
Memory-Contention Responsive Hash Joins

Diane L. Davison
University of Colorado at Boulder
Department of Computer Science

davison @ cs.colorado.edu

Abstract

In order to maximize system performance in envi-
ronments with fluctuating memory contention,
memory-intensive algorithms such as hash join
must gracefully adapt to variations in available
memory. Mixed workloads, creating fluctuations
of erratic frequency and magnitude, make respon-
siveness to memory contention particularly impor-
tant. Previous studies on adaptable hash joins
have focused on lowering I/O costs by reducing
the I/O volume, as measured in the number of
pages, by spilling partitions from memory to disk
and then restoring them into memory if more
memory becomes available. In this paper, we pre-
sent memory-contention responsive hash joins that
(i) reduce the amount of time spent on I/O by us-
ing large I/O buffers, or clusters, (ii) dynamically
vary the cluster size in response to fluctuations in
memory availability, and (iii) employ earlier tech-
niques of dynamic destaging and restoration. Our
simulation results demonstrate that these com-
bined techniques provide better performance than
previous algorithms, particularly in environments
with medium to high memory contention or with
very frequent changes in memory availability.

1. Introduction
Static memory allocation techniques are inadequate for
query execution jn a multi-user environment because the
system is unable to predict when new requests will arrive.
Differences in query complexity and size complicate

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VZDB copyright notice and the
title of the publication and its aizte appear; and notice is given
that copying is by permission of the Very Iarge Data Base En-
dowment. To copy otherwise, or to republish, requires a fee
an&or special permission from the Endowment.
Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

Goetz Graefe
Portland State University

Computer Science Department
graefe @ cs.pdx.eclu

allocation decisions by creating a mixed workload in which
memory demands may vary significantly among requests.
The use of parallelism exacerbates the memory allocation
problem by drastically increasing the competition for this
scarce resource [SSU91]. This unpredictable environment
precludes consistently achieving good performance using
static memory allocation techniques since an optimal
division of memory among competing queries may become
sub-optimal very quickly as queries enter and leave the
system. To overcome this uncertainty, the system must
adapt to changes or fluctuations in memory contention by
adjusting previous allocation decisions, and memory-
intensive algorithms such as hash join and sort must have
the capability to respond gracefully to changes in their
memory allocation at any time during their execution.

In this paper, we show how memory can be used more
effectively by hash joins whose memory allocation varies
during execution, particularly how a large cluster, or unit
of I/O, can be exploited for maximum performance and
responsiveness in spite of memory fluctuations. We
designed and prototyped a group of memory-contention
responsive hash joins and found that fluctuating memory
allocations can best be handled by dynamically varying the
cluster size depending on memory availability, and
maximizing the size of I/O requests.

There are two approaches to reducing I/O cost: reduce
VO volume, or reduce I/O time. I/O volume measures the
number of pages transferred to and from disk, whereas I/O
time measures the total time for disk seeks, rotational
latencies, and transfers. Most previous hash join
algorithms, static or adaptable, have taken the former
approach. They attempt to achieve cost savings through
reduction of I/O volume by keeping as much of the build
input resident as possible, and to maximize memory
utilization by creating partitions equal in size to the join’s
memory allocation. However, the more important issue is
the I/O time. Optimizing I/O time involves a tradeoff
between I/O volume and the number of I/O operations,
because large clusters result in fewer disk accesses but on
the other hand may increase the I/O volume since memory
pages are committed to spilled partition buffers that
otherwise would be used for resident partitions. For static
memory allocations, analyses and experiments have shown
that both sort and hash-based algorithms are much more
effective using relatively large clusters or I/O buffers to
reduce I/O time, even if it increases I/O volume lBra84,

379

Gra93a, GLS94]. Large clusters reduce the number of IZO
calls and thus reduce total seek time and rotational latency,
the most expensive components of small IZO operations.

A large, fixed cluster size that remains unchanged for
the duration of a hash join realizes the benefit of large YOs,
but it has two significant problems in environments with
changing memory contention. First, it increases the join’s
minimum memory requirement since at least one cluster is
required for each partition. Second, it prevents the join
from exploiting increases in memory to reduce IZO time.
Thus, a fixed cluster size does not allow the join to adapt to
changes in its memory allocation because it doesn’t take
either of these factors into account. The present paper
presents solutions for these two problems.

In Section 2, we review earlier research on hash join
algorithms, focusing on adaptable algorithms. Section 3,,
introduces our “memory-contention responsive hash join
algorithm: discusses how it responds to memory
fluctuations, and describes some variations of the basic
algorithm. We describe our simulator and simulation
parameters in Section 4 before presenting our experimental
results in Section 5. Finally, we summarize the paper and
offer our conclusions.

2. Related Work
In this section, we review previous research related to our
work. Before beginning this discussion, we introduce
notation and terminology used throughout this paper.

The build input is designated R, the probe input S, and
the number of pages in the input buffer I. The join’s
memory allocation, M, is allocated in fixed-size pages.
The unit of disk I/O is a cluster, C, that is composed of one
or more pages. R, S, I, M, and C are also used to express
the respective sizes. All sizes are measured in pages. The
number of partitions into which the inputs are divided is
called the partitioning fun-out, F. Note that F refers to the
total number of partitions, any of which may be resident in
memory or spilled to disk. To account for hash table
overhead, we use a fudge factor fudge; thus, fudge x R
pages of memory are required to keep the entire build input
in a hash table for the join.

A hash join is a sequence of one or more steps, where
each step processes a pair of build and probe inputs and
produces either pairs of partition files to be processed in
later steps, join output tuples, or both. A step can be the
initial partitioning of the base inputs, an intermediate
partitioning level (if multiple levels are required), or the in-
memory join in the deepest recursion level. A step is
composed of the buiM stage, during which the build input
is processed, and the probe stage, during which the
corresponding probe input is processed. Depending on
memory availability, a partition may be in one of three
stutes. A partition is resident if all build tuples currently
assigned to the partition are entirely contained in the
partition’s in-memory buffer. If some or all of the
partition’s build tuples have been written to disk, the
partition is spilled. If the join’s memory allocation
increases, the build file of a spilled partition could be read
back into memory or resfored during the probe stage, so

that it exists both in memory and on disk. Since at least
one page is required per partition and Z pages are required
for the input buffer, the minimum memory requirement for
a hash join is Mk,, = F + Z pages, and the join cannot
reduce its memory consumption below this amount,

Early work on hash joins assumed fixed memory
allocations for the duration of the join [Bra84, DK084,
DeG85, KNT89, NKT88, Sha861. Hybrid hash join can be
used when the memory allocation is large enough that R
can be divided into partitions no larger than memory, i.e.,
fudge x R I F x M [DK084, Sha86]. If there is sufficient
memory, hybrid hash join will keep one partition resident
to reduce the I/O volume (each partition is composed of
multiple hash buckets). Hybrid hash join statically assigns
memory to partitions and predetermines which partitions
will be spilled. The bucket tuning technique employed in
the Grace hybrid hash join hashes tuples into a large
number of buckets and then groups resident buckets into a
single resident partition and spilled buckets into memory-
sized partitions for subsequent steps [KNT89]. To
counteract the effects of skew in the build input, the
technique of dynamic destuging dynamically chooses the
largest bucket to spill (destage) when memory is exhausted
[NKT88].

