
The hcC-tree: An Efficient Index Structure For Object
Oriented Databases

B. Sreenath
Computer Science Dept.

IIT, Bombay 400 076
India

Abstract

Object oriented database systems, in contrast
to traditional relational database systems, al-
low the scope of a query against a class to
be either the class itself or all classes in the
class hierarchy rooted at the class. If object
oriented databases have to achieve acceptable
performance levels against such queries, we
need indexes that support efficient retrieval of
instances from a single class as well as from
all classes in a class hierarchy. In this pa
per, we propose a new index structure called
h&-tree (hierarchy class Chain tree) that sup
ports both kinds of retrieval &ciently. More-
over, the update cost of the index structure is
bounded by the h$ght of the h&-tree. We
have implemented hcC-trees along with H-
trees and CH-trees (two other index structures
that have been proposed in the literature) and
report a detailed performance analysis of the
three structures. The performance study re-
veals that h&-trees perform much better than
the other two structures under most circum-
stances. The balanced behaviour of hcC-tree
under all kinds of queries and in the presence
of updates shows that it is a promising index
structure for the future.

Pcmbiarion to copy without fee all or pori of thb material ti
gnanted provided that the copier are not made or di&ibuted jor
direct commercial adrantapc, the VLDB copMht notice and
the title of the publication and itr date appear, and notice ia
piwen that cop&l in bp permiwion of the V&p La-c Data Bare
Bndowment. To copy othcrwiw, or to -b&h, rcqminr a jee
and/or special permkkn jwm the Endowment.

Proceed&p of the 20th VLDB Conference
Santiago, Chile, 1994

S . Seshadri
Computer Science Dept.

IIT, Bombay 400 076
India

seshadriOcse.iitb.ernet .in

1 Introduction

In object oriented database systev, a class can be spa
cialiied into a number of subclasses which in turn can
be further specialiied into subclasses to form a class-
hierarchy. A query against a class in object oriented
database systems can have two meaningful interpra
tations. The first ia that the target of the query is
the class itself while the second is that the target of
a query is the class and all its subclasses or equiv-
alently the target. of a query is the class hierarchy
rooted at that class. If object oriented databases
have to achieve acceptable performance levels against
such queries, we need indexes that support efficient re-
trieval of instances from a single class as well as from
all classes in a class hierarchy.

In this paper, we propose an index structure called
h&-trees (stands for hierarchy class Chain tree since
the index structure stores information in two kinds of
chains - hierarchy chains and class chains as we will
see shortly) that supports both kinds of retrieval e&
ciently. The main problem in designing a good index
structure to support such queries is that the two inter-
pretations of a query against a class pose conflicting
requirements on the organisation of the index. To un-
derstand this better we will first classify the types of
queries that can be posed to an object oriented system.
Queries based on some attribute of a class or a class
hierarchy cap be either point queries or range queries.
Point queries basically ask for all instances of a class or
a class hierarchy with a particular value for the con-
cerned attribute. Range queries, on the other hand,
ask for instances of a class or a class hierarchy whose
attribute value falls in a certain range. We therefore
have the following four types of queries:

l CHP queries: This type of queries refer to point
queries against all classes in a class hierarchy
rooted at some class. CHP queries stands for

203

Class Hierarchy Point queries.

l SCP queries: This type of queries refer to point
queries against a single class. SCP queries stands
for Single Class Point queries.

l CHR queries: This type of queries refer to range
queries against all classes in a class hierarchy
rooted at some class. CHR queries stands for
Class Hierarchy Range queries or equivalently
Class Hierarchy Range queries.

l SCR queries: This type of queries refer to range
queries against a single class. SCR queries stands
for Single Class Range queries.

It can now be seen that for CHP and CHR queries
it would be best if the object identifiers (henceforth
called oids) of objects of all the classes in the class hi-
erarchy for a given value of the indexed attribute are
clustered together (Note that we are not talking about
clustering of the objects themselves but we are talk-
ing about the ease with which the matching oids for a
query can be retrieved). On the other hand, for SCP
and SCR queries it would be best if the oids of ob
jects of a single class for a given value of the indexed
attribute are clustered together. This conflicting re-
quirement makes the job of designing an efficient index
structure harder.

