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Abstract 

Persistent threads are a database program- 
ming concept particularly well-suited for a.p- 
plications that manage long-term, distributed 
or cooperative activities. We introduce per- 
sistent threads as a novel form of bindings 
from data in persistent object stores to ac- 
tivated code and relate them to existing bind- 
ing concepts found in database programming. 
We also describe the integration of persis- 
tent threads into a polymorphically-typed 
database language and its supporting layered 
system architecture with particular emphasis 
on abstractly-defined thread representations 
which support thread analysis, optimization 
and portability. 

1 Introduction 

A noticeable trend in database research and database 
system development is an increased interest in behav- 
ioral and procedural aspects of information systems. 
Data models that describe dynamic processes in addi- 
tion to static data structures are capable of capturing 
more of the application semantics as exemplified by 
object-oriented models like Taxis, ADAPLEX, Galileo 
or Fibonacci. Similarly, database systems that support 
procedures, methods, rules or triggers in addition to 
persistent data values are capable of factoring-out pro- 
cedural code from individual application programs into 
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shared databases. The positive effects of eliminating 
integrity checking, database event detection, exception 
handling, or user interface management code from ap- 
plication programs on the overall system consistency 
and application programmers’ efficiency have been de- 
scribed amply in the literature. Consequently, one can 
perceive a shift from passive data stores to more active 
persistent object systems. 

In this paper we focus on the intricate binding issues 
on the borderline between “active code” and “passive 
data” that arise in persistent object systems as soon 
as one gives up the classical separation between short- 
lived transactions expressed in a host language and 
long-lived data stored in a database. More specifi- 
cally, we provide a classification scheme for bindings 
from code to persistent data and vice versa and we 
investigate bindings from persistent data and code to 
threads, which exhibit an interesting duality. On the 
one hand side threads can be viewed as activities that 
can be created, executed, synchronized, suspended, 
terminated, etc. Alternatively, they can be viewed as 
passive data that. can be stored persistently, annotated 
with attributes, associated with other persistent data 
structures, moved between nodes in a network, and 
manipulated by computations. 

This duality makes persistent threads a key tech- 
nology for future persistent object systems and for ap- 
plications that manage long-term, distributed or co- 
operative activities like computer-aided design, work- 
group communication and workflow management. Un- 
fortunately, this duality also invalidates many design 
assumptions on which today’s volatile thread imple- 
mentations are based. Therefore, we also discuss 
in some detail implementation aspects of persistent 
thread bindings. 

The specific persistent thread model presented here 
has been developed within the context of the persistent 
programming environment Tycoon’ [MS93, Mat931 
where it serves as an abstract model to shield pro- 

‘Typed Communicating Objects in Open eNvironments. 

403 



grammers and application-oriented tools from details 
of the underlying system implementation (object store, 
database language evaluator, scheduler, recovery sub- 
system) while being sufficiently low-level to support 
a variety of (possibly application-defined) scheduling 
and activity management strategies. 

The paper is organized as fo!lows: In section 2 we 
introduce a terminology for the description of bind- 
ings to data, code and threads in persistent systems 
which we use throughout the paper. We then review 
briefly the evolution of database languages in terms of 
their binding patterns between data, code and threads. 
We argue that the expressiveness and usability of a 
database system model is related directly to the or- 
thogonality of its binding patterns. In section 4 we.r 
propose a next step in the evolution of database lan- 
guages by introducing the concept of first-class bind- 
ings to threads. We argue that an explicit and orthog- 
onal handling of threads naturally leads to the con- 
cept of persistent threads, a systems abstraction suit- 
able for novel high-level models for long-term activity 
management. Finally, in section 5 we report on our 
implementation of persistent threads in the Tycoon 
system based on an abstractly-defined store protocol, 
code representation and thread semantics. 

2 Bindings in persistent systems 

In this section we introduce a terminology for the de- 
scription of bindings to data, code and threads in per- 
sistent systems which we will use throughout the pa- 
per. 

A binding is an association between a name and a 
computational entity from a specific semantic domain 
[Str67]. We also say that a name is bound to a compu- 
tational entity. An environment is a (possibly ordered) 
collection of bindings. Names are used to identify enti- 
ties in an environment. Different names can be bound 
to the same entity (sharing, aliasing). The details 
of this identification process (static scoping, dynamic 
scoping, user-defined conflict resolution) and mecha- 
nisms to manipulate environments (import/export, in- 
heritance, record extension, imperative update) are ir- 
relevant for the purpose of this paper. 

