
Performance of Data-Parallel Spat ial Operations*

Erik G. Hoelt Hanan Samet
Geography Division Computer Science Department

Bureau of the Census Center for Automation Research
Washington, D.C. 20233 Institute for Advanced Computer Sciences

hoel@cs.umd.edu

Abstract

The performance of data-parallel algorithms
for spatial operations using data-parallel
variants of the bucket PMR quadtree, R-tree,
and R+-tree spatial data structures is com-
pared. The studied operations are data struc-
ture build, polygonization, and spatial join
in an application domain consisting of pla-
nar line segment data. The algorithms are
implemented using the scan model of paral-
lel computation on the hypercube architec-
ture of the Connection Machine. The re-
sults of experiments reveal that the bucket
PMR quadtree outperforms both the R-tree
and R+-tree. This is primarily because the
bucket PMR quadtree yields a regular dis-
joint decomposition of space while the Rtree
and R+-tree do not. The regular disjoint de-
composition increases the potential for inter-
processor communication and parallelism in
the bucket PMR quadtree, thereby enabling
the execution times to decrease relative to
those needed by the R-tree and R+-tree.

1 Introduction

Parallel database systems have been the subject of in-
creasing attention. This is due in part to the advent of
highly parallel architectures, adoption of the relational
model, and challenges posed by object-oriented

*This work was supported in part by the National Science
Foundation under Grant m-92-16970.

tAlso with the Center for Automation Research at the Uni-
versity of Maryland.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made ot dbtribrted for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and itr date appear, and notice ir
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to npublirh, reqsirer a fee
and/or special permirsion from the Endowment.

Proceedings of the 29th VLDB Conference
Santiago, Chile, 1994

University of Maryland
College Park, Maryland 20742

hjs&s.umd.edu

systems [lo, 193. Much of the parallel database
research has focused on multi-attribute declustering
techniques (such as Bubba’s extended range declus-
tering [5] and multi-attribute grid declustering [13]),
data placement [8], and intra-operator parallelization
[9]. Topics such as algorithms for manipulating rela-
tions containing highly skewed attribute values, and
parallel spatial data structures and algorithms remain
open.

Prior research in the spatial domain has been lim-
ited to quadtrees and R-trees, with different goals.
The quadtree research [3] was conducted under the
data-parallel SAM model of computation, and its goal
wss the development of algorithms to operate on the
data structure in parallel. The R-tree research has con-
centrated on the development of algorithms for build-
ing data-parallel R-trees and polygonization [16], as
well as spatial joins for both dataparallel bucket PMR
quadtrees and dataparallel R-trees [17]. This work,
and the results we report here, differs significantly
from other approaches in that we make use of many
processors to execute the spatial queries rather than
merely store the data on parallel disks while operating
with a single cpu (e.g., [lS]).

Our emphasis is on the performance of spatial oper-
ations in a data-parallel environment when the data is
represented using hierarchical spatial data structures
[21, 221. Our approach is similar in spirit to an ear-
lier study [15] in that the same data structures are
examined (i.e., the R-tree, PMR quadtree, and the
R+-tree). The difference is that here we test opera-
tions requiring a significant amount of computation so
that using paralleliim may be attractive. Thus we do
not study point operations such as finding the nearest
line to a point as in [15]. Instead, we examine more
complex operations such as data structure creation,
polygonisation, and spatial join.

In this paper our sample spatial database is one
that contains collections of line segments (i.e., maps)
corresponding to features such as roads, railway lines,
boundaries of political and economic units, utility
data, etc. Data structure creation is the time neces-

156

sary to build the data structure for a particular map.
This is an important issue as when the data structure
is used for just one query, it may not be worthwhile
to expend much effort in its construction. Polygoniza-
tion is the process of determining all closed polygons
formed by a collection of planar line segments. For
example, it can be used to find the boundaries of all
countries in the world. Both data structure creation
and polygonalization involve just one data set.

In contrast, the spatial join involves two data sets.
It is one of the most common operations in spatial
databases. This term is usually used in conjunction
with a relational database management system [111. In
that context, a join is said to combine entities from two
data sets into a single set for every pair of elements in
the two sets that satisfy a particular condition. These
conditions usually involve specified attributes that are
common to the two sets. In the spatial variant of the
join, the condition is interpreted as being satisfied (i.e.,
two elements are joined) when the elements of the pair
cover some part of the space that is identical. In the
sequential domain, this problem has been studied al-
gorithmically and empirically for the R-tree [6], while
in the data-parallel domain it has only been studied in
an algorithmic context [17].

We examine a variant of the spatial join that seeks
to find all line segments that lie within a given dis-
tance of line segments of another type (the line seg-
ments need not be contiguous). This is the spatial
analog of a range query (also termed a window) in a
conventional database where the query region is not
limited to a rectangle. It is also known as a corridor
or a buffer zone in GIS, or image dilation in image pro-
cessing. As an example, suppose that we have one map
corresponding to the roads in the United States and
another map corresponding to the border of Colorado
and we want to determine all roads that lie within 10
miles of the border of Colorado.

In this paper we focus on representations that sort
the data with respect to the space that it occu-
pies. Thii results in speeding up operations involv-
ing search. The effect of the sort is to decompose the
space from which the data is drawn (e.g., the two-
dimensional space containing the lines) into regions
called buckets. One approach known as an R-tree [14]
buckets the data based on the concept of a minimum
bounding (or enclosing) rectangle. In this case, lines
are grouped (hopefully by proximity) into hierarchies,
and then stored in another structure such as a B
tree [7’j. The drawback of the R-tree is that it does
not result in a disjoint decomposition of space - that
is, the bounding rectangles corresponding to diierent
lines may overlap. Equivalently, a line may be spa-
tially contained in several bounding rectangles,, yet it

is only associated with one bounding rectangle. This
means that a spatial query may often require several
bounding rectangles to be checked before ascertaining
the presence or absence of a particular line.

