
The hcC-tree: An Efficient Index Structure For Object 
Oriented Databases 

B. Sreenath 
Computer Science Dept. 

IIT, Bombay 400 076 
India 

Abstract 

Object oriented database systems, in contrast 
to traditional relational database systems, al- 
low the scope of a query against a class to 
be either the class itself or all classes in the 
class hierarchy rooted at the class. If object 
oriented databases have to achieve acceptable 
performance levels against such queries, we 
need indexes that support efficient retrieval of 
instances from a single class as well as from 
all classes in a class hierarchy. In this pa 
per, we propose a new index structure called 
h&-tree (hierarchy class Chain tree) that sup 
ports both kinds of retrieval &ciently. More- 
over, the update cost of the index structure is 
bounded by the h$ght of the h&-tree. We 
have implemented hcC-trees along with H- 
trees and CH-trees (two other index structures 
that have been proposed in the literature) and 
report a detailed performance analysis of the 
three structures. The performance study re- 
veals that h&-trees perform much better than 
the other two structures under most circum- 
stances. The balanced behaviour of hcC-tree 
under all kinds of queries and in the presence 
of updates shows that it is a promising index 
structure for the future. 
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1 Introduction 

In object oriented database systev, a class can be spa 
cialiied into a number of subclasses which in turn can 
be further specialiied into subclasses to form a class- 
hierarchy. A query against a class in object oriented 
database systems can have two meaningful interpra 
tations. The first ia that the target of the query is 
the class itself while the second is that the target of 
a query is the class and all its subclasses or equiv- 
alently the target. of a query is the class hierarchy 
rooted at that class. If object oriented databases 
have to achieve acceptable performance levels against 
such queries, we need indexes that support efficient re- 
trieval of instances from a single class as well as from 
all classes in a class hierarchy. 

In this paper, we propose an index structure called 
h&-trees (stands for hierarchy class Chain tree since 
the index structure stores information in two kinds of 
chains - hierarchy chains and class chains as we will 
see shortly) that supports both kinds of retrieval e& 
ciently. The main problem in designing a good index 
structure to support such queries is that the two inter- 
pretations of a query against a class pose conflicting 
requirements on the organisation of the index. To un- 
derstand this better we will first classify the types of 
queries that can be posed to an object oriented system. 
Queries based on some attribute of a class or a class 
hierarchy cap be either point queries or range queries. 
Point queries basically ask for all instances of a class or 
a class hierarchy with a particular value for the con- 
cerned attribute. Range queries, on the other hand, 
ask for instances of a class or a class hierarchy whose 
attribute value falls in a certain range. We therefore 
have the following four types of queries: 

l CHP queries: This type of queries refer to point 
queries against all classes in a class hierarchy 
rooted at some class. CHP queries stands for 
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Class Hierarchy Point queries. 

l SCP queries: This type of queries refer to point 
queries against a single class. SCP queries stands 
for Single Class Point queries. 

l CHR queries: This type of queries refer to range 
queries against all classes in a class hierarchy 
rooted at some class. CHR queries stands for 
Class Hierarchy Range queries or equivalently 
Class Hierarchy Range queries. 

l SCR queries: This type of queries refer to range 
queries against a single class. SCR queries stands 
for Single Class Range queries. 

It can now be seen that for CHP and CHR queries 
it would be best if the object identifiers (henceforth 
called oids) of objects of all the classes in the class hi- 
erarchy for a given value of the indexed attribute are 
clustered together (Note that we are not talking about 
clustering of the objects themselves but we are talk- 
ing about the ease with which the matching oids for a 
query can be retrieved). On the other hand, for SCP 
and SCR queries it would be best if the oids of ob 
jects of a single class for a given value of the indexed 
attribute are clustered together. This conflicting re- 
quirement makes the job of designing an efficient index 
structure harder. 