Entities can be atomic (like integers or booleans) or 
structured (like records, objects or functions). Struc- 
tured entities typically consist of environments. For 
example, the fields of a record lead to bindings from 
field names to other entities. Therefore, bindings can 
be used to model (recursive) relationships between en- 
tities. 

Entities can be flat (like records) or nested (like 
functions in Algol-like languages). In a nested entity, 
names bound in a global outer environment are auto- 
matically visible in a local inner environment. As will 

be seen in sections 3.1 and 3.3, the semantics of bind- 
ings from and to (dyna.mically) nested entities requires 
particular a.ttention. 

Entities can be transient (like local program vari- 
ables) or persistent (like database tables). Virtually 
all database systems restrict environments of persis- 
tent entities to contain only bindings to other persis- 
tent entities since bindings to volatile entities would 
lead to “dangling references”. Such constraint vio- 
lations are avoided in many systems by a transitive 
reachability rule: Every entity reachable from a per- 
sistent entity becomes persistent, too. In reachability- 
based systems, there is a so-called “persistent root en- 
vironment”, for example, the set of all globally-defined 
database names in 02 [BDK92]. An entity is made 
persistent by making it reachable through chains of 
bindings (e.g., database definition, class extent) start- 
ing from this persistent root environment. 

The following three categories of structured entities 
are of particular interest in extended (higher-order) 
database modeling: 

Persistent Data (D) describe the persistent state 
of an information system by a collection of computa- 
tional entities related through bindings. The structure 
(types) of the persistent entities and their bindings are 
described by a database schema. 
persDB=database 

peter=[age=30, married=true, boss=NULL], 
paul=[age=30, married=true, boss=persDB.peter], . . . 
persons={persDB.peter, persDB.paul, . . . ) 

end 
In this example, the name persDJ3 is bound to 

a database, i.e. a persistent environment that stores 
bindings for the database variable names peter, paul 
and persons. For example, paul is a name bound to a 
record (an environment with three bindings). One of 
these bindings associates the name boss to the record 
identified by the name peter within the environment 
persDB. The set bound to the name persons defines 
an environment of anonymous bindings. 

Code (C) is a description of operation sequences 
that query and update volatile or persistent entities 
and bindings. 
procedure changeBoss( pers:Pers) = 

pers.boss:=persDB.paul; 
transaction changeAll() = 

for each p in persDB.persons do changeBoss( 
Code involves names to describe bindings to other 

code (changeBoss referenced in the body of changeAll), 
bindings to persistent data (persDB.persons, persDB.- 
Paul), and bindings to volatile data (p, pers). In 
statically-scoped languages, the binding of a name in a 
code fragment to a matching name in its environment 
is determined by a textual analysis of the code and of 
the database schema. 

404 



Conceptual Model Language Model Implemeutation Model 
entity variable data 
behavior function code 
activity continuation thread 
relationshiD name bindine 

Figure 1: Corresponding notions at different levels of conceptualization 

Approach Bindings Description2 
database programming C-*D code bound to data 
object-oriented databases D-C persistent data bound to code 
transactional programming T-G threads bound to code 
activity management D+T persistent data bound to threads 

Figure 2: Predominant binding patterns (see text) 
A Thread (T) is a representation of code in Ihe 

process of being executed. A thread describes a single 
sequential flow of control in a program. Having multi- 
ple threads in a program means that at any instant the 
program has multiple points of execution, one in each 
of its threads. Unlike operating system processes, mul- 
tiple threads can execute within a single (persistent) 
address space, permitting multiple threads to access 
shared variables in addition to local variables. 

It may be helpful to compare our terminology with 
corresponding notions in language models and concep- 
tual models as summarized in figure 1. Since in this 
paper we are interested also in implementation aspects 
of persistent threads, we are using a rather system- 
oriented terminology. In our setting (as opposed to, 
for example, visual programming), the correspondence 
between high-level conceptual notions like entities, be- 
havior, activities, relationships and their system coun- 
terparts (data, code, threads, bindings) is often es- 
tablished indirectly via formal language models ex- 
pressed in terms of variables, functions, continuations 
and names bound in scopes. Our system argument 
that threads should be treated as first-class persistent 
data could therefore be rephrased in high-level mod- 
els by requiring activities to be viewed as first-class 
entities that can participate freely in abstractions like 
aggregation and classification. 