The two main index structures proposed in the liter-
ature for this problem are called CH-trees and H-trees.
Class Hierarchy Trees (CH-trees) was proposed by
Kim et al [KKD89] and is based on B+-trees [Corn791
and essentially maintains a single index for all classes
of the class hierarchy. It clusters the oids of objects
of all classes in the class hierarchy for a given value
of the indexed attribute. In the same paper they ex-
plored the performance of having a separate B+-tree
for each class in the class hierarchy and showed that
CH-trees perform better in most cases. H-trees was
proposed in [LOL92] and the central idea here is that
one B+-tree index per class in the class hierarchy is
maintained but the indexes are nested according to
their subclass-superclass relationship. Essentially, the
H-trees cluster the oids of objects of a single class with
a given value of the indexed attribute together. We
will describe the H-trees and CH-trees in more detail
in Section 4. The new index structure, hcC-trees, that
we propose tries to cluster the oids in both the above
ways so that all queries can be answered efficiently.

We have implemented all the three index structures
on top of a storage manager that treats every file as
a sequence of pages. We have conducted an extensive
performance study of these three index structures and
we show that h&-trees perform consistently as well as
or better than CH-trees and H-trees for the four types
of queries above for various data distributions.

There has been recent interest in other types of in-
dexes in object oriented database systems. Path in-
dexes have been studied in [BK89, KM90, LLOHSl]
which are indexes over class composition hierarchy
rather than the class hierarchy. Signature files have
been studied as set access facility in OODB’s recently
in [IK093].

The remainder of the paper is structured as follows:
Section 2 describes the structure of hcC-trees while
Section 3 describes the search and update algorithms
for the hcC-tree. Section 4 compares the performance
of the three index structures CH-tree, H-tree and hcE
tree. We conclude in Section 8.

2 The Structure of hcC-tree

In this section, we describe the structure of hcC-trees.
A hcC-tree has three types of nodes:

1. Internal nodes

2. Leaf nodes

3. Oid nodes

The internal nodes and leaf nodes are somewhat
similar to the internal nodes and leaf nodes of Bt-
trees respectively. The inter& nodes form the up
per levels of the tree while the leaf nodes are the last
but one level of the tree. The oid nodes are at the
last level (one level below the leaf nodes) and contain
the actual information in the case of h&-trees. To
maintain an index on a class-hierarchy (on a common
attribute), only one hcC-tree is needed (similar to CH-
trees [KKDSS]). We will now explain the three types
of nodes in greater detail. We will assume for the sake
of the ensuing discussion that the class hierarchy we
are indexing consists of n classes.

2.1 Structure of Oid-Nodes

The oid-nodes are at the last level of the hcC-trees as
we just mentioned. Actually, the oid-nodes are divided
across n + 1 chains of oid-nodes. Corresponding to
each class in the hierarchy there is a chain of oid-nodes
which is called a class chain while there is one chain
of oid-nodes that corresponds to all the classes which
is called the hierarchy chain. The structure of the
oid-nodes of the two types of chains (class chains and
hierarchy chain) differ slightly from each other. Oid-
nodes of a class chain store the oi

4
of the objects of

that particular class alone. Each ent y in a class-chain
oid-node is of the form <key, oid list>. Figure 1 shows
a typical entry in a class-chain oid-node. Each entry
consists of a key value and the oids of the objects of
that class which have that key value for the indexed
attribute. The oid nodes of the hierarchy chain store

204

the oid of objects belonging to all classes. An entry in
the hierarchy chain is of the form <key, set of oid lit>,
8s illustrated in Figure 2. For a given key value, the
hierarchy chain oid-node consists of n oid-lists. Each
oid-list consists of oids of objects of that class which
have the value b for the indexed attribute. The oid-
nodes of each of the n + 1 +ains are chained together
to facilitate traversal of oid-nodes from left to right.

&ey,oid list>

key
#of

oids
[oidl ,...,oidk)

Figure 1: A typical &m-chain oid-node entry

drey,setofoii

bY cidl (oiil ,..u, oidk) ,..a cidm (oidl ,..w, oii]

Figure 2: A typical hierarchy-chain oid-node entry

Figure 3: Leaf node

2.2 Structure Of Leaf Node

A typical hcC-tree leaf node is shown in Figure 3. Each
entry in the leaf node containe a key h, a bit map and
a set of pointers. The bit map consists of n bits (one
bit per class) and a bit corresponding to a clrrss in
the bit map is set if and only if there is at least one
object belonging to that claea having the key value k.
Let us assume that m bits in the bitmap 8re set for
a given value k. Then, the set of pointers consists of
m+ 1 pointers, m of these to oid-nodes of class chains
and one to an oid-node of the hierarchy chain. The

oid-nodes pointed to will of course contain the oids of
objects whose indexed attribute haa value k.

