Figure 9b shows the re- 
sulting polygon identifiers. a b 

h 
f 

a 

q - bea 

d g c 
Lm 

Rm 

Fi 
of 9” 

re 10: Polygon assignments after the second round 
eaf node merging. 

The merging and updating process continues up the 
entire bucket PMR quadtree until all lines are con- 
tained in a single node and all necessary broadcasts 
have been made (as shown in Figures 10 and 11, with 
the final assigned polygon identifiers circled). 

Figure 11: Completion of the polygonization opera- 
tion. 

The bucket PMR quadtree’s spatial sort greatly lim- 
its the amount of inter-segment communication neces- 
sary ss compared with a non-spatially sorted dataset 
where all lines would have to communicate their end- 
points and polygon identifiers to all others. 

3 R+-trees 

The R+-tree algorithms are similar to those for the R- 
tree. The principal difference is in the amount of work 
needed in the data structure building phase to ensure 
a good node split. Below we give a brief outline of the 
algorithms for the various operations. 

3.1 R+-tree Construction 

The R+-tree construction algorithm is similar to that 
of the R-tree with a few additional modifications. Ini- 
tially, one processor is assigned to each line of the 
data set, and one processor to the resultant R+-tree. 
Within the line processor set, a downward scan opera- 
tion is performed on the line processor set to determine 
the number of lines associated with the single R+-tree 
node processor. The number of lines in the segment is 
then passed to the single R+-tree node processor. If 
the number of lines in the segment exceeds the node 
capacity M, then the R+-tree root node must be split 
into two leaf nodes and a root node. The two new 
leaf nodes are inserted into the Rt-tree node proces- 
sor set, with the root node updated to reflect the two 
new children. 

The Rt-tree node splitting algorithm first sorts all 
lines in the node according to the left edge of their 
bounding boxes. For each node split whose result sat- 
is&s a pm-established minimal node occupancy level 
of m/M lines in the two resulting nodes, the coordi- 
nate value of the left edge is broadcast to each of the 
lines in the node being split. Each line in parallel clips 
itself against the split coordinate value. The clip re- 
sults in either one (the line does not intersect the split 
coordinate value) or two lines (the line intersects the 
split coordinate value). Each resulting line determines 
in which of the two new nodes it is contained. The def- 
inition of an Rt-tree requires that each node at a given 
level of the tree is disjoint from all other nodes. In or- 
der to ensure this disjoint decomposition, some lines 
will have to be split across multiple nodes in the final 
decomposition. This situation also arises in the bucket 
PMR quadtree. Once each line determines the node 
in which node it lies, a sequence of scan operations is 
used to determine the bounding box that contains the 
lines in the two new nodes. Finally, the perimeter of 
the two resulting bounding boxes is computed. 

The splitting process continues for each of the le- 
gal node splits and split axes. Once all legal node 
splits have been determined and the resulting node 
perimeters are computed, the split axis and coordi- 
nate value that correspond to the minimal perimeter 
of the two resulting nodes is selected as the final node 
split value. In the event of a tie, some other metric 
such as the split with the minimal bounding box areas 
may be employed. After choosing the splitting axis 
and the coordinate value, an un-shuffle operation con- 
centrates those line processors together into two new 
nodes, each of which corresponds to one of the two 
Rt-tree leaf node processors. 

The insertion algorithm proceeds iteratively as de- 
scribed above, with each node determining the number 
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of lines it contains, and transmitting the count to the 
associated R+-tree node processor. If the number of 
lines in the node exceeds M, then the node (and corre- 
sponding R+-tree node processor) are split. Note that 
the leaf node subdivision process may result in proces- 
sors that correspond to internal nodes in the R+-tree 
being forced to split when the number of their children 
(e.g., leaf nodes) exceeds the node capacity. These in- 
ternal node splits may possibly propagate up to the 
root node of the R+-tree (and are referred to as up 
ward splits). 