The non-disjointness of the R-tree is overcome by a
decomposition of space into disjoint cells. In this case,
each line is decomposed into disjoint sublines such that
each of the sublines is associated with a different cell.
There are a number of variants of this approach. They
differ in the degree of regularity imposed by their un-
derlying decomposition rules and by the way in which
the cells are aggregated. The price paid for the dis-
jointness is that in order to determine the area cov-
ered by a particular line, we have to retrieve all the
cells that it occupies. Here we study two methods: the
R+-tree [12] and a variant of the PMR quadtree [20].

The R+-tree partitions the lines into arbitrary sub-
lines having disjoint bounding rectangles which are
grouped in another structure such as a B-tree. The
partition and the subsequent groupings are such that
the bounding rectangles are disjoint at each level of the
structure. The drawback of the R+-tree is that the de-
composition is dat*dependent. This makes it difficult
to perform tasks that require composition of different
operations and data sets (e.g., set-theoretic operations
such as overlay). In contrast, the PMR quadtree .is
based on a regular decomposition. The space contain-
ing the lines is recursively decomposed into four equal
area blocks on the basis of the number of lines that
it contains. We use a variant termed a bucket PMR
quadtree that decomposes the space whenever it con-
tains more than b lines (b is termed the bucket capac-
ity). The decomposition process can be implemented
by a tree structure. It is useful for set-theoretic oper-
ations as the partitions of the two data sets occur in
the same positions.

As mentioned above, R-trees and R+-trees are
closely related to B-trees. An R-tree or R+-tree of
order (m, M) has the property that each node in the
tree, with the exception of the root, contains between
m 5 [M/2] and M entries. The root node has at
least 2 entries unless it itself is a leaf node. Thus we
see that the node capacity A4 in the R-tree and R+-
tree plays the same role as the bucket capacity in the
bucket PMR quadtree. We will make use of this anal-
ogy in our discussion where, at times, the terms will
be used interchangeably.

The problem with using the R-tree and R+-tree
data structures to perform a spatial join is that they do
not contain any information to help us in determining
which bounding rectangles in one map overlap with
bounding rectangles in the other map. This means
that little of the search space can be pruned while per-
forming the operations. The difficulty is that although

157

the R-tree and R+ tree’s main utility is to enable the
user to distinguish easily between occupied and unoc-
cupied regions in a particular map, they do not provide
a means of correlating the contents of one map with
another map. Unfortunately, this is exactly the abil-
ity that is needed to implement spatial join algorithms
efficiently. As we will see, this places the data-parallel
R-tree and R+-tree at a considerable disadvantage in
comparison to the data-parallel bucket PMR quadtree
as it reduces the potential for interprocess communi-
cation thereby resulting in greater execution times for
the data-parallel R-tree and R+-tree.

We use the scan model of parallel computation [4].
The scan model is defined in terms of a collection
of primitive operations that can operate on arbitrar-
ily long vectors (single dimensional arrays) of data.
Three types of primitives (elementwise, permutation,
and scan) are used to produce result vectors of equal
length. A scan operation [4, 3] takes an associative
operator $, a vector [as,ai, ..., an-r], and returns
thevector [ao,(ao$al),...,(ao$al$...$a,-l)].
The scan model considers all primitive operations (in-
cluding scans) as taking unit time on a hypercube ar-
chitecture. This allows sorting operations to be per-
formed in O(logn) time.

The rest of this paper is organized as follows. Sec-
tion 2 gives the construction and polygonisation al-
gorithms for the data-parallel bucket PMR quadtree.
The data-parallel R-tree algorithms are not presented
here as they can be found elsewhere [16, 171. Sec-
tion 3 is concerned with the data-parallel R+-tree and
contains a description of the construction, polygonal-
ization, and spatial join algorithms. Section 4 com-
pares the three dat+parallel data structures in terms
of performance data for the specified operations on a
Thinking Machines CM-5 parallel computer. Section
5 contains concluding remarks as well as a discussion
of topics for future research. In our discussion of the
various data structures, in the interest of brevity, we
will drop the qualifier data parallel unless the distinc-
tion needs to be emphasized in the case of a potential
for misunderstanding a claim.

2 Bucket PMR Quadtrees

In this section we discuss the implementation of the
bucket PMR quadtree algorithms for the spatial op-
erations that we examined. We give the construction
and polygonization algorithms as they have not been
formally presented before. See [17] for the bucket PMR
quadtree spatial join algorithm.

Figure 1: Initial bucket PMR quadtree processor as-
signments.

2.1 Bucket PMR Quadtree Construction

A bucket PMR quadtree is built as follows. Initially,
a single processor is assigned to each line in the data
set, and one processor to the resultant bucket PMR
quadtree as depicted for the sample data set in Fig-
ure 1. Using a downward scan operation, the number
of lines associated with the single node processor (9
in the example) is determined and then passed to the
node processor. If the number of lines associated with
the node processor exceeds the bucket capacity (2 in
our example), then the node must be split into four
subnodes and each of the lines must be regrouped, ac-
cording to the nodes it intersects.

Figure 2: Result of applying the un-shuffle o eration
to the x coordinate value of the center of t % e block
associated with the node processor.