The two main index structures proposed in the liter- 
ature for this problem are called CH-trees and H-trees. 
Class Hierarchy Trees (CH-trees) was proposed by 
Kim et al [KKD89] and is based on B+-trees [Corn791 
and essentially maintains a single index for all classes 
of the class hierarchy. It clusters the oids of objects 
of all classes in the class hierarchy for a given value 
of the indexed attribute. In the same paper they ex- 
plored the performance of having a separate B+-tree 
for each class in the class hierarchy and showed that 
CH-trees perform better in most cases. H-trees was 
proposed in [LOL92] and the central idea here is that 
one B+-tree index per class in the class hierarchy is 
maintained but the indexes are nested according to 
their subclass-superclass relationship. Essentially, the 
H-trees cluster the oids of objects of a single class with 
a given value of the indexed attribute together. We 
will describe the H-trees and CH-trees in more detail 
in Section 4. The new index structure, hcC-trees, that 
we propose tries to cluster the oids in both the above 
ways so that all queries can be answered efficiently. 

We have implemented all the three index structures 
on top of a storage manager that treats every file as 
a sequence of pages. We have conducted an extensive 
performance study of these three index structures and 
we show that h&-trees perform consistently as well as 
or better than CH-trees and H-trees for the four types 
of queries above for various data distributions. 

There has been recent interest in other types of in- 
dexes in object oriented database systems. Path in- 
dexes have been studied in [BK89, KM90, LLOHSl] 
which are indexes over class composition hierarchy 
rather than the class hierarchy. Signature files have 
been studied as set access facility in OODB’s recently 
in [IK093]. 

The remainder of the paper is structured as follows: 
Section 2 describes the structure of hcC-trees while 
Section 3 describes the search and update algorithms 
for the hcC-tree. Section 4 compares the performance 
of the three index structures CH-tree, H-tree and hcE 
tree. We conclude in Section 8. 

2 The Structure of hcC-tree 

In this section, we describe the structure of hcC-trees. 
A hcC-tree has three types of nodes: 

1. Internal nodes 

2. Leaf nodes 

3. Oid nodes 

The internal nodes and leaf nodes are somewhat 
similar to the internal nodes and leaf nodes of Bt- 
trees respectively. The inter& nodes form the up 
per levels of the tree while the leaf nodes are the last 
but one level of the tree. The oid nodes are at the 
last level (one level below the leaf nodes) and contain 
the actual information in the case of h&-trees. To 
maintain an index on a class-hierarchy (on a common 
attribute), only one hcC-tree is needed (similar to CH- 
trees [KKDSS]). We will now explain the three types 
of nodes in greater detail. We will assume for the sake 
of the ensuing discussion that the class hierarchy we 
are indexing consists of n classes. 

2.1 Structure of Oid-Nodes 

The oid-nodes are at the last level of the hcC-trees as 
we just mentioned. Actually, the oid-nodes are divided 
across n + 1 chains of oid-nodes. Corresponding to 
each class in the hierarchy there is a chain of oid-nodes 
which is called a class chain while there is one chain 
of oid-nodes that corresponds to all the classes which 
is called the hierarchy chain. The structure of the 
oid-nodes of the two types of chains (class chains and 
hierarchy chain) differ slightly from each other. Oid- 
nodes of a class chain store the oi 

4 
of the objects of 

that particular class alone. Each ent y in a class-chain 
oid-node is of the form <key, oid list>. Figure 1 shows 
a typical entry in a class-chain oid-node. Each entry 
consists of a key value and the oids of the objects of 
that class which have that key value for the indexed 
attribute. The oid nodes of the hierarchy chain store 
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the oid of objects belonging to all classes. An entry in 
the hierarchy chain is of the form <key, set of oid lit>, 
8s illustrated in Figure 2. For a given key value, the 
hierarchy chain oid-node consists of n oid-lists. Each 
oid-list consists of oids of objects of that class which 
have the value b for the indexed attribute. The oid- 
nodes of each of the n + 1 +ains are chained together 
to facilitate traversal of oid-nodes from left to right. 

