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Abstract 

Many proposed protocols for replicated 
databases consider centralized control of each 
transaction so that given a transaction, some 
site will monitor the remote data access and 
transaction commit. We consider the ap 
preach of broadcasting transactions to remote 
sites and handling these transactions in their 
complete form at each site. We consider data 
of two types: shared-private data and public 
data and show that transactions working only 
on shared-private data can be executed un- 
der a local concurrency control protocol. We 
assume a synchronized network with possibil- 
ities of partition failures. We show that in our 
scheme transaction execution can be managed 
with less communication delay compared to 
centralized transaction control. 

1 Motivation 

Many replicated distributed database protocols man- 
age the execution of a given transaction at one site, 
accessing local and remote data copies for its opera- 
tions, and organize the commit or abort of the trans- 
action from that site. We refer to this as centmlized 
tmnsaction management. With centralized transac- 
tion management, when there are a number of oper- 
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ations or, 02,03 , . ..o., in a transaction and some oper- 
ation oi depends on the result of some previous op 
eration oj, some communication overhead is required 
to secure the result of oj before it can begin oi. To 
eliminate this type of overhead a transaction must be 
executed entirely at one site which contains replication 
of all relevant data so that the execution can deter- 
mine the outcome of each operation locally at the site. 
One possible way to achieve this is by replication of 
data and transactions, meaning that execution of en- 
tire transactions are replicated at the data replication 
sites: This paper deals with this possibility. 

In some distributed database applications, users 
may be able to distinguish two types of data. The 
first type of logical data object is owned by (private 
to) a particular site, meaning that only transactions 
submitted from that site can modify the logical data 
object, and moreover, a transaction that modifies the 
data object would not need to read data from other 
parts of the network. Transactions submitted from 
other sites may read (sham) this type of data. We 
call this type of data shared-private data. The set- 
ond type of logical data is public, meaning that these 
logical data objects can be read and modified by trans- 
actions submitted from every site. 

As an example, consider an airline database system. 
There may be a site for accounting, a site for flight 
scheduling, and many sites for seat reservation. The 
accounting and flight scheduling data would be owned 
by the accounting site and the flight scheduling site, 
respectively. These data may depend in some way on 
the seat reservation data, for example, we may deter- 
mine future flight schedules based on previous flights’ 
consumer pattern, however, we do not need to read 
seat plans and write to flight schedules within a sin- 
gle transaction. The reservation sites may want to 
read flight schedules and policies determined by the 
accounting site but they will not modify them. Hence 
flight schedules and accounting policies are shared- 
private data. The seat plan of each flight should be 
public among the reservation sites since each such site 
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can book seats and modify the data. Hence the seat 
plans are considered public data. 

Since shared-private data is updated by only one 
site, we might expect that simpler concurrency con- 
trol is sufficient. In our scheme, transactions accessing 
only shared-private data can normally be executed and 
committed under a local concurrency control protocol 
with little interaction with other sites. To our knowl- 
edge, most previous work on replicated distributed 
database systems assume only public data, so trans- 
actions from any site can operate on any data object. 
With shared-private data, we utilize the semantics of 
node autonomy. In [KoG87] data can be updated by 
only one node and can be read by other sites according 
to a read-access graph. More arguments that support 
the concept of node autonomy can be found in [CSSO], 
[LS80], [GaK88]. 

We shall adopt onecopy serializability (see section 
4) to be our correctness criteria. When transactions 
are replicated at many sites, a main problem is to 
make sure that the essential (“serialization”) order- 
ings of transaction execution are identical at all the 
replication sites. A locking mechanism which dynami- 
cally assigns the ordering would not work. One possi- 
ble way is to make use of global timestamps. In order 
to get good performance, time&amps based on closely 
synchronized clocks are used. We must also control 
the dynamic transaction aborts of timestamping pro- 
tocol. This is achievable by a conservative timestamp 
ing method, which requires that user transactions pre 
declare supersets of data they read/write. Although 
this would eliminate aborts in normal operation, we 
must still consider transaction aborts due to excep 
tional situations (e.g. a site running out of disk space 
or a partition failure). This is handled by the commit 
protocol. In the case of partition failure, we would 
not want the system to fail totally, and hence a par- 
tition failure protocol is used. We propose a repli- 
cation control scheme based on replicatedtransaction 
processing. We shall call it the Transaction Repli- 
cation Scheme (TRS). A conservative timestamp- 
ing approach is followed. We consider fail-stop failures 
and partition failures. The basic ideas of decentralized 
two-phase commit protocol ([SkeSZ]) and virtual par- 
tition protocol ([ET86], [ETSSJ) are adopted. Multiple 
versions of shared-private data may also be necessary. 

The performance of the system would depend on the 
accuracy of clock synchronization. In particular, the 
response time of public transactions and the number of 
versions of shared-private data that may be needed de 
pend on clock synchronization. We quote from [LisSl]: 
“Synchronized clocks are quickly becoming a reality in 
distributed systems. For example, the network time 
protocol NTP [Mil88] synchronizes clocks of nodes on 
geogmphically distributed networks. It does this at low 
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cost and provides clocks that are synchronized to within 
a few milliseconds of one another. NTP is running on 
the intemet today and is used to synchronize clocks of 
nodes throughout the United States, Canada, and uar- 
ious places in Europe.” Hence we believe that clock 
synchronization is a valid assumption. If indeed we 
cannot rely on an existing clock synchronization sys- 
tem, logical clocks can be created as in [Lam78].. 

Replicated transaction processing has been investi- 
gated in [PiG89], where protocols of high reliability 
by comparing results of transaction replicas are pro- 
posed. Our work here is more concerned about the 
performance. Other work that studies performance of 
replicated databases include [TT91] where transaction 
management is “decentralized” somewhat by having a 
“leader replica of data” which co-ordinates the accesses 
to other copies, but the communication overheads de- 
scribed above still exist. 