The splitting occurs in two stages. The regrouping
is applied after each split and is achieved with an un-
shufle operation [3] (where two intermixed types are
rearranged into two disjoint groups termed segments
via two monotonic mappings) which is used to con-
centrate those line processors together into two new
segments, each of which corresponds to all of the line
processors lying either in whole or in part to the left
and right of the x coordinate value of the center of the
block associated with the node processor. The result of
this un-shuffle operation is depicted in Figure 2. This
is achieved by monotonically shifting to the left (right)
all line processors with a midpoint less (greater) than
the split coordinate value. Note that a line may span
two or even three nodes, thus requiring the line to be
duplicated or even triplicated and hence either one or
two additional processors in the line processor set are
allocated for it (termed cloning [3]). For example, con-
sider line i in the process of subdividing the tlrst node

158

in Figure 2. Here we see that line i intersects both the
left and right halves of the root node.

Figure 3: Result of applying the un-shuffle operation
to the 9 coordinate value of the center of the block
associated with the node processor.

The second stage applies the un-shuffle to the re-
sulting two segments, thereby creating two sets of two
segments each of which corresponds to all of the line
processors which lie either in whole or in part below
and above the y coordinate value of the center of the
block associated with the node processor. The result
of this un-shuffle operation is depicted in Figure 3.

Figure 4: Result of the first node subdivision, line du-
plication and un-shuffling.

Continuing with this iterative process, each line seg-
ment group determines the number of lines it contains,
and then communicates the count to the associated
node processor. For example, in Figure 4, the first
line segment group transmits a count of three to node
1, the second line segment group transmits a count
of two to node 2, etc. Each of the node processors
then determines whether or not the transmitted line
count exceeds the bucket capacity. If the bucket ca-
pacity is exceeded, the node will subdivide, and the
associated lines will be regrouped according to which
of the resulting subnodes they intersect. For example,
in Figure 4, the NW and SE nodes will subdivide.

This iterative subdivision process continues until all
nodes in the bucket PMR quadtree have a line count
less than or equal to the bucket capacity, or the max-
imal resolution of the quadtree has been reached (i.e.,
a node of size 1 x 1). Note that in the degenerate
case, even at the maximal resolution of the quadtree,
it is possible that the number of lines associated with a
node exceeds the bucket capacity. For practical split-
ting thresholds (i.e., 8 and above), this situation is ex-
ceedingly rare and will not cause any algorithmic dif-

ficulties provided that the bucket PMR quadtree algo
rithms do not assume an upper bound on the number
of lines associated with a given node.

Figure 5: Result of the bucket PMR quadtree build
process.

The result of the third and final subdivision for our
example data set is shown in Figure 5. Note that one
of the quadtree nodes (node 9) still has its bucket ca-
pacity exceeded. To facilitate the discussion of the
algorithms, this node will not be further subdivided.
The bucket PMR quadtree building operation takes
O(logn) time, where each of the O(logn) subdivision
stages requires 0(1) computations (a constant number
of scans and reshuffles).

2.2 Bucket PMR Quadtree Polygonization

Polygonization proceeds as follows. Identify each poly-
gon uniquely by the bordering line with the lexico-
graphically minimum identifier (i.e., line number) and
the side on which the polygon borders the line. Polygo
nization can be achieved without a spatial data struc-
ture. Basically, the lines can be sorted according to
their identifier in O(logn) time. Next, each line, in
sorted sequence, transmits its endpoint coordinates,
line identifier, and current left and right polygon iden-
tifiers to all following lines via a sequence of O(n) scan
operations. Each line can independently determine the
identifiers of the left and right polygons. The draw-
back is that it is an O(n) operation with a large num-
ber of scans. Data-parallel variants of spatial data
structures such as the bucket PMR quadtree, as well
as the R-tree and R+-tree can reduce the number of
global scan operations (i.e., a scan across the entire
processor set) by instead relying upon segmented scans
executed in parallel.

Given a bucket PMR quadtree, the polygonization
process begins by constructing a partial winged-edge
representation [1] (an association between the incident
line segments forming the minimal and maximal angles
at each endpoint of each segment). This representa-
tion enables us to determine all edges that comprise a
face (i.e., polygon) and all edges that meet at a ver-
tex in time proportional to the number of edges. In
constructing the partial winged-edge representation,
the endpoints of each line in a node are broadcast to

159

all other lines in the node through a series of scans.
By broadcast we mean the process of transmitting a
constant value from a single processor to all other pro-
cessors in the same node via a scan operation (i.e.,
the vector [as, ~0,. . . , oc]). Locally, each line proces-
sor maintains the minimal and maximal angles formed
at each endpoint as well as the identities of the cor-
responding lines. Once the broadcasts are done, each
line processor locally assigns an initial polygon iden-
tifier for the bordering polygon on the left and right
side (moving from source to destination endpoint).

Figure 6: Selecting the initial polygon identifiers.

In Figure 6, the left polygon identifier for line seg-
ment z is selected from the minimum identifiers of the
source endpoint minimal angle (WR, where w is the
line identifier and R denotes the right side of w), the
destination endpoint maximal angle (ye), and the line
identifier itself (zt). For the right polygon identifier,
select the minimum identifier among the source end-
point maximum angle (zR), the destination endpoint
minimal angle (UR), and the line identifier (%R). In
Figure 6, line z is assigned WR as the initial left poly-
gon identifier, and VR as the right polygon identifier.

Rm

Figure 7: Initial polygon sssignments.

Figure 7 shows the initial polygon assignment for
the depicted example where the left and right polygon
identifiers are contained in LID and RID, respectively.

line3
Lm

Rm

Figure 8: Polygon assignments after the first round of
leaf node mergmg.