&ey,oid list> 

key 
#of 

oids 
[ oidl ,...,oidk) 

Figure 1: A typical &m-chain oid-node entry 

drey,setofoii 

bY cidl (oiil ,..u, oidk) ,..a cidm (oidl ,..w, oii] 

Figure 2: A typical hierarchy-chain oid-node entry 

Figure 3: Leaf node 

2.2 Structure Of Leaf Node 

A typical hcC-tree leaf node is shown in Figure 3. Each 
entry in the leaf node containe a key h, a bit map and 
a set of pointers. The bit map consists of n bits (one 
bit per class) and a bit corresponding to a clrrss in 
the bit map is set if and only if there is at least one 
object belonging to that claea having the key value k. 
Let us assume that m bits in the bitmap 8re set for 
a given value k. Then, the set of pointers consists of 
m+ 1 pointers, m of these to oid-nodes of class chains 
and one to an oid-node of the hierarchy chain. The 

oid-nodes pointed to will of course contain the oids of 
objects whose indexed attribute haa value k. 

Figure 4: Internal node 

2.3 Structure of Internal Node 

An internal node of 8n hcC-tree is illustrated in Fig- 
ure 4. The internal node structure is similar to the 
structure of a B+-tree internal node in that there 8re 
m keys and m+ 1 pointers to nodes at a lower level. 
However, there is some additional information stored 
in the internal nodes of h&-trees. Associated with 
each of the m+ 1 intervals (determined by the m keys) 
of the internal node, a bitmap of n bits is stored. A bit 
(in the bitmap) corresponding to a claae for an interval 
is 0 if and only if there exists no object belonging to 
that claes which hae a value for the indexed attribute 
that lies within the interval. The fanout for an internal 
node is between d and 2d, similar to B+-trees, where 
d is the order of 8n internal node. 

We will now look at an ermmple h&-tree of Fig- 
ure 5 which is partially populated. The figure depicts 
a root node which is the only internal node in this 
tree. There are two leaf nodes at the next level and 
the rest are oid-nodes. In the figure we assume that 
the clase hierarchy contains two claeses. The root node 
has only one key and the bitmap for the second inter- 
val of the root node is (10) which means that in this 
interval there are some objects belonging to claae 1 and 
no objects belonging to cl8ss 2. In the first leaf node 
(with keys 10 and 20), for the key 10 the first pointer 
is pointing to 8n oid node which haa the oids of the 
objects belonging to clase 1 and which have the value 
10 for the indexed attribute and the second pointer is 
pointing to the oid node which hes objects belonging 
to claes 2 and with the value 10 for the indexed at- 
tribute. These 8re pointers to class chains for clesse~ 
1 and 2 respectively. The next pointer for the key 10 
points to the oid node which stores the oids of objects 
of both the cl8sses 1 and 2 with a key value of 10. This 
is the pointer to the hierarchy chain. Since there are 
no objects belonging to class 2 with the key value 20, 
its bit is set to 0 and there is no pointer corresponding 
to it in the first leaf node. In general, many entries in 
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a leaf node and in fact many leaf nodes can point to 
the same oid node. In the figure, for the keys 10 and 
20, the first pointer points to the same oid node. 

Figure 5: h&-tree 

3 Search and Updates 

3.1 searching 

Searchiig an h&-tree for a particular value is similar 
to that of B+-trees. We outline the search algorithm 
in this section. 

Algorithm Search 

InpUt: Cidaaateh - list of classes that are to be searched. 
vi - lower bound of the range of search values. 
us - upper bound of M&range search values. 

= us for point queries. 
Output: zit of oids whose indexed attribute values fall 

within [WI, 91. 

1. Case type of query 
/* The type can be figured out from cid#.~&, ~1, and 
v2 */ 

SCP: Search to the leaf node that contains the value VI. 
Search the class-chain oid node of this class for 
the value 01 and return matching oids. The 
search may occasionally end early as along the 
search path, the bit corresponding to this class 

may be zero. 
CHP: Search to the leaf node that contains the value VI, 

Search the hierarchy node for the value VI and 
return the matching oids belonging to classes of 
C&arch. The search may end early if it is 
detected that all classes do not have oids 
corresponding to VI somewhere along the 
search path. 

SCR: O,,,,d.=Search-Oid-Node(vl ,Vs,Cid##orch). 
Search the oid nodes starting from On& in 
the oid chain for this class for matching oids. 

CHR: If the number of classes in c&o+& is qua1 
to the number of classes in the class hierarchy 
then use hierarchy chain to retrieve matching oids. 
Otherwise, use the individual class chains. 

