
V-Trees - A Storage Method for Long Vector Data

Mauricio R. Mediano
Depto. de Inform&tica

Pontificia Univ. Cathlica
Rio de Janeiro

medianoQinf.puc-rio.br

Marco A. Casanova
Centro Cientifico Rio

IBM Brasil
casanova&net .ibm.,com

Marcel0 Dreux
Depto. de Eng. Mecknica
Pontificia Univ. Cat6lica

Rio de Janeiro
dreuxQicad.puc-rio.br

Abstract

This paper introduces a new data structure,
called V-trees, designed to store long se-
quences of points in 2D space and yet allow
efficient access to their fragments. They also
optimire access to a sequence of points when
the query involves changes to a smaller scale.
V-trees operate in much the same way as posi-
tional B-Trees do in the context of long fields
and they can be viewed as a variant of R-
trees. The design of V-trees was motivated
by the problem of storing and retrieving ge-
ographic objects that are fairly long, such as
river margins or political boundaries, and the
fact that geographic queries typically access
just fragments of such objects, frequently us-
ing a smaller scale.

1 Introduction

Geographic databases typically store objects that fall
into two broad classes [Goo92], geographic objects and
fields. Geographic objects have an identification with
real-world elements, such as parcels in a cadastral map
and poles in an electrical network. These objects can
be associated with one or more geographic represen-
tation in a given gee-referenced coordinate space. By
contrast, fields represent spatially distributed variables

Pemirrion to copy without fee all or part of thir material ir
granted provided that the copier are not made of dirtributcd for
direct commc+cial advantage, the VLDB copyright notice and
tbc title of the publication and itr date appear, and notice ir
gircn that copging ir by pcwnirrion of the Verg Large Data Bare
Bnd-cnt. To copy otherwire, or to npublirh, require6 a fee
and/or special pcwnirrion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

taking values from some domain. They may be associ-
ated with digital terrain models, thematic maps or re-
flectance to incident radiation (as in satellite or aerial
images).

This paper is primarily concerned with the prob-
lem of storing and retrieving the representation of geo-
graphic objects that are fairly long, such as river mar-
gins or political boundaries. In more general terms,
we concentrate on the storage and retrieval of long se-
quences of points in 2D space, in a given geo-referenced
coordinate space. From the onset, it should be stressed
that geographic queries [Ege88, Ege89] typically ac-
cess just fragments of the representation of a (long)
geographic object, not the whole representation, and
they may involve changes to smaller scales (i.e, from
1:250,000 to 1:1,000,000), which means that many
points of the object representation will map into a sin-
gle point, as far as the query is concerned.

The solution we propose is based on a new data
structure, called V-trees, basically designed to store
long sequence of points and yet allow efficient access to
their fragments. They also greatly optimire access to
a sequence of points when the query involves changes
to a smaller scale, since they permit to easily generate
an approxima.tion of the sequence of points that best
suits the scale chosen. We also describe variations of
V-trees that store sets of sequence of points.

V-trees operate in much the same way as positional
B-trees do in the context of long fields [Cho85, Car861
and they can be viewed as a variant of R-trees
[BecSO, Gut84, Sel87]. However, unlike R-trees, the
construction of V-trees takes into account just the se-
quence of points itself and a special node balancing
criterion, and it is not concerned with minimising the
superposition of bounding boxes.

We stress that V-trees were designed as a storage
method for long sequence of points, and not as a spa
tial access method. In this last category, in addition
to R-trees, we find an enormous variety of data struc-
tures. Good surveys of spatial access methods can be

321

found in [Fal87, Gun91, Ho192, Nie89, Ore90, SamSO].
This paper is organized as follows. Section 2 con-

tains the basic definitions we need in later sections.
Section 3 introduces V-trees and gives some additional
motivation. Section 4 sketches some operations over
V-trees. Section 5 describes some useful variations of
V-trees, while Section 6 discusses how to use V-trees
to store sets of sequence of points. Finally, section 7
contains some benchmark results that help assess the
adequacy of V-trees.

2 Vector Objects

In the context of this paper, we assume as given a 2D
coordinate system and work with a family of simple
2D geometric figures defined as follows.

A point is a pair of real numbers, called the z- and y-
coordinates of the point. A segment is a pair of points,
called the start point and the end point of the segment.