Zeller and Gray were the first to propose a hash join that
can adapt to variations in available memory [ZeG90].
They use bucket tuning, and also propose using large
cluster sizes. However, the cluster size C (as well as F and
the number of buckets) is provided by the optimizer and
the paper does not elaborate on how it is determined. The
algorithm performs only one level of partitioning and
resorts to a hashed-loops algorithm [DeG85] for partitions
that are larger than memory. To try to keep partitions
smaller than memory, if a partition grows beyond the join’s
current memory allocation, the fan-out is dynamically
increased by splitting the large partition into two smaller
partitions. This means that pages associated with the
original, larger partition must be read twice or more in later
steps. Additional memory can be used during the build
stage to enlarge resident partitions but is not exploited
during the probe stage. In response to a decrease in
memory during the build stage, one or more partitions will
be spilled. If this is an insufficient reduction in memory
usage, the cluster size is decreased; however, the cluster
size is never increased in response to an increase in
memory. Even though it uses large clusters, the algorithm
essentially retains the same goals as earlier algorithms as it
focuses on reducing I/O volume and maximizing memory
usage by creating partitions no larger than memory.

More recently, Pang et al. proposed the partially
preemptible hash join (PPHJ) that adapts to memory
fluctuations during both the build and probe stages
[PCL93a, PCL93b]. PPHJ performs a single level of
partitioning and uses classic in-memory hash join to
process spilled partitions. The algorithm assumes accurate
estimates of input sizes; however, it can be modified to
handle estimation inaccuracy. PPHJ uses a fixed output
buffer size of C = 1 page and a fan-out of F = A/-
that results in partitions of average size $&&77X pages.

380

Pang et al. consider the input buffer to be overhead rather
than part of the join’s memory allocation, so PPHJ has a
minimum memory requirement of Mk,, = F pages.
Partitions are spilled according to partition number from
highest to lowest, so that partition F is spilled first, and
partition 1 is spilled last. Excess memory allocated to the
join is used as a local I/O buffer [Sha86]. Pages in the
local buffer are prioritized by partition number, with pages
from lower numbered partitions having higher priority. A
decrease in memory during either the build or probe stage
causes one or more build partitions to be spilled. The main
contribution of the algorithm is the technique of exploiting
memory gains during the probe stage to restore spilled
build partitions to memory. This saves probe I/O at the
expense of additional build I/O. Partitions are restored in
the reverse order that they are spilled, so some pages may
be obtained from the local buffer, avoiding disk I/O. Pang
et al. performed a simulation study comparing PPHJ to
previous techniques and found that restoration is very
effective when the inputs differ in size. Restoration was
found to harm performance when the join’s memory
allocation fluctuates very rapidly.

3. Memory-Contention Responsive Join
An adaptable algorithm must satisfy two goals. First, it
must be capable of both capitalizing on metiry increases
and gracefully degrading in the face of memory losses.
The algorithm must be effective for fluctuations that vary
drastically in both frequency and magnitude. Second, the
algorithm must exhibit good responsiveness to reduction
requests from the memory manager, which measures how
fast an algorithm can reduce its memory usage when
requested to do so by the memory manager.
Responsiveness is particularly important in systems with
frequent fluctuations in contention or with occasional high-
priority requests.

To accomplish these goals, our hash join algorithm
relies on two principal techniques. First, it dynamically
adjusts the cluster size of the partitioning output buffers
and of the input buffer depending on memory availability.
It exploits additional memory to reduce the I./O time, and
improves responsiveness by increasing the size of both
read and write requests when possible. Second, it
maximizes the size of write requests by choosing a
partition to write based on current memory occupancy.
Specifically, if it is necessary to spill a resident partition,
the largest resident partition will be chosen (as in dynamic
destaging [NKTSS]); if it is necessary to flush buffered
pages of some spilled partition, the spilled partition with
the largest current buffer will be flushed. This technique
reduces I/O time and improves algorithm responsiveness as
it maximizes the size of write requests and, therefore, the
effective disk bandwidth.

Before describing our algorithm, it is important to
briefly consider the difference between dynamic and fixed
clusters. An algorithm with a fixed cluster size uses that
cluster size as the mandatory unit of I/O, so that it is the
unit of I/O for all VO requests. Instead, we define a target
cluster size Ctgt for I/O buffers. The actual cluster size, or

unit of I/O, may dynamically vary from one page up to
Ctgt. Thus, the goal is to use I/O buffers of C&,, pages, but
the ability to realize that goal depends on memory
availability. The target cluster size Ctsr is predetermined
based on the I/O subsystem’s capabilities and performance
characteristics. Figure 1 shows the I/O cost curve for the
disk used in our experiments as the cluster size increases.
To generate this graph, we calculated the approximate cost
in seconds to perform one I/O operation of numPages = 32
pages, as clusterSize varied from 1 to 32 pages. The
formula we used is ioCost = (rotLatency + seekZ’Ime) x
(numPages / clusterSize) + numPages x pagesize /
transferRate. The most effective target cluster size is the
one that allows realization of most of the cost savings from
a large cluster size. This is the point at which the cost
curve begins to level out, and such a point is illustrated in
Figure 1. A cluster size C,# I Ctgt that achieves a
significant fraction of the cost savings from a large cluster
size is also illustrated in Figure 1. This cluster size is the
minimum e$ective cluster size, the smallest cluster size we
would like to use (the purpose of this cluster size is
discussed in the algorithm description). It may seem that
the choices for C,, and C,g are arbitrary, and there is
indeed flexibility in choosing these values. In the
experimental section, we show that the main consideration
is to avoid very small cluster sizes. One other distinction
between fixed and dynamic clusters is that tuples may span
the pages of a fixed cluster, but not a dynamic cluster. This
allows pages to be read with a different cluster size than
the one with which they were written.

