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Abstract 

In order to maximize system performance in envi- 
ronments with fluctuating memory contention, 
memory-intensive algorithms such as hash join 
must gracefully adapt to variations in available 
memory. Mixed workloads, creating fluctuations 
of erratic frequency and magnitude, make respon- 
siveness to memory contention particularly impor- 
tant. Previous studies on adaptable hash joins 
have focused on lowering I/O costs by reducing 
the I/O volume, as measured in the number of 
pages, by spilling partitions from memory to disk 
and then restoring them into memory if more 
memory becomes available. In this paper, we pre- 
sent memory-contention responsive hash joins that 
(i) reduce the amount of time spent on I/O by us- 
ing large I/O buffers, or clusters, (ii) dynamically 
vary the cluster size in response to fluctuations in 
memory availability, and (iii) employ earlier tech- 
niques of dynamic destaging and restoration. Our 
simulation results demonstrate that these com- 
bined techniques provide better performance than 
previous algorithms, particularly in environments 
with medium to high memory contention or with 
very frequent changes in memory availability. 

1. Introduction 
Static memory allocation techniques are inadequate for 
query execution jn a multi-user environment because the 
system is unable to predict when new requests will arrive. 
Differences in query complexity and size complicate 
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allocation decisions by creating a mixed workload in which 
memory demands may vary significantly among requests. 
The use of parallelism exacerbates the memory allocation 
problem by drastically increasing the competition for this 
scarce resource [SSU91]. This unpredictable environment 
precludes consistently achieving good performance using 
static memory allocation techniques since an optimal 
division of memory among competing queries may become 
sub-optimal very quickly as queries enter and leave the 
system. To overcome this uncertainty, the system must 
adapt to changes or fluctuations in memory contention by 
adjusting previous allocation decisions, and memory- 
intensive algorithms such as hash join and sort must have 
the capability to respond gracefully to changes in their 
memory allocation at any time during their execution. 

In this paper, we show how memory can be used more 
effectively by hash joins whose memory allocation varies 
during execution, particularly how a large cluster, or unit 
of I/O, can be exploited for maximum performance and 
responsiveness in spite of memory fluctuations. We 
designed and prototyped a group of memory-contention 
responsive hash joins and found that fluctuating memory 
allocations can best be handled by dynamically varying the 
cluster size depending on memory availability, and 
maximizing the size of I/O requests. 

There are two approaches to reducing I/O cost: reduce 
VO volume, or reduce I/O time. I/O volume measures the 
number of pages transferred to and from disk, whereas I/O 
time measures the total time for disk seeks, rotational 
latencies, and transfers. Most previous hash join 
algorithms, static or adaptable, have taken the former 
approach. They attempt to achieve cost savings through 
reduction of I/O volume by keeping as much of the build 
input resident as possible, and to maximize memory 
utilization by creating partitions equal in size to the join’s 
memory allocation. However, the more important issue is 
the I/O time. Optimizing I/O time involves a tradeoff 
between I/O volume and the number of I/O operations, 
because large clusters result in fewer disk accesses but on 
the other hand may increase the I/O volume since memory 
pages are committed to spilled partition buffers that 
otherwise would be used for resident partitions. For static 
memory allocations, analyses and experiments have shown 
that both sort and hash-based algorithms are much more 
effective using relatively large clusters or I/O buffers to 
reduce I/O time, even if it increases I/O volume lBra84, 
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Gra93a, GLS94]. Large clusters reduce the number of IZO 
calls and thus reduce total seek time and rotational latency, 
the most expensive components of small IZO operations. 

A large, fixed cluster size that remains unchanged for 
the duration of a hash join realizes the benefit of large YOs, 
but it has two significant problems in environments with 
changing memory contention. First, it increases the join’s 
minimum memory requirement since at least one cluster is 
required for each partition. Second, it prevents the join 
from exploiting increases in memory to reduce IZO time. 
Thus, a fixed cluster size does not allow the join to adapt to 
changes in its memory allocation because it doesn’t take 
either of these factors into account. The present paper 
presents solutions for these two problems. 

In Section 2, we review earlier research on hash join 
algorithms, focusing on adaptable algorithms. Section 3,, 
introduces our “memory-contention responsive hash join 
algorithm: discusses how it responds to memory 
fluctuations, and describes some variations of the basic 
algorithm. We describe our simulator and simulation 
parameters in Section 4 before presenting our experimental 
results in Section 5. Finally, we summarize the paper and 
offer our conclusions. 

2. Related Work 
In this section, we review previous research related to our 
work. Before beginning this discussion, we introduce 
notation and terminology used throughout this paper. 

The build input is designated R, the probe input S, and 
the number of pages in the input buffer I. The join’s 
memory allocation, M, is allocated in fixed-size pages. 
The unit of disk I/O is a cluster, C, that is composed of one 
or more pages. R, S, I, M, and C are also used to express 
the respective sizes. All sizes are measured in pages. The 
number of partitions into which the inputs are divided is 
called the partitioning fun-out, F. Note that F refers to the 
total number of partitions, any of which may be resident in 
memory or spilled to disk. To account for hash table 
overhead, we use a fudge factor fudge; thus, fudge x R 
pages of memory are required to keep the entire build input 
in a hash table for the join. 

A hash join is a sequence of one or more steps, where 
each step processes a pair of build and probe inputs and 
produces either pairs of partition files to be processed in 
later steps, join output tuples, or both. A step can be the 
initial partitioning of the base inputs, an intermediate 
partitioning level (if multiple levels are required), or the in- 
memory join in the deepest recursion level. A step is 
composed of the buiM stage, during which the build input 
is processed, and the probe stage, during which the 
corresponding probe input is processed. Depending on 
memory availability, a partition may be in one of three 
stutes. A partition is resident if all build tuples currently 
assigned to the partition are entirely contained in the 
partition’s in-memory buffer. If some or all of the 
partition’s build tuples have been written to disk, the 
partition is spilled. If the join’s memory allocation 
increases, the build file of a spilled partition could be read 
back into memory or resfored during the probe stage, so 

that it exists both in memory and on disk. Since at least 
one page is required per partition and Z pages are required 
for the input buffer, the minimum memory requirement for 
a hash join is Mk,, = F + Z pages, and the join cannot 
reduce its memory consumption below this amount, 