A thread is created by submitting a parameter- 
less code fragment (e.g., the body of the transaction 
changeAll) and (persistent) data (e.g., per&B) to an 
evaluator (eval (ChangeAll, persDB)). As described in 
section 5 the semantics of the evaluator can be defined 
inductively by rules that map thread states to thread 
states and that perform side-effects on data. A thread 
state subsumes bindings to the code fragments cur- 
rently being executed and a dynamic environment that 
records the current bindings from names occurring in 

2X bound to Y means that names in entities of category X 
are bound to entities of category Y, i.e. that the semantics of 
X depend on the semantics of Y. 

the code to l&al and .global entities. In most pro- 
gramming and query language implementations thread 
states are represented as records that reference stacks 
of so-called “activation records”, one for each function 
or query invocation. 

The following thread state describes a snapshot of 
the execution of the transaction changeAl against the 
database persDB. More precisely, it describes the state 
of the transaction while executing the function change- 
Boss during the first iteration of the for each loop, 
immediately preceding the assignment of the value 
persDB.paul to the field boss. 
thread1 = [result = persDB.paul, dynamiccontext = [ 

code=(pers.boss:= result), 
localEnv=[pers=persDB.peter], 
globalEnv=[persDB=database. . . end], 
dynamicContext=[code=(for each p in toVisit 

do changeBoss(p 
locaIEnv=[p=persDB.peter, 

toVisit={persDB.paul,. . . }], 
globalEnv=[persDB=database. . . end, 

changeBoss=procedure . . .], 
dynamicContext = 0 ] ] ] 

In this example the thread state consists of the re- 
sult of the current subexpression (the right-hand-side 
of the assignment, i.e., persDB.paul) and a dynamic 
context (continua2ion) that describes the code still to 
be executed together with the bindings valid within 
this code. The next instruction to be executed is the 
assignment (pers. boss:= result). The binding of the 
parameter name pers can be obtained from the local 
environment which has been established on entry to 
the function changeBoss. The dynamic context of the 
function (the state of its “caller”, i.e. changeBoss) is 
captured also by a continuation. On function return, 
evaluation continues with the bindings of this continu- 
ation. The local variable toVisiC is used to control the 
iteration. Since the dynamic context of the transac- 
tion changeAl is empty, the thread will terminate on 
return from this transaction. 

Since entities of each of the three categories above - 
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data, code and threads - may contain bindings, there 
are nine possible binding patterns between computa- 
tional entities in fully orthogonal object systems. In 
figure 2 we list four of these binding patterns which we 
regard as “historic” milestones in the development of 
persistent system models: 

b In database programming languages it is possible 
to write algorithmically-complete code that estab- 
lishes C+D bindings to persistent data and that 
modifies the state of persistent entities and their 
relationships expressed as D-D bindings. How- 
ever, code is still separated strictly from persis- 
tent data in the sense that reverse bindings are 
not supported. 

D This restriction is lifted in object-oriented 
databases where D+C bindings extend the se- 
mantics of data entities to also include code frag- 
ments (method code) which express behavioral as- 
pects. Similarly, in active databases it is possible 
to attach code (conditions and actions) as triggers 
to persistent data (relations, classes). 

D In multi-user (database) systems there are multi- 
ple concurrent user sessions accessing shared data 
via transactional code. Each active transaction 
corresponds in our terminology to a single thread 
that is bound (via a T-+C binding) to applica- 
tion code which in turn is bound to shared (per- 
sistent) data. However, threads are strictly sepa- 
rated from persistent data and code in the sense 
that a thread cannot access (query, store, update) 
the set of code or data bindings held by itself or 
by other threads. 

D In this paper we argue that threads understood 
as dynamic environments of bindings are highly 
relevant for novel, activity-oriented applications 
and, therefore, should gain first-class status in 
future database models and not be hidden be- 
hind a specific built-in binding pattern (transac- 
tions). As detailed in section 4.3, mechanisms to 
establish bindings from code, from data, and from 
threads to threads are very helpful to manage co- 
operative and distributed activities. In particular, 
D+T bindings from names in persist,ent data to 
threads naturally lead to the concept of persistent 
threads in reachability-based persistent systems, 
which we regard as highly relevant to long-term 
aciivity management. 