3.1. Basic MCRRJ Algorithm

The entire hash join is composed of a sequence of one or
more steps; the pseudo-code in Figure 2 illustrates one
step. Recall that a step processes one pair of build and
probe inputs and that there will be multiple steps if the
build input is larger than memory. The same logic is used
to process both base inputs and overflow partitions,
ensuring that our algorithm does not depend on accurate
estimates of the input sizes. While Zeller and Gray’s

II I
1 cefl crgt 3:

Cluster Size [pages]

Figure 1. Target Cluster Size.

381

It step initialization
determine fan-out F and minimal memory Mniin
for each partition

set state to resident
obtain one page for a hash table

obtain up to Ctgt pages for the input buffer
initialize the free list with all unused pages

/I build stage
for each build tuple

hash the tuple to a partition
while the tuple has not been added to the partition

if the tuple fits in the partition’s current pages
insert the tuple into the partition

else if a new page is available
enlarge the partition with a new page’

else if the partition is resident
if there is a spilled partition with buffer > C,,J

flush it and reduce its buffer to one page
else

spill the largest resident partition
return all pages except one to the free list

else // partition is spilled
flush the spilled partition with the largest buffer
return all pages except one to the free list

II probe stage
for each probe tuple

hash the tuple to a partition
if the partition is resident

probe the hash table
if there is a match, emit the result
else discard the tuple

else // the partition is spilled
if the tuple does not fit in the partition

if a new page is available
enlarge the partition with a new page’

else
flush the spilled partition with the largest buffer
return all pages except one to the free list

insert the triple into the partition’s output buffer

Figure 2. Memory-Contention Responsive Hash Join.

algorithm also handles inaccurate estimates of input sizes,
their algorithm resorts to a hashed-loops algorithm if the
initial partitioning step produces partitions larger than
memory, whereas our algorithm uses full hash-partitioning
as long as necessary. Techniques that prevent useless
partitioning of inputs with very many duplicate join key
values are considered elsewhere [Gra93b].

At the beginning of a step, it is necessary to determine
the partitioning fan-out F. For the first step, the fan-out is
set to F = y/m as in PPHJ. Note that for

t If the partition is spilled, the size of its output
buffer is limited to Cqt. If the partition is resident, its
hash table may grow without limit. See the discussion in
the text.

extremely large Rest, we might want to limit F to some
value that depends on the available machine, and thus
presume multiple partitioning levels right from the start.
Notice also that Rest is an estimate of the size of R; our
algorithm does not depend on accurate estimates. For all
later steps, F is set to dm, where Ri pages is the
actual size of the build partition file. F will be smaller for
later steps since the partition files are smaller. All of the F
partitions are resident initially and are given a one-page
buffer, but additional pages may be obtained later as
needed; this is similar to other adaptable algorithms
[NKT88, PCL93a, Z&90]. The input buffer is allocated
as many pages as possible up to Ctgi pages. The hash join
operator keeps a free list with any unused pages.

During the build stage, all build tuples are consumed
and each is hashed to a partition, say Pi. A tuple that is
assigned to a resident partition is copied into one of the
partition’s previously allocated pages and inserted into the
hash table. If there is no space for the tuple in the
partition’s pages, a new page may be obtained and
allocated to this partition. If no new page is available in
the operator’s free list, the algorithm will flush (and reduce
to one page) a spilled partition that currently uses more
than C,J output buffer pages. Specifically, the largest such
partition is chosen. If there is no such partition, the largest
resident partition is spilled and reduced to a single page as
an output buffer. The join spills the largest resident
partition because this choice maximizes the write request
and creates the most available memory. More importantly,
spilling the largest resident partition is the most reasonable
action if nothing is known about hash value skew in the
probe input [NKT88] or if the hash value distribution in the
probe input is uniform; better techniques are discussed in
[Gra93b].

At this point, either Pi is still resident and may obtain
an additional page, or Pi has been spilled. A tuple
assigned to a spilled partition is copied to the partition’s
output buffer if there is space. If the buffer is full but
smaller than CIgt pages, the join will enlarge the spilled
partition bu$er by obtaining a new page. If no free page is
available in the operator’s free list, some pages are freed
using the sequence of choices and actions above. The only
difference is that, while resident partitions may be enlarged
without limit, the buffers of a spilled partition are flushed
before they can grow beyond the target cluster size Ctgt .

Let us consider an example. Figure 3 illustrates both
minimal and enlarged spill buffers. The dashed box
represents the target cluster size CIgl = 4 pages for the
output buffers of spilled partitions. In Figure 3, partition 1
has a minimal output buffer of 1 page, while the output
buffer for partition 2 has been enlarged to the target cluster
size of 4 pages. Thus, partition 1 may grow further, while
partition 2 may not. Note that it would be possible to allow
the spill buffers of partitions 1 and 2 to grow without limit,
and to reclaim the pages when needed. However, there
would likely be some limit placed on the maximum size of
an I/O request, and no increase in the actual I/O size would
be realized from allowing the spill buffers to exceed this
limit (since the cluster would be written with multiple I/O

382

Partitions

l-l o-o-cl-cl-cl-cl-cl-cl

0
r-----l

resident partition : I target cluster I.----,

El spilled partition q memory page

Figure 3. Partitioning with Dynamic Clusters.

requests anyway). Allowing the spill buffers of build
partitions to grow without limit would result in an I/O
savings in the case of restoration.

After all build input tuples have been consumed and all
spilled build partitions have been flushed, the probe input
is consumed. At the beginning of the probe stage, there are
F partitions, some resident and some spilled. For probe
tuples assigned to resident partitions, the hash table is
probed immediately. A probe tuple that is assigned to a
spilled partition is copied to the partition’s output buffer, if
there is space. If the buffer is full and smaller than Ctgt
pages, the partition buffer will be enlarged with a new page
if one is available; otherwise, the spilled partition with the
largest output buffer is flushed. If a spilled partition’s
output buffer is full and equal to Cy pages, it is flushed
and reduced to one page. This sequence of growing,
flushing, and reducing the output buffer of a spilled
partition is exactly the same as that during the build stage.
At the end of the probe stage, all spilled partitions are
flushed and all buffer memory is returned to the operator’s
free list.

3.2. Reaction to Memory Fluctuations

A memory fluctuation between steps is handled very easily
by the basic algorithm, since each step is processed
independently and may have a different fan-out F.
However, a fluctuation during a step requires special
action.