Early work on hash joins assumed fixed memory 
allocations for the duration of the join [Bra84, DK084, 
DeG85, KNT89, NKT88, Sha861. Hybrid hash join can be 
used when the memory allocation is large enough that R 
can be divided into partitions no larger than memory, i.e., 
fudge x R I F x M [DK084, Sha86]. If there is sufficient 
memory, hybrid hash join will keep one partition resident 
to reduce the I/O volume (each partition is composed of 
multiple hash buckets). Hybrid hash join statically assigns 
memory to partitions and predetermines which partitions 
will be spilled. The bucket tuning technique employed in 
the Grace hybrid hash join hashes tuples into a large 
number of buckets and then groups resident buckets into a 
single resident partition and spilled buckets into memory- 
sized partitions for subsequent steps [KNT89]. To 
counteract the effects of skew in the build input, the 
technique of dynamic destuging dynamically chooses the 
largest bucket to spill (destage) when memory is exhausted 
[NKT88]. 

Zeller and Gray were the first to propose a hash join that 
can adapt to variations in available memory [ZeG90]. 
They use bucket tuning, and also propose using large 
cluster sizes. However, the cluster size C (as well as F and 
the number of buckets) is provided by the optimizer and 
the paper does not elaborate on how it is determined. The 
algorithm performs only one level of partitioning and 
resorts to a hashed-loops algorithm [DeG85] for partitions 
that are larger than memory. To try to keep partitions 
smaller than memory, if a partition grows beyond the join’s 
current memory allocation, the fan-out is dynamically 
increased by splitting the large partition into two smaller 
partitions. This means that pages associated with the 
original, larger partition must be read twice or more in later 
steps. Additional memory can be used during the build 
stage to enlarge resident partitions but is not exploited 
during the probe stage. In response to a decrease in 
memory during the build stage, one or more partitions will 
be spilled. If this is an insufficient reduction in memory 
usage, the cluster size is decreased; however, the cluster 
size is never increased in response to an increase in 
memory. Even though it uses large clusters, the algorithm 
essentially retains the same goals as earlier algorithms as it 
focuses on reducing I/O volume and maximizing memory 
usage by creating partitions no larger than memory. 

More recently, Pang et al. proposed the partially 
preemptible hash join (PPHJ) that adapts to memory 
fluctuations during both the build and probe stages 
[PCL93a, PCL93b]. PPHJ performs a single level of 
partitioning and uses classic in-memory hash join to 
process spilled partitions. The algorithm assumes accurate 
estimates of input sizes; however, it can be modified to 
handle estimation inaccuracy. PPHJ uses a fixed output 
buffer size of C = 1 page and a fan-out of F = A/- 
that results in partitions of average size $&&77X pages. 
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Pang et al. consider the input buffer to be overhead rather 
than part of the join’s memory allocation, so PPHJ has a 
minimum memory requirement of Mk,, = F pages. 
Partitions are spilled according to partition number from 
highest to lowest, so that partition F is spilled first, and 
partition 1 is spilled last. Excess memory allocated to the 
join is used as a local I/O buffer [Sha86]. Pages in the 
local buffer are prioritized by partition number, with pages 
from lower numbered partitions having higher priority. A 
decrease in memory during either the build or probe stage 
causes one or more build partitions to be spilled. The main 
contribution of the algorithm is the technique of exploiting 
memory gains during the probe stage to restore spilled 
build partitions to memory. This saves probe I/O at the 
expense of additional build I/O. Partitions are restored in 
the reverse order that they are spilled, so some pages may 
be obtained from the local buffer, avoiding disk I/O. Pang 
et al. performed a simulation study comparing PPHJ to 
previous techniques and found that restoration is very 
effective when the inputs differ in size. Restoration was 
found to harm performance when the join’s memory 
allocation fluctuates very rapidly. 

3. Memory-Contention Responsive Join 
An adaptable algorithm must satisfy two goals. First, it 
must be capable of both capitalizing on metiry increases 
and gracefully degrading in the face of memory losses. 
The algorithm must be effective for fluctuations that vary 
drastically in both frequency and magnitude. Second, the 
algorithm must exhibit good responsiveness to reduction 
requests from the memory manager, which measures how 
fast an algorithm can reduce its memory usage when 
requested to do so by the memory manager. 
Responsiveness is particularly important in systems with 
frequent fluctuations in contention or with occasional high- 
priority requests. 

To accomplish these goals, our hash join algorithm 
relies on two principal techniques. First, it dynamically 
adjusts the cluster size of the partitioning output buffers 
and of the input buffer depending on memory availability. 
It exploits additional memory to reduce the I./O time, and 
improves responsiveness by increasing the size of both 
read and write requests when possible. Second, it 
maximizes the size of write requests by choosing a 
partition to write based on current memory occupancy. 
Specifically, if it is necessary to spill a resident partition, 
the largest resident partition will be chosen (as in dynamic 
destaging [NKTSS]); if it is necessary to flush buffered 
pages of some spilled partition, the spilled partition with 
the largest current buffer will be flushed. This technique 
reduces I/O time and improves algorithm responsiveness as 
it maximizes the size of write requests and, therefore, the 
effective disk bandwidth. 