Search-Oid-node (v~,v~,c~~) 

Input: [Vl - us] - range being searched 
cid - class-id of the object. 

Output: Returns the oid-node of class cid from where 

1. 

3.2 

the chain should bc scanned for this range 

Use the bitmaps to get to the right oid node. This will 
look at exactly one node in each level of the tree and is 
therefore as efficient as a normal Bt-tree search. 

Insertions 

The insert algorithm is outlined below: 

Alnorit hm Insert 

Insert (v, aid, ha) 

Input: v - key value of new object to insert. 
oid - oid of new object to be inserted. 
cid - class-id of the new object. 

1. Liz Leaf node in whose interval v falls. 

2. If v not in Li 
Add v to L; 
Set bit corresponding to cid and allocate space 
for two pointers 
Handle splits like normal Bt-tree split 
Let Li be the leaf node that contains v finally 

3. If v in Li and bit of cid for v is zero 
Set bit corresponding to cid and allocate space 
for one more pointer 
Handle splits like normal Bt-tree split 
Let Lg be the leaf node that contains v finally 

4. Oinaerted = Class-Chain-Oid-lnsert(v,oid, cid). 

5. Update Li to reflect that the oid-node for v (of the class 
chain corresponding to cid) is Oinsnt#d 

6. Oinmrted = Hier-Chain-Oid-lnsert(v,oid, cid). 
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7. Update Li to reflect that the hierarchy chain oid-node 
for V 1s Oinserd 

The insert algorithm has three main phases. In the 
first phase it finds the leaf node in whose interval v falls 
and then adds vto the leaf (if it is not already there) 
or adds a pointer for v corresponding to cid in thii leaf 
node (if the pointer is not already present). All splits 
are handled like normal Bt-trees. The bitmaps are 
updated (if need be) as the algorithm descends down 
from the root towards Li and can be similarly updated 
while going back towards root in case of a split. After 
the first phase there will never be a need to split a 
leaf node or an internal node as all the required space 
has been allocated. In the second phase it adds the 
oid to the class chain while in the third phase it adds 
the oid to the hierarchy chain. We will describe Class- 
Chain-Oid-Insert only. The algorithm for Hier-Chain- 
Oid-Insert is similar. 

Class-Chain-Oid-Insert (v, oid , cd) 

Input: v - key value of the object. 
oid- oid to be inserted 
cid - class-id of the new object. 

Output: Returns the class-chain oid-node where oid is 
inserted 

1. Oi = Find-Oid-Node(v,cid) 

2. Oinm+ted = Oid-lnsert(v, oid, Oi) 

3. return Oinr*+tad 

Class-Chain-Oid-Insert first finds an oid node 0~ into which it 
can insert this oid and then inserts it into Oi. This insertion 
may cause Oi to split and the aid-node where this oid is finally 
inserted is 0inawt.d. 

Find-Oid-Node (v,cid) 

Input: v - key value of the object. 
cid - class-id of the new object. 

Output: Returns the oid-node where we may insert the oid. 

1. If the class cid has no object at all, then create a new 
oid node and return it. 

2. If the class cid has no object with value smaller than 
or qurl to v for the indexed attribute, let vs be the 
smallest value larger than v for which the class cid has 
an object with its indexed attribute value 9. Return the 
oid node which contains the value q. 

3. If the class cid hac no object with value v for the in- 
dexed attribute, let 01 be the largest value smaller than 

4. 

v for which the class cid has an object with its indexed 
attribute value VI. Return the oid node which contains 
the value VI. 

Return the oid node (of the class chain corresponding to 
cid) in which v is found. 

Oid-Insert (o,A,v,oid) 

Input: on& - the oid node in which oid may be inserted. 
v - the key value. 
oid- the object to be inserted. 

Output: The oid node in which the oid is finally inserted. 

1. If space for inserting v and the oid 
vl~rg.=max(largest value in Ond,v); 
Otoi,,,~=oid node immediately after On& in 
the chain. 
If no space for vrore. and its oids in Othn,nt 

0 tdn..+t=Get a new oid node. 
Hook up Otd,,,-t into the class chain 

Insert vlorl. and its oids in Otd,,,.+t; 
If (bg. # v) 

Delete vr*+s. from u. 
Insert v in 0%~. 
Lf=leaf node in whose interval vu,?*. falls. 
Update Lf to reflect that the oid node for 
vlclpg. for cid is otdn,Wt. 
Return o,,,,d.. 

else Return otoi,,..,t. 
else Insert v in on&. 