Starting at the leaf level, sibling nodes are then

merged together into their parent nodes (i.e., in Fig-
ure 7, leaf nodes 4-7 are merged together, resulting in
leaf node 4 in Figure 8). All the lines in the merged
sibling leaf nodes are sorted, and any duplicate lines
are marked. In Figure 7, the merging of sibling leaf
nodes 4-7 will result in one pair of duplicate lines (line
b) as there is a line b in nodes 5 and 7. In order to
ensure that each duplicate line has consistent polygon
identifiers as well as correct winged-edge represent+
tions, each duplicate line has its endpoints and polygon
identifiers broadcast to the other duplicate lines in the
merged node. If any of the duplicates’ polygon iden-
tifiers are updated, the identifier updates must also
then be broadcast among all other lines in the merged
nodes. By update, we mean assigning a lexicographi-
tally smaller polygon identifier. For instance in Fig-
ure 8 the merging of sibling leaf nodes 2-5 will result in
two pairs of duplicate lines (i.e., lines b and e). With
the duplicate line b in the merged node, initially one
instance has left and right polygon identifiers aL and
a& and the second instance has polygon identifiers bL
and bR. The left and right polygon identifiers of the
second instance of line b are updated from bL to aL,
and bR to aR respectively.

When the second instance of line b is updated, the
two identifier updates are then broadcast to all other
lines in the merged node. For each other line in the
merged node, if the transmitted polygon identifier up-
date matches either of its current left or right polygon
identifiers (i.e., the bL to ar, update matches any line’s
left or right polygon identifier having value bL) the
line’s polygon identifier is changed to aL in order to
reflect the broadcast update and the lexicographically
smaller identifier.

Similarly, the duplicate line e results in two addi-
tional identifier updates - that is, CR to bL, and 8~
to CL. Actually, line e’s bL was previously updated to
aL during line b update broadcasts.

Figure 9: (a) Example of two leaf nodes A and B merg-
ing (the contents of sibling nodes C and D are not
shown), and (b) the result of the merge operation.

Finally, when merging four sibling nodes together,
any line whose endpoint falls on the shared node
border (i.e., lines a and b in Figure 9a), must also
have their endpoints and polygon identifiers broadcast

160

among the merged nodes. Consider the example in
Figure 9a where four sibling nodes labeled A-D are be
ing merged (for sake of clarity, the contents of nodes C
and D are not shown). There are no duplicate lines in
the merging nodes, but lines a and b have an endpoint
that intersects the common node border. The end-
point coordinates and polygon identifiers of these two
lines are broadcast among the merged lines, and any
appropriate winged-edge updates are made (i.e., the
source endpoint of line b is updated to reflect the inci-
dence of line a). For all lines whose winged-edge rep-
resentations are updated, the polygon identifiers are
checked for possible updates. Figure 9b shows the re-
sulting polygon identifiers. a b

h
f

a

q - bea

d g c
Lm

Rm

Fi
of 9”

re 10: Polygon assignments after the second round
eaf node merging.

The merging and updating process continues up the
entire bucket PMR quadtree until all lines are con-
tained in a single node and all necessary broadcasts
have been made (as shown in Figures 10 and 11, with
the final assigned polygon identifiers circled).

Figure 11: Completion of the polygonization opera-
tion.

The bucket PMR quadtree’s spatial sort greatly lim-
its the amount of inter-segment communication neces-
sary ss compared with a non-spatially sorted dataset
where all lines would have to communicate their end-
points and polygon identifiers to all others.

3 R+-trees

The R+-tree algorithms are similar to those for the R-
tree. The principal difference is in the amount of work
needed in the data structure building phase to ensure
a good node split. Below we give a brief outline of the
algorithms for the various operations.

3.1 R+-tree Construction

The R+-tree construction algorithm is similar to that
of the R-tree with a few additional modifications. Ini-
tially, one processor is assigned to each line of the
data set, and one processor to the resultant R+-tree.
Within the line processor set, a downward scan opera-
tion is performed on the line processor set to determine
the number of lines associated with the single R+-tree
node processor. The number of lines in the segment is
then passed to the single R+-tree node processor. If
the number of lines in the segment exceeds the node
capacity M, then the R+-tree root node must be split
into two leaf nodes and a root node. The two new
leaf nodes are inserted into the Rt-tree node proces-
sor set, with the root node updated to reflect the two
new children.

The Rt-tree node splitting algorithm first sorts all
lines in the node according to the left edge of their
bounding boxes. For each node split whose result sat-
is&s a pm-established minimal node occupancy level
of m/M lines in the two resulting nodes, the coordi-
nate value of the left edge is broadcast to each of the
lines in the node being split. Each line in parallel clips
itself against the split coordinate value. The clip re-
sults in either one (the line does not intersect the split
coordinate value) or two lines (the line intersects the
split coordinate value). Each resulting line determines
in which of the two new nodes it is contained. The def-
inition of an Rt-tree requires that each node at a given
level of the tree is disjoint from all other nodes. In or-
der to ensure this disjoint decomposition, some lines
will have to be split across multiple nodes in the final
decomposition. This situation also arises in the bucket
PMR quadtree. Once each line determines the node
in which node it lies, a sequence of scan operations is
used to determine the bounding box that contains the
lines in the two new nodes. Finally, the perimeter of
the two resulting bounding boxes is computed.

The splitting process continues for each of the le-
gal node splits and split axes. Once all legal node
splits have been determined and the resulting node
perimeters are computed, the split axis and coordi-
nate value that correspond to the minimal perimeter
of the two resulting nodes is selected as the final node
split value. In the event of a tie, some other metric
such as the split with the minimal bounding box areas
may be employed. After choosing the splitting axis
and the coordinate value, an un-shuffle operation con-
centrates those line processors together into two new
nodes, each of which corresponds to one of the two
Rt-tree leaf node processors.

The insertion algorithm proceeds iteratively as de-
scribed above, with each node determining the number

161

of lines it contains, and transmitting the count to the
associated R+-tree node processor. If the number of
lines in the node exceeds M, then the node (and corre-
sponding R+-tree node processor) are split. Note that
the leaf node subdivision process may result in proces-
sors that correspond to internal nodes in the R+-tree
being forced to split when the number of their children
(e.g., leaf nodes) exceeds the node capacity. These in-
ternal node splits may possibly propagate up to the
root node of the R+-tree (and are referred to as up
ward splits).