Before describing our algorithm, it is important to 
briefly consider the difference between dynamic and fixed 
clusters. An algorithm with a fixed cluster size uses that 
cluster size as the mandatory unit of I/O, so that it is the 
unit of I/O for all VO requests. Instead, we define a target 
cluster size Ctgt for I/O buffers. The actual cluster size, or 

unit of I/O, may dynamically vary from one page up to 
Ctgt. Thus, the goal is to use I/O buffers of C&,, pages, but 
the ability to realize that goal depends on memory 
availability. The target cluster size Ctsr is predetermined 
based on the I/O subsystem’s capabilities and performance 
characteristics. Figure 1 shows the I/O cost curve for the 
disk used in our experiments as the cluster size increases. 
To generate this graph, we calculated the approximate cost 
in seconds to perform one I/O operation of numPages = 32 
pages, as clusterSize varied from 1 to 32 pages. The 
formula we used is ioCost = (rotLatency + seekZ’Ime) x 
(numPages / clusterSize) + numPages x pagesize / 
transferRate. The most effective target cluster size is the 
one that allows realization of most of the cost savings from 
a large cluster size. This is the point at which the cost 
curve begins to level out, and such a point is illustrated in 
Figure 1. A cluster size C,# I Ctgt that achieves a 
significant fraction of the cost savings from a large cluster 
size is also illustrated in Figure 1. This cluster size is the 
minimum e$ective cluster size, the smallest cluster size we 
would like to use (the purpose of this cluster size is 
discussed in the algorithm description). It may seem that 
the choices for C,, and C,g are arbitrary, and there is 
indeed flexibility in choosing these values. In the 
experimental section, we show that the main consideration 
is to avoid very small cluster sizes. One other distinction 
between fixed and dynamic clusters is that tuples may span 
the pages of a fixed cluster, but not a dynamic cluster. This 
allows pages to be read with a different cluster size than 
the one with which they were written. 

3.1. Basic MCRRJ Algorithm 

The entire hash join is composed of a sequence of one or 
more steps; the pseudo-code in Figure 2 illustrates one 
step. Recall that a step processes one pair of build and 
probe inputs and that there will be multiple steps if the 
build input is larger than memory. The same logic is used 
to process both base inputs and overflow partitions, 
ensuring that our algorithm does not depend on accurate 
estimates of the input sizes. While Zeller and Gray’s 
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It step initialization 
determine fan-out F and minimal memory Mniin 
for each partition 

set state to resident 
obtain one page for a hash table 

obtain up to Ctgt pages for the input buffer 
initialize the free list with all unused pages 

/I build stage 
for each build tuple 

hash the tuple to a partition 
while the tuple has not been added to the partition 

if the tuple fits in the partition’s current pages 
insert the tuple into the partition 

else if a new page is available 
enlarge the partition with a new page’ 

else if the partition is resident 
if there is a spilled partition with buffer > C,,J 

flush it and reduce its buffer to one page 
else 

spill the largest resident partition 
return all pages except one to the free list 

else // partition is spilled 
flush the spilled partition with the largest buffer 
return all pages except one to the free list 

II probe stage 
for each probe tuple 

hash the tuple to a partition 
if the partition is resident 

probe the hash table 
if there is a match, emit the result 
else discard the tuple 

else // the partition is spilled 
if the tuple does not fit in the partition 

if a new page is available 
enlarge the partition with a new page’ 

else 
flush the spilled partition with the largest buffer 
return all pages except one to the free list 

insert the triple into the partition’s output buffer 

Figure 2. Memory-Contention Responsive Hash Join. 

algorithm also handles inaccurate estimates of input sizes, 
their algorithm resorts to a hashed-loops algorithm if the 
initial partitioning step produces partitions larger than 
memory, whereas our algorithm uses full hash-partitioning 
as long as necessary. Techniques that prevent useless 
partitioning of inputs with very many duplicate join key 
values are considered elsewhere [Gra93b]. 

At the beginning of a step, it is necessary to determine 
the partitioning fan-out F. For the first step, the fan-out is 
set to F = y/m as in PPHJ. Note that for 

t If the partition is spilled, the size of its output 
buffer is limited to Cqt. If the partition is resident, its 
hash table may grow without limit. See the discussion in 
the text. 

extremely large Rest, we might want to limit F to some 
value that depends on the available machine, and thus 
presume multiple partitioning levels right from the start. 
Notice also that Rest is an estimate of the size of R; our 
algorithm does not depend on accurate estimates. For all 
later steps, F is set to dm, where Ri pages is the 
actual size of the build partition file. F will be smaller for 
later steps since the partition files are smaller. All of the F 
partitions are resident initially and are given a one-page 
buffer, but additional pages may be obtained later as 
needed; this is similar to other adaptable algorithms 
[NKT88, PCL93a, Z&90]. The input buffer is allocated 
as many pages as possible up to Ctgi pages. The hash join 
operator keeps a free list with any unused pages. 

During the build stage, all build tuples are consumed 
and each is hashed to a partition, say Pi. A tuple that is 
assigned to a resident partition is copied into one of the 
partition’s previously allocated pages and inserted into the 
hash table. If there is no space for the tuple in the 
partition’s pages, a new page may be obtained and 
allocated to this partition. If no new page is available in 
the operator’s free list, the algorithm will flush (and reduce 
to one page) a spilled partition that currently uses more 
than C,J output buffer pages. Specifically, the largest such 
partition is chosen. If there is no such partition, the largest 
resident partition is spilled and reduced to a single page as 
an output buffer. The join spills the largest resident 
partition because this choice maximizes the write request 
and creates the most available memory. More importantly, 
spilling the largest resident partition is the most reasonable 
action if nothing is known about hash value skew in the 
probe input [NKT88] or if the hash value distribution in the 
probe input is uniform; better techniques are discussed in 
[Gra93b]. 

At this point, either Pi is still resident and may obtain 
an additional page, or Pi has been spilled. A tuple 
assigned to a spilled partition is copied to the partition’s 
output buffer if there is space. If the buffer is full but 
smaller than CIgt pages, the join will enlarge the spilled 
partition bu$er by obtaining a new page. If no free page is 
available in the operator’s free list, some pages are freed 
using the sequence of choices and actions above. The only 
difference is that, while resident partitions may be enlarged 
without limit, the buffers of a spilled partition are flushed 
before they can grow beyond the target cluster size Ctgt . 

Let us consider an example. Figure 3 illustrates both 
minimal and enlarged spill buffers. The dashed box 
represents the target cluster size CIgl = 4 pages for the 
output buffers of spilled partitions. In Figure 3, partition 1 
has a minimal output buffer of 1 page, while the output 
buffer for partition 2 has been enlarged to the target cluster 
size of 4 pages. Thus, partition 1 may grow further, while 
partition 2 may not. Note that it would be possible to allow 
the spill buffers of partitions 1 and 2 to grow without limit, 
and to reclaim the pages when needed. However, there 
would likely be some limit placed on the maximum size of 
an I/O request, and no increase in the actual I/O size would 
be realized from allowing the spill buffers to exceed this 
limit (since the cluster would be written with multiple I/O 
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Figure 3. Partitioning with Dynamic Clusters. 

requests anyway). Allowing the spill buffers of build 
partitions to grow without limit would result in an I/O 
savings in the case of restoration. 