A polyline is a finite sequence of points; the first
and the last points of the sequence are called the start
and the end points of the polyline. A polyline then
defines a sequence of segments such that the end point
of a segment is the starting point of the next segment.
A polyline P is a fragment of a polyline Q iff the se-
quence of points that defines P is a subsequence of
contiguous points of the sequence that defines Q. A
long polyline is a polyline whose sequence of points is
long (according to some criterion that is left unspec-
ified, but which will become intuitively clearer as the
discussion proceeds). A polyline is closed iff its start
and the end points coincide; otherwise it is open. A
vector object is a point or a polyline.

We will use without definition the relationships in-
iersect, touch and contains.

The bounding boz of a polyline is the smallest rect-
angle such that the sides are parallel to the axis of
the coordinate system and the rectangle contains the
polyline.

3 V-Trees

3.1 Motivation for V-Trees

V-trees were inspired on the storage structure for long
objects developed for the EXODUS system [CarSS],
which was in turn based on the ordered relations pro-
posed in Stonebraker et alii [Sto83].

Conceptually, a long object in EXODUS is just a
byte string. Physically, a long object is stored on disk
as a B+-tree, where keys denote positions (in bytes)
within the object and leaves store consecutive blocks
of bytes of the object (recall that leaves are always half
occupied, at least, in B+-trees). The internal identifier
of the object is a pointer to the root of the tree that
stores it.

The root R of the tree contains a list of pairs of the
form (c, p), one for each child F of R, where p points to
F and c is the position of the rightmost byte stored in
the subtree whose root is F. The position associatdd
with the last child is then the size of the object. An
interior node N is similarly defined and corresponds
to a substring B of the byte string that represents the
object. That is, the positions stored in N represent
displacements relative to the beginning of s.

Figure 1: An example of positional B-tree.

Consider the example shown in Figure 1. The sub-
tree whose root is the left child of the root stores bytes
1 to 421 and the other subtree stores the other bytes.
The rightmost leaf stores 173 bytes. Byte 100 within
this leaf is byte 192+100=292 within the substring
associated with the right child of the root and byte
421+292=713 within the object as a whole.

Let us now return to long polylines. They can
naturally be stored as long objects using B+-trees as
above, but this strategy will hardly help processing ge-
ographic queries. Indeed, most of the time, the query
processor will be interested in accessing the fragments
of a polyline that fall within a given region. Very
rarely, if at all, the processor will be interested in ac-
cessing points of the polyline according to their relative
position within the polyline. In other words, we need
a storage structure that will help access fragments of
a polyline by their position in space, and not by their
relative position.

V-trees correct this deficiency, while retaining the
basic idea of the EXODUS storage method. A V-tree
is very similar to an R-tree, where leaves store consec-
utive blocks of points of the polyline in question. An
interior node N of the V-tree contains a list of pairs
of the form (B, p), one for each child M of N, where
p points to M and B is the bounding box for all frag-
ments stored in the subtree whose root is M.

In a sense, the byte displacements of the B+-trees
give way to bounding boxes of fragments of the poly-
line. V-trees therefore facilitate accessing the frag-
ments of the polyline that fall within a given region.

322

,...
: : : vl
i : : :
i : V:

: : : : v22
: : : '13
: : : : . E

L : : : : : : : : : :
E

Figure 2: An example of V-tree.

Figure 2 shows a V-tree where the leaves VII, VIZ, Vl3,
VIM, I& and V& store the fragments that compose the
polyline.

3.2 Definition of V-Trees

Given integers m > 1 and n > 1, a V-tree of order
(m, n) is an m-way tree such that:

l All leaves are at the same level.

l Each leaf N contains a sequence of points of size
between n/2 and n. The bounding box of N is the
bounding box of the sequence of points N stores.

l Each interior node has between m/2 and m chil-
dren, except the root, which has between 2 and
m children.

a For each child A4 of an interior node N, N con-
tains an entry consisting of a pointer to M and
the bounding box of M. The bounding box of an

interior node N is the bounding box covering all
the bounding boxes of entries in N.