The semantics and implementation of pure D-D 
bindings like the binding of persDB.pau1.bos.s to 
persDB.peter in persDB and of pure C&C bindings 
like the binding of the name changeBoss in the func- 
tion changeAll are sufficiently well understood that 
we restrict ourselves in the following discussion to the 
binding patterns highlighted in figure 2. 

3.1 Binding names in code to persistent data 

All database management systems with a program- 
ming language interface support C-+D bindings. In 
a third-generation langua.ge, a C-D binding to a 
database is established at program run-time using an 
explicit operation similar to the SQL connect state- 
ment. C-D bindings to individual elements in a 
database collection are established using explicit cur- 
sor manipulation operations, typically embedded into 
program loops. 

In fourth-generation languages like Ingres/Windows 
4GL or PL/SQL and in database programming lan- 
guages like DBPL [SM94] or E [RCS93], the outer- 
most program environment already contains bindings 
to persistent. entities which are therefore directly acces- 
sible in statements and expressions. Moreover, these 
languages provide bulk data types [MS911 with opera- 
tions that work on collections of (anonymous) bindings 
at once. As a consequence, programming with persis- 
tent bulk data in these languages is a$ effortless as 
programming with volatile data in 3GLs. 

3.2 Binding names in persistent data to flat 
code 
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An object in an object-oriented database can be mod- 
eled as an environment of bindings and a (hidden) ob- 
ject identifier. 
peterObj:PersonObject=object age=30, married=true, 

boss=NULL, 
changeBoss=method(newBoss:PersonObject) 

self.boss:=newBoss 
end 

Attributes like age, married or boss lead to stan- 
dard D-D bindings to persistent state variables while 
a method definition is a D+C binding from a method 
name (changeBoss) to a code fragment (se1f.boss.z 
newBoss). In most object-oriented models, a method 
is bound in an environment attached to an object 
cJa.ss; however, some systems (e.g., 02) also support 
so-called “exceptional objects” where methods can be 
overridden by bindings established on a per-object ba- 
sis. Message names in code, like ChangeBoss in the 
dot expression peterObj.changeBoss(. . . ), are bound 

3 From data-oriented modeling to 
object-orientation 

In this section we review briefly the evolution of 
database languages in terms of their binding patterns. 
We argue that the expressiveness and usability of a 
database system model is related directly to the or- 
thogonality of its binding patterns and that, in ret- 
rospect, many ad-hoc binding restrictions found in 
database systems are simply based on the choice of 
an improper implementation technology. 



dynamically to matching method code identified by 
D+C bindings attached to the object itself (peter- 
Obj), its class (PersonObject) or its transitive super- 
classes. 

D+C bindings are also supported by active 
database systems where it is possible to bind a trigger 
consisting of a condition (a code fragment, that returns 
a boolean value) and an action (a code fragment that 
performs a side-effect) to a persistent data structure 
(typically a global collection variable). Views as at- 
tribute values in Postgres and “viewers” as proposed 
in [SMR+93] are a third form of D-4 bindings that 
attach code fragments (returning bulk data values) to 
individual persistent data items. 

D+C bindings add a new dimension to data mod- 
eling since it becomes possible to attach behavior 
to shared and persistent data and to adopt a data- 
centristic execution model. In this view, the ap- 
plication logic is no longer hard-wired statically in 
“structured” application code that drives the passive 
database system via read/write instructions. Instead 
of this, the application logic can be divided into se- 
mantically rich and loosely coupled conceptual classes 
attached to persistent data structures, and the appli- 
cation system is “driven” by messages dispatched dy- 
namically by the DBMS. 

In all systems mentioned so far, the code participat- 
ing in a D+C binding has to come from a flat environ- 
ment.. For example, the object-oriented programming 
languages Eiffel, C++, Modula-3 and Trellis as well as 
the object-oriented database systems ObjectStore and 
02 have syntax and scope rules that make it impos- 
sible to bind a function that is nested within another 
function as a method to a database object. As a con- 
sequence, the only bindings available inside method 
code are static global D-+D or D-C bindings, and 
dynamic bindings established via explicit method ar- 
guments (newBoss), and the dynamic binding of the 
distinguished identifier self to the receiver of the mes- 
sage. Analogous restrictions hold for stored database 
procedures written in fourth-generation languages and 
triggers in active databases. 