An additional complication in the node splitting
process arises if the splitting of an internal node forces
the splitting of some of the descendents (both nodes
and lines) of the splitting internal node. Unlike the
R-tree which does not enforce a disjoint decomposi-
tion, an upward internal node split may result in the
selection of a split axis and a coordinate value that
intersects the descendents of the splitting node. The
disjoint decomposition requires that any intersecting
descendents (nodes or lines) must also be split. Split-
ting the descender& of a node is termed a downward
split. The process terminates when all nodes in the
node processor set have at most M child processors
(either internal R+-tree nodes or line processors).

3.2 R+-tree Polygonization

The R+-tree polygonization algorithm is very similar
to that for the R-tree [16]. Because the R+-tree em-
ploys a disjoint decomposition, a single line may reside
in more than one leaf node (similar to the bucket PMR
quadtree). In order to handle this difference with re-
spect to the R-tree, the polygonization algorithm must
be changed somewhat during the node merging phase.

Rather than marking all lines that intersect any of
the overlapping regions formed by the bounding boxes
of the nodes that are merging (as there are none with a
disjoint decomposition), the update procedure follows
the technique described in the bucket PMR quadtree
polygonization algorithm in Section 2.2. All the lines
in the merged sibling node are first sorted according
to identifier, and all duplicate lines are marked for
rebroadcasting among the lines in the merged nodes.
This enables the correct updating of duplicate lines in
the merged nodes. The duplicate node rebroadcasting
operation is used to update the winged-edge represen-
tations of all duplicate lines and maintain consistency.
During the update, we note any polygon identifiers
that must also be updated (i.e., among duplicate lines,
if one line has polygon identifiers that are less than the
polygon identifiers of the second line). In addition, all
lines whose endpoint falls on a common node border
are marked for the rebroadcast of their endpoint coor-

dinates in order to update the winged-edge represen-
tations and polygon identifiers of any line that may
share an endpoint but lie in another node.

If any line has its polygon identifiers updated dur-
ing the first round of rebroadcasting, then the poly-
gon identifier update must be communicated in a sec-
ond round of broadcasting to all other lines in the
merged node. Locally, if the transmitted polygon up
date matches either the left or right polygon identifiers
of the local line, then the local polygon identifier is up-
dated to reflect the polygon identifiers that have been
broadcast.

As is the case with the bucket PMR quadtree and
R-tree polygonization algorithms, the merging and up-
dating process continues up the entire R+-tree until all
lines are contained in a single node and all necessary
broadcasts have been made.

3.3 R+-tree Spatial Join

The R+-tree spatial join algorithm is identical to the
one used with the R-tree [17], with one small modifi-
cation at the end of processing. Because the disjoint
decomposition of the R+-tree may cause some lines to
be split across multiple leaf nodes, it may be the case
that a line in the source map is only within a given
distance of a portion of a line that has been split in
the target map. Thus, some of the pieces of a partic-
ular line in the original target map may be marked as
within a given distance, while other portions are not
marked. In order to resolve this inconsistency among
portions of lines that correspond to the same line in
the original target map, once all intersection determi-
nations are completed, the pieces of the target lines are
sorted according to identifier. Thii results in all pieces
of a line in the original target map occupying a con-
tiguous space in the linear ordering of processors. An
upward and a downward scan operation can be used to
resolve any inconsistencies, resulting in all target lines
being properly marked.

4 Performance Comparison

The performance of the three spatial structures in the
data-parallel environment is compared using the Bu-
reau of the Census TIGER/Line File map of Prince
Georges County, MD (containing approximately 35000
line segments). Our dataparallel algorithms assume
that the entire data structure resides in main mem-
ory of the Thinking Machines CM-5 (32 processors, 1
GB RAM). Thus measurements of I/O performance
are meaningless in thii context (the development of
disk-based data-parallel analogs to the described algo-
rithms is a subject for future research).

162

Figure 12: Build times for the three data structures for
the map of Prince Georges County, MD (35000 lines).

4.1 Data Structure Build Performance

Figure 12 presents the build times for the three data
structures for node capacities ranging from 5 to 50.
The R+-tree was built with a 49.5% minimal occu-
pancy level (see the discussion below). From the fig-
ure, all three structures exhibit decreasing build times
as the node capacities increase. This behavior is due
to the decreased amount of spatial sorting that takes
place with the increased node sizes. The three data
structures exhibit analogous behavior in the sequential
environment [15]. It is also apparent that the bucket
PMR quadtree is approximately 3-4 times faster than
the R-tree for similar node capacities. The relative dif-
ference in build performance is attributable to the use
of a regular decomposition in the case of the bucket
PMR quadtree which makes it very easy to split an
overflowing node as there is just one choice. In con-
trast, the R-tree and the R+-tree make use of irregular
decomposition which requires testing a possibly large
numbers of split axis/coordinate pairs in determining
a locally optimal node split.