There are 2 main findings in this paper. First, 
we show that with clock synchronization, transaction 
replication can help to reduce communication over- 
heads in the transaction management of distributed 
databases. Second, we show that by dividing data 
into 2 types, “public” and “shared-private”, instead 
of treating all data as “public”, we can adopt local 
concurrency control for transactions that work only 
on shared-private data and also enhance their perfor- 
mance. The rest of the paper is organized as follows. 
We shall first describe the system model we assume. 
Then we describe the basic operations of synchronized 
transaction broadcasting. Next we describe a solution 
to global commit and to handle partition failure. Fi- 
nally we give a correctness argument and a conclusion. 

2 Network Model 

Our system model consists of a set of processing sites 
(or nodes) connected through a communication net- 
work. All processing needed by distributed applica 
tions is performed at sites, while any processing needed 
for communication (e.g. routing) is performed by the 
network. We pick a number of sites to store the repli- 
cated data and to execute transactions. We shall call 
these the replication sites. We make the following 
assumptions about the network and timing. 

1. 

2. 

3. 

4. 

Each site has its own memory and there is no shared 
memory. 

Each replication site has a unique ID. 

Message size is bounded by M-size (bits). Messages 
sent from site a to 8’ are received in their sending 
order. This can easily be achieved by some network 
protocol. 

Each replication site has a clock which behaves as a 
non-decreasing counter in the union of all the time 
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periods that the site is operational. Also, each clock 
is precise enough to distinguish the ordering among 
all instances of the following events: submission of 
a transaction at the site, execution of a transac- 
tion operation, arrival or delivery of a message. The 
clocks of any two replication sites are synchronized 
to within a small delta of each other. 

We assume that sites may suffer from fail-stop fail- 
ure. This means that when a site fails, it stops pro 
cessing, and hence a site is either working correctly 
(is operational) or not working at all (is down). We 
also sssume that communication links are subject 
to failures. We assume only failures that result in 
loss of messages. Further more, we assume that 
each communication link between any 2 sites is a 
2-way connection so that if the link between A and 
B fails, then both communication from A to B and 
that from B to A are disabled. With this assump 
tion, network partitioning can occur, meaning that 
the network is divided up into two or more compo- 
nents, where every two sites within a component can 
communicate with each other, but sites in different 
components cannot. We assume some mechanism 
to detect the above failures and to detect their re- 
covery within a reasonable amount of time. 

Transaction and Data Model 

We assume that user jobs are carried out in the form 
of tn~~sactions. A transaction is a particular exe- 
cution of a program that manipulates the data. A 
transaction may access a data object X by operations 
READ(X, y) and WRITE(X, u). A READ(X, y) op 
eration reads the value of X and returns it in variable 
y. WRITE(X, v) changes the value of X to that of u. 
In addition, each transaction contains a COMMIT or 
an ABORT as its last operation. 

As described in the network model, we select a sub 
set of all sites to be the replication sites. These are the 
sites that will actually execute the transactions. The 
remaining sites will interact with both users and some 
replication site and relay transactions and results be- 
tween the two. When a transaction is first sent to a 
replication site, we say that the transaction originates 
from (is submitted at) this replication site. We now 
define shared-private data and public data in terms of 
transaction operations. A logical data object X can 
then be of either one of the following two types: 

l Shared-private data X owned by site s - only 
transactions submitted at one particular replication 
site s can perform WRITE(X,u); and these trans- 
actions access only shared-private data at s; trans- 
actions submitted at other replication sites may per- 
form READ(X, y). We say that s is the owner site 

of X, X is local to s and remote to the other sites. 

Public data X - transactions submitted at any site 
can perform WRITE(X, u) as well as READ(X, y). 

We make the assumption here that all shared- 
private and public data are fully replicated at the repli- 
cation sites, i.e. each of them has a copy at every site. 

We now identify two main types of transactions: 

Local Transaction - a transaction submitted at a 
site s accessing (i.e. reading and/or writing) only 
logical data objects that are owned by site s. 

Public Transaction - non-local transaction that 
may read public and/or shared-private data, and 
that can write only the public data. 

We make the following assumptions about transac- 
tions: 

1. The set of logical data objects that a transaction 
reads (writes) is called its wadset (writeset). In our 
model, each public transaction pre-declares super- 
sets of its readset and writeset. 

2. We assume that the execution of each public trans- 
action is deterministic. That is, when a public 
transaction operation p is executed on its own un- 
der a certain state of relevant parts of the database, 
there is only one possible outcome, namely only one 
possible return value for p and one possible result- 
ing state of relevant parts of the database. In other 
words, public transactions do not make purely ran- 
dom choices in its execution. 

We could have allowed transactions that read/write 
public data and write shared-private data. However, 
these cases can be handled by making such shared- 
private data public data, and also the consideration of 
such transactions does not seem to give us advantage 
in terms of replication control. We clarify that TRS 
is not trying to monitor the data security among the 
sites, rather, we are only trying to make use of the site 
autonomy features to enhance our replication control 
protocol, data security should really be handled by 
some other parts of the system. 

4 Histories and One-Copy Serializability 

In a distributed database system, data objects may 
be replicated at different sites. The copy of a data 
object X at site i is denoted by Xi. A data object 
and its copies are called logical data object and 
physical data objects, respectively. The user, when 
writing transactions, specifies accesses to logical Ob- 

jects. When a transaction Ti executes, the system 
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uses a translation function Ti to translate logical op- 
eration into a sei of one or more physical opera- 
tions. i.e. Wi[X] is translated into Wi[Xa], Wi[Xb], 
. . . . Wi[Xi], where X,, . . . . Xl are some copies of X and 
&[X] is translated into &[Xi], RJXz], . . . . &[X,], 
where Xi, . . . . X, are some copies of X. 

The execution of a set of transactions in a dis- 
tributed database system with replicated data objects 
can be modeled by a replicated history (similar to 
rd log defined in [BeG81]). A set 2’ of transactions 
is a partially ordered set (Ti = (Xi, <i)} where Ci is 
the set of reads and writes issued by transaction i, and 
<i tells the order in which those operations execute. 
A replicated history over such a set T is a partially 
ordered set L = (C(T), <) such that 

1. 