Return on&. 

The first phase of the insert is similar to the insert 
algorithm of the B+-trees. The cost is therefore the 
same except that occasionally updating bitmaps may 
cause some nodes to be written back to disk. The sec- 
ond and third phy are additional in h&-trees. These 
phases in most cases would not cost anything as they 
will look at the same nodes looked at during the first 
phase. Occasionally, in the second phase a maximum 
of two extra traversals of the tree may be needed (one 
for Find-Oid-Node and the other for Oid-Insert). In 
the third phase, finding the hierarchy chain oid node 
in which the oid can be inserted will not cost anything 
as this can be ascertained from Li in algorithm Insert. 
However, in the third phase an extra traversal may be 
needed while inserting the oid into the hierarchy chain 
oid-node. Thus, a maximum of three extra traversals 
may be needed over B+-trees but in most cases there 
is no extra overhead. Therefore, even in the worst 
case, the cost of the insert algorithm is bounded by 
the height of the tree. 
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3.3 Deletion 

The delete algorithm is described below: 

Algorithm Delete 

Delete (~,oid,cid) 

Input: u - indexed value to delete. 
oid - the object to be deleted. 
cid - class to which oid belongs to. 

Li=leaf node that contains the value u. 

01 =oid node for the class cid for the value u. 

O-=DelettOid(v,O~ ,cid); 
Similarly delete oid from the Hierarchy chain also. 

If Oh # Null Return; 
else 

Set the bit for the class cid for u to zero; 
Delete pointer corresponding to class cid 
If all the bits are zero for u, delete it completely 
from the leaf node. 
If underflow occurs handle like that of a normal 
B+-tree and update the bitmaps of the nodes 
affected by deletion. 

Delete-Oid (u, aid, oI) 

Input: u - indexed value to delete. 
oid - the object-id to be deleted. 
O1 - the oid node from which oid is to be deleted. 

Output: Returns Null if there are no more objects 
belonging to u in 01 after the deletion of oid. 

1. Delete oid from the oid list of u in 01. 

2. If there are no more objects for u 
Delete u itself from 01. 
If there are no more entries in 01, delete 01 from 
the oid chain and adjust the pointers. 
Return Null. 

else 
Return 01. 

4 Performance Analysis 

In this section, we report on the implementation de- 
tails of the three index structures and the results of the 
experiments we conducted to study their performance. 
Before going into the details of the implementation we 
describe the structure of C&trees and H-trees briefly. 

CH-tree structure 

The CH-tree maintains only one index for all the 
classes in a class-hierarchy. The non-leaf nodes of the 
CH-tree are the same as that of B+-trees and only the 
leaf nodes are different . The leaf nodes store fbr each 
key value the oids of the objects of all the classes in 

the Hierarchy which have that value for the indexed at- 
tribute. In other words, the leaf node structure of CH- 
trees is similar to the hierarchy chain oid-node etruc- 
ture of the h&-trees. Searching for values in CH-trees 
on a single-class is treated in the same way as search- 
ing for values on a hierarchy of classes. The searching 
and update procedures in CH-trees are similar to that 
of B+-trees. 

H-tree Structure 

To index a class-hierarchy on a common attribute, one 
H-tree is maintained for each class of the hierarchy and 
-these trees are nested according to their euperclass- 
subclass relationships, to form a hierarchy of index 
trees. The H-tree for each class is similar to that of 
B+-trees. The H-tree of the root class of the hierarchy 
is nested with the H-trees of all its immediate sub 
classes, and the H-trees of the subclasses are nested 
with the H-trees of their respective subclasses and so 
on. The H-trees are similar to singkclass indexing in 
that a separate tree is maintained for each class but 
they are different in that the different trees are not 
independent due to the nesting of trees. The nesting 
facilitates jumping into the middle of a subclass tree 
without going through its root node. At the same time 
H-trees also facilitate the independent access of any of 
the subclass H-trees. The leaf nodes of H-trees are 
similar to that of @-trees. However, in an internal 
node N of a H-tree, apart from the usual diicriminat- 
ing key values and child node pointers(B), pointers(l) 
pointing to subtrees of nested H-trees are stored. The 
L-pointers also consist of the minimum and maximum 
values of the aubtree of nested H-trees. The rules for 
nesting H-trees are described in [LOL92]. To search 
on a single class for instances which satisfy the search 
condition, the H-tree is searched like a B+-tree by ig- 
noring the nested tree pointers. For search on multiple 
classes or the entire cl,ass-hierarchy, the search begins 
on the H-tree of the root class, and follows the point- 
ers to search the nested subtrees of classes of interest. 
The algorithm is described in [LOL92]. 