Figure 13 shows the build times for the R+-tree of
the Fredericksburg, VA map containing approximately
1700 line segments. In addition to varying the node
capacity between 10 and 50, we also varied the min-
imal occupancy levels between 25% and 50% (as a
point of reference, the best performance for an R-tree,
termed an R*-tree [2], has been observed to be 30%
and is the one that we use in our experiments). When
splitting a node, a minimal occupancy level of k% en-
sures that each of the two resulting nodes is at least
,% full. Hence, when the minimal occupancy level
is raised, fewer split axis/coordinate pairs are tested
when choosing the best split. This results in increas-
ing the speed of of the build process as can be seen in
Figure 13. As is the case in the Prince Georges map,
in Figure 12, increasing the node capacity also results

Figure 13: Execution time in seconds for the R+-
tree build algorithm for the map of Fredricksburg, VA
(1700 lines).

in decreased build times.
It is important to note that although Figure 13 rep-

resents a map that is approximately 5% of the size of
that in Figure 12 (i.e., 1700 lines versus 35000 lines),
the R+-tree takes 198.85 seconds to build while the
R-tree (using a node capacity of 50 and a minimal oc-
cupancy level of 30%) for the same map requires 37.78
seconds to build and the bucket PMR quadtree re-
quires just 12.97 seconds. We found that despite the
R-tree and R+-tree being quite similar in structure,
the R+-tree takes approximately 2 orders of magnitude
longer to build per line segment in the dataset. This
difference is attributable to a combination of the use of
the scan model and the fact that the R-tree does not
employ a disjoint decomposition of space (thus pre-
venting the children of a splitting node from them-
selves splitting), making it possible to determine the
locally optimum node split with a constant number
(approximately 10) of upward and downward scan op-
erations. In contrast, the node splitting process in the
R+-tree, with its disjoint decomposition of space, is an
iterative process where the number of iterations is di-
rectly proportional to the number of items in the node
that is being split. Thii testing for splits means that
a large number of clipping operations must to be per-
formed as we need to determine which part (or parts)
of the line is associated with the two nodes resulting
from the split.

Note that although the bucket PMR quadtree (with
its disjoint decomposition) also requires line clipping,
each line is clipped in parallel a maximum of 4
times the height of the tree. Also the fact that the
bucket PMR quadtree employs a regular decomposi-
tion means that when a node is split, there are effec-
tively only two candidate split axis/coordinate pairs.

It is interesting to observe that the R+-trees that
we built for the Prince Georges map used a minimal

163

node 1 R-tree 1 R+-tree 1
capacity time scans time scans

25 37.2 865 1309.3 28212
30 35.6 823 1274.6 27545
35 33.5 739 1268.0 27305
40 30.4 654 1269.2 27187
45 29.5 614 1261.3 27040

1 50 128.5 614 11246.6 26691

Table 1: Data structure build statistics for the R-tree
and R+-tree both using a 49.5% minimal occupancy
level for the Prince Georges map.

occupancy level of 49.5% (resulting in approximately
3000 line clips) and a node capacity varying between
25 and 50. This took between 1309.30 seconds and
1246.6 seconds as shown in Table 1. The analogous
R-tree (employing the same node capacities and mini-
mal occupancy levels), took between 37.2 seconds and
28.5 seconds. Note that if we would have used an
Rt-tree with a minimal occupancy level of 30% (as in
the R-tree), these numbers would have been at least
one order of magnitude higher. Unfortunately, due
to hardware and time limitations we were not able to
perform these tests.

Figure 14: Polygonization times for the three struc-
tures.

4.2 Polygonization Performance

In the interest of obtaining a better understanding
of the R-tree spatial join operation, we tested both
a top-down and bottom-up algorithm, while only a
bottom-up algorithm was tested for the bucket PMR
quadtree as this is the most logical approach to im-
plement the operation. Similarly, we only tested the
top-down algorithm for the R+-tree. For additional
comparison purposes, a bruteforce solution that does
not employ any spatial decomposition (i.e., each source
line is broadcasted to each target line) was imple-
mented as well. Note that the execution time of this
bruteforce approach is independent of the spatial join
condition (i.e., the distance within which the desired
lines are found).

Figure 14 shows the execution times for map polygo For each of the spatial joins, the set of lines corn+
nization for each of the three spatial data structures sponding to railroads in the Prince Georges map (334
using the Prince Georges maps built in Section 4.1. line segments) was chosen as the source map, while the
Due to the performance inefficiencies of the R+-tree, a set of lines corresponding to the road network in the
minimal occupancy level of 49.5% was employed, while Prince Georges map (28514 line segments in contrast
the F&tree used the standard 30% level. From the fig- to a total of 35000 line segments in the original map
ure it is clear that the bucket PMR quadtree offers which includes all of the linear features rather than
significant performance advantages over both the R- just the roads) was chosen as the target map. In this

tree and the R+-tree. The difference is roughly one
order of magnitude. It is attributable primarily to the
considerable amount of time that the R-tree and the
Rt-tree must spend in determining which nodes are
intersecting (or adjoining in the case of the R+-tree)
when merging sibling nodes. For the bucket PMR
quadtree, this computation is immediate as a result
of regular decomposition. In addition, at each stage
of the polygonization process, the R-tree and Rt-tree
merge many more nodes/lines together (i.e., a node
occupancy of n implies a fanout of n), while for the
bucket PMR quadtree four nodes are merged together
at each stage of the computation. Essentially, the
bucket PMR quadtree performs a larger number (equal
to the height of the tree) of smaller node merges (with
respect to the number of nodes being merged) than
the R-tree and the R+-tree.

4.3 Spatial Join Performance

The key issue in the performance of the bucket PMR
quadtree vis-*vis the R-tree and the R+-tree is the use
of regular decomposition. Thus since the data-parallel
algorithms for the R-tree and the R+-tree are so sim-
ilar, we only conducted limited tests on the R+-tree.
The performance of the R+-tree will be worse than
that of the R-tree because of the use of disjoint decom-
position in addition to being irregular. Thus lines are
broken into smaller portions resulting in correspond-
ingly more leaf nodes. This leads to an increase in the
intersection lists between source and target nodes and
implies greater execution times.