An additional complication in the node splitting 
process arises if the splitting of an internal node forces 
the splitting of some of the descendents (both nodes 
and lines) of the splitting internal node. Unlike the 
R-tree which does not enforce a disjoint decomposi- 
tion, an upward internal node split may result in the 
selection of a split axis and a coordinate value that 
intersects the descendents of the splitting node. The 
disjoint decomposition requires that any intersecting 
descendents (nodes or lines) must also be split. Split- 
ting the descender& of a node is termed a downward 
split. The process terminates when all nodes in the 
node processor set have at most M child processors 
(either internal R+-tree nodes or line processors). 

3.2 R+-tree Polygonization 

The R+-tree polygonization algorithm is very similar 
to that for the R-tree [16]. Because the R+-tree em- 
ploys a disjoint decomposition, a single line may reside 
in more than one leaf node (similar to the bucket PMR 
quadtree). In order to handle this difference with re- 
spect to the R-tree, the polygonization algorithm must 
be changed somewhat during the node merging phase. 

Rather than marking all lines that intersect any of 
the overlapping regions formed by the bounding boxes 
of the nodes that are merging (as there are none with a 
disjoint decomposition), the update procedure follows 
the technique described in the bucket PMR quadtree 
polygonization algorithm in Section 2.2. All the lines 
in the merged sibling node are first sorted according 
to identifier, and all duplicate lines are marked for 
rebroadcasting among the lines in the merged nodes. 
This enables the correct updating of duplicate lines in 
the merged nodes. The duplicate node rebroadcasting 
operation is used to update the winged-edge represen- 
tations of all duplicate lines and maintain consistency. 
During the update, we note any polygon identifiers 
that must also be updated (i.e., among duplicate lines, 
if one line has polygon identifiers that are less than the 
polygon identifiers of the second line). In addition, all 
lines whose endpoint falls on a common node border 
are marked for the rebroadcast of their endpoint coor- 

dinates in order to update the winged-edge represen- 
tations and polygon identifiers of any line that may 
share an endpoint but lie in another node. 

If any line has its polygon identifiers updated dur- 
ing the first round of rebroadcasting, then the poly- 
gon identifier update must be communicated in a sec- 
ond round of broadcasting to all other lines in the 
merged node. Locally, if the transmitted polygon up 
date matches either the left or right polygon identifiers 
of the local line, then the local polygon identifier is up- 
dated to reflect the polygon identifiers that have been 
broadcast. 

As is the case with the bucket PMR quadtree and 
R-tree polygonization algorithms, the merging and up- 
dating process continues up the entire R+-tree until all 
lines are contained in a single node and all necessary 
broadcasts have been made. 

3.3 R+-tree Spatial Join 

The R+-tree spatial join algorithm is identical to the 
one used with the R-tree [17], with one small modifi- 
cation at the end of processing. Because the disjoint 
decomposition of the R+-tree may cause some lines to 
be split across multiple leaf nodes, it may be the case 
that a line in the source map is only within a given 
distance of a portion of a line that has been split in 
the target map. Thus, some of the pieces of a partic- 
ular line in the original target map may be marked as 
within a given distance, while other portions are not 
marked. In order to resolve this inconsistency among 
portions of lines that correspond to the same line in 
the original target map, once all intersection determi- 
nations are completed, the pieces of the target lines are 
sorted according to identifier. Thii results in all pieces 
of a line in the original target map occupying a con- 
tiguous space in the linear ordering of processors. An 
upward and a downward scan operation can be used to 
resolve any inconsistencies, resulting in all target lines 
being properly marked. 

4 Performance Comparison 

The performance of the three spatial structures in the 
data-parallel environment is compared using the Bu- 
reau of the Census TIGER/Line File map of Prince 
Georges County, MD (containing approximately 35000 
line segments). Our dataparallel algorithms assume 
that the entire data structure resides in main mem- 
ory of the Thinking Machines CM-5 (32 processors, 1 
GB RAM). Thus measurements of I/O performance 
are meaningless in thii context (the development of 
disk-based data-parallel analogs to the described algo- 
rithms is a subject for future research). 
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Figure 12: Build times for the three data structures for 
the map of Prince Georges County, MD (35000 lines). 