Given a polyline P, one may then store P in a V--
tree V of order (m, n) by breaking P into consecutive
fragments of size n and storing each fragment in a leaf
of the V-tree. In the process of breaking a polyline
into consecutive fragments, the last point of a fragment
becomes the first point of the next fragment so that the
bounding boxes of the fragments completely cover the
polyline. Naturally, all algorithms that reconstruct P
from V must be aware that the last point of a fragment
is the first one of the next one (except if the fragment
is the last one and the polyline is not closed).

At this point, we may digress into some practical
considerations. First, the interior nodes and the leaves
need not occupy pages of uniform sise, since they store
entries of different nature. In other words, the pa-
rameters m and n are in principle unrelated. Second,
one may link the leaves together to facilitate accessing
consecutive fragments of a polyline. If the polyline is
closed, the leaves may in fact be organized as a circular
list.

4 Sample Operations for V-Trees

4.1 Sample Retrieval Operations for V-Trees

In this section, we describe three retrieval operations
for V-trees that help assess the usefulness of the struc-
ture.

algorithm clipping
input: V-tree, seowh boz
output: reported fragments
begin
if node is not leaf then

for each entry do
if entry. bounding box intersects search boz

then call clipping for entry.sub-tree
else

report intersection between fragment stored
in the leaf andseorch boz

Figure 3: clipping algorithm.

Consider first the clipping operation, that receives as
input a polyline P stored in a V-tree V and a bound-
ing box B, defined by a pair of points (the top-left
and the bottom-right corners), and returns the frag-
ments of P that fall inside B. The algorithm, shown
in Figure 3, basically traverses V visiting all subtrees
whose bounding boxes intersect B. For simplicity, the
algorithm returns the answer as a sequence of poly-
lines. Note how the clipping operation indeed illus-

323

trates why V-trees are an interesting storage strategy
for long polylines.

We now discuss a variation of the clipping opera-
tion that reduces the number of nodes retrieved when
the user is operating in a scale and precision which
is smaller than the scale used to store polylines (we
remind that we consider, for example, a 1:1,000,000
scale to be smaller than a 1:250,000 scale). In this
case, it suffices to generate just an approximation of
polyline which is good enough for the scale chosen. For
example, if the user wants to visualiae a polyline in a
scale smaller than that used to store the polyline, then
many points of the polyline will correspond to a single
pixel on the screen.

algorithm qprozimote
input: V-tree, precision
output: reported points
begin
if node is not leaf then

for each entry do
if entry < precision then

report center of entry.bounding boz
else

call approximate for entry.mb-tree
else

report sequence of points stored in the leaf

Figure 4: approximate algorithm.

Suppose that the user is operating with precision p
(explicitly stat d e or induced by the scale chosen). The
approximate operation, shown in Figure 4, will then
stop descending a subtree T with root N and approx-
imate all points represented by the leaves of T by the
centroid of the bounding box B of N, if the diagonal
of B is less than or equal to 2*p. This condition guar-
antees that the error, that is, the distance between the
centroid and any of the points it approximates is less
than or equal to p.

We now turn to the subcase of the contains oper-
ation that tests if a point w is in the region defined
by a closed polyline P that does not cross itself and
which is stored in a V-tree V. The algorithm, shown
in Figure 5, is a variant of that discussed in [Pre85]. It
basically draws a line L, parallel to the X-axis, atart-
ing on w and extending to the right, and counts how
many times L crosses P; if the number is odd, then
w is inside P, otherwise w is outside. The algorithm
is optimised in the sense that, if L does not cross the
bounding box B associated with a subtree T, then it
will not traverse T, since L does not definitely cross
any of the fragments of the boundary of P stored in
T.

algorithm contains
input: V-tree, point
output: flag
begin
draw line from point to the right
call contoinsl
if counter is odd then

assign true to jIag
else

assign false to flag
end contains

algorithm contains1
input: V-tree, line
output: counter
begin
if node is not leaf then

for each entry do
if line intersect entry. bounding boz then

call contains for entry.sub-tree
else

if line crosses fragment stored in the leaf then
increment counter

Figure 5: contains algorithm.

4.2 Inserting and Deleting from V-Trees

Consider first the insert operation that inserts a new
point w into a polyline P, stored in a V-tree V. For
simplicity, we assume that, in addition to w and V,
the operation receives as input a pointer to the exact
position within a leaf of V (already in main memory)
where w must be inserted.