Experiments 

We implemented the three index structures in C on top 
of a Storage Manager that treats a file as a collection 
of pages. For all the three index structures, each indi- 
vidual index structure is a file and a node corresponds 
to a page of the storage manager. The page sise of the 
storage manager was fixed at 4K bytes. The perfor- 
mance metric in all our experiments was the number 
of page accesses. 

The relative performance of the index structures de- 
pends on a lot of factors. One important factor is the 
distribution of key values across the classes of a class 
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hierarchy. We consider the following indexed attribute 
distributions: 

1. complete overlap - All claesce in the class hierar- 
chy have objects correspondiig to 8ll key values 
apperving in the leaf nodes of the indexes. 

2. partial overlap - the domains of any two classes 8re 
partially overlapping, i.e. only some of the cl8sses 
have objects with a partic& indexed value. We 
consider only 50% overlap, i.e., half of the claeees 
in the hierarchy will have objects with a particular 
indexed value. 

For each of the above data distributions, we study 
the performance of the index structures for the four 
types of queries identified earlier. 

Another important factor on which the relative per- 
formance of the index structure depends is the number 
of cl8sses in a class hierarchy. We will first look at the 
effect of the data diitribution and then the effect of 
varying the number of chtsses on the relative perfor- 
numce of the index structures. 

2o.m - 

16.00 - 

rofclmmqvcdcd 

Figure 6: CHP query, Complete Overlap, 10 classes 

4.1 Effect of Data Distribution 

4.1.1 Complete Overlap 

In this section we study the performance of the in- 
dex structures for the complete overlap c8se. We crc+ 
ated a database of 1.5 million instances. There were 

10 cl8sses in the claee hierarchy and e8ch class had 
150,000 instances. The claes hierarchy WBB 4 level deep 
with each claes having two or less than two immedi- 
ate subclaeses. The performance for the four types of 
queries under thii setting are described below: 

SCP Queries 

The number of page accesses for all indexes is the 
height of the index in this case. The height of CH-trees 
and H-trees are 3 for the given configuration while it 
is 4 for hcGtrees. 

hfplpm&wacdxld 
I I I I 

6.00 - 

5.50 - 

s.00 - 

4.50 - 

4.00 r 

,I / I 
030 -- 

0.00 t/ j 
I I I I I 

” Rmp- 
0.00 20.00 4o.m uxlo l!4ml 100.m 

Figure 7: SCR query, Complete Overlap, 10 classes 

CHP Queries 

In this experiment, we varied the clase against which 
the claes hierarchy point query WBB targeted and hence 
the number of cl8sses that were aetrmlly queried. Fig- 
ure 6 shows the results of CHP queries 8s we vary the 
number of cl8sses against which the query ~8s tar- 
geted. It is clearly seen that CH-trees and hcGtrees 
are immune to the number of classes being queried 
while the number of page accesses for H-trees grows 
linearly with the number of claeses. 

SCR Queries 

In this experiment, we varied the range of the SCR 
query. Figure 7 shows the results of SCR queries 8s 
the range is varied from 1% to 100% of the domain of 
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the indexed attribute. hcC-trees and H-trees are very 
close in their pcrformancc while CH-trees perform very 
poorly bceausc a significant portion of their leaf nodes 
contain irrelevant information for SCR queries. 

