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Abstract 

This paper introduces a new data structure, 
called V-trees, designed to store long se- 
quences of points in 2D space and yet allow 
efficient access to their fragments. They also 
optimire access to a sequence of points when 
the query involves changes to a smaller scale. 
V-trees operate in much the same way as posi- 
tional B-Trees do in the context of long fields 
and they can be viewed as a variant of R- 
trees. The design of V-trees was motivated 
by the problem of storing and retrieving ge- 
ographic objects that are fairly long, such as 
river margins or political boundaries, and the 
fact that geographic queries typically access 
just fragments of such objects, frequently us- 
ing a smaller scale. 

1 Introduction 

Geographic databases typically store objects that fall 
into two broad classes [Goo92], geographic objects and 
fields. Geographic objects have an identification with 
real-world elements, such as parcels in a cadastral map 
and poles in an electrical network. These objects can 
be associated with one or more geographic represen- 
tation in a given gee-referenced coordinate space. By 
contrast, fields represent spatially distributed variables 
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taking values from some domain. They may be associ- 
ated with digital terrain models, thematic maps or re- 
flectance to incident radiation (as in satellite or aerial 
images). 

This paper is primarily concerned with the prob- 
lem of storing and retrieving the representation of geo- 
graphic objects that are fairly long, such as river mar- 
gins or political boundaries. In more general terms, 
we concentrate on the storage and retrieval of long se- 
quences of points in 2D space, in a given geo-referenced 
coordinate space. From the onset, it should be stressed 
that geographic queries [Ege88, Ege89] typically ac- 
cess just fragments of the representation of a (long) 
geographic object, not the whole representation, and 
they may involve changes to smaller scales (i.e, from 
1:250,000 to 1:1,000,000), which means that many 
points of the object representation will map into a sin- 
gle point, as far as the query is concerned. 

The solution we propose is based on a new data 
structure, called V-trees, basically designed to store 
long sequence of points and yet allow efficient access to 
their fragments. They also greatly optimire access to 
a sequence of points when the query involves changes 
to a smaller scale, since they permit to easily generate 
an approxima.tion of the sequence of points that best 
suits the scale chosen. We also describe variations of 
V-trees that store sets of sequence of points. 

V-trees operate in much the same way as positional 
B-trees do in the context of long fields [Cho85, Car861 
and they can be viewed as a variant of R-trees 
[BecSO, Gut84, Sel87]. However, unlike R-trees, the 
construction of V-trees takes into account just the se- 
quence of points itself and a special node balancing 
criterion, and it is not concerned with minimising the 
superposition of bounding boxes. 

We stress that V-trees were designed as a storage 
method for long sequence of points, and not as a spa 
tial access method. In this last category, in addition 
to R-trees, we find an enormous variety of data struc- 
tures. Good surveys of spatial access methods can be 
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found in [Fal87, Gun91, Ho192, Nie89, Ore90, SamSO]. 
This paper is organized as follows. Section 2 con- 

tains the basic definitions we need in later sections. 
Section 3 introduces V-trees and gives some additional 
motivation. Section 4 sketches some operations over 
V-trees. Section 5 describes some useful variations of 
V-trees, while Section 6 discusses how to use V-trees 
to store sets of sequence of points. Finally, section 7 
contains some benchmark results that help assess the 
adequacy of V-trees. 

2 Vector Objects 

In the context of this paper, we assume as given a 2D 
coordinate system and work with a family of simple 
2D geometric figures defined as follows. 

A point is a pair of real numbers, called the z- and y- 
coordinates of the point. A segment is a pair of points, 
called the start point and the end point of the segment. 

A polyline is a finite sequence of points; the first 
and the last points of the sequence are called the start 
and the end points of the polyline. A polyline then 
defines a sequence of segments such that the end point 
of a segment is the starting point of the next segment. 
A polyline P is a fragment of a polyline Q iff the se- 
quence of points that defines P is a subsequence of 
contiguous points of the sequence that defines Q. A 
long polyline is a polyline whose sequence of points is 
long (according to some criterion that is left unspec- 
ified, but which will become intuitively clearer as the 
discussion proceeds). A polyline is closed iff its start 
and the end points coincide; otherwise it is open. A 
vector object is a point or a polyline. 