The algorithm, shown in Figure 6, is identical to
that of B-trees. The new point w is inserted into the
appropriate leaf of V and nodes are recursively split
towards the root. We only remark that, if the node
is a leaf, then the first point of the sequence stored in
the new node must be repeated as the last point of
the new sequence stored in the old node. Moreover,
the bounding box of each node that was split must be
recomputed and the corresponding entry in the parent
node must be updated, and so on recursively towards
the root.

The delete operation also accepts as input a point
w, identified by a pointer to a leaf in main memory,
and a polyline P, stored in a V-tree V. The algorithm,
shown in Figure 7, is also identical to that of B-trees.
The point w is deleted from the appropriate leaf of V
and nodes are recursively merged towards the root. We
again observe that, if two adjacent leaves are merged,
then the last point of left leaf must be dropped since

324

algorithm insert
input: V-tree, cursor, point
output: V-tree
begin
given cursor return leaf and current leaf position
insert point at current leaf position
if current leaf position is first position then

adjust previous leaf
update structure from previous leaf to root

for each node from leaf until V-tree.root do
if node (or leaf) sise > maximum sire then

split node (or leaf)
if node is root then

create new V-tree.root (parent node) for
V-tree

else
given cursor take parent node

insert new node at parent node
if node is not root then

update reference to node at parent node
undate cursor

Figure 6: insert algorithm.

it is the first point of the right leaf. The bounding
box of merged nodes must also be recomputed and
the corresponding entry in the parent node must be
updated.

Naturally, we exemplified just the simplest format
of the insertion and deletion operations. More complex
variations could insert and delete entire fragments of
a polyline.

5 Variants of V-Trees

In this section, we introduce two useful variants of V-
trees: the static V-trees and the V*-trees.

Given integers m > 1 and n > 1, a static V-tree, or
W-tree, of order (m, n) is an m-way tree such that:

l All leaves are at the same level.

a Each le& N contains a sequence of points of size n,
except possibly the rightmost leaf. The bounding
box of N is the bounding box of the sequence of
points N stores.

l Each interior node has m children, except possi-
bly the rightmost node in each level of the tree
(including the root).

l For each child 116 of an interior node N, N con-
tains an entry consisting of a pointer to M and
the bounding box of 116. The bounding box of an

algorithm delete
input: V-tree, cursor, point
output: V-tree
begin
given cursor return leaf and current leaf position
remove leaf point from current leaf position
if current leaf position is first position then

adjust previous leaf
update structure from previous leaf to root

for each node from leaf until V-tree.root
except V-tree.root do

if node (or leaf) siee < minimum size
and node is not root then

try to merge node (or leaf) with right node
or left node

if node merge with right node
or left node then

remove right node or left node
or parent node

update reference to node at parent node
update cursor

if root is not leaf and has only one entry then
destroy V-tree.root
node referenced by entry at V-tree.root

becomes V-tree.root
update cursor

Figure 7: delete algorithm.

interior node N is the bounding box covering all
the bounding boxes of entries in N.

An algorithm to construct an W-tree V of order
(m, n) for a polyline P is sketched in Figure 8. It first
sequentially inserts all points of P into buckets of n
elements, creating the leaves of V. As for the regular
V-trees, the last point in a leaf is the first one of the
next leaf. Note that only the last leaf will have less
than n entries. The algorithm then recursively creates
the internal nodes of V up to the root by sequentially
inserting the bounding boxes and the references to the
newly created nodes into buckets of m elements. Note
again that only the last node of a given level will have
less than m entries.

This algorithm immediately suggests another vari-
ation of static V-trees that avoids having nodes with
less than m/2 entries (and leaves with less than n/2
entries). The algorithm to create trees of this second
variation simply distributes, at a given level, the se-
quence of entries so that the number of entries in any
two buckets differ by at most one.

Finally, we may define T-trees by analogy with B*-
trees: it suffices to split two nodes into three, when
necessary, instead of splitting a node into two. Each

325

algorithm static tree
input: point list
output: SV-tree
begin
create leaves from point list
insert leaves at current queue
while there are more than one entry in

current queue do
empty the queue
for each entry in current queue do

insert entry at node
if node is full then

make new entry with reference to node and
node.bounding box

insert new entry at queue
empty the node

if node is not empty then
make new entry with reference to node and

node. bounding box
insert new entry at queue
empty the node

assign queue to current queue
entry in current queue is SV-tree.root

Figure 8: static tree algorithm.

node will then contain 2/3 of the maximum allowed
number of entries.