Figure 4: Internal node

2.3 Structure of Internal Node

An internal node of 8n hcC-tree is illustrated in Fig-
ure 4. The internal node structure is similar to the
structure of a B+-tree internal node in that there 8re
m keys and m+ 1 pointers to nodes at a lower level.
However, there is some additional information stored
in the internal nodes of h&-trees. Associated with
each of the m+ 1 intervals (determined by the m keys)
of the internal node, a bitmap of n bits is stored. A bit
(in the bitmap) corresponding to a claae for an interval
is 0 if and only if there exists no object belonging to
that claes which hae a value for the indexed attribute
that lies within the interval. The fanout for an internal
node is between d and 2d, similar to B+-trees, where
d is the order of 8n internal node.

We will now look at an ermmple h&-tree of Fig-
ure 5 which is partially populated. The figure depicts
a root node which is the only internal node in this
tree. There are two leaf nodes at the next level and
the rest are oid-nodes. In the figure we assume that
the clase hierarchy contains two claeses. The root node
has only one key and the bitmap for the second inter-
val of the root node is (10) which means that in this
interval there are some objects belonging to claae 1 and
no objects belonging to cl8ss 2. In the first leaf node
(with keys 10 and 20), for the key 10 the first pointer
is pointing to 8n oid node which haa the oids of the
objects belonging to clase 1 and which have the value
10 for the indexed attribute and the second pointer is
pointing to the oid node which hes objects belonging
to claes 2 and with the value 10 for the indexed at-
tribute. These 8re pointers to class chains for clesse~
1 and 2 respectively. The next pointer for the key 10
points to the oid node which stores the oids of objects
of both the cl8sses 1 and 2 with a key value of 10. This
is the pointer to the hierarchy chain. Since there are
no objects belonging to class 2 with the key value 20,
its bit is set to 0 and there is no pointer corresponding
to it in the first leaf node. In general, many entries in

205

a leaf node and in fact many leaf nodes can point to
the same oid node. In the figure, for the keys 10 and
20, the first pointer points to the same oid node.

Figure 5: h&-tree

3 Search and Updates

3.1 searching

Searchiig an h&-tree for a particular value is similar
to that of B+-trees. We outline the search algorithm
in this section.

Algorithm Search

InpUt: Cidaaateh - list of classes that are to be searched.
vi - lower bound of the range of search values.
us - upper bound of M&range search values.

= us for point queries.
Output: zit of oids whose indexed attribute values fall

within [WI, 91.

1. Case type of query
/* The type can be figured out from cid#.~&, ~1, and
v2 */

SCP: Search to the leaf node that contains the value VI.
Search the class-chain oid node of this class for
the value 01 and return matching oids. The
search may occasionally end early as along the
search path, the bit corresponding to this class

may be zero.
CHP: Search to the leaf node that contains the value VI,

Search the hierarchy node for the value VI and
return the matching oids belonging to classes of
C&arch. The search may end early if it is
detected that all classes do not have oids
corresponding to VI somewhere along the
search path.

SCR: O,,,,d.=Search-Oid-Node(vl ,Vs,Cid##orch).
Search the oid nodes starting from On& in
the oid chain for this class for matching oids.

CHR: If the number of classes in c&o+& is qua1
to the number of classes in the class hierarchy
then use hierarchy chain to retrieve matching oids.
Otherwise, use the individual class chains.

Search-Oid-node (v~,v~,c~~)

Input: [Vl - us] - range being searched
cid - class-id of the object.

Output: Returns the oid-node of class cid from where

1.

3.2

the chain should bc scanned for this range

Use the bitmaps to get to the right oid node. This will
look at exactly one node in each level of the tree and is
therefore as efficient as a normal Bt-tree search.

Insertions

The insert algorithm is outlined below:

Alnorit hm Insert

Insert (v, aid, ha)

Input: v - key value of new object to insert.
oid - oid of new object to be inserted.
cid - class-id of the new object.