164

case, the spatial join query is one that seeks to deter-
mine which roads are within a specified distance of a
railroad line. The distance.(i.e., radius of expansion)
varied between 0 and 50 where the map was normalized
on a scale of 16384 x 16384. In addition, the bucket
capacity for the bucket PMR quadtree varied between
8 and 32, while the node capacity ranged between 10
and 50 for the R-tree and 25 to 50 for the R+-tree.

Figure 15: Execution time in seconds for the bucket
PMR quadtree spatial join algorithm.

Figure 15 presents the cpu times for the bucket
PMR quadtree spatial join operation as a function
of the radius of expansion and the bucket capacity.
We observe that for this map the execution time is at
its minimum for a bucket capacity of roughly 14 to
16. As the radius of expansion increases toward 50,
these bucket capacities continue to exhibit good per-
formance although the advantage is not as great.

Two basic forces work against each other as the ra-
dius of expansion and bucket capacity increase. First,
with a larger radius of expansion, fewer source lines are
removed from consideration as we iterate at levels suc-
cessively closer to that of the root node, thus resulting
in more source line to target line endpoint transmis
sions. Second, ss the bucket capacity increases for a
fixed radius of expansion, we have fewer nodes but of
larger capacity. The lessened node count results in
a quadtree of shallower. depth (which results in fewer
iterations of the algorithm), but each iteration takes
longer as more source line segments need to transmit
their endpoint coordinates to the target lines.

Figure 16 shows the cpu times for the top-down R-
tree spatial join as a function of the radius of expansion
and the node capacity. Note that R-trees with smaller
node capacities (i.e., 10 or 15) exhibit execution times
that are considerably less than for larger node capac-
ities (i.e., 45 or 50). The reason for thii substantial
difference in performance is that smaller node capac-
ities result in a finer decomposition of space. In par-
ticular, each of the smaller source nodes intersects a

Figure 16: Execution time in seconds for the top-down
R-tree spatial join algorithm.

smaller number of target nodes. With this finer granu-
larity, there is increased opportunity for parallel com-
munication when broadcasting the source lines to the
appropriate target nodes.

Not surprisingly, the execution times for a fixed
node capacity tend to increase as the radius of expan-
sion increases. Similar to what was observed with the
bucket PMR quadtree, the increased radius of expan-
sion results in a greater number of source/target node
intersections as the region around each source node
that has a potential of being within the given distance
of a target node is larger.

Figure 17: Percentage of additional execution time
required by the leaf node intersection determination
phase of the bottom-up R-tree spatial join algorithm
relative to the topdown algorithm.

Figure 17 shows the percentage of additional execu-
tion time required by the node intersection phase of the
bottom-up R-tree spatial join algorithm relative to the
node intersection phase of the topdown R-tree spatial
join algorithm. For the given node capacities and radii
of expansion, the bottom-up procedure requires be-
tween 40-135% more cpu time to determine all node
intersections. It should be clear that the topdown

165

algorithm (which makes full use of the R-tree decom-
position) offers significant performance advantages as
compared with the simpler bottom-up algorithm. The
advantage of the top-down algorithm was pronounced
when the node capacities were smallest (i.e., 10-25)
and the corresponding tree height was greatest. More-
over, the top-down algorithm performed relatively bet-
ter with a small radius of expansion. Unfortunately,
the node intersection determination phase of the spa-
tial join operation only consumes 2-25% of the entire
algorithm (with the greatest fraction occurring when
the node capacity and radius of expansion are small).

Figure 18: Execution time in seconds for the R+-tree
spatial join algorithm.

Figure 18 presents the cpu times for the R+-tree
spatial join operation. We observe that for this map,
as the node capacity increases, the execution time falls
(due to fewer leaf nodes); but then rises considerably
for node capacities 45 and 50. This is due to the
number of leaf nodes in the source map decreasing
(thereby becoming larger, thus intersecting more tar-
get nodes and creating more communication conflicts).
Note that execution times are larger than those for the
corresponding Rtree (see Figure 16) as the disjoint de-
composition results in about twice as many leaf nodes,
thus increasing the amount of source to target node
communication (as well as increasing the size of the
intersection lists [lfl). Finally, as is observed with the
PMR quadtree and the R-tree, as the radius of expan-
sion increases toward 50, the execution time increases.

When comparing the execution times of the bucket
PMR quadtree and top-down R-tree and R+-tree spa-
tial join algorithms, it is apparent that the bucket
PMR quadtree offers significant performance advan-
tages. For example, consider, Table 2 which lists the
cpu times for the Prince Georges map’s for the three
data structures (each with a node capacity of 25) for a
variety of source map expansions. For each of the listed
expansions, the R-tree takes approximately 5-6 times
longer than the corresponding bucket PMR quadtree,

CPU seconds
PMR R-tree R+-tree
34.01 203.95 1256.03
34.59 205.15 1289.43
34.94 205.92 1324.43
36.98 219.61 1362.80
37.59 227.10 1498.38
39.29 235.13 1444.19
42.96 238.43 1575.86

Table 2: Spatial join execution times for the three data
structures for node capacity 25.

and the R+-tree takes approximately 6 times longer
than the corresponding R-tree. This performance ad-
vantage is primarily because the bucket PMR quadtree
makes use of a regular disjoint decomposition of space
which, in a data parallel environment, facilitates in-
creased amounts of parallel communication between
source and target maps in comparison to the R-tree
and R+-tree. This drawback of the R-tree and R+-tree
cannot be overcome by using classical R-tree improve-
ments such as the R*-tree [2].