After all build input tuples have been consumed and all 
spilled build partitions have been flushed, the probe input 
is consumed. At the beginning of the probe stage, there are 
F partitions, some resident and some spilled. For probe 
tuples assigned to resident partitions, the hash table is 
probed immediately. A probe tuple that is assigned to a 
spilled partition is copied to the partition’s output buffer, if 
there is space. If the buffer is full and smaller than Ctgt 
pages, the partition buffer will be enlarged with a new page 
if one is available; otherwise, the spilled partition with the 
largest output buffer is flushed. If a spilled partition’s 
output buffer is full and equal to Cy pages, it is flushed 
and reduced to one page. This sequence of growing, 
flushing, and reducing the output buffer of a spilled 
partition is exactly the same as that during the build stage. 
At the end of the probe stage, all spilled partitions are 
flushed and all buffer memory is returned to the operator’s 
free list. 

3.2. Reaction to Memory Fluctuations 

A memory fluctuation between steps is handled very easily 
by the basic algorithm, since each step is processed 
independently and may have a different fan-out F. 
However, a fluctuation during a step requires special 
action. 

Additional memory is utilized to enlarge the join’s input 
and output buffers during both the build or probe stage. In 
response to an increase in memory, the input buffer is 
increased to Ctg, pages, if possible. A large input buffer is 
beneficial for all partitions, so it is a wise investment of 
memory. Any remaining pages are assigned to the join’s 
free list so that they may be used to enlarge partition 
buffers as needed. For example, in Figure 3, additional 
memory could be allocated to any of partitions 0, 1, or 3. 
In contrast to the use of additional memory in our 
algorithm, the algorithms by Pang et al. and by Zeller and 
Gray use additional memory only to reduce I/O volume by 
avoiding I/O (Zeller and Gray may use large buffers 

initially, but additional memory is used only to enlarge 
resident partitions). 

In response to a decrease in memory, the join must 
reduce its memory usage by reclaiming memory, ,first from 
its free list and then from its partition buffers. The join 
could also reduce the input buffer, but since a large input 
buffer is so generally beneficial, our join never reduces the 
size of the input buffer. The disadvantage of retaining a 
large input buffer is that it increases the join’s minimum 
memory requirement (Mk = F + Z pages). If the join’s 
reduced memory allocation is already equal to Mhn, the 
join is unable to free any more pages. Otherwise, to 
decrease its memory usage, the join must reclaim pages 
until its memory usage has been sufficiently reduced. 
First, it will reclaim pages from its free list, which can be 
done instantaneously. Second, it will reduce the buffers of 
spilled partitions to one page by flushing the full pages 
from partition output buffers. To maximize the size of 
write requests, spilled partitions are flushed in the order of 
decreasing numbers of currently allocated buffers so that 
partitions with larger current output buffers are spilled 
before partitions with smaller output buffers. This reduces 
IZO time and improves algorithm responsiveness. Third, 
the algorithm will spill resident partitions and reclaim all 
but one page to be used as an output buffer. As discussed 
for the build stage, resident partitions are spilled in the 
order of decreasing size. For example, given the situation 
in Figure 3, a request for the join to decrease its memory 
usage to its minimum memory requirement of 4 + Z pages 
would cause the following actions: the full pages of 
partition 2 would be flushed and its buffer reduced to 1 
page; partition 0 would be spilled and given one page; and 
partition 3 would be spilled and given one page. In 
contrast to our handling of memory decreases, Zeller and 
Gray spill resident partitions before they consider reducing 
the cluster size. Pang et al. reclaim excess memory from 
the join’s IZO buffer before they spill resident partitions. 
Table 1 summarizes the differences between our MCRHJ 
and PPHJ algorithms. 

3.3. Algorithm Variants 

Like most complex algorithms, our basic join algorithm 
includes some policy choices. Let us consider some 
alternatives for two of them. 

l fixed cluster @II: Large cluster sizes have been 
shown to be effective for query processing algorithms with 
static memory allocations [Bra84, Gra93a. Gra94, Sa1901; 
however, it is not clear how effective a large fixed cluster 
size is when an algorithm’s memory allocation 
dynamically varies. To provide a basis for comparison 
with our dynamic techniques, this variant uses a fixed input 
buffer of 6 pages, and a fixed cluster size Cfi~ for the 
output buffers of spilled partitions. The fundamental 
algorithm is the same as our basic MCRHJ algorithm, 
except that the cluster size is fixed. The advantage of this 
variant is that the fixed cluster size guarantees that all IZO 
requests will use a large cluster size; the basic MCRHI 
may in some cases use very small cluster sizes. Clearly, 
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Table 1. Algorithm Comparison. 

excess to local spool buffer 

the disadvantage is that the fixed cluster size results in a 4. Database Simulator 
larger minimum memory requirement of 
M. = 6 + F x Cfi~ pages. This algorithm is referred to 
as ?%N, where N = Cfi. 

l balance large cluster size with restoration @al): 
Since large clusters have been shown to be effective for 
static memory allocations, and since restoration has been 
shown to be effective in certain situations when the 
memory allocation fluctuates [PCL93a, PCL93b], it is 
natural to try to combine the benefits of both techniques. 
To do so, we provide an option that attempts to balance the 
two by adding restoration to our basic MCRHI algorithm. 
The bal variant responds to an increase in memory during 
the probe stage as follows. It first attempts to realize a 
significant fraction of the cost savings from a large cluster 
size, and then it uses any remaining memory to restore as 
many spilled build partitions as possible. Figure 1 
illustrates the minimum effective cluster size C,f, which is 
the smallest cluster size we would like to use. The bul 
variant reduces large output buffers of spilled partitions to 
C,f pages and preserves enough memory that smaller 
output buffers of spilled partitions can be enlarged to C,g 
pages. Any remaining memory is used for restoration. 
MCRHI restores spilled partitions based on size, from 
smallest to largest, which is more effective than PPHI for 
skewed build inputs but has no effect for uniformly 
distributed hash values. The bul technique can be applied 
to either tbe basic MCRHJ algorithm or tbe FixN variant. 