We will use without definition the relationships in- 
iersect, touch and contains. 

The bounding boz of a polyline is the smallest rect- 
angle such that the sides are parallel to the axis of 
the coordinate system and the rectangle contains the 
polyline. 

3 V-Trees 

3.1 Motivation for V-Trees 

V-trees were inspired on the storage structure for long 
objects developed for the EXODUS system [CarSS], 
which was in turn based on the ordered relations pro- 
posed in Stonebraker et alii [Sto83]. 

Conceptually, a long object in EXODUS is just a 
byte string. Physically, a long object is stored on disk 
as a B+-tree, where keys denote positions (in bytes) 
within the object and leaves store consecutive blocks 
of bytes of the object (recall that leaves are always half 
occupied, at least, in B+-trees). The internal identifier 
of the object is a pointer to the root of the tree that 
stores it. 

The root R of the tree contains a list of pairs of the 
form (c, p), one for each child F of R, where p points to 
F and c is the position of the rightmost byte stored in 
the subtree whose root is F. The position associatdd 
with the last child is then the size of the object. An 
interior node N is similarly defined and corresponds 
to a substring B of the byte string that represents the 
object. That is, the positions stored in N represent 
displacements relative to the beginning of s. 

Figure 1: An example of positional B-tree. 

Consider the example shown in Figure 1. The sub- 
tree whose root is the left child of the root stores bytes 
1 to 421 and the other subtree stores the other bytes. 
The rightmost leaf stores 173 bytes. Byte 100 within 
this leaf is byte 192+100=292 within the substring 
associated with the right child of the root and byte 
421+292=713 within the object as a whole. 

Let us now return to long polylines. They can 
naturally be stored as long objects using B+-trees as 
above, but this strategy will hardly help processing ge- 
ographic queries. Indeed, most of the time, the query 
processor will be interested in accessing the fragments 
of a polyline that fall within a given region. Very 
rarely, if at all, the processor will be interested in ac- 
cessing points of the polyline according to their relative 
position within the polyline. In other words, we need 
a storage structure that will help access fragments of 
a polyline by their position in space, and not by their 
relative position. 

V-trees correct this deficiency, while retaining the 
basic idea of the EXODUS storage method. A V-tree 
is very similar to an R-tree, where leaves store consec- 
utive blocks of points of the polyline in question. An 
interior node N of the V-tree contains a list of pairs 
of the form (B, p), one for each child M of N, where 
p points to M and B is the bounding box for all frag- 
ments stored in the subtree whose root is M. 

In a sense, the byte displacements of the B+-trees 
give way to bounding boxes of fragments of the poly- 
line. V-trees therefore facilitate accessing the frag- 
ments of the polyline that fall within a given region. 
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Figure 2: An example of V-tree. 

Figure 2 shows a V-tree where the leaves VII, VIZ, Vl3, 
VIM, I& and V& store the fragments that compose the 
polyline. 

3.2 Definition of V-Trees 

Given integers m > 1 and n > 1, a V-tree of order 
(m, n) is an m-way tree such that: 

l All leaves are at the same level. 

l Each leaf N contains a sequence of points of size 
between n/2 and n. The bounding box of N is the 
bounding box of the sequence of points N stores. 

l Each interior node has between m/2 and m chil- 
dren, except the root, which has between 2 and 
m children. 

a For each child A4 of an interior node N, N con- 
tains an entry consisting of a pointer to M and 
the bounding box of M. The bounding box of an 

interior node N is the bounding box covering all 
the bounding boxes of entries in N. 

Given a polyline P, one may then store P in a V-- 
tree V of order (m, n) by breaking P into consecutive 
fragments of size n and storing each fragment in a leaf 
of the V-tree. In the process of breaking a polyline 
into consecutive fragments, the last point of a fragment 
becomes the first point of the next fragment so that the 
bounding boxes of the fragments completely cover the 
polyline. Naturally, all algorithms that reconstruct P 
from V must be aware that the last point of a fragment 
is the first one of the next one (except if the fragment 
is the last one and the polyline is not closed). 