The rationale behind these restrictions is to simplify 
the implementation of D-C bindings. 

A more elegant implementation of D-4 bindings to 
flat code is achieved in object-oriented database sys- 
tems like 02 that manage executable code in the object 
store itself. In these systems D-C and D--+D bindings 
are implemented uniformly as intra-object-store bind- 
ings exploiting the concept of persistent object iden- 
tity. 

3.3 Binding names in persistent data to 
nested code 

The increased modeling power of orthogonal D-C 
bindings that also handle nested code correctly has 
been demonstrated by higher-order programming lan- 
guages like Lisp, Scheme, Standard ML, Dylan and 
Haskell (higher-order functions) but also by Smalltalk 
(first-class blocks) and CLOS. As a consequence there 
is a clear evolution in the family of higher-order 
database languages from PS-algol [AMSS], Napier88 
[DCBM89], P-Quest [MMS92], Fibonacci [AGO911 to 
Tycoon [MS921 allowing programmers to treat func- 
tions, procedures and transactions as first-class com- 
$utational entities tha.t can be passed as arguments, 
returned as results, and embedded into persistent data 
structures. 

Here, we focus on the semantics of D-4 bindings 
to nested code and do not discuss the relative advan- 
tages of full higher-order models over plain object- 
oriented models (see [SM93]). The following simple 
example shows a parameterized transaction disallow- 
Boss that overrides an existing method binding defined 
for the message changeBoss of a person object thisPer- 
son. The new D-C binding relates changeBoss to a 
nested method code fragment that depends on the pa- 
rameter value thisBoss of its enclosing transaction. 
transaction disnllowBoss( 

thisPerson,thisBoss:PersonObject)=begin 
let oldMethod=thisPerson.changeBoss 
thisPerson.changeBoss:=method(newBoss:PersonObject) 

if newBoss!=thisBoss then oldMethod(newBoss) 
else raise illegalBossException end 

end 
This transaction can be called with person objects 

as arguments, for exa.mple, to raise an exception if 
paulObj is to become the boss of peterObj or if an 
attempt is made to delete the boss of paulObj: 
disaJlowBoss(peterObj, pau/Obj) 
disalJowBoss(paulObj, NULL) 

A correct representation of the D-C binding for the 
name changeBoss has to consist not only of a binding 
to the nested method code but it has also to record 
the environment of global C+D bindings valid for the 
nested code (bindings for the pa.rameter thisBoss and 
the variable oldi%lethod of the enclosing transaction). 
Such a [code, environment]-pair is called a (function) 
closure. The two transactsion calls above yield the fol- 
lowing closures: 
peterObj.changeBoss=[ 

code=(if newBoss!=thisBoss then . . . end), 
globalEnv=[thisBoss=paulObj,oldMethod=. . .]] 

paulObj.changeBoss=[ 
code=(if newBoss!=thisBoss then . . . end), 
globalEnv=[thisBoss=NULL,oldMethod=. . .]] 
The code bound to peterObj.changeBoss.code and 
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paulObj.changeBoss.code is shared, however, since the 
global environments differ the execution of the method 
code in these different environments has different se- 
mantics. 

4 Activity-oriented programming with 
persistent threads 

Based on the discussion of the previous section we pro- 
pose a next step in the evolution of database languages 
by introducing the concept of first-class bindings to 
threads. The concept of threads (continuations, ses- 
sions, running transactions) is either non-existent or 
only implicitly available in today’s database systems. 
We argue that an explicit and orthogonal handling of 
threads naturally leads to the concept of persistent 
threads, a systems abstraction suitable for novel high- 
level models for long-term activity management. 