2. 

3. 

4. 

T contains two fictitious transactions TO and Tj . To 
is translated into a set of physical write operations, 
one for each copy of each data object, and these pre- 
cedes all other -physical operations. Tj is translated 
into a set of physical read operations, one for each 
copy of each data object, and these are preceded by 
all other physical operations. 

C(T) = uj i=eTi(Ci), where ri is the translation func- 
tion for Ti; 

for each i and any two operations pi and qi in xi, 
if u E Ti(pi),b E Ti(qi) and pi <i qi, and if a and 
b operate at the same site s (possibly on different 
data X, , Y*), then a < b; 

all pairs of conflicting physical operations are < re- 
lated (two physical operations conflict if they oper- 
ate on the same physical copy of a data object and 
at least one of them is a write operation); and 

(3) in the above states that we are only interested 
in replication histories in which the ordering of logi- 
cal operations within a transaction is preserved by its 
physical replicas at each site. A committed transac- 
tion Tj reads X from another transaction Ti in a 
replicated history L = (E(T), <) if there exists a copy 
X, such that 

1. 

2. 

3. 

W[Xa] and Rj[Xa] are operations in C(T); 

wi[Xa] < Rj [Xa]; ad 

there is no IV,, [X,] such that Wi[Xa] < IV& [X,] < 
Rj [Xal- 

Tj may read X from two or more transactions, each 
physical read operation being performed at a different 
copy. We have a one-teone-read-from relation if for 
each transaction T and for each X that T reads, T 
reads X from exactly one transaction. 

In TRS, public transactions are replicated on mul- 
tiple sites. We shall call the transactions(operations) 

intended by users to work on the logical data ob- 
jects as logical transactions(operations), and the 
replicated public transactions actually executed at 
each site accessing physical data copies the transac- 
tion(operation) replicas of the logical transaction. 

A replicated history Ll is equivalent to another 
history L2 if both L1 and La have the same read-from 
relation. A history H is sen’al if for any two trans- 
actions Ti, Tj that appear in H, either all operations 
of Ti appears before all operations of Tj or vice versa. 
A 1 copy serial (1Gserial) history is a serial history 
that consists only of logical operations. An replicated 
history is one-copy serializable (1Gserializable) 
if it is equivalent to a 1 copy serial history over the 
same set of logical transactions. 

6 Transaction Broadcasting Scheme 

In thii section, we focus on the basic broadcasting 
scheme. We shall forget about partition failure for the 
moment, and assume that each site can communicate 
with each other site in the network. When we intro- 
duce partition failure handling later, the discussion on 
the set of replication sites here will be restricted to a 
subset of all these sites (a view). 

To simplify our discussion, we assume no user- 
interactions within each public transaction.l Public 
transactions are collected and executed in batches. 
Unique tmnsaction timestamps based on clocks will 
determine the serialiiation order among public trans- 
actions. We shall ensure that the timestamps of all 
public transactions follow the order of the transaction 
submission times measured by the local clocks. Con- 
sider a short period of time [tl, tt), and consider the 
batch B of transactions submitted during this period 
at all sites (each site determines the period by its own 
clock). B may contain both public and local transac- 
tions. We execute the local transactions in B immedi- 
ately at their origin sites, while the public transactions 
in B submitted at each site are essentially broadcast 
and executed on all replication sites. Thii means that 
a local transaction and a public transaction replica in 
B are executed at different times. 

Consider for example, two sites 81 and sg, and sup 
pose that a batch of transactions B submitted in a time 
period of length 6 consists of only two transactions, Zj 
and T,, where Tl is a local transaction submitted at 81 
and T, is a public transaction submitted at eg. TI is 
executed and committed immediately during the cur- 
rent period of length 6, while the updates of Zj, and 
the transaction T,, are broadcast by 81 and Q, re- 
spectively, at the end of the period and will arrive at 
the other site later. Our stktegg is to ensure that the 
result is equieffkctive to a serial schedule where local 

‘This limitation can be relaxed (details omitted). 
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tmnsactions are executed immediately before the pub- 
lic tmnsactions submitted in the same period. Based 
on this strategy, if Tt writes a shared-private data ob- 
ject X and Ts reads X, then Ts must read the value 
of X from Tl (since Tl is the only transaction in B 
that writes X). This implies that sl must remember 
the value of X updated by !ll until Te arrives. This 
value of X may become an old version in case it is 
overwritten by another local transaction submitted at 
a later time at sl after Tl, and before T, arrives. In 
general, our scheme requires each site to remember old 
versions of shared-private data it owns. 

The basic step of our protocol for each site s is: ac- 
cumulate public tmnsactions submitted at s for a time 
period of 6 and then broadcast the public tmnsactions 
at the end of the period. If no tmnsaction is accumu- 
lated then a null message is sent. 

Definition 1: The set of clock values is a set of 
real numbers which can be divided into intervals of 
[tl, tz), where t2 - tl is a constant value equal to 6, 
so that the first interval begins at 0, and if the n-th 
interval is [ti, tj), then the n+I-th interval begins at 
tj. Each of these intervals is called a TRS period. 
6 is the length or duration of a TRS period. A TBS 
period of [ti, t2) determines what happens at each op 
erational site when the local clock has value from tl 
to just before t2, we say that the period begins at tl. 
A TRS time of tl determines what happens at each 
operational site when the local clock has value tl. 

Transactions are collected in TBS periods of [t 1, t2), 
and the collected public transactions are broadcast 
at t2. (This means that at each site s, transactions 
are collected in [tl, t2) and broadcast at t2 at s’s time.) 
In our discussion we sometimes refer to “TRS period” 
simply as period or time period. 