4.1 Data Structure Build Performance 

Figure 12 presents the build times for the three data 
structures for node capacities ranging from 5 to 50. 
The R+-tree was built with a 49.5% minimal occu- 
pancy level (see the discussion below). From the fig- 
ure, all three structures exhibit decreasing build times 
as the node capacities increase. This behavior is due 
to the decreased amount of spatial sorting that takes 
place with the increased node sizes. The three data 
structures exhibit analogous behavior in the sequential 
environment [15]. It is also apparent that the bucket 
PMR quadtree is approximately 3-4 times faster than 
the R-tree for similar node capacities. The relative dif- 
ference in build performance is attributable to the use 
of a regular decomposition in the case of the bucket 
PMR quadtree which makes it very easy to split an 
overflowing node as there is just one choice. In con- 
trast, the R-tree and the R+-tree make use of irregular 
decomposition which requires testing a possibly large 
numbers of split axis/coordinate pairs in determining 
a locally optimal node split. 

Figure 13 shows the build times for the R+-tree of 
the Fredericksburg, VA map containing approximately 
1700 line segments. In addition to varying the node 
capacity between 10 and 50, we also varied the min- 
imal occupancy levels between 25% and 50% (as a 
point of reference, the best performance for an R-tree, 
termed an R*-tree [2], has been observed to be 30% 
and is the one that we use in our experiments). When 
splitting a node, a minimal occupancy level of k% en- 
sures that each of the two resulting nodes is at least 
,% full. Hence, when the minimal occupancy level 
is raised, fewer split axis/coordinate pairs are tested 
when choosing the best split. This results in increas- 
ing the speed of of the build process as can be seen in 
Figure 13. As is the case in the Prince Georges map, 
in Figure 12, increasing the node capacity also results 

Figure 13: Execution time in seconds for the R+- 
tree build algorithm for the map of Fredricksburg, VA 
(1700 lines). 

in decreased build times. 
It is important to note that although Figure 13 rep- 

resents a map that is approximately 5% of the size of 
that in Figure 12 (i.e., 1700 lines versus 35000 lines), 
the R+-tree takes 198.85 seconds to build while the 
R-tree (using a node capacity of 50 and a minimal oc- 
cupancy level of 30%) for the same map requires 37.78 
seconds to build and the bucket PMR quadtree re- 
quires just 12.97 seconds. We found that despite the 
R-tree and R+-tree being quite similar in structure, 
the R+-tree takes approximately 2 orders of magnitude 
longer to build per line segment in the dataset. This 
difference is attributable to a combination of the use of 
the scan model and the fact that the R-tree does not 
employ a disjoint decomposition of space (thus pre- 
venting the children of a splitting node from them- 
selves splitting), making it possible to determine the 
locally optimum node split with a constant number 
(approximately 10) of upward and downward scan op- 
erations. In contrast, the node splitting process in the 
R+-tree, with its disjoint decomposition of space, is an 
iterative process where the number of iterations is di- 
rectly proportional to the number of items in the node 
that is being split. Thii testing for splits means that 
a large number of clipping operations must to be per- 
formed as we need to determine which part (or parts) 
of the line is associated with the two nodes resulting 
from the split. 

Note that although the bucket PMR quadtree (with 
its disjoint decomposition) also requires line clipping, 
each line is clipped in parallel a maximum of 4 
times the height of the tree. Also the fact that the 
bucket PMR quadtree employs a regular decomposi- 
tion means that when a node is split, there are effec- 
tively only two candidate split axis/coordinate pairs. 