CHR Queries 

We could vary the range of the query as well as the 
number of classes against which the query is targeted 
for CHR queries. WC varied the number of classes 
from 1 to 10 and the range from 1% to 40%. Table 1 
shows the results of this experiment. Once again hcC- 
trees perform the best while CH-trees arc good only if 
the entire class hierarchy is queried. The H-trees do 
not perform as well as hcC-trees because for each class 
they have to traverse the internal nodes of the H-tree‘ 
corresponding to that class at least partially. 

Discussion of Complete Overlap results 

In all cases, hcC-trees arc the best or close to the best. 
CH-trees are good only if the target of a query includes 
all classes in the class hierarchy. H-trees arc good only 
if the target of a query is a single class. hcC-trees 
arc good under all circumstances which is a desirable 
characteristic given that one can not expect queries to 
be against a single class or all classes all the time. 

lOfp6wmpcd 

I I I zizr 
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Figure 8: CHP query, Partial Overlap, 8 classes 

4.1.2 Partial Overlap 

In this section, we study the performance of the index 
structures for the partial overlap cast. In thii cxpcri- 
ment, we created a database of 1.2 million instances. 
There were 8 classes in the database. For each key 
in between 1 and 300,000, four classes were chosen 
randomly to have objects with their indexed attribute 
equal to the chosen key value. Therefore, each class 
has approximately 150,000 instances. The class hier- 
archy was 3 level deep with each class having two or 
less than two immediate subclasses. The performance 
for the four types of queries under this setting arc de- 
scribed below: 
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4.oLl - 

3.50 - 

3.m 

t 

2.30 

2.00 

1.50 

1.00 

I 

0.30 t 

0.00 c 
Ll I I I I 

0.00 20.m 40.M 6om 80.00 lOO.C#l 

Figure 9: SCR query, Partial Overlap, 8 classes 

SCP Queries 

The results in this case were similar to complete ovcr- 
lap for CH-trees and H-trees, i.e., the number of page 
accesses was equal to the height of the tree which was 
three. In the cast of hcC-trees, though the height of 
the tree was 4, the average number of page accesses 
(over 100 random starches) was 3.5. The reason is 
that occasionally the starch in a h&-tree can tcrmi- 
natc early, if it can be determined at the internal nodes 
or the leaf nodes (using the bitmap) that the search 
would be unsuccessful for this point query. 
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4 

6 

10 

Index Used 
H-tree 

CH-tree 
hcC-tree 

H-tree 
CH-tree 
hcC-tree 

H-tree 
CH-tree 
h&-tree 

H-tree 
CH-tree 
hcC-tree 

H-tree 
CH-tree 
hcC-tree 

Es- 
9 
63 
9 

iii- 
63 
15 
35 
63 
27 
52 
63 
39 

-iii- 
63 
63 

2% 
15 
119 
15 

30 
119 
27 

59 
119 
51 
88 
119 
75 

146 
119 
123 

5% 
31 
300 
32 
69 

300 
64 
137 
300 
128 
205 
300 
192 
347 
300 
320 

10 % 
57 I 

606 ’ 
58 i 

122 
606 
116 
245 
606 
232 

‘368 
606 
348 
611 
606 
580 

Table 1: CHR query,Complete overlap, 10 classes 

CHP Queries 

In this experiment we varied the class against which 
the class hierarchy query was targeted and hence the 
number of classes that the query was actually tar- \ 
geted. Figure 8 shows the results of CHP queries, as 
we vary the number of classes against which the query 
was targeted. As in the case of complete overlap, CH- 
trees and&C-trees are not sensitive to the number of 
classes being queried. The H-trees, however perform 
worse than the complete overlap case. The reason is 
as follows: Recall that the H-tree reserves one-third 
of the space in a node for L-pointers (pointers to subs 
class nodes and information about the maximum and 
the minimum values of the subclass node). It turns 
out that for the partial overlap distribution, this space 
is not enough for L-pointers and hence we need to have 
overflow nodes for these L-pointers. This, in turn, 
increases the number of page accesses for the CHP 
queries, since the L-pointers have to be searched to go 
from a superclass to a subclass. 

SCR Queries 

The results of thii experiment does not diier much 
from the complete overlap case and is therefore omit- 
ted. 