1. Liz Leaf node in whose interval v falls.

2. If v not in Li
Add v to L;
Set bit corresponding to cid and allocate space
for two pointers
Handle splits like normal Bt-tree split
Let Li be the leaf node that contains v finally

3. If v in Li and bit of cid for v is zero
Set bit corresponding to cid and allocate space
for one more pointer
Handle splits like normal Bt-tree split
Let Lg be the leaf node that contains v finally

4. Oinaerted = Class-Chain-Oid-lnsert(v,oid, cid).

5. Update Li to reflect that the oid-node for v (of the class
chain corresponding to cid) is Oinsnt#d

6. Oinmrted = Hier-Chain-Oid-lnsert(v,oid, cid).

206

7. Update Li to reflect that the hierarchy chain oid-node
for V 1s Oinserd

The insert algorithm has three main phases. In the
first phase it finds the leaf node in whose interval v falls
and then adds vto the leaf (if it is not already there)
or adds a pointer for v corresponding to cid in thii leaf
node (if the pointer is not already present). All splits
are handled like normal Bt-trees. The bitmaps are
updated (if need be) as the algorithm descends down
from the root towards Li and can be similarly updated
while going back towards root in case of a split. After
the first phase there will never be a need to split a
leaf node or an internal node as all the required space
has been allocated. In the second phase it adds the
oid to the class chain while in the third phase it adds
the oid to the hierarchy chain. We will describe Class-
Chain-Oid-Insert only. The algorithm for Hier-Chain-
Oid-Insert is similar.

Class-Chain-Oid-Insert (v, oid , cd)

Input: v - key value of the object.
oid- oid to be inserted
cid - class-id of the new object.

Output: Returns the class-chain oid-node where oid is
inserted

1. Oi = Find-Oid-Node(v,cid)

2. Oinm+ted = Oid-lnsert(v, oid, Oi)

3. return Oinr*+tad

Class-Chain-Oid-Insert first finds an oid node 0~ into which it
can insert this oid and then inserts it into Oi. This insertion
may cause Oi to split and the aid-node where this oid is finally
inserted is 0inawt.d.

Find-Oid-Node (v,cid)

Input: v - key value of the object.
cid - class-id of the new object.

Output: Returns the oid-node where we may insert the oid.

1. If the class cid has no object at all, then create a new
oid node and return it.

2. If the class cid has no object with value smaller than
or qurl to v for the indexed attribute, let vs be the
smallest value larger than v for which the class cid has
an object with its indexed attribute value 9. Return the
oid node which contains the value q.

3. If the class cid hac no object with value v for the in-
dexed attribute, let 01 be the largest value smaller than

4.

v for which the class cid has an object with its indexed
attribute value VI. Return the oid node which contains
the value VI.

Return the oid node (of the class chain corresponding to
cid) in which v is found.

Oid-Insert (o,A,v,oid)

Input: on& - the oid node in which oid may be inserted.
v - the key value.
oid- the object to be inserted.

Output: The oid node in which the oid is finally inserted.

1. If space for inserting v and the oid
vl~rg.=max(largest value in Ond,v);
Otoi,,,~=oid node immediately after On& in
the chain.
If no space for vrore. and its oids in Othn,nt

0 tdn..+t=Get a new oid node.
Hook up Otd,,,-t into the class chain

Insert vlorl. and its oids in Otd,,,.+t;
If (bg. # v)

Delete vr*+s. from u.
Insert v in 0%~.
Lf=leaf node in whose interval vu,?*. falls.
Update Lf to reflect that the oid node for
vlclpg. for cid is otdn,Wt.
Return o,,,,d..

else Return otoi,,..,t.
else Insert v in on&.

Return on&.

The first phase of the insert is similar to the insert
algorithm of the B+-trees. The cost is therefore the
same except that occasionally updating bitmaps may
cause some nodes to be written back to disk. The sec-
ond and third phy are additional in h&-trees. These
phases in most cases would not cost anything as they
will look at the same nodes looked at during the first
phase. Occasionally, in the second phase a maximum
of two extra traversals of the tree may be needed (one
for Find-Oid-Node and the other for Oid-Insert). In
the third phase, finding the hierarchy chain oid node
in which the oid can be inserted will not cost anything
as this can be ascertained from Li in algorithm Insert.
However, in the third phase an extra traversal may be
needed while inserting the oid into the hierarchy chain
oid-node. Thus, a maximum of three extra traversals
may be needed over B+-trees but in most cases there
is no extra overhead. Therefore, even in the worst
case, the cost of the insert algorithm is bounded by
the height of the tree.