It is interesting to observe that the R+-trees that 
we built for the Prince Georges map used a minimal 
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node 1 R-tree 1 R+-tree 1 
capacity time scans time scans 

25 37.2 865 1309.3 28212 
30 35.6 823 1274.6 27545 
35 33.5 739 1268.0 27305 
40 30.4 654 1269.2 27187 
45 29.5 614 1261.3 27040 

1 50 128.5 614 11246.6 26691 

Table 1: Data structure build statistics for the R-tree 
and R+-tree both using a 49.5% minimal occupancy 
level for the Prince Georges map. 

occupancy level of 49.5% (resulting in approximately 
3000 line clips) and a node capacity varying between 
25 and 50. This took between 1309.30 seconds and 
1246.6 seconds as shown in Table 1. The analogous 
R-tree (employing the same node capacities and mini- 
mal occupancy levels), took between 37.2 seconds and 
28.5 seconds. Note that if we would have used an 
Rt-tree with a minimal occupancy level of 30% (as in 
the R-tree), these numbers would have been at least 
one order of magnitude higher. Unfortunately, due 
to hardware and time limitations we were not able to 
perform these tests. 

Figure 14: Polygonization times for the three struc- 
tures. 

4.2 Polygonization Performance 

In the interest of obtaining a better understanding 
of the R-tree spatial join operation, we tested both 
a top-down and bottom-up algorithm, while only a 
bottom-up algorithm was tested for the bucket PMR 
quadtree as this is the most logical approach to im- 
plement the operation. Similarly, we only tested the 
top-down algorithm for the R+-tree. For additional 
comparison purposes, a bruteforce solution that does 
not employ any spatial decomposition (i.e., each source 
line is broadcasted to each target line) was imple- 
mented as well. Note that the execution time of this 
bruteforce approach is independent of the spatial join 
condition (i.e., the distance within which the desired 
lines are found). 

Figure 14 shows the execution times for map polygo For each of the spatial joins, the set of lines corn+ 
nization for each of the three spatial data structures sponding to railroads in the Prince Georges map (334 
using the Prince Georges maps built in Section 4.1. line segments) was chosen as the source map, while the 
Due to the performance inefficiencies of the R+-tree, a set of lines corresponding to the road network in the 
minimal occupancy level of 49.5% was employed, while Prince Georges map (28514 line segments in contrast 
the F&tree used the standard 30% level. From the fig- to a total of 35000 line segments in the original map 
ure it is clear that the bucket PMR quadtree offers which includes all of the linear features rather than 
significant performance advantages over both the R- just the roads) was chosen as the target map. In this 

tree and the R+-tree. The difference is roughly one 
order of magnitude. It is attributable primarily to the 
considerable amount of time that the R-tree and the 
Rt-tree must spend in determining which nodes are 
intersecting (or adjoining in the case of the R+-tree) 
when merging sibling nodes. For the bucket PMR 
quadtree, this computation is immediate as a result 
of regular decomposition. In addition, at each stage 
of the polygonization process, the R-tree and Rt-tree 
merge many more nodes/lines together (i.e., a node 
occupancy of n implies a fanout of n), while for the 
bucket PMR quadtree four nodes are merged together 
at each stage of the computation. Essentially, the 
bucket PMR quadtree performs a larger number (equal 
to the height of the tree) of smaller node merges (with 
respect to the number of nodes being merged) than 
the R-tree and the R+-tree. 

4.3 Spatial Join Performance 

The key issue in the performance of the bucket PMR 
quadtree vis-*vis the R-tree and the R+-tree is the use 
of regular decomposition. Thus since the data-parallel 
algorithms for the R-tree and the R+-tree are so sim- 
ilar, we only conducted limited tests on the R+-tree. 
The performance of the R+-tree will be worse than 
that of the R-tree because of the use of disjoint decom- 
position in addition to being irregular. Thus lines are 
broken into smaller portions resulting in correspond- 
ingly more leaf nodes. This leads to an increase in the 
intersection lists between source and target nodes and 
implies greater execution times. 
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case, the spatial join query is one that seeks to deter- 
mine which roads are within a specified distance of a 
railroad line. The distance.(i.e., radius of expansion) 
varied between 0 and 50 where the map was normalized 
on a scale of 16384 x 16384. In addition, the bucket 
capacity for the bucket PMR quadtree varied between 
8 and 32, while the node capacity ranged between 10 
and 50 for the R-tree and 25 to 50 for the R+-tree. 