CHR Queries 

In this experiment we varied the range of the query as 
well as the number of classes against which the query 
is targeted. We only report results of an experiment 
in which the range is fixed at 1% while the number 

1228 2459 
690 1380 

+ 

1180 2332 
1228 2459 
1150 2300 

of classes targeted was varied from 1 to 10. Figure 10 
shows the results of thii experiment. Once again h&C- 
trees perform the best while CH-trees are good only if 
the entire class hierarchy is queried. The H-tree pe’r- 
tbrmance in this case is marginally worse than that 
of complete overlap. The reason is as follows: Con- 
sider three classes A, B and C where C is a subclass 
of B which in turn is a subclass of A. During a class 
hierarchy search on A, the H-tree for class B would 
be entered at some node (say N). In order to get the 
matching oids of class B all that is needed is to tra- 
verse to the corresponding leaf and retrieve them, but 
in order to get to the H-tree of class C, the subtree 
rooted at N and- the ancestors of N may have to be 
searched for L-pointers. As suggested in [LOL92] we 
have bitmaps per class to say whether or not a node 
has a L-pointer but still quite a few nodes may have 
to be scanned. This leads to further degradation in 
performance. The’ reason this was not as’ much an is- 
sue in the complete overlap case is that the trees for 
all classes are identical and the nesting is likely to be 
perfect. 

Discus&xi on Partial Overlap 

It is seen that H-trees seem to suffer in the partial 
overlap case because of improper nesting. CH-trees 
would also perform relatively badly if the ranges of 
the individual classes were disjoint but a,single class 
query was looking for oids of objects in a range in 
which the queried class has no matching oids. CH- 
trees would search the entire queried range and then 
report that no matching bids are present while H-trees 
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Figure 10: CHR query, Partial Overlap, 8 cl- Figure 11: CHP query, Complete Overlap, 50 classes 

and h&-trees would recognk tti fact rather early. 
So, both H-treea and CH-treea are more dependent on 

ment. CH-trees and hcC-treea perform the best in this 

the actual data distribution than hcGtrees. 
experiment. This shows that 88 the number of claesea 
in the hierarchy grows H-tree performance degrades 

4.2 Effect of varying the number of classes in 
for CHP queries since there are more jumpa out of 

the class-hierarchy 
superclass H-trees into eubclase H-trees. 

In this set of experiments we had 50 clasoea in the claw 
hierarchy. The number of c1asae.o +nificantly a&cta 5 Conclusion 

the CH-tree oince for single claaa queries the propor- 
tion of irrelevant information growa BI the number of 

Queries in object oriented database system can be 

clasnea grows. For the H-trees, the greater the num- 
against a class or the class hierarchy rooted at a claee. 

ber of classes, the more the jumpr into other nested 
Tti pores conflicting requirements on how an index 

trees and this makea the clarr hierarchy querim more 
mciatea oidn to key values. We proposed a new in- 

expensive. WC only considered the complete overlap 
dex structure, called h&-trees, that tsolves the con- 

case and each clan hrd 30,000 i~tanc~. Therefore, 
tlicting requirementa by superimposing two different 

there were totally 1.5 million Qbjectrr in the database. 
oid clustering methods on top of a single B+-tree like 

We do not report the results on SCP, SCR and CHR 
structure. The tree had to be designed carefully to 

queries for this setting. SCP and SCR are very rimilar 
make sure that while the acceaa efficiency for search 

to the results with 10 claeres in the class hierarchy. We 
queries is good, the update cost of the index structure 

do not report on CHR M it doce not throw up any- 
is bounded by the height of the tree. 

thing new that CHP (described below) doee not throw Our implementation of hcGtreee, along with CH- 

up. We ouly report the reeulte of CHP queries. trees and H-trees, revealed that hcC-trees are fairly 
easy to implement and in fact simpler than H-trees 

CHP Queries 
eke there is no nesting of trees. The experiments 
&owed that hcGtreee conristently performed well for 

We report the rcllults of en experiment in which the all types of queries. In contrast, H-trees did not per- 
number of da&sea queried ia fixed at 50 while the range form as well for CHR and CHP queries while CH-trees 
is varied. Figure 11 rrhowa the result6 of this experi- did not perform aa well for SCR queries. 
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