Definition 2: A batch of public transaction col- 
lected in a TBS period of [tl, t2) at a site s is called 
a local batch of s at t2. We define global batch 
at time t2 as the set of all the public transactions 
collected at each replication site in period [ti, t2). 

After every 6 time units, s starts the next period of 
global transaction accumulation and broadcast. For 
example, if S = 0.5, then each site broadcasts at times 
0.5,1.0,1.5,2.0 )..., of its local clock. If we concatenate 
the submission time of each global transaction with the 
unique site ID, then we get a globally unique times- 
tamp for each global transaction. The timestamps pro- 
vide a total ordering on all the global transactions. 

Once a site s has received messages from all sites 
(including itself) broadcast at the same TRS time, it 
executes the global batch collected based on their times- 
tamp order. A conservative timestamping protocol will 
be used (see Appendix A). 

5.1 Local Transactions 

We assume some local concurrency control mechanism 
to handle the local transactions. The requirement of 
the local concurrency control is that it generates so 
rializable and necovemble [BHG87] histories. A his- 
tory is recoverable if each transaction commits after 
the commitment of all transactions (other than itself) 
from which it read. We shall keep multiple versions of 
shared-private data for the execution of global trans- 
actions. For the execution of local transactions, we 
need only consider the latest version at any time. 

Local tmnsactions can be scheduled for execution 
immediately upon submission according to some lo- 
cal concurrency control scheme. At the end of each 
TRS period, s broadcasts the latest committed values of 
shared-private data updated by local tmnsactions com- 
mitted in that period, together with the local batch of 
public tmnsactions accumulated during that period at 
s. The value of a shared-private data object X that is 
sent by s in each broadcast is stored as a version of X 
at 8. 

Definition 3: We say that for each shared-private 
data X owned by site s, s implicitly broadcast the 
latest committed version of X at each TIC3 period that 
begins at ti. This version of X is called the virtual 
version of X at ti. 

If X is not updated in the period, then the current 
committed value of X is implicitly broadcast, though 
in fact no version is physically broadcast. 

5.2 Public Transactions 

After a global batch has arrived, site s examines the 
messages that have been received from the other sites, 
which may contain the new versions of the senders’ 
shared-private data as well as a new global batch of 
public transactions. The new versions of the shared- 
private data are first written to the local copies of the 
shared-private data. Site s then executes the pub 
lit transactions in the global batch according to the 
timestamping protocol. We enforce the following rule. 

When a public tmnsaction T, which is bmadcast by 
a site s2 at time t (at ~2’s clock) and executed at site 
s1 later, reads a shared-private data object X, T should 
read the virtual version of X at time t, which was im- 
plicitly broadcast by some site ss at time t (at 83% 
clock) where s3 is the owner of X (83 = s1 or s3 = 232 
is possible). 

If a physical version actually exists for a virtual ver- 
sion of a shared-private data item at time t, then this 
physical version is discarded when the execution of the 
global batch at t is finished. r (The tern “finished” is 
defined in Appendix A) 

Example: An example is illustrated in Figure 1. In 
the figure, a horizontal axis represents time measured 
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by site s’s clock, and the transmission of messages is 
indicated by a slanted arrow. The tail of an arrow 
rests on the time axis at the message sending time t 
of 8, and the head of the same arrow, when projected 
on the time axis, corresponds to the time (s’s clock) at 
which every message broadcast from every other site 
si at time t (according to si’s clock) have arrived at s. 

11 t2 t3 

Figure 1: Transaction broadcast 

In figure 1, we assume a site s owns a shared-private 
data object X with consecutive versions, x1, zz, x3, 
x4, zz, zs. When site s broadcasts a new version zi 
(as shown by a slanting arrow), it also broadcasts a 
new local batch of public transactions Bi submitted 
at s. Execution can be started once all messages of a 
period are received at a site. For example, in Figure 
1, a site can start executing a global batch of public 
transactions B-J at time t2. In our figures, we sssume 
that all messages transfer takes A time as measured 
by s. In the upper half of the figure, between t2 and 
t3, site s must keep 22 since execution of Bz uses x2, 
it keeps x3 because B3 may need x3, it also keeps the 
newest version of X which is used by the current local 
transactions. The lower half of the figure shows that 
for TRS periods of length A/3, 5 versions of shared- 
private data may be kept. 0 

In geneml, if a message sent at TRS time t at site 
s arrives at another site s’ at TRS time t’ where t’ > t 
and t’ = t + A, if each TRS period has length A/q 
(i.e., 6 = A/q), and if the execution of a global batch 
of transactions can be completed in 6 time units, then 
in the worse case, [ql+2 versions of some local skared- 
private data may be required at s’. If t’ 5 t above, then 

at most 2 versions are needed. 
On the average, the system should be able to han- 

dle the execution of a global batch within one TRS 
period, otherwise the system is receiving more work 
than it can manage. Given this is true, if the average 
message delay D is less than 6 and if clocks are closely 
synchronized, then in most cases only a maximum of 
3 versions are required. If a shared-private data has 
not been updated in a period, then obviously no extra 
version is needed for this period. However, if clocks 
are not closely synchronized, a message sent at TICS 
time t may arrive at TRS time t’ that is much greater 
than t, and many versions of local shared-private data 
may be needed at the receiver’s site. 

In normal cases, no extra versions of “remote” 
shared-private data need to be stored; public trans- 
actions and the remote shared-private data they may 
read arrive in the same global batch. Such versions 
are needed only if clock synchronization is poor or the 
transaction takes a long time to finish (details omit- 
ted). 

6 Partition Failures and Commit Protocol 

In previous section we have not described the strategy 
for commit/abort of public transactions, and we did 
not consider failure conditions. This section describe 
how to solve these problems with a quorum based pro- 
tocol and a a-phase commit protocol. 