Additional memory is utilized to enlarge the join’s input
and output buffers during both the build or probe stage. In
response to an increase in memory, the input buffer is
increased to Ctg, pages, if possible. A large input buffer is
beneficial for all partitions, so it is a wise investment of
memory. Any remaining pages are assigned to the join’s
free list so that they may be used to enlarge partition
buffers as needed. For example, in Figure 3, additional
memory could be allocated to any of partitions 0, 1, or 3.
In contrast to the use of additional memory in our
algorithm, the algorithms by Pang et al. and by Zeller and
Gray use additional memory only to reduce I/O volume by
avoiding I/O (Zeller and Gray may use large buffers

initially, but additional memory is used only to enlarge
resident partitions).

In response to a decrease in memory, the join must
reduce its memory usage by reclaiming memory, ,first from
its free list and then from its partition buffers. The join
could also reduce the input buffer, but since a large input
buffer is so generally beneficial, our join never reduces the
size of the input buffer. The disadvantage of retaining a
large input buffer is that it increases the join’s minimum
memory requirement (Mk = F + Z pages). If the join’s
reduced memory allocation is already equal to Mhn, the
join is unable to free any more pages. Otherwise, to
decrease its memory usage, the join must reclaim pages
until its memory usage has been sufficiently reduced.
First, it will reclaim pages from its free list, which can be
done instantaneously. Second, it will reduce the buffers of
spilled partitions to one page by flushing the full pages
from partition output buffers. To maximize the size of
write requests, spilled partitions are flushed in the order of
decreasing numbers of currently allocated buffers so that
partitions with larger current output buffers are spilled
before partitions with smaller output buffers. This reduces
IZO time and improves algorithm responsiveness. Third,
the algorithm will spill resident partitions and reclaim all
but one page to be used as an output buffer. As discussed
for the build stage, resident partitions are spilled in the
order of decreasing size. For example, given the situation
in Figure 3, a request for the join to decrease its memory
usage to its minimum memory requirement of 4 + Z pages
would cause the following actions: the full pages of
partition 2 would be flushed and its buffer reduced to 1
page; partition 0 would be spilled and given one page; and
partition 3 would be spilled and given one page. In
contrast to our handling of memory decreases, Zeller and
Gray spill resident partitions before they consider reducing
the cluster size. Pang et al. reclaim excess memory from
the join’s IZO buffer before they spill resident partitions.
Table 1 summarizes the differences between our MCRHJ
and PPHJ algorithms.

3.3. Algorithm Variants

Like most complex algorithms, our basic join algorithm
includes some policy choices. Let us consider some
alternatives for two of them.

l fixed cluster @II: Large cluster sizes have been
shown to be effective for query processing algorithms with
static memory allocations [Bra84, Gra93a. Gra94, Sa1901;
however, it is not clear how effective a large fixed cluster
size is when an algorithm’s memory allocation
dynamically varies. To provide a basis for comparison
with our dynamic techniques, this variant uses a fixed input
buffer of 6 pages, and a fixed cluster size Cfi~ for the
output buffers of spilled partitions. The fundamental
algorithm is the same as our basic MCRHJ algorithm,
except that the cluster size is fixed. The advantage of this
variant is that the fixed cluster size guarantees that all IZO
requests will use a large cluster size; the basic MCRHI
may in some cases use very small cluster sizes. Clearly,

383

Table 1. Algorithm Comparison.

excess to local spool buffer

the disadvantage is that the fixed cluster size results in a 4. Database Simulator
larger minimum memory requirement of
M. = 6 + F x Cfi~ pages. This algorithm is referred to
as ?%N, where N = Cfi.

l balance large cluster size with restoration @al):
Since large clusters have been shown to be effective for
static memory allocations, and since restoration has been
shown to be effective in certain situations when the
memory allocation fluctuates [PCL93a, PCL93b], it is
natural to try to combine the benefits of both techniques.
To do so, we provide an option that attempts to balance the
two by adding restoration to our basic MCRHI algorithm.
The bal variant responds to an increase in memory during
the probe stage as follows. It first attempts to realize a
significant fraction of the cost savings from a large cluster
size, and then it uses any remaining memory to restore as
many spilled build partitions as possible. Figure 1
illustrates the minimum effective cluster size C,f, which is
the smallest cluster size we would like to use. The bul
variant reduces large output buffers of spilled partitions to
C,f pages and preserves enough memory that smaller
output buffers of spilled partitions can be enlarged to C,g
pages. Any remaining memory is used for restoration.
MCRHI restores spilled partitions based on size, from
smallest to largest, which is more effective than PPHI for
skewed build inputs but has no effect for uniformly
distributed hash values. The bul technique can be applied
to either tbe basic MCRHJ algorithm or tbe FixN variant.

We implemented a simulator to study how to adapt most
effectively to memory fluctuations in a dynamic
environment, and to determine the effectiveness of our
techniques compared to previous approaches. In this
section, we describe first the simulated hardware and
software architectures and then the implementation of
earlier adaptable hash join algorithms in the simulator.

The simulated machine has a single CPU, two disks, a
memory manager, and a query source. Table 2 summarizes
the machine architecture, with the disk parameters taken
from a Maxtor MXT-1240s. The disk services requests in
first-come-first-served (FCFS) order. The disk access time
is disk access = seek time + rotational delay + trunqfer
time. The time to seek across t tracks is calculated as seek
time = seekfactor x fi [BiGBB]. Partition files are located
on one disk, and disk access time is minimized by
allocating the partition files on nearby cylinders. The base
input files are located on a second disk. We use
synchronous I/O in this simulation.

The join we model is a primary key-foreign key join in
which each probe tuple matches with exactly one build
tuple. The hash values are assumed to follow a uniform
distribution. The number of CPU instructions for each
simulator operation is given in Table 3, reproduced from
[PCL93a]. The fudge factor to account for hash table
overhead is fudge = 1.2.

The simulation consists of a single stream of adaptable
two-way join queries. At any point in time, one adaptable

384

Table 2. Machine Architecture.

Architecture Parameter
CPU speed
Page Size
Number of Disks
Disk Transfer Rate
Disk Rotational Latency
Number of Cylinders per Disk
Disk Cylinder Size
Disk Seek Factor

Value
20 MIPS
8KB
2
3.5 MB/set
4.76 ms
2368
69 pages
0.000247

Table 3. Number of CPU Instructions per Operation.