We implemented a simulator to study how to adapt most 
effectively to memory fluctuations in a dynamic 
environment, and to determine the effectiveness of our 
techniques compared to previous approaches. In this 
section, we describe first the simulated hardware and 
software architectures and then the implementation of 
earlier adaptable hash join algorithms in the simulator. 

The simulated machine has a single CPU, two disks, a 
memory manager, and a query source. Table 2 summarizes 
the machine architecture, with the disk parameters taken 
from a Maxtor MXT-1240s. The disk services requests in 
first-come-first-served (FCFS) order. The disk access time 
is disk access = seek time + rotational delay + trunqfer 
time. The time to seek across t tracks is calculated as seek 
time = seekfactor x fi [BiGBB]. Partition files are located 
on one disk, and disk access time is minimized by 
allocating the partition files on nearby cylinders. The base 
input files are located on a second disk. We use 
synchronous I/O in this simulation. 

The join we model is a primary key-foreign key join in 
which each probe tuple matches with exactly one build 
tuple. The hash values are assumed to follow a uniform 
distribution. The number of CPU instructions for each 
simulator operation is given in Table 3, reproduced from 
[PCL93a]. The fudge factor to account for hash table 
overhead is fudge = 1.2. 

The simulation consists of a single stream of adaptable 
two-way join queries. At any point in time, one adaptable 
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Table 2. Machine Architecture. 

Architecture Parameter 
CPU speed 
Page Size 
Number of Disks 
Disk Transfer Rate 
Disk Rotational Latency 
Number of Cylinders per Disk 
Disk Cylinder Size 
Disk Seek Factor 

Value 
20 MIPS 
8KB 
2 
3.5 MB/set 
4.76 ms 
2368 
69 pages 
0.000247 

Table 3. Number of CPU Instructions per Operation. 

1 Operation #Instructions 
Initiate a join 40,000 
Terminate a join 10,ooo 
Read a tuple from a memory page 300 
Copy a tuple to output buffer 100 
Insert a tuple into hash table 100 
Hash a tuple 500 
Probe the hash table 200 
Start an I./O .operation 1000 
Read/Write a page from/to disk 10,ooo 

join is active; as soon as that join completes, another one is 
started. Concurrent operations are reflected in the 
fluctuating memory allocations. A join that is allocated 
less memory than its minimum memory requirement is 
suspended until additional memory is available. The 
allocation of memory among algorithms is actually a 
policy decision of the memory manager, including whether 
a join should ever be given less memory than its minimum 
requirement. We do not investigate such policy decisions 
in this paper, so we simply suspend the join [pCL93a]. 
Memory allocated to a join is considered “‘pinned” in the 
buffer and managed entirely by the join operator without 
system intervention. The memory manager decreases or 
increases the join’s memory allocation, and the join 
responds to these changes by unpinning or pinning pages. 
All joins in our simulator respond as soon as possible to 
memory fluctuations. For example, if more memory 
becomes available again while a.join is in the process of 
reducing its memory usage, it will cease reduction. 

Simulation of PPHJ 

A thorough simulation study demonstrated that PPHJ has 
as good or much better performance than previous 
memory-adaptable algorithms, including adaptable variants 
of Grace and hybrid hash join, and Zeller and Gray’s 
adaptable hash join algorithm [PCL93a, PCL93b]. 
Therefore, it is sufficient to compare our algorithms only to 
PPHJ. We discussed PPHJ in detail in Section 2; in this 

section, we describe our implementation of PPHJ. We 
implemented PPHJ as faithfully as possible based on the 
available algorithm descriptions [PCL93a, PCL93b], with 
one small modification to make PPHJ adaptable even while 
processing overflow files. We refer to the modified 
algorithm as PP,, since it recursively partitions its inputs. 

For steps after the initial step, PPHJ uses classic in- 
memory hash join. Thus, it is impossible to spill a 
partition during those steps, because no suitable partitions 
are created. PP,, our modified version, recursively 
partitions its inputs and processes partition files in exactly 
the same way as it processes the base inputs. This 
modification allows the algorithm to adapt to memory 
fluctuations during all steps, and also enables it to handle 
inaccurate estimates of input sizes. 

Among the variants of PPHJ studied by Pang et al., the 
most effective variant combines late contraction, 
restoration, and priority spooling, of which restoration 
provides the largest performance improvement. PP, 
includes both late contraction and priority spooling. 
Restoration was effective in some but not all situations 
analyzed, so we include PP, both with and without 
restoration (res option). The unit of YO for the 
experiments presented in [PCL93a] was one page. In 
[PCL93b], response time was improved significantly by 
flushing pages from the local spool buffer in blocks of 6 
pages. Therefore, PP, uses an input buffer of 6 pages and 
flushes pages from the local buffer in blocks of 6 pages at a 
time. 

5. Experimental Evaluations 
In this section, we compare our techniques to each other 
and to PP, for a variety of workloads. To ease comparison 
with the original papers on PPHJ, we structured our 
simulation experiments similarly to those presented in 
[pcL93a]. Since the techniques proposed by Pang et al. 
and in this paper vary in their management of memory and 
partition files but do not affect the time to read base inputs 
or write the join output, the performance metric reported 
here is the average join response time, which combines the 
CPU time specific to the join and the I/O time to partition 
files. Join response time, as opposed to query response 
time, correctly reflects the effort specific to the join, 
whether the inputs come from file scans, index scans, or 
pipelines, and was used both by DeWitt et al. and by 
Shapiro to analyze the effectiveness of join algorithms 
[DK084, Sha86]. Absolute differences in join response 
time fairly accurately reflect differences in query response 
time, whereas relative differences are different due to the 
effort required to obtain the join inputs and to dispose of 
the join output, which is the same for all algorithms 
considered here. 

We report I/O activity as the average number of I/O 
requests and average I/O volume in pages. The I/O volume 
may be further divided into I/O to either build or probe 
partition files. For the MCRHJ variants, we use Ctgt = 8 
and C,ff = 4. 