Figure 15: Execution time in seconds for the bucket 
PMR quadtree spatial join algorithm. 

Figure 15 presents the cpu times for the bucket 
PMR quadtree spatial join operation as a function 
of the radius of expansion and the bucket capacity. 
We observe that for this map the execution time is at 
its minimum for a bucket capacity of roughly 14 to 
16. As the radius of expansion increases toward 50, 
these bucket capacities continue to exhibit good per- 
formance although the advantage is not as great. 

Two basic forces work against each other as the ra- 
dius of expansion and bucket capacity increase. First, 
with a larger radius of expansion, fewer source lines are 
removed from consideration as we iterate at levels suc- 
cessively closer to that of the root node, thus resulting 
in more source line to target line endpoint transmis 
sions. Second, ss the bucket capacity increases for a 
fixed radius of expansion, we have fewer nodes but of 
larger capacity. The lessened node count results in 
a quadtree of shallower. depth (which results in fewer 
iterations of the algorithm), but each iteration takes 
longer as more source line segments need to transmit 
their endpoint coordinates to the target lines. 

Figure 16 shows the cpu times for the top-down R- 
tree spatial join as a function of the radius of expansion 
and the node capacity. Note that R-trees with smaller 
node capacities (i.e., 10 or 15) exhibit execution times 
that are considerably less than for larger node capac- 
ities (i.e., 45 or 50). The reason for thii substantial 
difference in performance is that smaller node capac- 
ities result in a finer decomposition of space. In par- 
ticular, each of the smaller source nodes intersects a 

Figure 16: Execution time in seconds for the top-down 
R-tree spatial join algorithm. 

smaller number of target nodes. With this finer granu- 
larity, there is increased opportunity for parallel com- 
munication when broadcasting the source lines to the 
appropriate target nodes. 

Not surprisingly, the execution times for a fixed 
node capacity tend to increase as the radius of expan- 
sion increases. Similar to what was observed with the 
bucket PMR quadtree, the increased radius of expan- 
sion results in a greater number of source/target node 
intersections as the region around each source node 
that has a potential of being within the given distance 
of a target node is larger. 

Figure 17: Percentage of additional execution time 
required by the leaf node intersection determination 
phase of the bottom-up R-tree spatial join algorithm 
relative to the topdown algorithm. 

Figure 17 shows the percentage of additional execu- 
tion time required by the node intersection phase of the 
bottom-up R-tree spatial join algorithm relative to the 
node intersection phase of the topdown R-tree spatial 
join algorithm. For the given node capacities and radii 
of expansion, the bottom-up procedure requires be- 
tween 40-135% more cpu time to determine all node 
intersections. It should be clear that the topdown 
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algorithm (which makes full use of the R-tree decom- 
position) offers significant performance advantages as 
compared with the simpler bottom-up algorithm. The 
advantage of the top-down algorithm was pronounced 
when the node capacities were smallest (i.e., 10-25) 
and the corresponding tree height was greatest. More- 
over, the top-down algorithm performed relatively bet- 
ter with a small radius of expansion. Unfortunately, 
the node intersection determination phase of the spa- 
tial join operation only consumes 2-25% of the entire 
algorithm (with the greatest fraction occurring when 
the node capacity and radius of expansion are small). 

Figure 18: Execution time in seconds for the R+-tree 
spatial join algorithm. 