207

3.3 Deletion

The delete algorithm is described below:

Algorithm Delete

Delete (~,oid,cid)

Input: u - indexed value to delete.
oid - the object to be deleted.
cid - class to which oid belongs to.

Li=leaf node that contains the value u.

01 =oid node for the class cid for the value u.

O-=DelettOid(v,O~ ,cid);
Similarly delete oid from the Hierarchy chain also.

If Oh # Null Return;
else

Set the bit for the class cid for u to zero;
Delete pointer corresponding to class cid
If all the bits are zero for u, delete it completely
from the leaf node.
If underflow occurs handle like that of a normal
B+-tree and update the bitmaps of the nodes
affected by deletion.

Delete-Oid (u, aid, oI)

Input: u - indexed value to delete.
oid - the object-id to be deleted.
O1 - the oid node from which oid is to be deleted.

Output: Returns Null if there are no more objects
belonging to u in 01 after the deletion of oid.

1. Delete oid from the oid list of u in 01.

2. If there are no more objects for u
Delete u itself from 01.
If there are no more entries in 01, delete 01 from
the oid chain and adjust the pointers.
Return Null.

else
Return 01.

4 Performance Analysis

In this section, we report on the implementation de-
tails of the three index structures and the results of the
experiments we conducted to study their performance.
Before going into the details of the implementation we
describe the structure of C&trees and H-trees briefly.

CH-tree structure

The CH-tree maintains only one index for all the
classes in a class-hierarchy. The non-leaf nodes of the
CH-tree are the same as that of B+-trees and only the
leaf nodes are different . The leaf nodes store fbr each
key value the oids of the objects of all the classes in

the Hierarchy which have that value for the indexed at-
tribute. In other words, the leaf node structure of CH-
trees is similar to the hierarchy chain oid-node etruc-
ture of the h&-trees. Searching for values in CH-trees
on a single-class is treated in the same way as search-
ing for values on a hierarchy of classes. The searching
and update procedures in CH-trees are similar to that
of B+-trees.

H-tree Structure

To index a class-hierarchy on a common attribute, one
H-tree is maintained for each class of the hierarchy and
-these trees are nested according to their euperclass-
subclass relationships, to form a hierarchy of index
trees. The H-tree for each class is similar to that of
B+-trees. The H-tree of the root class of the hierarchy
is nested with the H-trees of all its immediate sub
classes, and the H-trees of the subclasses are nested
with the H-trees of their respective subclasses and so
on. The H-trees are similar to singkclass indexing in
that a separate tree is maintained for each class but
they are different in that the different trees are not
independent due to the nesting of trees. The nesting
facilitates jumping into the middle of a subclass tree
without going through its root node. At the same time
H-trees also facilitate the independent access of any of
the subclass H-trees. The leaf nodes of H-trees are
similar to that of @-trees. However, in an internal
node N of a H-tree, apart from the usual diicriminat-
ing key values and child node pointers(B), pointers(l)
pointing to subtrees of nested H-trees are stored. The
L-pointers also consist of the minimum and maximum
values of the aubtree of nested H-trees. The rules for
nesting H-trees are described in [LOL92]. To search
on a single class for instances which satisfy the search
condition, the H-tree is searched like a B+-tree by ig-
noring the nested tree pointers. For search on multiple
classes or the entire cl,ass-hierarchy, the search begins
on the H-tree of the root class, and follows the point-
ers to search the nested subtrees of classes of interest.
The algorithm is described in [LOL92].

Experiments

We implemented the three index structures in C on top
of a Storage Manager that treats a file as a collection
of pages. For all the three index structures, each indi-
vidual index structure is a file and a node corresponds
to a page of the storage manager. The page sise of the
storage manager was fixed at 4K bytes. The perfor-
mance metric in all our experiments was the number
of page accesses.

The relative performance of the index structures de-
pends on a lot of factors. One important factor is the
distribution of key values across the classes of a class

208

hierarchy. We consider the following indexed attribute
distributions:

1. complete overlap - All claesce in the class hierar-
chy have objects correspondiig to 8ll key values
apperving in the leaf nodes of the indexes.

2. partial overlap - the domains of any two classes 8re
partially overlapping, i.e. only some of the cl8sses
have objects with a partic& indexed value. We
consider only 50% overlap, i.e., half of the claeees
in the hierarchy will have objects with a particular
indexed value.