1 Operation #Instructions
Initiate a join 40,000
Terminate a join 10,ooo
Read a tuple from a memory page 300
Copy a tuple to output buffer 100
Insert a tuple into hash table 100
Hash a tuple 500
Probe the hash table 200
Start an I./O .operation 1000
Read/Write a page from/to disk 10,ooo

join is active; as soon as that join completes, another one is
started. Concurrent operations are reflected in the
fluctuating memory allocations. A join that is allocated
less memory than its minimum memory requirement is
suspended until additional memory is available. The
allocation of memory among algorithms is actually a
policy decision of the memory manager, including whether
a join should ever be given less memory than its minimum
requirement. We do not investigate such policy decisions
in this paper, so we simply suspend the join [pCL93a].
Memory allocated to a join is considered “‘pinned” in the
buffer and managed entirely by the join operator without
system intervention. The memory manager decreases or
increases the join’s memory allocation, and the join
responds to these changes by unpinning or pinning pages.
All joins in our simulator respond as soon as possible to
memory fluctuations. For example, if more memory
becomes available again while a.join is in the process of
reducing its memory usage, it will cease reduction.

Simulation of PPHJ

A thorough simulation study demonstrated that PPHJ has
as good or much better performance than previous
memory-adaptable algorithms, including adaptable variants
of Grace and hybrid hash join, and Zeller and Gray’s
adaptable hash join algorithm [PCL93a, PCL93b].
Therefore, it is sufficient to compare our algorithms only to
PPHJ. We discussed PPHJ in detail in Section 2; in this

section, we describe our implementation of PPHJ. We
implemented PPHJ as faithfully as possible based on the
available algorithm descriptions [PCL93a, PCL93b], with
one small modification to make PPHJ adaptable even while
processing overflow files. We refer to the modified
algorithm as PP,, since it recursively partitions its inputs.

For steps after the initial step, PPHJ uses classic in-
memory hash join. Thus, it is impossible to spill a
partition during those steps, because no suitable partitions
are created. PP,, our modified version, recursively
partitions its inputs and processes partition files in exactly
the same way as it processes the base inputs. This
modification allows the algorithm to adapt to memory
fluctuations during all steps, and also enables it to handle
inaccurate estimates of input sizes.

Among the variants of PPHJ studied by Pang et al., the
most effective variant combines late contraction,
restoration, and priority spooling, of which restoration
provides the largest performance improvement. PP,
includes both late contraction and priority spooling.
Restoration was effective in some but not all situations
analyzed, so we include PP, both with and without
restoration (res option). The unit of YO for the
experiments presented in [PCL93a] was one page. In
[PCL93b], response time was improved significantly by
flushing pages from the local spool buffer in blocks of 6
pages. Therefore, PP, uses an input buffer of 6 pages and
flushes pages from the local buffer in blocks of 6 pages at a
time.

5. Experimental Evaluations
In this section, we compare our techniques to each other
and to PP, for a variety of workloads. To ease comparison
with the original papers on PPHJ, we structured our
simulation experiments similarly to those presented in
[pcL93a]. Since the techniques proposed by Pang et al.
and in this paper vary in their management of memory and
partition files but do not affect the time to read base inputs
or write the join output, the performance metric reported
here is the average join response time, which combines the
CPU time specific to the join and the I/O time to partition
files. Join response time, as opposed to query response
time, correctly reflects the effort specific to the join,
whether the inputs come from file scans, index scans, or
pipelines, and was used both by DeWitt et al. and by
Shapiro to analyze the effectiveness of join algorithms
[DK084, Sha86]. Absolute differences in join response
time fairly accurately reflect differences in query response
time, whereas relative differences are different due to the
effort required to obtain the join inputs and to dispose of
the join output, which is the same for all algorithms
considered here.

We report I/O activity as the average number of I/O
requests and average I/O volume in pages. The I/O volume
may be further divided into I/O to either build or probe
partition files. For the MCRHJ variants, we use Ctgt = 8
and C,ff = 4.

In Section 5.1, we examine how well the algorithms
adapt under different magnitudes of memory contention.

385

The experiment in Section 5.2 analyzes the algorithms’
performance with respect to different frequencies of
memory fluctuations. Finally, in Section 5.3, we examine
the sensitivity of MCRHJ to C,, and the sensitivity of
MCRHJ:bal to Cefl.

5.1. Memory Contention

In this experiment, we examine the effectiveness of the
adaptable techniques when they experience different
degrees of memory contention. We simulate a situation in
which the adaptable join competes for memory with other
operations in the system. System activity is fairly
unpredictable since other queries may enter or leave the
system at any time. The join’s memory allocation is
uniformly selected from the range of 80-100% of total
system memory 80% of the time. This represents changes
in available memory as other queries enter and leave the
system. The other 20% of the time, the allocation is
selected uniformly from the range of O-100% of total
system memory. This represents the possibility of an
occasional surge in contention due to either a particularly
large query or the simultaneous arrival of several smaller
queries. The intervals between changes in contention are
chosen from an exponential distribution with a mean of 1
second.

High Contention

To represent an environment with fairly high contention,
the amount of system memory is set to M = 1 MB. The
join inputs for this experiment are R = 5 MB and S = 50
MB. We could have chosen a smaller system memory, but
the Fix4 variant (MCRI-IJ with a fixed cluster size of 4
pages) has a high minimum memory requirement of almost
1 MB so a smaller system memory would have forced us to
exclude that variant.

The average join response times for the various
algorithms under high contention are shown in Figure 4.
There are a number of interesting observations that we can
make from this figure. Restoration is ineffective under
high contention; neither the res nor the bul options produce

180

Avg 15’
Join 120 Rev 90
Time
[sea] 60

-^

R=5MB,S=50MB,M=lMB

Figure 4. High Contention.

noticeable differences in join response time. MCRHJ
provides the lowest join response times of all the variants,
demonstrating the effectiveness of our algorithm under
high contention. Our Fix2 variant provides better
performance than PP,, even though PP, flushes its local
buffer in blocks of 6 pages. Fix4 gives the worst
performance, even worse than Fix2 although its cluster size
is twice as large.

Table 4. Details for the High Contention Experiment.

ppr
PP,:res

[pgsl [pgsl [pgsl [sets]

9283 17483 1670 15813 129.99
9429 17125 2475 14649 131.20

-MCRI-IJ I 2606 17517 1653 15864 82.09
MCRHJ:bal 2592 17352 1674 15678 81.42

To explain these observations, we examine the detailed
data for the high contention situation, given in Table 4.
The total IZO volume is similar for all algorithms;
therefore, the significant differences must be due to IZO
calls. MCRHJ has a significantly lower number of I/O
calls than the other variants, with an average actual cluster
size (ZoVoZ / ZOcuZZs) of 6.72. Thus, the dynamic cluster
sizing techniques of MCRHJ very effectively permit large
cluster sizes in this environment.