6 Storage of Sets of Polylines

In previous sections, we discussed how to store a single
(long) polyline, be it open or closed. In this section we
briefly address how to store a set of (long) polylines.

Let II be a set of polylines in what follows.
The approach we suggest is to store each polyline P

in II in a separate V-tree, approximate P by its bound-
ing box Bp and then insert Bp into any of the (many)
spatial access methods designed to access rectangles.

If the access method chosen is an R-tree, we will
call the final structure an VIZ-tree. Figure 9 illustrates
a VR-tree. For each VR-tree, there will always be
certain level I such that:

l if we drop all nodes below level I, the resulting
structure is a regular R-tree, called the R-tree
component of the VR-tree;

a each subtree rooted at a node of level 1 is a V-tree,
called a V-tree component of the VR-tree.

We note that, unlike all other spatial access meth-
ods that try to minimise bounding box overlapping,
VR-trees store complete fragments of the polylines in
the leaves of their V-tree components.

I R13

i !
R2

!

i

R12

Rll

I

-1 R21 R24 j/

!

!

RO

Figure 9: An example of VR-tree.

We also note that a VR-tree is not a balanced search
tree in the sense that the leaves will not be at the
same level, since they actually belong to distinct V-
trees which are subtrees of the VR-tree.. Therefore, a
VR-tree is not a V-tree with the leaves storing points
belonging to distinct polylines.

Let \k be the VR-tree storing the set of polylines II.
The approach just outlined allows implementing

search operations for II which are similar to those de-
scribed in section 4.1, but which traverse 9. However,
it still permits separate access to each polyline in II,
since the V-tree storing the polyline is an independent
structure.

The insertion of a new polyline P in II is decom-
posed into the creation of a V-tree V for P, the in-
sertion of the bounding box BP of P into the R-tree
component of \E and the addition of V as a new V-
tree component of \E. The deletion of a polyline P
from II is likewise decomposed into the deletion of the

326

V-tree V for P and the deletion of the bounding box
BP of P from the R-tree component of \E. Again, since
polylines are stored in independent structures, direct
insertions and deletions of points to/from a polyline
remain unaffected.

We may define a variation of VR-trees by using SV-
trees (or Y-trees) to store the polylines, thus gener-
ating the family of SVR-trees (or V*R-trees). If we
allow a polyline to be stored indistinctly either by a
V-tree, a SV-tree or a V*-tree, we call the resulting
family the G&trees. This last family is more flexible
in the sense that it allows storing each polyline in a
set using the variation of V-tree that suits it best.

7 Benchmarks

To prepare an early evaluation of V-trees and their
variants, we synthesized four data sets, using real geo-
graphic data. This section describes the data sets, the
experiments and their results.

To generate real test data, without violating data
ownership, we first collected four sample deforesta-
tion maps of different areas of the BraBilian Amazon,
prepared by Brazilian National Institute of Space Re-
search (INPE), each covering an area of 18,000 Kma
in a scale of 1:250,000. The sample maps have the
following characteristics:

Sample 0 - little deforestation; 12 lines and 1,041
points.

Sample 1 - medium deforestation; 299 lines and
12,651 points.

Sample 2 - medium deforestation; 1,822 lines and
73,362 points.

Sample 3 - high deforestation; 5,413 lines and
274,673 points.

We then replicated these sample maps, using differ-
ent strategies, to cover an area approximately equal to
that of the Brazilian Amazon. The four test data sets
are the following:

Amaaon A - obtained by replicating 170 times Sam-
ple 0, 133 times Sample 1, 17 times Sample 2 and 4
times Sample 3, generating a total of 94,433 lines
and 4,205,399 points.

Amazon B - obtained by replicating 184 times Sam-
ple 0, 89 times Sample 1, 34 times Sample 2 and
17 times Sample 3, generating a total of 182,788
lines and 8,481,232 points.