In Section 5.1, we examine how well the algorithms 
adapt under different magnitudes of memory contention. 
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The experiment in Section 5.2 analyzes the algorithms’ 
performance with respect to different frequencies of 
memory fluctuations. Finally, in Section 5.3, we examine 
the sensitivity of MCRHJ to C,, and the sensitivity of 
MCRHJ:bal to Cefl. 

5.1. Memory Contention 

In this experiment, we examine the effectiveness of the 
adaptable techniques when they experience different 
degrees of memory contention. We simulate a situation in 
which the adaptable join competes for memory with other 
operations in the system. System activity is fairly 
unpredictable since other queries may enter or leave the 
system at any time. The join’s memory allocation is 
uniformly selected from the range of 80-100% of total 
system memory 80% of the time. This represents changes 
in available memory as other queries enter and leave the 
system. The other 20% of the time, the allocation is 
selected uniformly from the range of O-100% of total 
system memory. This represents the possibility of an 
occasional surge in contention due to either a particularly 
large query or the simultaneous arrival of several smaller 
queries. The intervals between changes in contention are 
chosen from an exponential distribution with a mean of 1 
second. 

High Contention 

To represent an environment with fairly high contention, 
the amount of system memory is set to M = 1 MB. The 
join inputs for this experiment are R = 5 MB and S = 50 
MB. We could have chosen a smaller system memory, but 
the Fix4 variant (MCRI-IJ with a fixed cluster size of 4 
pages) has a high minimum memory requirement of almost 
1 MB so a smaller system memory would have forced us to 
exclude that variant. 

The average join response times for the various 
algorithms under high contention are shown in Figure 4. 
There are a number of interesting observations that we can 
make from this figure. Restoration is ineffective under 
high contention; neither the res nor the bul options produce 
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Figure 4. High Contention. 

noticeable differences in join response time. MCRHJ 
provides the lowest join response times of all the variants, 
demonstrating the effectiveness of our algorithm under 
high contention. Our Fix2 variant provides better 
performance than PP,, even though PP, flushes its local 
buffer in blocks of 6 pages. Fix4 gives the worst 
performance, even worse than Fix2 although its cluster size 
is twice as large. 

Table 4. Details for the High Contention Experiment. 

ppr 
PP,:res 

[pgsl [pgsl [pgsl [sets] 

9283 17483 1670 15813 129.99 
9429 17125 2475 14649 131.20 

-MCRI-IJ I 2606 17517 1653 15864 82.09 
MCRHJ:bal 2592 17352 1674 15678 81.42 

To explain these observations, we examine the detailed 
data for the high contention situation, given in Table 4. 
The total IZO volume is similar for all algorithms; 
therefore, the significant differences must be due to IZO 
calls. MCRHJ has a significantly lower number of I/O 
calls than the other variants, with an average actual cluster 
size (ZoVoZ / ZOcuZZs) of 6.72. Thus, the dynamic cluster 
sizing techniques of MCRHJ very effectively permit large 
cluster sizes in this environment. 

To understand why Fix2 outperforms PP,, notice that 
Fix2 has a much lower number of I/O calls. Since both PP, 
and the FixZV variants have an input buffer of 6 pages, the 
reason must be in differences in the output cluster sizes. 
Fix2 has an average actual cluster size of 2.97 compared to 
1.88 for PP,. Why does PP, average only 1.88 pages per 
I/O call when it has an input buffer of 6 pages and attempts 
to flush the local buffer in blocks of 6 pages? The reason is 
that, since memory is scarce, PP, does not often have 
excess memory to assign to the local buffer. Thus, most of 
its write I/O is not buffered but written directly using a 
cluster size of only one page. 

Similarly, one might expect Fix4 to perform better than 
Fix2 since it has an output cluster size twice as large as 
Fix2. In fact, we see in Table 4 that Fix4 does indeed have 
a much lower number of IZO calls than Fix2; however, 
rather than giving better performance, it has the highest 
response time of all the variants. This is a result of its high 
minimum memory requirement of Mt+, =6+ F ~4, 
which causes excessive suspension (recall that a join is 
suspended when its memory allocation falls below its 
minimum memory requirement). Despite achieving an 
average actual cluster size of 4.7 pages, more than PP, and 
Fix2, Fix4’s high minimum memory requirement is a 
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serious impediment to good performance in a high 
contention environment. 

In summary, this experiment has demonstrated that the 
techniques employed by MCRHJ are very effective in 
reducing response time in a high contention environment. 
This is accomplished by utilizing memory to reduce I/O 
time by dynamically maximizing the actual cluster size. 
Our techniques are effective compared to previous 
techniques as well as compared to large fixed cluster sizes, 
which cannot fully exploit memory gains and which may 
suffer excessive suspension as a result of a high minimum 
memory requirement. Furthermore, restoration cannot be 
exploited under high contention because there isn’t 
sufficient memory to utilize the technique. 

Low Contention 

We now examine a low contention environment by 
repeating the previous experiment with the one difference 
that the system memory in increased to M = 8 MB to 
simulate a low level of memory contention. Given the 
experimental parameters with this large system memory, 
the join will have its maximum memory requirement of 6 
MB (fudge x 5 MB) 85% of the time, so this experiment 
demonstrates very low contention2. 

The average join response times for the various 
algorithms under low contention are shown in Figure 5. 
The most immediate contrast to the experiment with high 
contention is that restoration is quite effective for all of the 
algorithms. PPr:res is the fastest algorithm here, closely 
followed by the three MCRHJ variants with restoration. 

These differences are explained by the detailed data 
given in Table 5. Whereas memory scarcity under high 
contention prevents restoration, the abundance of memory 
here allows it to be exploited effectively. For example, 
PP,:res uses about twice as much build I/O volume as PP, 
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Figure 5. Low Contention. 

2 The 85% is explained as follows: 80% of the time, 
the join will have 2 6.4 MB; of the remaining 20% of the 
time, the join is allocated 2 6 MB 25% of the time. 