At this point, we may digress into some practical 
considerations. First, the interior nodes and the leaves 
need not occupy pages of uniform sise, since they store 
entries of different nature. In other words, the pa- 
rameters m and n are in principle unrelated. Second, 
one may link the leaves together to facilitate accessing 
consecutive fragments of a polyline. If the polyline is 
closed, the leaves may in fact be organized as a circular 
list. 

4 Sample Operations for V-Trees 

4.1 Sample Retrieval Operations for V-Trees 

In this section, we describe three retrieval operations 
for V-trees that help assess the usefulness of the struc- 
ture. 

algorithm clipping 
input: V-tree, seowh boz 
output: reported fragments 
begin 
if node is not leaf then 

for each entry do 
if entry. bounding box intersects search boz 

then call clipping for entry.sub-tree 
else 

report intersection between fragment stored 
in the leaf andseorch boz 

Figure 3: clipping algorithm. 

Consider first the clipping operation, that receives as 
input a polyline P stored in a V-tree V and a bound- 
ing box B, defined by a pair of points (the top-left 
and the bottom-right corners), and returns the frag- 
ments of P that fall inside B. The algorithm, shown 
in Figure 3, basically traverses V visiting all subtrees 
whose bounding boxes intersect B. For simplicity, the 
algorithm returns the answer as a sequence of poly- 
lines. Note how the clipping operation indeed illus- 
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trates why V-trees are an interesting storage strategy 
for long polylines. 

We now discuss a variation of the clipping opera- 
tion that reduces the number of nodes retrieved when 
the user is operating in a scale and precision which 
is smaller than the scale used to store polylines (we 
remind that we consider, for example, a 1:1,000,000 
scale to be smaller than a 1:250,000 scale). In this 
case, it suffices to generate just an approximation of 
polyline which is good enough for the scale chosen. For 
example, if the user wants to visualiae a polyline in a 
scale smaller than that used to store the polyline, then 
many points of the polyline will correspond to a single 
pixel on the screen. 

algorithm qprozimote 
input: V-tree, precision 
output: reported points 
begin 
if node is not leaf then 

for each entry do 
if entry < precision then 

report center of entry.bounding boz 
else 

call approximate for entry.mb-tree 
else 

report sequence of points stored in the leaf 

Figure 4: approximate algorithm. 

Suppose that the user is operating with precision p 
(explicitly stat d e or induced by the scale chosen). The 
approximate operation, shown in Figure 4, will then 
stop descending a subtree T with root N and approx- 
imate all points represented by the leaves of T by the 
centroid of the bounding box B of N, if the diagonal 
of B is less than or equal to 2*p. This condition guar- 
antees that the error, that is, the distance between the 
centroid and any of the points it approximates is less 
than or equal to p. 

We now turn to the subcase of the contains oper- 
ation that tests if a point w is in the region defined 
by a closed polyline P that does not cross itself and 
which is stored in a V-tree V. The algorithm, shown 
in Figure 5, is a variant of that discussed in [Pre85]. It 
basically draws a line L, parallel to the X-axis, atart- 
ing on w and extending to the right, and counts how 
many times L crosses P; if the number is odd, then 
w is inside P, otherwise w is outside. The algorithm 
is optimised in the sense that, if L does not cross the 
bounding box B associated with a subtree T, then it 
will not traverse T, since L does not definitely cross 
any of the fragments of the boundary of P stored in 
T. 

algorithm contains 
input: V-tree, point 
output: flag 
begin 
draw line from point to the right 
call contoinsl 
if counter is odd then 

assign true to jIag 
else 

assign false to flag 
end contains 

algorithm contains1 
input: V-tree, line 
output: counter 
begin 
if node is not leaf then 

for each entry do 
if line intersect entry. bounding boz then 

call contains for entry.sub-tree 
else 

if line crosses fragment stored in the leaf then 
increment counter 

Figure 5: contains algorithm. 

4.2 Inserting and Deleting from V-Trees 

Consider first the insert operation that inserts a new 
point w into a polyline P, stored in a V-tree V. For 
simplicity, we assume that, in addition to w and V, 
the operation receives as input a pointer to the exact 
position within a leaf of V (already in main memory) 
where w must be inserted. 