To understand why Fix2 outperforms PP,, notice that
Fix2 has a much lower number of I/O calls. Since both PP,
and the FixZV variants have an input buffer of 6 pages, the
reason must be in differences in the output cluster sizes.
Fix2 has an average actual cluster size of 2.97 compared to
1.88 for PP,. Why does PP, average only 1.88 pages per
I/O call when it has an input buffer of 6 pages and attempts
to flush the local buffer in blocks of 6 pages? The reason is
that, since memory is scarce, PP, does not often have
excess memory to assign to the local buffer. Thus, most of
its write I/O is not buffered but written directly using a
cluster size of only one page.

Similarly, one might expect Fix4 to perform better than
Fix2 since it has an output cluster size twice as large as
Fix2. In fact, we see in Table 4 that Fix4 does indeed have
a much lower number of IZO calls than Fix2; however,
rather than giving better performance, it has the highest
response time of all the variants. This is a result of its high
minimum memory requirement of Mt+, =6+ F ~4,
which causes excessive suspension (recall that a join is
suspended when its memory allocation falls below its
minimum memory requirement). Despite achieving an
average actual cluster size of 4.7 pages, more than PP, and
Fix2, Fix4’s high minimum memory requirement is a

386

serious impediment to good performance in a high
contention environment.

In summary, this experiment has demonstrated that the
techniques employed by MCRHJ are very effective in
reducing response time in a high contention environment.
This is accomplished by utilizing memory to reduce I/O
time by dynamically maximizing the actual cluster size.
Our techniques are effective compared to previous
techniques as well as compared to large fixed cluster sizes,
which cannot fully exploit memory gains and which may
suffer excessive suspension as a result of a high minimum
memory requirement. Furthermore, restoration cannot be
exploited under high contention because there isn’t
sufficient memory to utilize the technique.

Low Contention

We now examine a low contention environment by
repeating the previous experiment with the one difference
that the system memory in increased to M = 8 MB to
simulate a low level of memory contention. Given the
experimental parameters with this large system memory,
the join will have its maximum memory requirement of 6
MB (fudge x 5 MB) 85% of the time, so this experiment
demonstrates very low contention2.

The average join response times for the various
algorithms under low contention are shown in Figure 5.
The most immediate contrast to the experiment with high
contention is that restoration is quite effective for all of the
algorithms. PPr:res is the fastest algorithm here, closely
followed by the three MCRHJ variants with restoration.

These differences are explained by the detailed data
given in Table 5. Whereas memory scarcity under high
contention prevents restoration, the abundance of memory
here allows it to be exploited effectively. For example,
PP,:res uses about twice as much build I/O volume as PP,

I Fix2

Avg
Join
Resp
Time
be4

Figure 5. Low Contention.

2 The 85% is explained as follows: 80% of the time,
the join will have 2 6.4 MB; of the remaining 20% of the
time, the join is allocated 2 6 MB 25% of the time.

Table 5. Details for the Low Contention Experiment.

pp*
[PIFI bw b&j [=sl

837 2710 402 2307 22.87
PP,:res 417 1033 788 244 15.03
Fix2 1439 4272 623 3648 31.96
Fix2:bal 572 1389 960 428 17.11
Fix4 867 4077 639 3438 27.43
Fix4:bal 343 1445 953 491 16.12
MCRHJ 456 5457 788 4668 28.94
MCRHJ:bal 218 1905 1274 630 16.54

(788 vs. 402 pages) to reduce the much larger probe I/O
volume to about one tenth of PP, (244 vs. 2307 pages),
reducing the average join response time by 7.84 seconds.
Restoration is also effective when combined with both
MCRHJ and FixN as the bul option, resulting in savings of
11.31 to 14.85 seconds. However, the join response times
of MCRHJ:bal and FixNbal are a little higher than those of
PPr:res. Since their performance improvements are even
larger than that achieved by PP,:res over PP,, the
explanation must be due to fundamental differences in the
basic algorithms. In Table 5, we can see that the total I/O
volume for MCRHJ is about twice that of PPr. The reason
is that MCRHJ utilizes some memory to dynamically
enlarge partition output buffers, making this memory
unavailable for resident/restored partitions. Although this
does effectively decrease the number of I/O calls, the
penalty in increased I/O volume is higher than the benefit.
The same situation occurs with Fix2 and Fix4, with the
differences being due to their smaller actual average cluster
size when compared to MCRHJ. The reader may have
noticed that MCRHJ and MCRHJ:bal both have average
actual cluster sizes larger than the target cluster size
C,, = 8 (11.97 and 8.7, respectively). Although the input
buffer and the partition output buffers are limited to Ctgl
pages, the original I/O to spill a partition may use larger
cluster sizes, and this is exactly what MCRHJ does. Since
the majority of the write I/O volume for MCRHJ under low
contention is original spilling, its average actual cluster
size is quite large. For MCRHJ:bal, the cluster size for
restoration is limited to Ctgt, so its average actual cluster
size is smaller than that of MCRHJ.

As we had expected in the previous experiment, PP,
outperforms Fix2 which outperforms Fix4. Whereas under
high contention, PP, did not have sufficient memory to
assign to its local buffer, it does under low contention.
Thus, as opposed to the average actual cluster size of 1.88
pages per I/O calls under high contention, PP, achieves an
average of 3.23 under low contention. Of course, Fix2
(and Fix4) also have fixed output buffers, resulting in
increased I/O volume compared to PPr. Fix4 outperforms

387

Fix2 as expected since it does not suffer from excessive
suspension when there is ample memory.

To summarize, this experiment has shown that
restoration (in the form of our bal technique) can be
effectively combined with our dynamic cluster techniques
to enhance the performance of the basic MCRHJ algorithm
under very low contention. However, using some memory
to enlarge I/O buffers increases the I/O volume, resulting in
a slightly higher join response time for MCRHJ:bal than
for PP,:res.