6.1 Virtual Partition Protocol 

For replicated data control under partition failures, 
quite a number of protocols have been designed. To 
find one suitable for TRS, we need only observe that 
the execution of public transactions on public data is 
quite similar to the “read one write all” special case 
of the quorum consensus protocol ([Giff 91, [ES83]) Al- 
though for each logical read, the replicated transaction 
at each site reads from a different copy (local copy), we 
ensure. that each copy read will be identical. Among 
the protocols for partition failure, the virtual partition 
protocol ([ET86], ETSS]) is one that can maintain the 
“read one write all” characteristics where “write all” 
means writing to all copies in a “virtual partition”. 

A generalized version of virtual partition protocol, 
GVP, is given in [Fu90]. Here we give a brief outline 
of GVP. Each transaction is executed under a view 
which is a subset of the set of all replication sites. (The 
view of a site is what the site considers as the partition 
it currently belongs to, it is the “virtual partition” seen 
by this site.) We summarize the major criterion of the 
protocol here. 

1. View-id : Each user transaction executes in a 
view. Each view has a unique view-id, V-id. Trans- 
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2. 

3. 

4. 

5. 

actions executing in a view are controlled by a con- 
currency control protocol within the view. Each 
copy of a data object has a version number = 
< V-id, k >, indicating that it was last written in 
view V with view-id Vid, and that its value is the 
result of the kth update in that view. (Uniqueness 
of view-id can be enforced by concatenating a se- 
quence number with the site ID.) 

Global read quorums : For each data object X, 
a global read quorum set RQ(X) is defined. X is 
inheritable in view V if V contains a global read 
quorum belonging to RQ(X). 

View quorum8 : For each data object X, and 
each view V, a view read quorum set rq(X, V) 
and a view write quorum set wq(X, V) are de- 
fined. Each view write quorum in wq(X, V), if any, 
intersects each quorum in RQ(X) and each view 
read quorum in rq(X, V), if any. If wq(X, v) # 4 
[ rq(dXiL))if $, then X is said to be wrrtable 
rea a e in . 

view updating : When changing its view to a new 
view V’, V’ must have a view-id greater than the old 
view, a view update transaction in view V’ atomi- 
cally initialises copies of each data object X inheri- 
table in V’ by reading the most uptedate copy of X 
in a global read quorum in RQ(X), where each ac- 
cessed copy must have a version number < Vid, k > 
with Vid 5 V’id. 

Reading and writing 
A logical write of X by a user transaction T exe- 
cuting in view V with view-id V-id is required to 
update/initialize all copies in a view write quorum 
in wq(X, V) ( w h ere each copy has a version number 
that contains a view-id < Vid), giving them the 
same new version number < Vid, k’ > larger than 
their previous version numbers. 
A logical read of X by user transaction T is allowed 
in view V only if at least one copy of X accessed by 
the read has been initial&din V. A logical read of 
X by T reads a view read quorum from sites that 
have the same view as T and take the value of the 
copy with the highest version number. 

For TRS, GVP is adopted as follows: for a public 
dataX,ifaviewVis(sl,sz,...,s,},andifVcontains 
a quorum in RQ(X), then rq(X, V) is the set ( {sl}, 
{sa}, . . . (sn) } (in fact, a site will read from its local 
copy, but we shall show that each replicated read op 
eration reads the same value), and wq(X, V) is the set 
{ 181, $2, ***> s,,) ). If V does not contain any quorum 
in FlQ(X), then both rq(X, V) and wq(X,V) axe 4. 
From this definition, we can deduce that any two qu* 
rums in RQ(X) must have a non-empty intersection. 

This is because any two different views VI, V2 each 
containing exactly one quorum in RQ(X) have view 
write quorums equal to VI and V2, respectively. And 
VI must intersect V2 since a quorum in RQ(X) must 
intersect a view write quorum in any view. Examples 
of RQ(X) are primary site and majority coteries. 

Since a shared-private data X can be updated only 
by its owner site s, we make RQ(X) equal to. {{ s }}. 
rq(X, V) and wq(X, V) are also {{ s }} for any view 
V ifs is in V, otherwise, rq(X, V) and. wq(X, V) each 
equals the empty set. 

6.2 Decentralized Two-Phase Commit 

A commit protocol is necessary to ensure that when- 
ever one site decides to commit(abort) a public trans- 
action, every other site must also decide to com- 
mit(abort) the public transaction.2 

In TM, we have two types of “commit/abort”. The 
first type is the conventional commit/abort of indi- 
vidual transactions. The second type is the “com- 
mit/abort” of global transaction batches, where the 
commit/abort of individual transactions have been 
tentatively decided by each site. If the global batch 
commita, the tentative commits/abort of transactions 
in the batch are realized. If the global batch aborts, 
then all transactions in the batch abort. Public trans- 
actions batches are committed in a two-phase consen- 
sus. We essentially adopt a decentralized twc+phase 
commit protocol [Ske82] for each global batch. This is 
illustrated in figure 2. 

l [Phase 11: ‘l%ansactions are broadcast from all sites 
to all sites in a view V. When a site s haa view V, 
it expects transaction batches from all sites in V 
at each TRS period. On receiving such a global 
batch, it will execute the transactions in the batch. 
It will broadcast the tentative decision of the site 
on the commit/abort for each transaction in the 
batch. For example if there are 3 ordered transac- 
tions Tl , T2, T3 in a batch, and 8 tentatively decides 
to commit Tl , T2 but abort Ts, then its decision will 
be { commit, commit, abort } . We define a special 
I decision. A I decision is not identical with any 
other decision, a I decision is not identical with an- 
other I decision. There are a number of casea where 
a site would broadcast a I decision: 

‘For a commit protocol for a transaction that is ex- 
ecuted at more than one site in a distributed systems, 
Skeen [Sk&Z] proved that if a network partition failure 
occur~~ during the execution of such a protocol, then no 
atomic commit protocol can;guarantee the termination of 
the transaction involved (aa long as the partition pemists), 
i.e., partitions may prevent some transactions from termi- 
nating. In other words, there are no non-blocking protw 
cola for partitionings. 
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Figure 2: Two Phase Commit Protocol 

1. If site s has view V and it receives some mes- 
sage (either transaction batch or view-update 
transaction) from a site 8’ with a view of V’, 
where V’ < V, then s will response to s’ with 
a I decision message, and also V may be sent 
along, so that a’ may update itself to V. 