Am-on C - obtained by replicating 116 times Sam-
ple 0, 99 times Sample 1, 71 times Sample 2 and
38 times Sample 3, generating a total of 366,049
lines and 17,019,481 points.

Amazon D - obtained by replicating 63 times Sam-
ple 0, 77 times Sample 1, 87 times Sample 2 and
97 times Sample 3, generating a total of 707,354
lines and 34,065,485 points.

Furthermore, data sets B and D were generated cre-
ating large concentrations of Samples 2 and 3 in the
same area, which is fairly typical of the Brazilian Ama-
l;on, whereas data sets A and C were generated using
a uniform distribution of the sample maps.

Therefore, each data set has approximately twice as
much points as the previous one. All data sets were
generated using 324 samples, covering a total area of
5,832,OOO Km?, in a scale 1:250,000.

For each of the 4 data sets, 4 VR-trees and 4 SVR-
trees were created, using a fixed page sire of 1,024
Kbytes for the R-tree components, which proved efli-
cient for R-trees [BecSO], and page sises of 128, 256,
512 and 1,024 Kbytes for the V-tree / SV-tree compe
nents.

For each of the 16 VR-trees and each of the 16 SVR-
trees, we executed 4 groups of queries. Each group has
1,024 queries that retrieve all objects that intersect a
rectangle with an area equivalent to l/1,024 of the
total area. Together, all rectangles cover the entire
area of the data sets. The four groups differ in terms
of the acceptable error:

Group 0 - error equal to 0.

Group 1 - error equal to l/2,000 of the largest side
of the rectangle of the query, which is the error
tolerated to visualize the result of the query in a
window of 1,000 x 1,000 pixels.

Group 2 - error equal to twice of that of Group 1.

Group 3 - error equal to twice of that of Group 2.

For each of the 16 VR-trees and each of the 16 SVR-
trees, we also deleted a given line.

For each experiment described above, we collected
the number of Mbytes read or written onto secondary
storage to create a structure, execute a query, or delete
an object, instead of the number of pages read or writ-
ten. This neutralizes in part the variations in page sire.
For each structure that was created, we also collected
the number of entries generated.

For comparison purposes, for each of the data sets,
we also created an R-tree, with pages of sire 1,024
Kbytes, such that, for each pair of consecutive points
of each polyline in the data set, the R-tree has an
entry composed of the pair of points and the identifier
of the polyline. This structure permits measuring the
gain obtained by storing each polyline in a separate
V-tree and using R-trees just to index the polylines as
indivisible objects. Its performance is also comparable

327

Table 1: Siae of the tree structures. Table 2: I/O during insertion.

to other structures designed to store lines, such as the
PMR-quadtrees [SamSO].

For each of the 4 R-trees, we executed only the
queries in Group 0, since it is not straightforward to
work with different precisions in the context of the
strategy we adopted to store polylines in R-trees.

Table 1 shows the space used by each structure to
store the Amazon A data set, in terms of a percent-
age of the space used by an R-tree (134 Mbytes). The
SVR-tree, with page size of 128 bytes, had the small-
est size, 44% of the R-tree size, due to the maximum
occupation of its SV-tree leaves. A key factor that con-
tributes to decrease the SVR-tree and VR-tree sizes is
the size of their leaves. Indeed, recall that V-trees
and SV-trees store sequences of points in their leaves,
hence their entries are a point. On the other hand,
R-trees have segments as entries, i.e. a pair of points
and an identifier, and they try to minimize the area
occupied by the nodes and leaves.

Table 2 presents the amount of data written onto
secondary memory when inserting Amazon A in each
structure, again in terms of a percentage of the data
needed to create an R-tree (1902 Mbytes). During
object insertion, the SVR-tree with 128 bytes page size
had the best result: 2.01% of the R-tree. Each node
or leave in an SV-tree is written only once, while the
R-tree and V-tree have to update their nodes, from
the leaves to the root, for each new insertion. In spite
of that, the VR-tree had an excellent result: 29% of
the R-tree for the worst case (1024 bytes page size).
This can be explained by the fact that each V-tree is
generated independently and only after the insertion
of all points the V-trees are joined to the R-tree to
create the VR-tree. The distance from a leaf to the
root in a V-tree is always smaller than in an R-tree
with all segments of all objects, hence the number of
updates is also Smaller.