The algorithm, shown in Figure 6, is identical to 
that of B-trees. The new point w is inserted into the 
appropriate leaf of V and nodes are recursively split 
towards the root. We only remark that, if the node 
is a leaf, then the first point of the sequence stored in 
the new node must be repeated as the last point of 
the new sequence stored in the old node. Moreover, 
the bounding box of each node that was split must be 
recomputed and the corresponding entry in the parent 
node must be updated, and so on recursively towards 
the root. 

The delete operation also accepts as input a point 
w, identified by a pointer to a leaf in main memory, 
and a polyline P, stored in a V-tree V. The algorithm, 
shown in Figure 7, is also identical to that of B-trees. 
The point w is deleted from the appropriate leaf of V 
and nodes are recursively merged towards the root. We 
again observe that, if two adjacent leaves are merged, 
then the last point of left leaf must be dropped since 
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algorithm insert 
input: V-tree, cursor, point 
output: V-tree 
begin 
given cursor return leaf and current leaf position 
insert point at current leaf position 
if current leaf position is first position then 

adjust previous leaf 
update structure from previous leaf to root 

for each node from leaf until V-tree.root do 
if node (or leaf) sise > maximum sire then 

split node (or leaf) 
if node is root then 

create new V-tree.root (parent node) for 
V-tree 

else 
given cursor take parent node 

insert new node at parent node 
if node is not root then 

update reference to node at parent node 
undate cursor 

Figure 6: insert algorithm. 

it is the first point of the right leaf. The bounding 
box of merged nodes must also be recomputed and 
the corresponding entry in the parent node must be 
updated. 

Naturally, we exemplified just the simplest format 
of the insertion and deletion operations. More complex 
variations could insert and delete entire fragments of 
a polyline. 

5 Variants of V-Trees 

In this section, we introduce two useful variants of V- 
trees: the static V-trees and the V*-trees. 

Given integers m > 1 and n > 1, a static V-tree, or 
W-tree, of order (m, n) is an m-way tree such that: 

l All leaves are at the same level. 

a Each le& N contains a sequence of points of size n, 
except possibly the rightmost leaf. The bounding 
box of N is the bounding box of the sequence of 
points N stores. 

l Each interior node has m children, except possi- 
bly the rightmost node in each level of the tree 
(including the root). 

l For each child 116 of an interior node N, N con- 
tains an entry consisting of a pointer to M and 
the bounding box of 116. The bounding box of an 

algorithm delete 
input: V-tree, cursor, point 
output: V-tree 
begin 
given cursor return leaf and current leaf position 
remove leaf point from current leaf position 
if current leaf position is first position then 

adjust previous leaf 
update structure from previous leaf to root 

for each node from leaf until V-tree.root 
except V-tree.root do 

if node (or leaf) siee < minimum size 
and node is not root then 

try to merge node ( or leaf) with right node 
or left node 

if node merge with right node 
or left node then 

remove right node or left node 
or parent node 

update reference to node at parent node 
update cursor 

if root is not leaf and has only one entry then 
destroy V-tree.root 
node referenced by entry at V-tree.root 

becomes V-tree.root 
update cursor 

Figure 7: delete algorithm. 

interior node N is the bounding box covering all 
the bounding boxes of entries in N. 

An algorithm to construct an W-tree V of order 
(m, n) for a polyline P is sketched in Figure 8. It first 
sequentially inserts all points of P into buckets of n 
elements, creating the leaves of V. As for the regular 
V-trees, the last point in a leaf is the first one of the 
next leaf. Note that only the last leaf will have less 
than n entries. The algorithm then recursively creates 
the internal nodes of V up to the root by sequentially 
inserting the bounding boxes and the references to the 
newly created nodes into buckets of m elements. Note 
again that only the last node of a given level will have 
less than m entries. 

This algorithm immediately suggests another vari- 
ation of static V-trees that avoids having nodes with 
less than m/2 entries (and leaves with less than n/2 
entries). The algorithm to create trees of this second 
variation simply distributes, at a given level, the se- 
quence of entries so that the number of entries in any 
two buckets differ by at most one. 