2. If s has view V and it receives some message 
from another site 8’ with view V’, where V’ > 
V, then s may decide to join the view V’ and 
generate a I decision to transactions of view V 
which ‘are at state (q). 

3. s may have detected some network failure or 
recovery, and decide to change its view. Hence 
it generates a I decision to transactions in the 
current view V. (This includes the csse where 
an expected transaction batch is not totally re 
ceived because of some failure.) 

If a site sends out a I decision, it can go to state (a) 
since the decisions are guaranteed not to be identi- 
Cd. 

l [Phase 21: 
If a site receives identical decisions from all sites in 
the view, it can commit the batch. The transaction 
batch moves from state (w) to state (c). 
s decides to abort when it receives non-identical de- 
cisions from two or more sites in V. The transaction 
batch moves from state (w) to state (a). 

Ifs does not receive an expected message from some 
site in state (w) then a ternzination protocol (see be- 
low) is carried out. It is possible that the batch of 
transactions are blocked by the termination protocol. 

In our timestamping protocol (Appendix A) we al- 
low transactions to read from transactions that have 
not committed or aborted, hence when we decide to 

abort a global batch, subsequent batches in the same 
view may also need to be aborted. However, since 
we have made all user transactions replicas to execute 
under essentially the same database state at all sites 
under normal circumstances, most execution decisions 
will be unanimous. Transaction batch aborts are trig- 
gered only by exceptional cases, such as problems at 
some site, site failures or partition failures. 

6.3 View Update in TRS 

A site can initiate a view-update on detecting failure or 
recovery. It may also adopt a new view that it becomes 
aware of. When a site updates its view, transactions 
executing in older views that are not ready to commit 
will be aborted. 

In the process of view-update, we try to update the 
views of all the sites in a new view, and we want to 
bring up-to-date all copies of all public data items for 
which there is a global read quorum in the new view. 
View update is executed as a special transaction issued 
by the system and not by the users. The view-update 
transaction is initiated by s by broadcasting the new 
view-id to all sites in V. During view update, we make 
sure that for each public data object X, if a quorum 
in RQ(X) exists in the new view V (data X is in- 
heritable), then each site from a quorum in RQ(X) 
broadcast its version of X to all sites in the new view 
V. Whether 8 is initiating or adopting a view, 8 waits 
for enough messages which contains values of X at 
different sites in view V. When enough copies in a 
quorum in RQ(X) is received, s can update(initialize) 
its copy of X to be the value of the copy with the 
greatest version number. 

View-update transaction also follows a 2-pha$e 
commit protocol as follows: In the first phase, sites 
receives notification of the view-update and each ei- 
ther disagrees to join by broadcasting a negative a& 
knowledgement or agreea to join and broadcast their 
versions of public data as needed. In the second phase, 
each site determines if all sites in V agree to join the 
view, in which case the view is updated and it updates 
public data replicas with the latest version if possible; 
otherwise, the view-update is aborted. 

We make sure that view update is successful only if 
all sites in the new view V agree on the view V. This is 
because each site must later participate in the transac- 
tion broadcasting scheme. After committing the view- 
update transaction successfully, all sites agrees on the 
next TRS period to begin transaction broadcasting in 
the new view. 

For shared-private data X, RQ(X), wq(X, V) and 
rq(X, V) each equals {{s}}, where s is the owner site 
of X. Hence view update does not update copies of X 
in the new view. At the first TRS transaction broad- 
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casting of a new view, the latest committed version of 
each shared-private data is broadcast at the same time. 
This allow all replication sites to bring up-to-date its 
local copies. 

6.4 Termination Protocol and Recovery 

The termination protocol and recovery mechanism will 
follow the conventional ideas for such schemes. The 
execution of a transaction can be blocked at a site in 
the termination protocol. Note that while a blocking 
exists in view V so that some data X are suspended, 
a view update from V to V’ initiated in this parti- 
tion will not be able to read from a quorum in RQ(X). 
However, some other view update from another view 
V” (# V) to V”’ ( > V ) may be able to update X. 
Hence we allow writes to some data although a previ- 
ous transaction which tried to read/write the data has 
not committed or aborted. However since those oper- 
ations are from an older view, they can be ignored in 
the new view. 

7 Correctness 

In section 4, we defined a replicated history over a set 
T of user transaction, which includes To and Tj, to 
be a partially ordered set L = (C(T), <) such that 

w = U{=sri(Ci), where Ti is the translation func- 
tion for Ti. For a history generated by TRS we must 
extend this definition since we have introduced some 
mechanisms on top of the user transactions which may 
affect the database state. There are two types of such 
mechanisms in the system: (1) view-update transac- 
tions and (2) broadcasting of versions of shared-private 
data, and the updating of local copies of each site with 
such versions. - 

Let us introduce virtual tmnsactions to represent 
the second type of mechanism. For each broadcazt- 
ing and the corresponding update of a shared-private 
data X at remote sites, we create a virtual transac- 
tion whose translation reads the value of the replica 
of X at the owner site s immediately after the value 
is committed, and writes the value of X at the other 
sites at the corresponding time they are updated. In 
order to assimilate these mechanisms, we modify the 
definition of a replicated history so that C(T) also 
contain the translation of the view-update transactions 
and the virtual transactions. 

A TRS history (history generated by TRS) is a 
replicated history generated by TRS over some set of 
user transactions, where if a READ/WRITE logi- 
cal operation of a user transaction is translated into 
a number of physical operations, then each of these 
physical operations belongs to one transaction replica. 