Our final comparison was designed to answer the
question of whether using a spatial decomposition
method is worthwhile. This was achieved by mak-
ing use of a true brute-force approach where a spa-
tial decomposition is not employed (i.e., each source
line broadcasts to each target line). It proved supe-
rior to both R-tree algorithms in terms of the execu-
tion time required. The brute-force approach for the
Prince Georges map required 54.95 cpu seconds, re-
gardless of the radius of expansion. In contrast, the
top-down R-tree spatial join algorithm required a min-
imum of 118.79 seconds for all combinations of node
capacity and radius of expansion, while the bottom-up
R-tree required a minimum of 151.26 seconds. On the
other hand, our bucket PMR quadtree spatial join al-
gorithms proved superior to the brute-force approach
in all but one combination of splitting threshold and
radius of expansion (the data parallel bucket PMR
quadtree for the Prince Georges map required between
26.41 and 55.16 seconds).

Of course, we must bear in mind that these execu-
tion times are for two map spatial joins. If we were
to implement single map versions of the queries (i.e.,
given a single map containing line segments represent-
ing both roads and railways being distinguished by
appropriate attribute flags), the performance of the
R-tree and R+-tree would increase considerably; per-
haps even to a level comparable to that displayed by
the bucket PMR quadtree. Single map spatial join

166

algorithms are a topic for future research.

5 Concluding Remarks

Data-parallel algorithms for data structure construc-
tion, polygonization, and computing a spatial join for
the bucket PMR quadtree, R-tree, and R+-tree spa-
tial data structures have been presented. Tests were
conducted for each algorithm which revealed better
performance for the bucket PMR quadtree. The main
reason for this behavior is the fact that the bucket
PMR quadtree yields a regular disjoint decomposi-
tion of space while this is not the case for the R-tree
or the R+-tree. Interestingly, for the spatial join, a
brute-force approach that does not employ a spatial
decomposition proved superior to both of our R-tree
and R+-tree implementations. This further empha-
sizes the penalty incurred by using either non-disjoint
or irregular decompositions in the parallel domain.

References

PI

PI

131

PI

[51

PI

171

PI

B. Baumgart, Winged-edge polyhedron represen-
tation, STAN-CS-320, Computer Science Dept.,
Stanford Univ., 1972.

N. Beckmann, H. P. Kriegel, R. Schneider, and
B. Seeger, The R*-tree: an efficient and robust
access method for points and rectangles, Proc. of
the SIGMOD Conf., Atlantic City, NJ, June 1990,
322-331.

T. Bestul, Parallel paradigms and practices for
spatial data, Ph.D. dissertation, CS-TR-2897,
Computer Science Dept., Univ. of Maryland,
April 1992.

G. E. Blelloch, Scans as primitive parallel opera-
tions, Proc. of the Intl. Conf. on Parallel Process-
ing, St. Charles, IL, August 1987,355-362.

H. Boral, W. Alexander, L. Clay, G. Copeland, S.
Danforth, M. Franklin, B. Hart, M. Smith, and P.
Valduriez, Prototyping Bubba, a highly parallel
database system, IEEE Tkans. on Knowledge and
Data Engineering, 2, 1, March 1990,4-25.

T. Brinkhoff, H. P. Kriegel, and B. Seeger, Ef-
ficient processing of spatial joins using R-trees,
Proc. of the SIGMOD Conf., Washington, DC,
June 1993,237-246.

D. Comer, The ubiquitous B-tree, ACM Comp.
Surveys 11, 2 (June 1979), 121-137.

G. Copeland, W. Alexander, E. Boughter, and
T. Keller, Data placement in Bubba, Proc. of the
SIGMOD Conf., Chicago, June 1988,99-108.

[9] D. J. Dewitt et. al., GAMMA - a high perfor-
mance dataflow database machine, Proc. of the
VLDB Conf., Tokyo, August 1986., 228-237.

[lo] D. J. Dewitt and J. Gray, Parallel database sys-
tems: the future of database processing or a
passing fad?, SIGMOD Record, 19, 4 (December
1990), 104-112.

[ll] R. Elmasri and S. B. Navathe, Fundamentals
of Database Systems, Benjamin/Cummings, Red-
wood City, CA, 1989.

[12] C. Faloutsos, T. Sellis, and N. Roussopoulos,
Analysis of object oriented spatial access meth-
ods, Proc. of the SIGMOD Conf., San Francisco,
May 1987,426-439.

[13] S. Gh an e d h arizadeh, D. Dewitt, and W. Qureshi,
A performance analysis of alternative multi-
attribute declustering strategies, Proc. of the
SIGMOD Conf., San Diego, June 1992,29-38.

[14] A. Guttman, R-trees: a dynamic index structure
for spatial searching, Proc. of the SIGMOD Conf.,
Boston, June 1984,47-57.

[15] E. G. Hoe1 and H. Samet, A qualitative compar-
ison study of data structures for large line seg-
ment databases, Proc. of the SIGMOD Conf., San
Diego, June 1992,205-214.

[16] E. G. Hoe1 and H. Samet, Data-parallel R-tree al-
gorithms, Proc. of the 22nd Intl. Conf. on Parallel
Processing, St. Charles, IL, August 1993,49-53.

[17] E. G. Hoe1 and H. Samet, Da¶llel spatial
join algorithms, Proc. of the 23-d Intl. Conf. on
Parallel Processing, St. Charles, IL, August 1994.

[18] I. Kamel and C. Faloutsos, Parallel R-trees, Proc.
of the SIGMOD Conf., San Diego, June 1992,
195-204.

[19] W. Kim, Research directions in object-oriented
database systems, Proc. of the PODS Conf.,
Nashville, April 1990, 1-15.

[20] R. C. Nelson and H. Samet, A consistent hierar-
chical representation for vector data, Computer
Graphics 20,4 (August 1986), 197-206.

[21] H. Samet, The Design and Analysis of Spatial
Data Structures, Addison-Wesley, Reading, MA,
1990.

[22] H. !&met, Applications of Spatial Data Struc-
tures: Computer Graphics, Image Processing, and
GIS, Addison-Wesley, Reading, MA, 1990.

167