Varying Contention

In this experiment, we subject the join algorithms to
varying magnitudes of contention, ranging from high to
very low contention. The previous two experiments
demonstrated a significant advantage of MCRHJ:bal over
PP,:res at high contention, and a small advantage of PP,:res
over MCRHJ:bal at low contention. Now we examine the
entire range in between to determine the effectiveness of
the algorithms in a larger context. In this experiment, the
system memory ranges from 1 MB (high contention) to 8
MB (very low contention). The join inputs for this
experiment are R = 5 MB and S = 50 MB. Based on the
performance in the previous experiments, we eliminated
Fix4, Fix4:bal, and Fix2 since they provided inferior
performance.

150
- NO restoration o MCFU-IJ

1251 \ - - resorbal x Fix2
A PP,

1 2.5 4 5 6.25 8
Memory[MB];R=5MB,S=50MB

Figure 6. Varying Contention.
The average join response times for the various

algorithms when contention varies from high to very low
are shown in Figure 6. (the end-point values at 1 MB and
8 MB are taken from the previous two experiments).
Figure 6 clearly shows the effectiveness of our MCRHJ
algorithm over a wide range of memory contention.
Obviously, our techniques provide much greater
performance differences at higher levels of contention, but
MCRHJ:bal provides the lowest join response times of all
algorithms for all data points with memory size M I 6.25
MB. It is interesting that Fix2:bal outperforms PP,:res over
a significant range of contention (data points I5 MB),
since PP,:res has insufficient memory to write and read in
large clusters (as discussed above for the high contention).

We also explored the sensitivity of the results to the
relative input sizes, i.e., the ratio R / S. The results were
very similar to those in Figure 6, so we do not include
them here.

In summary, this experiment has demonstrated that our
dynamic cluster techniques combined with restoration
(MCRHJ:bal) are very effective over a wide range of levels
of memory contention, compared to fixed cluster
techniques and previous techniques that utilize only
restoration, The only exception to this observation is at
very low levels of contention when the total I/O volume is
small; in this case, PP,:res performed slightly better than
MCRHJ:bal.

5.2. Interval between New Allocations

In addition to being effective for widely differing
magnitudes of contention, an adaptable algorithm should
also be stable with respect to extreme variations in the
frequency of the memory fluctuations. The rate of memory
fluctuations will vary depending on the amount of
concurrent activity in the system. In this experiment, we
examine the stability of the algorithm variants with respect
to extreme variations in the frequency of the memory
fluctuations. We vary the mean duration of an allocation
from 0.1 second to 10 seconds, using an exponential
distribution as in the previous experiment. The total
memory from which the join’s allocation is taken is M = 3
MB, representing a medium contention environment. The
join inputs for this experiment are R = S = 5 MB. All
other parameters are as described in the previous
subsection.

To be effective, an adaptive technique must adapt faster
than the fluctuation frequency. When fluctuations occur
very frequently, restoration increases the response time
because it is an adaptive technique of coarse granularity.
That is, restoration is an expensive operation that provides
no guaranteed benefit. Figure 7 shows the join response
times of the algorithms as the fluctuations vary from

IV

IA I

Avg l5
Join

0 1 2 3 4 5 6 7 8 9 10
Mean Fluctuation Interval [sets]

R=S=5MB,M=3MB

Figure 7. Varying Interval of Fluctuations.

388

150

130-
-e- MCRHJ

llO-
Avg Join 9o

Resp Time
[seconds] 70-

50-
30-
10 I I I I I I I I I

12 4 6 8 10 12 14 16
Target Cluster Size Ctgt [pages]

R=5Im,S=50MB

-e- MCRHJ:bal

M=6.25 @- - - _ + (f-*----*----

e-*----*M~~-!B~----~

I I I I I
1 2 4 6 8

Min Effective Cluster Size C,g [pages]
R=5MB,S=50MB,Ctgt=8

Figure 8. Sensitivity of MCRHJ to its Parameters.

frequent to infrequent. PP,:res does indeed perform worse
under frequent fluctuations because it suffers from the cost
of restoration but does not have enough time to realize the
benefit. MCRH.T:bal suffers very slightly from this, but not
nearly as much as PP,:res since MCRHJ:bal does not use
all of its memory for restoration.

It is rather surprising to see that PP, and MCRHJ
actually achieve lower join response times at high
fluctuation frequency. There are two reasons for this
phenomenon. First, recall that our joins respond as soon as
possible to changes in memory contention. When
contention changes very frequently, both algorithms abort
memory reduction efforts before they are finished,
resulting in an I/O savings compared to less frequent
fluctuations. Second, PP, employs priority spooling, which
is more effective at a high frequency of fluctuations. The
total I/O volume for PP, is very stable regardless of the
fluctuation frequency, but at high frequency, it is able to
achieve larger block writes resulting in a lower I/O calls.

In summary, our algorithm variants are more stable over
a wide range of fluctuation frequencies, including very
frequent fluctuations. Our techniques for exploiting
additional memory are of a finer granularity than previous
techniques. Even when combined with restoration, this
expensive operation does not dominate since it is
secondary to our dynamic cluster techniques.

5.3. Sensitivity dnalysis

The two parameters that control our MCRHJ algorithm are
the target cluster size Ctsl and the minimum effective
cluster size C,fl. In this experiment, we examine the
sensitivity of the MCRHJ algorithm to these parameters.
Figure 8 shows the sensitivity of MCRHJ to both of these
parameters. The left graph in Figure 8 shows the
sensitivity to Ctgt for several different levels of contention,
realized by different memory sizes M as in the previous
experiments. A significant performance improvement can
be obtained by simply avoiding very small target cluster
sizes less than four. Not surprisingly, extremely poor

performance results from a target cluster size of one.
Figure 8 shows that our choice of C$, = 8 is quite
reasonable. Using a target cluster size of Crgr = 8, the right
graph of Figure 8 shows the sensitivity of MCRHJ:bal to
the choice of C,a for different levels of contention. At
lower contention, the algorithm is insensitive to this
parameter; the minimum effective cluster size is not a
limiting factor since there is ample memory and buffer
sizes are likely already larger than C,fl (up to Ctgr). Under
higher contention, particularly for M = 1 MB, a smaller
C,ff does slightly worsen performance until it stabilizes at
C,ff = 4. Thus, it is more important to attempt to realize
some minimal cluster size when memory is scarce than
when memory is ample, but a larger Ceff does not affect
performance at lower contention.

In summary, it is quite simple to find effective
parameters for C,gt and C,f. The main consideration is to
avoid very small cluster sizes, which is easy to do using the
I/O cost curve of Figure 1.