Finally, we may define T-trees by analogy with B*- 
trees: it suffices to split two nodes into three, when 
necessary, instead of splitting a node into two. Each 
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algorithm static tree 
input: point list 
output: SV-tree 
begin 
create leaves from point list 
insert leaves at current queue 
while there are more than one entry in 

current queue do 
empty the queue 
for each entry in current queue do 

insert entry at node 
if node is full then 

make new entry with reference to node and 
node.bounding box 

insert new entry at queue 
empty the node 

if node is not empty then 
make new entry with reference to node and 

node. bounding box 
insert new entry at queue 
empty the node 

assign queue to current queue 
entry in current queue is SV-tree.root 

Figure 8: static tree algorithm. 

node will then contain 2/3 of the maximum allowed 
number of entries. 

6 Storage of Sets of Polylines 

In previous sections, we discussed how to store a single 
(long) polyline, be it open or closed. In this section we 
briefly address how to store a set of (long) polylines. 

Let II be a set of polylines in what follows. 
The approach we suggest is to store each polyline P 

in II in a separate V-tree, approximate P by its bound- 
ing box Bp and then insert Bp into any of the (many) 
spatial access methods designed to access rectangles. 

If the access method chosen is an R-tree, we will 
call the final structure an VIZ-tree. Figure 9 illustrates 
a VR-tree. For each VR-tree, there will always be 
certain level I such that: 

l if we drop all nodes below level I, the resulting 
structure is a regular R-tree, called the R-tree 
component of the VR-tree; 

a each subtree rooted at a node of level 1 is a V-tree, 
called a V-tree component of the VR-tree. 

We note that, unlike all other spatial access meth- 
ods that try to minimise bounding box overlapping, 
VR-trees store complete fragments of the polylines in 
the leaves of their V-tree components. 

I R13 

i ! 
R2 

! 

i 

R12 

Rll 

I 

-1 R21 R24 j/ 

! 

! 

RO 

Figure 9: An example of VR-tree. 

We also note that a VR-tree is not a balanced search 
tree in the sense that the leaves will not be at the 
same level, since they actually belong to distinct V- 
trees which are subtrees of the VR-tree.. Therefore, a 
VR-tree is not a V-tree with the leaves storing points 
belonging to distinct polylines. 

Let \k be the VR-tree storing the set of polylines II. 
The approach just outlined allows implementing 

search operations for II which are similar to those de- 
scribed in section 4.1, but which traverse 9. However, 
it still permits separate access to each polyline in II, 
since the V-tree storing the polyline is an independent 
structure. 

The insertion of a new polyline P in II is decom- 
posed into the creation of a V-tree V for P, the in- 
sertion of the bounding box BP of P into the R-tree 
component of \E and the addition of V as a new V- 
tree component of \E. The deletion of a polyline P 
from II is likewise decomposed into the deletion of the 
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V-tree V for P and the deletion of the bounding box 
BP of P from the R-tree component of \E. Again, since 
polylines are stored in independent structures, direct 
insertions and deletions of points to/from a polyline 
remain unaffected. 

We may define a variation of VR-trees by using SV- 
trees (or Y-trees) to store the polylines, thus gener- 
ating the family of SVR-trees (or V*R-trees). If we 
allow a polyline to be stored indistinctly either by a 
V-tree, a SV-tree or a V*-tree, we call the resulting 
family the G&trees. This last family is more flexible 
in the sense that it allows storing each polyline in a 
set using the variation of V-tree that suits it best. 

7 Benchmarks 

To prepare an early evaluation of V-trees and their 
variants, we synthesized four data sets, using real geo- 
graphic data. This section describes the data sets, the 
experiments and their results. 

To generate real test data, without violating data 
ownership, we first collected four sample deforesta- 
tion maps of different areas of the BraBilian Amazon, 
prepared by Brazilian National Institute of Space Re- 
search (INPE), each covering an area of 18,000 Kma 
in a scale of 1:250,000. The sample maps have the 
following characteristics: 

Sample 0 - little deforestation; 12 lines and 1,041 
points. 