4.1 Threads in persistent systems 

As mentioned in section 2 (see also figure 2), threads 
and T-C bindings already exist implicitly in trans- 
actional multi-user DBMSs. For example, running 
transactions in a DBMS correspond to isolated threads 
(bound to transaction code) that are activated, sus- 
pended or aborted under the control of a centralized 
scheduling “master thread” that gains control when- 
ever these threads access shared database entities. On 
an implementation-level, a transaction descriptor in 
the scheduling subsystem is a record that aggrega.tes 
bindings to a (suspended or running) thread with ad- 
ditional information relevant for synchronization pur- 
poses, like the shared (read-only) bindings and the ex- 
clusive (updated) bindings held by the thread, bind- 
ings to other threads waiting for resources of this 
thread, or the cost of the operations executed by the 
thread so far. Database systems (like Ingres) that sup- 
port named checkpoints inside transa.ctions provide 
an additional mechanism to store multiple “frozen” 
thread states that can be reactivated at the user’s dis- 
cretion. 

Novel transaction models (see, e.g., [BK91, SR93]) 
propose to give “power users” the ability to extend 
the semantics of the “master thread” by introducing 
additional scheduling concepts like lock modes and by 
triggering the execution of user-defined code fragments 
whenever two threads access a shared persistent object 
concurrently. This code can use an algorithmically- 
complete language to decide when to abort, suspend 
or notify the conflicting threads. 

While threads managed by a DBMS scheduler a.re 
volatile (they are limited to the lifetime of their corre- 
sponding operating system processes), a limited form 
of persistent threads can be found in the (single-user) 
persistent higher-order systems Napier88 [DCBM89] 

and PQuest [MMS92] that have an atomic stabilize 
operation. This operation can be called anywhere in- 
side a program to define a consistent persistent sys- 
tem state. This state not only consists of the global 
database state variables but also includes the state of 
the program evaluator. If a system crash occurs dur- 
ing program execution, the execution can be resumed 
in the state valid at the last stabilize operation. 
procedure p(x:Int) = 

begin stabilizeo, print(“leave p, x=“, x) end 
procedure main0 = 

begin print(“call p”), p(3), print(“; end”) end 
For example, assuming that during the execution of 

main the system crashes after returning from p, On 
system restart, program execution would resume with 
the first statement a.fter the stabilize operation, and 
the output would be leave p, x=3; end. 

To summarize, these systems already have a hid- 
den persistent thread functionality that is, however, 
severely limited to a single top level thread. 

4.2 Threads as first-class persistent entities 

In this section we illustrate how threads fit as first- 
class computational entities into persistent object sys- 
tems. Our presenta.tion is based on the thread ab- 
straction available in the Tycoon system, a polymor- 
phic persistent programming environment developed 
in the FIDE project by our group at Hamburg Univer- 
sity [MS93, Mat93]. 

In Tycoon, computational entities (data, code, 
threads) are either bound in the scope of individual 
programs or in the scope of persistent modules. The 
execution of a Tycoon program code c invoked from 
an operating-system shell leads to the creation and 
execution of a Tycoon thread bound to c in an ini- 
tial environment that contains CAD bindings from all 
module names imported by c to corresponding linked 
persistent module values. 

Users or applications at the operating-system 
level can create independent Tycoon threads running 
against a shared set of persistent modules. Conceptu- 
ally, the computa.tiona.1 entities of all Tycoon threads 
and modules reside in a common persistent object 
store. This seamless integration of volatile and per- 
sistent store simplifies the access to databases rep- 
resented as persist*ent modules. Furthermore, it fa- 
cilitates the exchange of data, code and threads be- 
tween threads via shared variables. These variables are 
bound in the scope of persistent modules and are typ- 
ically protected by synchronization mechanisms like 
transactional locks, semaphores, mbnitors, or message 
queues. 

The following simplified excerpt of the Tycoon sys- 
tem library interface Thread defines the basic function- 
ality of a corresponding module thread which exports 
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a parameterized abstract data type thread. T and oper- 
ations to inspect, create and execute multiple threads 
from within Tycoon programs. 
interface Thread export 
T(R <:Ok) <:Ok 

(* T(R) is the type of threads that on termination 
return values of type R. *) 

Let State = Tuple case suspended, running, 
terminated, aborted, blocked end 

(* An enumeration of the possible thread states. *) 
new&R <:Ok code :Fun(:I):R input :I) :T(R) 