6. Summary and Conclusions
In this paper, we considered hash join algorithms that can
adapt to changes or fluctuations in their memory allocation
at any time during their execution. We showed the
importance of reducing the amount of time spent on l/O,
rather than only reducing the UO volume, or number of
pages of I/O. The two techniques we proposed to allow
effective adaptation to both increases and decreases in
memory allocation are (i) dynamically varying the size of
the clusters, or I/O buffers, depending on memory
availability, and (ii) maximizing the cluster size of I/O
requests. Previous research has demonstrated the
effectiveness of the techniques of dynamic destaging,
which dynamically chooses a partition to spill based on
size, and restoration, which uses additional memory to
restore spilled build partitions to memory. Our new hash
join algorithm, Memory-Contention Responsive Hash Join
(MCRHJ), combines our two new techniques with the
previous ones.

389

The new algorithm’s most effective variant explored
here is MCRHJ:bal. This variant defines a target cluster
size of Ctgt pages, which is the I/O buffer size that
achieves most of the cost savings from large I/O requests
for a given I/O subsystem. The I/O buffers of spilled
partitions may dynamically vary from 1 to Cqr pages,
depending on memory availability. When memory is
plentiful, spilled partition buffers may be enlarged up to
C,, pages, but in times of memory scarcity, one or more of
them may be reduced to fewer than Ctgt pages. If more
memory is available than is required to enlarge all spilled
partition buffers to C,ff pages, it is used for restoring
spilled build partitions to memory (C, is the cluster size
I Ctgt that achieves a significant fraction of the cost

savings from using a large cluster size). Read requests are
optimized by using a large input buffer. Write requests are
optimized by writing the partition that has the largest
amount of memory allocated. In other words, if a resident
partition must be spilled, MCRHJ:bal spills the largest
resident partition; if a spilled partition must be flushed, it
flushes the spilled partition with the most pages assigned to
its output buffer. The output buffer of a partition that is
spilled or flushed is reduced to one page, and may then
increase in size up to Crgr pages, depending on need and
memory availability.

Our experimental evaluation included the Partially
Preemptible Hash Join algorithm (PPHJ) that was recently
shown to have better performance than earlier adaptable
algorithms. PPHJ achieves its performance improvement
by using restoration to reduce I/O volume. However, our
experimental evaluation demonstrates that large,
dynamically-sized clusters allow the join to adapt more
effectively at higher levels of contention. Our MCRHJ:bal
variant achieves better performance than PPHJ at all levels
of memory contention considered here, except at very low
contention, and it achieves more stable performance for
very frequent fluctuations. Moreover, using large clusters
increases responsiveness, the ability to reduce memory
usage quickly, thus permitting faster reaction to new high-
priority queries entering a database system. We conclude
that combining dynamically-sized I/O clusters, maximized
I/O requests, dynamic destaging, and restoration results in
the most effective join algorithm to-date for environments
with fluctuating memory contention.

Acknowledgements

This research was partially supported by an ARPA
Fellowship in High Performance Computing administered
by the Institute for Advanced Computer Studies, University
of Maryland, Digital Equipment Corp., and Texas
Instruments.

References

[BiG88]

[Bra841

D. Bitton and J. Gray, “Disk Shadowing”, PIUC.
Int’l. Conf: on Very Large Data Bases, Los Angeles,
CA, August 1988,331.
K. Bratbergsengen, “Hashing Methods and Rela-
tional Algebra Operations”, Proc. Int’l. ConJ on

[DK084]

[DeG85]

[Gra93a]

[Gra93b]

[Gra94]

[GLS94]

[KNTw

[NKT88]

[PCL93a]

[PCL93b]

[Sha86]

[SSU91]

[ZeG90]

Very Large Data Bases, Singapore, August 1984,
323.
D. J. Dewitt, R. Katz, F. Olken, L. Shapiro, M.
Stonebraker, and D. Wood, “Implementation Tech-
niques for Main Memory Database Systems”, Proc.
ACM SIGMOD Conj, Boston, MA, June 1984, 1,
D. J. Dewitt and R. H. Gerber, “Multiprocessor
Hash-Based Join Algorithms”, Proc. Int’l. Con. on
Very Large Data Bases, Stockholm, Sweden, Au-
gust 1985,151.
G. Graefe, “Query Evaluation Techniques for Large
Databases”, ACM Computing Surveys 25, 2 (June
1993), 73-170.
G. Graefe, “A Performance Evaluation of His-
togram-Driven Recursive Hybrid Hash Join”, sub-
mitted for publication, August 1993.
G. Graefe, “Sort-Merge-Join: An Idea whose Time
has(h) Passed?‘, Proc. IEEE Int’l. Conf on Data
Eng., Houston, TX, February 1994,406.
G. Graefe, A. Linville, and L. D. Shapiro, “Sort ver-
sus Hash Revisited”, to appear in IEEE Trans. on
Knowledge and Data Eng., 1994.
M. Kitsuregawa, M. Nakayama, and M. Takagi,
‘The Effect of Bucket Size ‘Bming in the Dynamic
Hybrid GRACE Hash Joiu Method”, PXJC. Int’l.
Conf: on Very Large Data Bases, Amsterdam, The
Netherlands, August 1989,257.
M. Nakayama, M. Kitsuregawa, and M. Takagi,
“Hash-Partitioned Join Method Using Dynamic
Destaging Strategy”, Proc. Int’l. Con$ on Very
Large Data Bases, Los Angeles, CA, August 1988,
468.
H. Pang, M. J. Carey, and M. Livny, “Partially Pre-
emptible Hash Joins”, Proc. ACM SIGMOD ConjY,
Washington, DC, May 1993,59.
H. Pang, M. Carey, and M. Livny, “Partially Pre-
emptible Hash Joins”, Univ. of Wisconsin - Madi-
son Comp. Sci. Tech. Rep. 1144, 1993.
B. Salzberg, “Merging Sorted Runs Using Large
Main Memory”, Acta Informatica 27 (1990), 195,
Springer.
L. D. Shapiro, “Join Processing in Database Sys-
tems with Large Main Memories”, ACM Trans. on
Database Sys. II,3 (September 1986), 239.
A. Silberschatz, M. Stonebraker, and J. Ullman,
“Database Systems: Achievements and Opportuni-
ties”, Comm. of the ACM, Special Section on Next-
Generation Database Systems 34, 10 (October
1991), 110.
H. Zeller and J. Gray, “An Adaptive Hash Join Al-
gorithm for Multiuser Environments”, Proc. Int’l.
Con5 on Very Large Data Bases, Brisbane, AUS-
tralia, August 1990, 186.

390