To remove an object from a SVR-tree or VR-tree
it is also necessary to remove the R-tree entry that
points to a SV-tree or V-tree, respectively. On the
other hand, to remove an object from an R-tree one
has to remove all object segments. Therefore, only
2.3% of the Mbytes written by the R-tree (19439) were
necessary to remove all the SVR-tree an VR-tree ob-
jects of Amazon A. The behavior of all SVR-trees and
VR-trees were the same since they all have the same
R-tree with 1024 bytes page size.

Table 3: I/O during search.

Table 3 shows the amount of data read, when query-
ing the structures containing Amazon A, as a percent-
age of the data read during the R-tree queries (148
Mbytes). SVR-tree had the best performance: 46%
with 128 bytes page size. This performance is basi-
cally achieved by the way in which the data are stored
in V-trees and SV-trees.

Table 4 shows the hit ratio during the queries, i.e.
the number of useful Mbytes read divided by the total
number of Mbytes read. As expected, the R-tree cri-
terion of minimizing the bounding boxes overlapping
leads to a better hit ratio when compared to the V-tree
criterion of storing the points in sequence. However,
the R-tree query retrieved 80 Mbytes of useful infor-
mation, while the SVR-trees and VR-trees retrieved
only 32 Mbytes. This is the reason why the SVR-trees
and VR-tree have a reading performance better than
the R-tree, as shown in table C.

Table 5 presents the amount of data read when
querying the structures with a margin of error equal
to four times the pixel size, as a percentage of the
amount of data read during the queries to the R-tree
(148 Mbytes). By using this margin of error, the SVR-
tree performance with 128 bytes of page size became
29% of the R-tree. This happens because some sub-
trees that belong to V-trees and SV-trees could be ig-
nored and approximated by points. Thii SVR-tree
retrieves only 32% more data (43 Mbytes) than the
useful information (32 Mbytes).

We only presented the results for Amazon 0 since
the other data sets -had a similar behavior.

Table 4: Hit ratio during search.

328

Table 5: I/O during search with precision tolerance.

” I I ”

8 Conclusions

We introduced in this paper a storage method, that
we called V-trees, for long polylines. The major moti-
vation was the storage and retrieval of representations
of long vector objects that are part of a geographic
database. We have shown, through sample algorithms,
how V-trees facilitate the access to fragments of a poly-
line and the generation of approximations of polylines
in smaller scales. These characteristics facilitate the
processing of queries over geographic databases.

We have also discussed how to store sets of (long)
polylines using V-trees in conjunction with R-trees.

Finally, we presented an early evaluation of V-trees
and their variants, using test data synthesized from
real geographic data. The results emphasize the ben-
efits of V-trees, when compared with familiar spatial
access methods.

Acknowledgements

The results reported in this paper are part of a research
project carried out in cooperation between the Rio Sci-
entific Center of IBM Bra&l and the Brazilian National
Institute for Space Research (INPE). We gratefully ac-
knowledge the use of the deforestation data used in the
benchmarks.

The first author also wishes to thank the Brazilian
National Research Council (CNPq) for partially sup
porting his research through a scholarship grant.

References

[BecSO]

[BecSl]

[Cho85]

N. Beckmann, H.P. Kriegel, R. Schneider and
B. Seeger. The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectan-
gles. In Proc. of the ACM SIGiUOD Conf. on
Management of Data (May 1990), 322-332.

B. Becker, H.W. Six and P. Widmayer. Spa-
tial Priority Search: An Access Technique for
Scaleless Maps. In Proc. of the ACM SIG-
MOD Conf. on Management of Data (May
1991), 128-138.

H-T.Chou, D.J. Dewitt, R. Katz and A.C,
Klug. Design and Implementation of the
Winsconsin Storage System. Software Prac-
tice und Bzperience 15(10):843-962, Oct.
1985.

[Car861

[Corn791

[WW

Pge891

[Fal87]

[Goo92]

[Gun881

[Gun911

[Gut841

[Ho1921

[K-g21

[Nie89]

M.J. Carey, D.J. Dewitt, J.E. Richardson
and E.J. Shekita. Object and File Manage-
ment in the EXODUS Extensible Database
System. In Proc. 12th Id?. Conf. on Very
Large Data Bases (Aug. 1986), 91-100.