For each of the above data distributions, we study
the performance of the index structures for the four
types of queries identified earlier.

Another important factor on which the relative per-
formance of the index structure depends is the number
of cl8sses in a class hierarchy. We will first look at the
effect of the data diitribution and then the effect of
varying the number of chtsses on the relative perfor-
numce of the index structures.

2o.m -

16.00 -

rofclmmqvcdcd

Figure 6: CHP query, Complete Overlap, 10 classes

4.1 Effect of Data Distribution

4.1.1 Complete Overlap

In this section we study the performance of the in-
dex structures for the complete overlap c8se. We crc+
ated a database of 1.5 million instances. There were

10 cl8sses in the claee hierarchy and e8ch class had
150,000 instances. The claes hierarchy WBB 4 level deep
with each claes having two or less than two immedi-
ate subclaeses. The performance for the four types of
queries under thii setting are described below:

SCP Queries

The number of page accesses for all indexes is the
height of the index in this case. The height of CH-trees
and H-trees are 3 for the given configuration while it
is 4 for hcGtrees.

hfplpm&wacdxld
I I I I

6.00 -

5.50 -

s.00 -

4.50 -

4.00 r

,I / I
030 --

0.00 t/ j
I I I I I

” Rmp-
0.00 20.00 4o.m uxlo l!4ml 100.m

Figure 7: SCR query, Complete Overlap, 10 classes

CHP Queries

In this experiment, we varied the clase against which
the claes hierarchy point query WBB targeted and hence
the number of cl8sses that were aetrmlly queried. Fig-
ure 6 shows the results of CHP queries 8s we vary the
number of cl8sses against which the query ~8s tar-
geted. It is clearly seen that CH-trees and hcGtrees
are immune to the number of classes being queried
while the number of page accesses for H-trees grows
linearly with the number of claeses.

SCR Queries

In this experiment, we varied the range of the SCR
query. Figure 7 shows the results of SCR queries 8s
the range is varied from 1% to 100% of the domain of

209

the indexed attribute. hcC-trees and H-trees are very
close in their pcrformancc while CH-trees perform very
poorly bceausc a significant portion of their leaf nodes
contain irrelevant information for SCR queries.

CHR Queries

We could vary the range of the query as well as the
number of classes against which the query is targeted
for CHR queries. WC varied the number of classes
from 1 to 10 and the range from 1% to 40%. Table 1
shows the results of this experiment. Once again hcC-
trees perform the best while CH-trees arc good only if
the entire class hierarchy is queried. The H-trees do
not perform as well as hcC-trees because for each class
they have to traverse the internal nodes of the H-tree‘
corresponding to that class at least partially.

Discussion of Complete Overlap results

In all cases, hcC-trees arc the best or close to the best.
CH-trees are good only if the target of a query includes
all classes in the class hierarchy. H-trees arc good only
if the target of a query is a single class. hcC-trees
arc good under all circumstances which is a desirable
characteristic given that one can not expect queries to
be against a single class or all classes all the time.

lOfp6wmpcd

I I I zizr
28.cNl - - -ii&’

riGi-
26.c4l -

24.nn -

22.on -

m.on -

18.on -

16.W -

14.00 -

12.00 -

10.00 -

8&l -

6.00 -

4.M
__------.-----.

2.wlrl I I I-i *efcluuqnakd
zllo 4m 6.00 8.00

Figure 8: CHP query, Partial Overlap, 8 classes

4.1.2 Partial Overlap

In this section, we study the performance of the index
structures for the partial overlap cast. In thii cxpcri-
ment, we created a database of 1.2 million instances.
There were 8 classes in the database. For each key
in between 1 and 300,000, four classes were chosen
randomly to have objects with their indexed attribute
equal to the chosen key value. Therefore, each class
has approximately 150,000 instances. The class hier-
archy was 3 level deep with each class having two or
less than two immediate subclasses. The performance
for the four types of queries under this setting arc de-
scribed below:

s.al -

4.30 -

4.oLl -

3.50 -

3.m

t

2.30

2.00

1.50

1.00

I

0.30 t

0.00 c
Ll I I I I

0.00 20.m 40.M 6om 80.00 lOO.C#l

Figure 9: SCR query, Partial Overlap, 8 classes

SCP Queries

The results in this case were similar to complete ovcr-
lap for CH-trees and H-trees, i.e., the number of page
accesses was equal to the height of the tree which was
three. In the cast of hcC-trees, though the height of
the tree was 4, the average number of page accesses
(over 100 random starches) was 3.5. The reason is
that occasionally the starch in a h&-tree can tcrmi-
natc early, if it can be determined at the internal nodes
or the leaf nodes (using the bitmap) that the search
would be unsuccessful for this point query.