Table 5. Details for the Low Contention Experiment. 

pp* 
[PIFI bw b&j [=sl 

837 2710 402 2307 22.87 
PP,:res 417 1033 788 244 15.03 
Fix2 1439 4272 623 3648 31.96 
Fix2:bal 572 1389 960 428 17.11 
Fix4 867 4077 639 3438 27.43 
Fix4:bal 343 1445 953 491 16.12 
MCRHJ 456 5457 788 4668 28.94 
MCRHJ:bal 218 1905 1274 630 16.54 

(788 vs. 402 pages) to reduce the much larger probe I/O 
volume to about one tenth of PP, (244 vs. 2307 pages), 
reducing the average join response time by 7.84 seconds. 
Restoration is also effective when combined with both 
MCRHJ and FixN as the bul option, resulting in savings of 
11.31 to 14.85 seconds. However, the join response times 
of MCRHJ:bal and FixNbal are a little higher than those of 
PPr:res. Since their performance improvements are even 
larger than that achieved by PP,:res over PP,, the 
explanation must be due to fundamental differences in the 
basic algorithms. In Table 5, we can see that the total I/O 
volume for MCRHJ is about twice that of PPr. The reason 
is that MCRHJ utilizes some memory to dynamically 
enlarge partition output buffers, making this memory 
unavailable for resident/restored partitions. Although this 
does effectively decrease the number of I/O calls, the 
penalty in increased I/O volume is higher than the benefit. 
The same situation occurs with Fix2 and Fix4, with the 
differences being due to their smaller actual average cluster 
size when compared to MCRHJ. The reader may have 
noticed that MCRHJ and MCRHJ:bal both have average 
actual cluster sizes larger than the target cluster size 
C,, = 8 (11.97 and 8.7, respectively). Although the input 
buffer and the partition output buffers are limited to Ctgl 
pages, the original I/O to spill a partition may use larger 
cluster sizes, and this is exactly what MCRHJ does. Since 
the majority of the write I/O volume for MCRHJ under low 
contention is original spilling, its average actual cluster 
size is quite large. For MCRHJ:bal, the cluster size for 
restoration is limited to Ctgt, so its average actual cluster 
size is smaller than that of MCRHJ. 

As we had expected in the previous experiment, PP, 
outperforms Fix2 which outperforms Fix4. Whereas under 
high contention, PP, did not have sufficient memory to 
assign to its local buffer, it does under low contention. 
Thus, as opposed to the average actual cluster size of 1.88 
pages per I/O calls under high contention, PP, achieves an 
average of 3.23 under low contention. Of course, Fix2 
(and Fix4) also have fixed output buffers, resulting in 
increased I/O volume compared to PPr. Fix4 outperforms 
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Fix2 as expected since it does not suffer from excessive 
suspension when there is ample memory. 

To summarize, this experiment has shown that 
restoration (in the form of our bal technique) can be 
effectively combined with our dynamic cluster techniques 
to enhance the performance of the basic MCRHJ algorithm 
under very low contention. However, using some memory 
to enlarge I/O buffers increases the I/O volume, resulting in 
a slightly higher join response time for MCRHJ:bal than 
for PP,:res. 

Varying Contention 

In this experiment, we subject the join algorithms to 
varying magnitudes of contention, ranging from high to 
very low contention. The previous two experiments 
demonstrated a significant advantage of MCRHJ:bal over 
PP,:res at high contention, and a small advantage of PP,:res 
over MCRHJ:bal at low contention. Now we examine the 
entire range in between to determine the effectiveness of 
the algorithms in a larger context. In this experiment, the 
system memory ranges from 1 MB (high contention) to 8 
MB (very low contention). The join inputs for this 
experiment are R = 5 MB and S = 50 MB. Based on the 
performance in the previous experiments, we eliminated 
Fix4, Fix4:bal, and Fix2 since they provided inferior 
performance. 

150 
- NO restoration o MCFU-IJ 

1251 \ - - resorbal x Fix2 
A PP, 

1 2.5 4 5 6.25 8 
Memory[MB];R=5MB,S=50MB 

Figure 6. Varying Contention. 
The average join response times for the various 

algorithms when contention varies from high to very low 
are shown in Figure 6. (the end-point values at 1 MB and 
8 MB are taken from the previous two experiments). 
Figure 6 clearly shows the effectiveness of our MCRHJ 
algorithm over a wide range of memory contention. 
Obviously, our techniques provide much greater 
performance differences at higher levels of contention, but 
MCRHJ:bal provides the lowest join response times of all 
algorithms for all data points with memory size M I 6.25 
MB. It is interesting that Fix2:bal outperforms PP,:res over 
a significant range of contention (data points I5 MB), 
since PP,:res has insufficient memory to write and read in 
large clusters (as discussed above for the high contention). 

We also explored the sensitivity of the results to the 
relative input sizes, i.e., the ratio R / S. The results were 
very similar to those in Figure 6, so we do not include 
them here. 

In summary, this experiment has demonstrated that our 
dynamic cluster techniques combined with restoration 
(MCRHJ:bal) are very effective over a wide range of levels 
of memory contention, compared to fixed cluster 
techniques and previous techniques that utilize only 
restoration, The only exception to this observation is at 
very low levels of contention when the total I/O volume is 
small; in this case, PP,:res performed slightly better than 
MCRHJ:bal. 

5.2. Interval between New Allocations 

In addition to being effective for widely differing 
magnitudes of contention, an adaptable algorithm should 
also be stable with respect to extreme variations in the 
frequency of the memory fluctuations. The rate of memory 
fluctuations will vary depending on the amount of 
concurrent activity in the system. In this experiment, we 
examine the stability of the algorithm variants with respect 
to extreme variations in the frequency of the memory 
fluctuations. We vary the mean duration of an allocation 
from 0.1 second to 10 seconds, using an exponential 
distribution as in the previous experiment. The total 
memory from which the join’s allocation is taken is M = 3 
MB, representing a medium contention environment. The 
join inputs for this experiment are R = S = 5 MB. All 
other parameters are as described in the previous 
subsection. 