Sample 1 - medium deforestation; 299 lines and 
12,651 points. 

Sample 2 - medium deforestation; 1,822 lines and 
73,362 points. 

Sample 3 - high deforestation; 5,413 lines and 
274,673 points. 

We then replicated these sample maps, using differ- 
ent strategies, to cover an area approximately equal to 
that of the Brazilian Amazon. The four test data sets 
are the following: 

Amaaon A - obtained by replicating 170 times Sam- 
ple 0, 133 times Sample 1, 17 times Sample 2 and 4 
times Sample 3, generating a total of 94,433 lines 
and 4,205,399 points. 

Amazon B - obtained by replicating 184 times Sam- 
ple 0, 89 times Sample 1, 34 times Sample 2 and 
17 times Sample 3, generating a total of 182,788 
lines and 8,481,232 points. 

Am-on C - obtained by replicating 116 times Sam- 
ple 0, 99 times Sample 1, 71 times Sample 2 and 
38 times Sample 3, generating a total of 366,049 
lines and 17,019,481 points. 

Amazon D - obtained by replicating 63 times Sam- 
ple 0, 77 times Sample 1, 87 times Sample 2 and 
97 times Sample 3, generating a total of 707,354 
lines and 34,065,485 points. 

Furthermore, data sets B and D were generated cre- 
ating large concentrations of Samples 2 and 3 in the 
same area, which is fairly typical of the Brazilian Ama- 
l;on, whereas data sets A and C were generated using 
a uniform distribution of the sample maps. 

Therefore, each data set has approximately twice as 
much points as the previous one. All data sets were 
generated using 324 samples, covering a total area of 
5,832,OOO Km?, in a scale 1:250,000. 

For each of the 4 data sets, 4 VR-trees and 4 SVR- 
trees were created, using a fixed page sire of 1,024 
Kbytes for the R-tree components, which proved efli- 
cient for R-trees [BecSO], and page sises of 128, 256, 
512 and 1,024 Kbytes for the V-tree / SV-tree compe 
nents. 

For each of the 16 VR-trees and each of the 16 SVR- 
trees, we executed 4 groups of queries. Each group has 
1,024 queries that retrieve all objects that intersect a 
rectangle with an area equivalent to l/1,024 of the 
total area. Together, all rectangles cover the entire 
area of the data sets. The four groups differ in terms 
of the acceptable error: 

Group 0 - error equal to 0. 

Group 1 - error equal to l/2,000 of the largest side 
of the rectangle of the query, which is the error 
tolerated to visualize the result of the query in a 
window of 1,000 x 1,000 pixels. 

Group 2 - error equal to twice of that of Group 1. 

Group 3 - error equal to twice of that of Group 2. 

For each of the 16 VR-trees and each of the 16 SVR- 
trees, we also deleted a given line. 

For each experiment described above, we collected 
the number of Mbytes read or written onto secondary 
storage to create a structure, execute a query, or delete 
an object, instead of the number of pages read or writ- 
ten. This neutralizes in part the variations in page sire. 
For each structure that was created, we also collected 
the number of entries generated. 

For comparison purposes, for each of the data sets, 
we also created an R-tree, with pages of sire 1,024 
Kbytes, such that, for each pair of consecutive points 
of each polyline in the data set, the R-tree has an 
entry composed of the pair of points and the identifier 
of the polyline. This structure permits measuring the 
gain obtained by storing each polyline in a separate 
V-tree and using R-trees just to index the polylines as 
indivisible objects. Its performance is also comparable 
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Table 1: Siae of the tree structures. Table 2: I/O during insertion. 

to other structures designed to store lines, such as the 
PMR-quadtrees [SamSO]. 

For each of the 4 R-trees, we executed only the 
queries in Group 0, since it is not straightforward to 
work with different precisions in the context of the 
strategy we adopted to store polylines in R-trees. 