Next we need to augment the definition of the rdad- 
from relation. This is ,because we have incorporated 

some mechanism to pass information from one trans- 
action to another, other than direct transfer by the 
orderings of write and read operations of user trans- 
actions on the same physical data object. A sequence 
of view-update transactions VT1 , . ..VT. (n may be 1) 
may convey the value vi of some data from one copy 
cl to other copies Cl, let Tp be the user transaction 
that has written this value in copy cl. If a transac- 
tjon T reads the value v at some site in Ci written by 
VTi for some i, 1 5 i 5 n, we say that T reads the 
value from Tp. Also there is the broadcasting of new 
value vs of shared-private data from the owner site 
copy cz to update other copies Cz (by virtual transac- 
tions above). let Tl be the user transaction that has 
written this value at ~2. If a transaction T reads the 
value of vz at some copy in Cz, we say that T reads 
the value from Zl. Hence we extend the meaning of 
read-from with the above augmentations. 

An replicated history L1 over a set of user trans- 
action is equivalent to another history Lz over the 
same set of user transactions if both L1 and Ls have 
the same read-from relation among the user transac- 
tions and TO, Tj . If a TRS history (Y over a set of 
user transactions is equivalent to a 1 copy serial his- 
tory over the same set of user transactions, then (Y is 
said to be lC-serializable. 

In order to show that a TRS history a is lC- 
serializable, we need to find a 1Gserial history /I that 
contains all the logical public transactions correspond- 
ing to the transaction replicas in a and to show that 
the following conditions hold. 

A replica T, of logical public transaction T reads 
from T: (a replica of the logical public transaction 
T’) in o iff T reads from T’ in /I, and T, reads from 
local transaction T” in (Y iff T reads from T” in p. 

The read-from relation among local transactions are 
the same in a and p. 

Since correctness of the virtual partition protocol and 
the decentralized two-phase commit protocol has pre- 
viously been established, we only focus on the features 
that are specific to TRS. In the following, for a repli- 
cation history (Y, we call the sub-history of a that con- 
tains all operations of the committed transactions in 
a a committed history. We say that a set of transac- 
tions can be setialized (are serializable) in some order 
if there exists an equivalent serial history on the same 
set of transaction that has the same ordering. 

Theorem 1: Each committed history generated by 
GVP is a l-Copy serializable histories. 

Proof sketch: We compare GVP with the virtual 
partition protocol. GVP differs from virtual partition 
protocol in 2 ways. The first difference is that vir- 
tual partition ensures quorum intersection properties 
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by means of the numbe: of copies in a quorum, while 
GVP has enforced the intersection properties explicitly 
in terms of set intersections. The second difference is 
that GVP allows a data item X to be initialized by a 
write operation of a view V if the view has a quorum 
in wq(X, V). Hence even if X is not inheritable in V, 
it has a chance to be initialized and become accessi- 
ble. First we observe that when a quorum in wq(X, V) 
in V exists, no other view V’ that is disjoint from V 
can inherit X. This is because any quorum in RQ(X) 
has to intersect any quorum in wq(X, V) that exists 
in V. Hence the only possibility that transactions in 
concurrent views can operate on X is that X is also 
initialized by a write operation in another view VI. 
Since the outcome of the initial write operation does 
not depend on the operations on X in the other views, 
we can still serialize the transactions in the order of 
the view-ids as in virtual partition protocol. 0 

Lemma 1: A site eventually commits/aborts a 
transaction replica if and only if every other site even- 
tually commits/aborts its transaction replica of the 
same logical transaction. - 

Lemma 1 is enforced by the decentralized 2-phase 
commit protocol. 0 

With Lemma 1 we can talk about a committed pub 
lit transaction in a TRS history, which is a public 
transaction with each transaction replica committed 
at its replication site. 

Lemma 2: In a TRS history, the values 
read/written by each read operation replica of a logical 
read/write operation of any committed public trans- 
action are the same. 

Proof sketch: The view update transaction en- 
sures that all copies inheritable in a view are the same 
before any transaction is executed in the view. A 
global batch of transactions read from the virtual ver- 
sions of shared-private data that are implicitly broad- 
cast at the same time, hence the values of such data 
they read are the same. If a transaction batch com- 
mits, since transaction execution is assumed to be de- 
terministic, the timestamping protocol makes each of 
the global transaction batch replicas in the execution’s 
view equivalent to a one-copy serial history with the 
transactions executed in the unique timestamp order. 
Cl 

Theorem 2: In our transaction model and network 
model, each committed history generated by the TFtS 
scheme is one-copy serializable. 

Proof sketch: We can show that a committed TRS 
history is equieffective to a history generated by GVP 
on the same set of transactions. 

TRS differs from GVP since there are transaction 
replicas that read and write the data copies at each 
site. Prom Lemma 2 above, we see that each opera- 
tion replica of a logical operation will read/write the 

same value. It follows that the public transactions in 
a view V broadcast at each TRS period can be seen as 
a sequence of transactions that follows GVP by using 
a read one write all quorum consensus. 

We can show that for any committed TRS history 
(Y, there is an equivalent lC-serial history p in which 

transactions of different views are ordered by their 
view-id, so that all transactions with a view K are 
scheduled after all transactions with a smaller view 
and before all transactions with greater views; 

within a view, public transactions are ordered by 
their timestamps, and 

within a view, the local transactions (LT) that com- 
mit in any period of [ti, ti + 6) in a appear after 
all committed public transactions in cr broadcast at 
time ti and before all committed public transactions 
in (Y broadcast after time ti. 

(1) is from the correctness of the virtual partition 
protocol and GVP. (2) is from the conservative times- 
tamping protocol. Proof of (3) is omitted. 0 

8 Performance 

On the average, under non-faulty situation, for a batch 
of transactions, the time that elapses from the time of 
submission of a transaction T to the time of commit of 
T is 20 + 4 + r + (Y, where D is the average communi- 
cation time, S is the TRS period, T is the average time 
to execute a batch of transactions, and a is the average 
real time deviation between 2 clocks in the system (the 
real time needed for one clock to catch up with another 
clock). 20 is the time to send a batch of transaction, 
plus the time to send the resulting decision responses. 
$ is the average time a transaction waits before the 
sending of the transaction batch.. If user interactions 
within a transaction is necessary, then more commu- 
nication delay is inevitable (details omitted). 