To be effective, an adaptive technique must adapt faster 
than the fluctuation frequency. When fluctuations occur 
very frequently, restoration increases the response time 
because it is an adaptive technique of coarse granularity. 
That is, restoration is an expensive operation that provides 
no guaranteed benefit. Figure 7 shows the join response 
times of the algorithms as the fluctuations vary from 
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Figure 7. Varying Interval of Fluctuations. 
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Figure 8. Sensitivity of MCRHJ to its Parameters. 

frequent to infrequent. PP,:res does indeed perform worse 
under frequent fluctuations because it suffers from the cost 
of restoration but does not have enough time to realize the 
benefit. MCRH.T:bal suffers very slightly from this, but not 
nearly as much as PP,:res since MCRHJ:bal does not use 
all of its memory for restoration. 

It is rather surprising to see that PP, and MCRHJ 
actually achieve lower join response times at high 
fluctuation frequency. There are two reasons for this 
phenomenon. First, recall that our joins respond as soon as 
possible to changes in memory contention. When 
contention changes very frequently, both algorithms abort 
memory reduction efforts before they are finished, 
resulting in an I/O savings compared to less frequent 
fluctuations. Second, PP, employs priority spooling, which 
is more effective at a high frequency of fluctuations. The 
total I/O volume for PP, is very stable regardless of the 
fluctuation frequency, but at high frequency, it is able to 
achieve larger block writes resulting in a lower I/O calls. 

In summary, our algorithm variants are more stable over 
a wide range of fluctuation frequencies, including very 
frequent fluctuations. Our techniques for exploiting 
additional memory are of a finer granularity than previous 
techniques. Even when combined with restoration, this 
expensive operation does not dominate since it is 
secondary to our dynamic cluster techniques. 

5.3. Sensitivity dnalysis 

The two parameters that control our MCRHJ algorithm are 
the target cluster size Ctsl and the minimum effective 
cluster size C,fl. In this experiment, we examine the 
sensitivity of the MCRHJ algorithm to these parameters. 
Figure 8 shows the sensitivity of MCRHJ to both of these 
parameters. The left graph in Figure 8 shows the 
sensitivity to Ctgt for several different levels of contention, 
realized by different memory sizes M as in the previous 
experiments. A significant performance improvement can 
be obtained by simply avoiding very small target cluster 
sizes less than four. Not surprisingly, extremely poor 

performance results from a target cluster size of one. 
Figure 8 shows that our choice of C$, = 8 is quite 
reasonable. Using a target cluster size of Crgr = 8, the right 
graph of Figure 8 shows the sensitivity of MCRHJ:bal to 
the choice of C,a for different levels of contention. At 
lower contention, the algorithm is insensitive to this 
parameter; the minimum effective cluster size is not a 
limiting factor since there is ample memory and buffer 
sizes are likely already larger than C,fl (up to Ctgr). Under 
higher contention, particularly for M = 1 MB, a smaller 
C,ff does slightly worsen performance until it stabilizes at 
C,ff = 4. Thus, it is more important to attempt to realize 
some minimal cluster size when memory is scarce than 
when memory is ample, but a larger Ceff does not affect 
performance at lower contention. 

In summary, it is quite simple to find effective 
parameters for C,gt and C,f. The main consideration is to 
avoid very small cluster sizes, which is easy to do using the 
I/O cost curve of Figure 1. 

6. Summary and Conclusions 
In this paper, we considered hash join algorithms that can 
adapt to changes or fluctuations in their memory allocation 
at any time during their execution. We showed the 
importance of reducing the amount of time spent on l/O, 
rather than only reducing the UO volume, or number of 
pages of I/O. The two techniques we proposed to allow 
effective adaptation to both increases and decreases in 
memory allocation are (i) dynamically varying the size of 
the clusters, or I/O buffers, depending on memory 
availability, and (ii) maximizing the cluster size of I/O 
requests. Previous research has demonstrated the 
effectiveness of the techniques of dynamic destaging, 
which dynamically chooses a partition to spill based on 
size, and restoration, which uses additional memory to 
restore spilled build partitions to memory. Our new hash 
join algorithm, Memory-Contention Responsive Hash Join 
(MCRHJ), combines our two new techniques with the 
previous ones. 
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The new algorithm’s most effective variant explored 
here is MCRHJ:bal. This variant defines a target cluster 
size of Ctgt pages, which is the I/O buffer size that 
achieves most of the cost savings from large I/O requests 
for a given I/O subsystem. The I/O buffers of spilled 
partitions may dynamically vary from 1 to Cqr pages, 
depending on memory availability. When memory is 
plentiful, spilled partition buffers may be enlarged up to 
C,, pages, but in times of memory scarcity, one or more of 
them may be reduced to fewer than Ctgt pages. If more 
memory is available than is required to enlarge all spilled 
partition buffers to C,ff pages, it is used for restoring 
spilled build partitions to memory (C, is the cluster size 
I Ctgt that achieves a significant fraction of the cost 

savings from using a large cluster size). Read requests are 
optimized by using a large input buffer. Write requests are 
optimized by writing the partition that has the largest 
amount of memory allocated. In other words, if a resident 
partition must be spilled, MCRHJ:bal spills the largest 
resident partition; if a spilled partition must be flushed, it 
flushes the spilled partition with the most pages assigned to 
its output buffer. The output buffer of a partition that is 
spilled or flushed is reduced to one page, and may then 
increase in size up to Crgr pages, depending on need and 
memory availability. 

Our experimental evaluation included the Partially 
Preemptible Hash Join algorithm (PPHJ) that was recently 
shown to have better performance than earlier adaptable 
algorithms. PPHJ achieves its performance improvement 
by using restoration to reduce I/O volume. However, our 
experimental evaluation demonstrates that large, 
dynamically-sized clusters allow the join to adapt more 
effectively at higher levels of contention. Our MCRHJ:bal 
variant achieves better performance than PPHJ at all levels 
of memory contention considered here, except at very low 
contention, and it achieves more stable performance for 
very frequent fluctuations. Moreover, using large clusters 
increases responsiveness, the ability to reduce memory 
usage quickly, thus permitting faster reaction to new high- 
priority queries entering a database system. We conclude 
that combining dynamically-sized I/O clusters, maximized 
I/O requests, dynamic destaging, and restoration results in 
the most effective join algorithm to-date for environments 
with fluctuating memory contention. 
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