Table 1 shows the space used by each structure to 
store the Amazon A data set, in terms of a percent- 
age of the space used by an R-tree (134 Mbytes). The 
SVR-tree, with page size of 128 bytes, had the small- 
est size, 44% of the R-tree size, due to the maximum 
occupation of its SV-tree leaves. A key factor that con- 
tributes to decrease the SVR-tree and VR-tree sizes is 
the size of their leaves. Indeed, recall that V-trees 
and SV-trees store sequences of points in their leaves, 
hence their entries are a point. On the other hand, 
R-trees have segments as entries, i.e. a pair of points 
and an identifier, and they try to minimize the area 
occupied by the nodes and leaves. 

Table 2 presents the amount of data written onto 
secondary memory when inserting Amazon A in each 
structure, again in terms of a percentage of the data 
needed to create an R-tree (1902 Mbytes). During 
object insertion, the SVR-tree with 128 bytes page size 
had the best result: 2.01% of the R-tree. Each node 
or leave in an SV-tree is written only once, while the 
R-tree and V-tree have to update their nodes, from 
the leaves to the root, for each new insertion. In spite 
of that, the VR-tree had an excellent result: 29% of 
the R-tree for the worst case (1024 bytes page size). 
This can be explained by the fact that each V-tree is 
generated independently and only after the insertion 
of all points the V-trees are joined to the R-tree to 
create the VR-tree. The distance from a leaf to the 
root in a V-tree is always smaller than in an R-tree 
with all segments of all objects, hence the number of 
updates is also Smaller. 

To remove an object from a SVR-tree or VR-tree 
it is also necessary to remove the R-tree entry that 
points to a SV-tree or V-tree, respectively. On the 
other hand, to remove an object from an R-tree one 
has to remove all object segments. Therefore, only 
2.3% of the Mbytes written by the R-tree (19439) were 
necessary to remove all the SVR-tree an VR-tree ob- 
jects of Amazon A. The behavior of all SVR-trees and 
VR-trees were the same since they all have the same 
R-tree with 1024 bytes page size. 

Table 3: I/O during search. 

Table 3 shows the amount of data read, when query- 
ing the structures containing Amazon A, as a percent- 
age of the data read during the R-tree queries (148 
Mbytes). SVR-tree had the best performance: 46% 
with 128 bytes page size. This performance is basi- 
cally achieved by the way in which the data are stored 
in V-trees and SV-trees. 

Table 4 shows the hit ratio during the queries, i.e. 
the number of useful Mbytes read divided by the total 
number of Mbytes read. As expected, the R-tree cri- 
terion of minimizing the bounding boxes overlapping 
leads to a better hit ratio when compared to the V-tree 
criterion of storing the points in sequence. However, 
the R-tree query retrieved 80 Mbytes of useful infor- 
mation, while the SVR-trees and VR-trees retrieved 
only 32 Mbytes. This is the reason why the SVR-trees 
and VR-tree have a reading performance better than 
the R-tree, as shown in table C. 

Table 5 presents the amount of data read when 
querying the structures with a margin of error equal 
to four times the pixel size, as a percentage of the 
amount of data read during the queries to the R-tree 
(148 Mbytes). By using this margin of error, the SVR- 
tree performance with 128 bytes of page size became 
29% of the R-tree. This happens because some sub- 
trees that belong to V-trees and SV-trees could be ig- 
nored and approximated by points. Thii SVR-tree 
retrieves only 32% more data (43 Mbytes) than the 
useful information (32 Mbytes). 

We only presented the results for Amazon 0 since 
the other data sets -had a similar behavior. 

Table 4: Hit ratio during search. 
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Table 5: I/O during search with precision tolerance. 

” I I ” 

8 Conclusions 

We introduced in this paper a storage method, that 
we called V-trees, for long polylines. The major moti- 
vation was the storage and retrieval of representations 
of long vector objects that are part of a geographic 
database. We have shown, through sample algorithms, 
how V-trees facilitate the access to fragments of a poly- 
line and the generation of approximations of polylines 
in smaller scales. These characteristics facilitate the 
processing of queries over geographic databases. 

We have also discussed how to store sets of (long) 
polylines using V-trees in conjunction with R-trees. 

Finally, we presented an early evaluation of V-trees 
and their variants, using test data synthesized from 
real geographic data. The results emphasize the ben- 
efits of V-trees, when compared with familiar spatial 
access methods. 
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