D. Comer. The Ubiquitous B-tree. In ACM
Computing Surveys, 11(2):121-131.

M.J. Egenhofer and A. Frank. Towards
a Spatial Query Language: User Interface
Considerations. In Proc. 14th Int ‘1. Conf. on
Very Large Data Bases (Aug. 1988), 124133.

M.J. Egenhofer. Spatial Query Languages.
PhD thesis, University of Maine, Orono, ME,
May 1989.

C. Faloutsos, T. Sellis and N. Roussopoulos.
Analysis of Object Oriented Spatial Access
Methods. In Proc. of the ACM SIGMOD
Conf. on Management of Data, (May 1987),
260-269.

M. Goodchild. Geographical Information
Science. Int’l. Journal of Geographic Infor-
mation Systems, 6(2), 1992.

0. Gunther. Eficient Structures for Geomet-
ric Data Management, volume 337 of Lecture
Notes in Computer Science. Springer-Verlag,
Berlin, 1988.

0. Gunther and J. Bilnes. Tree-Based Access
Methods for Spatial Databases: Implemen-
tation and Performance Evaluation. IEEE
lbansactions on Knowledge and Data Engi-
neering, 3(3):342-356, 1991.

A. Guttman. R-Trees: A Dynamic Index
Structure for Spatial Searching. In Proc.
ACM SIGMOD Conf. on Management of
Data (June 1984), 599-609.

E. Hoe1 and H. Samet. A Qualitative Com-
parison Study of Data Structures for Large
Line Segment Databases. In Proc. ACM SIG-
MOD conf. on Management of Data, (May
1992), 205-214.

I. Kamel and C. Faloutsos. Parallel R-Trees.
In Proc. of the ACM SIGMOD Conf. on
Management of Data (May 1992), 195204.

J. Nievergelt. 7+2 Criteria for Assessing and
Comparing Spatial Data Structures. In Proe.
of SSD ‘89, volume 409 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin,
1990.

329

[Ooi90] B.C. Ooi. Eficient Query Processing. In
A. Buchmann, 0. Gunther, T.R. Smith, and
Y.-F. Wang, editors, Design and Implemen-
tatiom of Large Spatial Databases, volume
471 of Lecture Note8 in Computer Science.
Springer-Verlag, Berlin, 1989.

[Ooi87] B.C. Ooi, K.J. McDonell and R. Sacks-Davis.
Spatial kd-tree: An Indexing Mechanism for
Spatial Databases. In Proc. of IEEE Camp.
Software Applications Conf. (1987), 433-438.

[Ore901 J. Orenstein. A Comparison of Spatial Query
Processing Techniques for Native and Pa-
rameter Spaces. In Proc. of the ACM SIG-
MOD Conf. on Management of Data (May
1990), 343-352.

[Pre85] F.P. Preparata and M.I. Shamos. Computa-
tional Geometry: An Introduction Springer-
Verlag, Berlin (1985).

[Rou85] N. Roussopoulos and D. Leifker. Direct
Spatial Search on Pictorial Databases using
Packed R-trees. In PTOC. of the ACM SIG-
MOD Conf. on Management of Data (May
1985), 17-31.

[SamSO] H. Samet. The design and analysis of spatial
data structures Addison-Wesley (1990).

[Se1871 T. Sellis, N. Roussopoulos and C. .Falout-
80s. The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects. In Proc. 13th
Int’l. Conf. on Very Large Data Bases (Sept.
1987), 507-518.

[Sch89] M. Scholl and A. Voisard. Thematic map
modeling. In A. Buchmann, 0. Gunther,
T.R. Smith, and Y.-F. Wang, editors, De-
sign and Implementatiom of Large Spatial
Databases, volume 471 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin,
1989.

[SchSl] M. Scholl and A. Voisard. Object-oriented
database systems for geographic applications:
an ezperiment with Oz. In F. Bancilhon,
C. Delobel, and Paris Kanellakis Editors, ed-
itors, Building an Object-Oriented Database
System: the Story of Oz. Morgan and Kauf-
mann Pub., 1991.

[Sto83] M. Stonebraker et alii. Document Process-
ing in a Relational Database System. ACM
fiansactions on Information Systems, l(2),
April 1983.

330