210

4

6

10

Index Used
H-tree

CH-tree
hcC-tree

H-tree
CH-tree
hcC-tree

H-tree
CH-tree
h&-tree

H-tree
CH-tree
hcC-tree

H-tree
CH-tree
hcC-tree

Es-
9
63
9

iii-
63
15
35
63
27
52
63
39

-iii-
63
63

2%
15
119
15

30
119
27

59
119
51
88
119
75

146
119
123

5%
31
300
32
69

300
64
137
300
128
205
300
192
347
300
320

10 %
57 I

606 ’
58 i

122
606
116
245
606
232

‘368
606
348
611
606
580

Table 1: CHR query,Complete overlap, 10 classes

CHP Queries

In this experiment we varied the class against which
the class hierarchy query was targeted and hence the
number of classes that the query was actually tar- \
geted. Figure 8 shows the results of CHP queries, as
we vary the number of classes against which the query
was targeted. As in the case of complete overlap, CH-
trees and&C-trees are not sensitive to the number of
classes being queried. The H-trees, however perform
worse than the complete overlap case. The reason is
as follows: Recall that the H-tree reserves one-third
of the space in a node for L-pointers (pointers to subs
class nodes and information about the maximum and
the minimum values of the subclass node). It turns
out that for the partial overlap distribution, this space
is not enough for L-pointers and hence we need to have
overflow nodes for these L-pointers. This, in turn,
increases the number of page accesses for the CHP
queries, since the L-pointers have to be searched to go
from a superclass to a subclass.

SCR Queries

The results of thii experiment does not diier much
from the complete overlap case and is therefore omit-
ted.

CHR Queries

In this experiment we varied the range of the query as
well as the number of classes against which the query
is targeted. We only report results of an experiment
in which the range is fixed at 1% while the number

1228 2459
690 1380

+

1180 2332
1228 2459
1150 2300

of classes targeted was varied from 1 to 10. Figure 10
shows the results of thii experiment. Once again h&C-
trees perform the best while CH-trees are good only if
the entire class hierarchy is queried. The H-tree pe’r-
tbrmance in this case is marginally worse than that
of complete overlap. The reason is as follows: Con-
sider three classes A, B and C where C is a subclass
of B which in turn is a subclass of A. During a class
hierarchy search on A, the H-tree for class B would
be entered at some node (say N). In order to get the
matching oids of class B all that is needed is to tra-
verse to the corresponding leaf and retrieve them, but
in order to get to the H-tree of class C, the subtree
rooted at N and- the ancestors of N may have to be
searched for L-pointers. As suggested in [LOL92] we
have bitmaps per class to say whether or not a node
has a L-pointer but still quite a few nodes may have
to be scanned. This leads to further degradation in
performance. The’ reason this was not as’ much an is-
sue in the complete overlap case is that the trees for
all classes are identical and the nesting is likely to be
perfect.

Discus&xi on Partial Overlap

It is seen that H-trees seem to suffer in the partial
overlap case because of improper nesting. CH-trees
would also perform relatively badly if the ranges of
the individual classes were disjoint but a,single class
query was looking for oids of objects in a range in
which the queried class has no matching oids. CH-
trees would search the entire queried range and then
report that no matching bids are present while H-trees

211

’ I
8o.m -

I 1

7s.m -

‘70130 -
,’

6s.m -

55.00
:’ ’

,/
.‘ggg-

Wm....
.’

,’
,/-

/’
,/’

,.-’
,/

,’
,’

.’ ,’ 1
sam-

6am-

4s.m -

ram-

3s.m -

30.m -

23.00 -

20.00 -
is.00 -

l0.m p 1 I I I 1 I I l ofclra
2.00 3.00 4.m s.m 600 7.m 8.m

tdpucJaccemcd tdpucJaccemcd
r r I I f f I I I I IRGr IRGr

mm- mm-

7s.m - 7s.m -
-g!!gl -g!!gl

70.00 - 70.00 -

6s.m - 6s.m -

mm - mm -

s5.m - ss.m -

Mao- Mao-

4s.m - 4s.m -

40.00 - 40.00 -

35.m - 3s.m -

30.m - 30.m -

,2s.m - ,2s.m -

mm- mm-

1s.m - 1s.m -

lam - lam -

5.00 - 5.00 -_............-................-.........-....._............-................-.........-.....