Figure 18 presents the cpu times for the R+-tree 
spatial join operation. We observe that for this map, 
as the node capacity increases, the execution time falls 
(due to fewer leaf nodes); but then rises considerably 
for node capacities 45 and 50. This is due to the 
number of leaf nodes in the source map decreasing 
(thereby becoming larger, thus intersecting more tar- 
get nodes and creating more communication conflicts). 
Note that execution times are larger than those for the 
corresponding Rtree (see Figure 16) as the disjoint de- 
composition results in about twice as many leaf nodes, 
thus increasing the amount of source to target node 
communication (as well as increasing the size of the 
intersection lists [lfl). Finally, as is observed with the 
PMR quadtree and the R-tree, as the radius of expan- 
sion increases toward 50, the execution time increases. 

When comparing the execution times of the bucket 
PMR quadtree and top-down R-tree and R+-tree spa- 
tial join algorithms, it is apparent that the bucket 
PMR quadtree offers significant performance advan- 
tages. For example, consider, Table 2 which lists the 
cpu times for the Prince Georges map’s for the three 
data structures (each with a node capacity of 25) for a 
variety of source map expansions. For each of the listed 
expansions, the R-tree takes approximately 5-6 times 
longer than the corresponding bucket PMR quadtree, 

CPU seconds 
PMR R-tree R+-tree 
34.01 203.95 1256.03 
34.59 205.15 1289.43 
34.94 205.92 1324.43 
36.98 219.61 1362.80 
37.59 227.10 1498.38 
39.29 235.13 1444.19 
42.96 238.43 1575.86 

Table 2: Spatial join execution times for the three data 
structures for node capacity 25. 

and the R+-tree takes approximately 6 times longer 
than the corresponding R-tree. This performance ad- 
vantage is primarily because the bucket PMR quadtree 
makes use of a regular disjoint decomposition of space 
which, in a data parallel environment, facilitates in- 
creased amounts of parallel communication between 
source and target maps in comparison to the R-tree 
and R+-tree. This drawback of the R-tree and R+-tree 
cannot be overcome by using classical R-tree improve- 
ments such as the R*-tree [2]. 

Our final comparison was designed to answer the 
question of whether using a spatial decomposition 
method is worthwhile. This was achieved by mak- 
ing use of a true brute-force approach where a spa- 
tial decomposition is not employed (i.e., each source 
line broadcasts to each target line). It proved supe- 
rior to both R-tree algorithms in terms of the execu- 
tion time required. The brute-force approach for the 
Prince Georges map required 54.95 cpu seconds, re- 
gardless of the radius of expansion. In contrast, the 
top-down R-tree spatial join algorithm required a min- 
imum of 118.79 seconds for all combinations of node 
capacity and radius of expansion, while the bottom-up 
R-tree required a minimum of 151.26 seconds. On the 
other hand, our bucket PMR quadtree spatial join al- 
gorithms proved superior to the brute-force approach 
in all but one combination of splitting threshold and 
radius of expansion (the data parallel bucket PMR 
quadtree for the Prince Georges map required between 
26.41 and 55.16 seconds). 

Of course, we must bear in mind that these execu- 
tion times are for two map spatial joins. If we were 
to implement single map versions of the queries (i.e., 
given a single map containing line segments represent- 
ing both roads and railways being distinguished by 
appropriate attribute flags), the performance of the 
R-tree and R+-tree would increase considerably; per- 
haps even to a level comparable to that displayed by 
the bucket PMR quadtree. Single map spatial join 
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algorithms are a topic for future research. 

5 Concluding Remarks 

Data-parallel algorithms for data structure construc- 
tion, polygonization, and computing a spatial join for 
the bucket PMR quadtree, R-tree, and R+-tree spa- 
tial data structures have been presented. Tests were 
conducted for each algorithm which revealed better 
performance for the bucket PMR quadtree. The main 
reason for this behavior is the fact that the bucket 
PMR quadtree yields a regular disjoint decomposi- 
tion of space while this is not the case for the R-tree 
or the R+-tree. Interestingly, for the spatial join, a 
brute-force approach that does not employ a spatial 
decomposition proved superior to both of our R-tree 
and R+-tree implementations. This further empha- 
sizes the penalty incurred by using either non-disjoint 
or irregular decompositions in the parallel domain. 
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