Let m be the number of replication sites. For a 
batch of public transactions, message broadcasting in 
TRS uses 2ma messages. However, ma of these mes- 
sages are short messages containing only the com- 
mit/abort decisions on transactions and they can also 
be piggybacked with other broadcasting messages. 

If the response messages are not sent immediately 
after execution, but wait until the next transaction 
broadcasting to be sent along, then the average re 
sponse time will be 20 + 6 + 7 + cr. 

Conflicts exist among transaction operations if they 
try to access the same data item and one of them is 
a write operation. In TFlS, if transaction TI conflicts 
with transaction T2 and Tl has a smaller time&amp, 
then if TI does not commit for some time, Ta also 
cannot commit. We believe that TRS behaves well in 
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conflict cases since such “locks” on data are not held 
over many communication delays. 

9 Conclusion 

Liskov in [LisSl] has advocated the use of clock syn- 
chronization which is quickly becoming a reality in 
wide area network. To our knowledge, TRS is the first 
distributed database scheme proposed to make use of 
clock synchronization and transaction replication to 
achieve better performance in concurrent transaction 
execution. With TBS, execution of a public trans- 
action normally incurs only 2 communication delays. 
Hence TRS is more efficient than centralized transac- 
tion management schemes in terms of communication 
delay when we have transactions with multiple inter- 
dependent operations. TRS does not normally lock 
data while waiting for a number of communications de 
lays, and by a conservative timestampingscheme, TRS 
will not trigger any transaction abort due to conflicts 
among. concurrent transactions. This will be signifi- 
cant for “hot-spot” data where conflicts are frequent. 
If shared-private data type exists, TRS makes use of 
the semantics of node autonomy to allow local transac- 
tions to be executed under local concurrency control. 

If public transactions are not frequent then TRS 
may generate a lot of wasteful null messages. Hence 
we may consider TRS more useful for busy systems. 
However, in real applications, we may have dedicated 
data channels which will be allocated even if no mes- 
sages are sent. In that case, null messages do not cost 
more network resources. TRS transmits transactions 
instead of data items, hence if the size of transactions 
is considerably greater than the size of data accessed, 
then the communication overhead of TRS in terms 
of bandwidth is greater; otherwise, TRS is better off. 
TRS repeats the execution of each transaction at mul- 
tiple sites, hence it incurs more computation overhead 
if the transactions require a lot of computation, but 
we believe that a lot of business applications are more 
I/C-oriented than computation-oriented. We require 
storage for keeping multiple versions of shared-private 
data, if this becomes a problem, we can make all data 
public; 

As discussed in [PiGSS], replicated execution en- 
ables the detection of computational errors, we may 
modify the commit protocol so that each site compares 
the outcome of all sites in terms of computational re- 
sults of the operations, and may correct errors found. 
When this checking is enforced, it is possible to have 
two or more different software versions for the same 
public transaction, which helps us to discover vicious 
coding errors. We may also consider using a three- 
phase commit protocol and derive some better termi- 
nation protocol ([Ske82], [CK85], [RL92]). Finally we 

may need more elaborate performance analysis. 
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Appendix A: Conservative Timestamping 

Concurrency control using conservative timestamping 
ordering peG81] does not require transaction abor- 
tion. We see that the periodical broadcasting of trans- 
actions makes this approach easier because little wait- 
ing (depending on 6, the length of a TRS period) is 
necessary for a site to make sure that no transactions 
with older timestamps will be received from other sites. 
We make use of the assumption that each transaction 
T pm-declares its readset and writeset, denoted by 
readset[T] and writeeet[T], respectively. 

Our approach is to preprocess all the transactions in 
each global batch B in a view to detect read/write and 
write/write conflicts. Let Tl , Ta, . ..T., be the transac- 
tions in B in the timestamp order. 

We propose an algorithm that maintains two 
sets: PRECEDE[Ti, X] and INFORM[Ti, X]. 
PRECEDE[Z, X] contains all transactions that ac- 
cesses X and which should be executed before Ti. Ini- 
tially these sets are empty. 

We shall be careful about commit and abort. A 
transaction replica can be committed or aborted ten- 
tatively at its execution site, however, it will later 
be subjected to a 2-phase commit protocol which de- 
cides on the “commit” or “abort” of an entire global 
batch. A transaction replica commits if and only if 
it tentatively commits and the global batch it belongs 
to also commits. If a transaction replica is tentatively 
aborted, then all its previous operations are undone. 
Here we say that a transaction replica finishes when 
all its operations (including tentative commit/abort) 
other than commit or abort have been executed. We 
assume that transactions in all previous global batches 
has finiihed, and execution follows an updatein-place 
[BHGS’I] approach. 

For each data object X, preprocessing examines 
each transaction Ti that reads or writes X. If Ti writes 
X, then the algorithm looks for the latest preceding 
transaction (in terms of timestamps) Tj that writes 
X and puts it in PRECEDE[Ti, X]. All the trans- 
actions with timestamp between those of Tj and Ti 
that read X are also placed in PRECEDE[Ti, X]. For 
each transaction Tj in PRECEDE[Ti, X], Ti is inserted 
into the set INFORM[Tj, X], so that Tj C~II inform Ti 
about the completion of Tj when it finishes. If X is 
only read by Ti, then the algorithm looks for the clos 
est preceding transaction (in terms of time&amps) Tj 
that writes X. Tj is then placed in PRECEDE[Z, X], 
and Ti is inserted into the set INFORM[Tj, X]. The 
transaction manager (TM) carries out these operations 
locally at one site. When Tj finishes, TM erases it from 
PRECEDE[q,X]. Ti cannot BCCCSE data object X un- 
less PRECEDE[Ti’, X] = 4. After the preprocessing, 
we can start execution. 
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