om C I I I 1

0.m l0.m am 30.m 40.m
1-l rofcLoaqmede4

so.00

Figure 10: CHR query, Partial Overlap, 8 cl- Figure 11: CHP query, Complete Overlap, 50 classes

and h&-trees would recognk tti fact rather early.
So, both H-treea and CH-treea are more dependent on

ment. CH-trees and hcC-treea perform the best in this

the actual data distribution than hcGtrees.
experiment. This shows that 88 the number of claesea
in the hierarchy grows H-tree performance degrades

4.2 Effect of varying the number of classes in
for CHP queries since there are more jumpa out of

the class-hierarchy
superclass H-trees into eubclase H-trees.

In this set of experiments we had 50 clasoea in the claw
hierarchy. The number of c1asae.o +nificantly a&cta 5 Conclusion

the CH-tree oince for single claaa queries the propor-
tion of irrelevant information growa BI the number of

Queries in object oriented database system can be

clasnea grows. For the H-trees, the greater the num-
against a class or the class hierarchy rooted at a claee.

ber of classes, the more the jumpr into other nested
Tti pores conflicting requirements on how an index

trees and this makea the clarr hierarchy querim more
mciatea oidn to key values. We proposed a new in-

expensive. WC only considered the complete overlap
dex structure, called h&-trees, that tsolves the con-

case and each clan hrd 30,000 i~tanc~. Therefore,
tlicting requirementa by superimposing two different

there were totally 1.5 million Qbjectrr in the database.
oid clustering methods on top of a single B+-tree like

We do not report the results on SCP, SCR and CHR
structure. The tree had to be designed carefully to

queries for this setting. SCP and SCR are very rimilar
make sure that while the acceaa efficiency for search

to the results with 10 claeres in the class hierarchy. We
queries is good, the update cost of the index structure

do not report on CHR M it doce not throw up any-
is bounded by the height of the tree.

thing new that CHP (described below) doee not throw Our implementation of hcGtreee, along with CH-

up. We ouly report the reeulte of CHP queries. trees and H-trees, revealed that hcC-trees are fairly
easy to implement and in fact simpler than H-trees

CHP Queries
eke there is no nesting of trees. The experiments
&owed that hcGtreee conristently performed well for

We report the rcllults of en experiment in which the all types of queries. In contrast, H-trees did not per-
number of da&sea queried ia fixed at 50 while the range form as well for CHR and CHP queries while CH-trees
is varied. Figure 11 rrhowa the result6 of this experi- did not perform aa well for SCR queries.

212

Acknowledgement

We would like to thank Hohit Dube for building on
our earlier code and implementing H-trees.

References

[BKEO]

[Corn701

[IKO93]

[KKD89]

[KMOO]

E. Bertino and W. Kim. Indexing tech-
niques for queries on nested objects. IEEE
!kaneactione on Knowledge and Data En-
gineering, l(2), June 1989.

D. Comer. The ubiquitous B-tree. ACM
Computing Surveys, 11(2), June 1979.

Yoshiharu Ishikawa, Hiroyuki Kitagawa,
and Nobou Ohbo. Evaluation of signature
files as set access facilities in oodbe. In
Proceedings of the ACM SIGMOD Intema-
tiond Conference on Management of Data,
Washington D.C., May 1993.

W. Kim, K. C. Kii, and A. Dale. Indszing
Techniques for Object Oriented Databaeeu,
pages 371-394. Addison Wesley, 1989.

A.\,Kemper and G. Moerkotte. Access eup
port in Object Banes. In Proc. ACM IntZ.
Conf. on Management of Data, pages 384-
374, 1990.

[LLOHOl] C. C. Low, II. Lu, B. C. Ooi, and J. Han.
Efficient acceee methods in deductive and
object-oriented databases. In Proc. Intl.
Conf. on Deductive and Object- Oriented
Databaeee, 1991.

[LOL92] C. C. Low, B. C. Ooi, and H. Lu. H-trees:
A Dynamic Associative Search Index For
OODB. In Pro&dings of the IiXM ACM-
SIGMOD Conference on the Management
of Data, pagee 134-143, June 1992.

213