(* Return a new, suspended thread to execute 
code(inpu t). *) 

seJf(R <:Ok) :T(R) 
(* Return the current thread. *) 

copy(R <:Ok thread :T(R)) :T(R) 
(* Return a shallow copy of thread. The execution 

of thread does not affect copy(thread). 
However, entities bound in the code executed by 
thread and copy(thread) are shared. *) 

run(R <:Ok thread :T(R)) :Ok 
(* If thread is suspended then resume execution 

until execution terminates, aborts with an exception, 
is suspended or blocked. thread and self0 execute 
concurrently. *) 

state(R <:Ok thread :T(R)) State 
(* Return the state of thread that may change 

dynamically if running or suspended. *) 
join(R <:Ok thread :T(R)) :R 

(* Block until thread terminates or aborts. Return 
the result or propagate its exception. *) 

end 
The module thread encapsulates the representa- 

tion of threads, the semantics of the Tycoon evaluator 
(threadrun, see section 5) and the details of the map- 
ping from threads to physical processing units. Since 
some versions of the Tycoon system are baaed on per- 
sistent object stores which allow multiple workstations 
to access a Tycoon object store concurrently, multi- 
ple physical processing units (workstations) may be 
involved in thread execution.3 

The type thread.T and all functions exported from 
the interface above are polymorphic, i.e. they have an 
explicit type parameter R that has to be instantiated 
with a subtype of the trivial “top type” Ok [MS92]. 
Threads are polymorphic data structures since they 
can describe the execution of code that returns va.l- 
ues of an arbitrary result type R. This type R has to 
match the return type of the code function passed as 
an argument to the thread.new function. 

As a minimal example of (volatile) thread pro- 
gramming, the following Tycoon program creates a 
thread t to evaluate the function code that returns 
a value of type Int. This result is computed by adding 
the statically-bound data value and the dynamically- 

3Currently, a call thread.run(:R t) executes t and self() on 
the same processing unit . 

bound parameter value. 
import thread :TJiread 
let da& :Jnt = 3 
let code(parameter :Jnt) :Jnt = data + parameter 
let t :thread.T(lnt) = thread.new(:lnt :Int code 4) 
thread.run(:lnt t) 
let result :Int = tJrread.join(t) (* + 7 *) 

Remember that the thread bound to t is a first- 
class entity in Tycoon - it can be passed as a func- 
tion argument, returned from a function, bound to a 
name in the scope of a persistent module, exported to 
a portable data file, or sent across a communication 
channel. 

The generalization of first-class threads from 
volatile to persistent has the following semantic im- 
plications: 

4.3 

The definit,ion of persistence has to be revised. In 
addition to all persistent modules also all active 
threads act as “roots of persistence”. Moreover, 
the tra.nsitive reachability rule introduced in sec- 
tion 2 has to be extended to also include TdC, 
T+D and T-T bindings. 
The semantics of the shallow and deep copy op- 
eration has to be extended properly to values of 
type thread.T. 
In activity-intensive applications, it is desirable to 
be able to attach additional information to thread 
values (user id, transaction group id, access rights, 
authenticat#ion key, parent thread, . . .). This ex- 
tensibility is achieved in Tycoon by adding a set: 
ond type parameter D to the thread signature. A 
value of type thread.T(D R) is a thread that com- 
putes a value of type R and that has a descrip- 
tor attribute of t,ype D. Descriptors are exploited 
heavily by higher-level scheduling and activity- 
management algorithms but can also be made vis- 
ible to application-level code. 

Programming with persistent threads 

Having threa.ds as computational entities in a database 
language, programmers can benefit from the potential 
of multi-threa.ded progra.mming [Nelgl], like 

D a better exploitation of existing processing re- 
sources (e.g., workstation clusters or multi- 
processor workstations); 

D a better support for multiple activities of hu- 
man users within a single application (e.g., a 
database query tool can process multiple indepen- 
dent queries); 

D a reduced latency of operations by deferring re- 
organization tasks (e.g., an insertion into an in- 
dex structure returns control to the caller imme- 
diately and spawns a sepa.ra.te thread to perform 
the index reorganization if necessary); 
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D a better responsiveness of servers in distributed 
systems by allocating multiple server threads to 
handle client requests. 

By making a thread reachable from persistent data 
(persistent modules) and by checkpointing the state of 
the persistent store it becomes possible to protect long- 
running activities from system failures. After a crash, 
the thread can be restarted explicitly in the state that 
was valid at the last checkpoint. 

More importantly, persistent threads support di- 
rectly an activity-oriented style of information system 
modeling as promoted by scripts in Taxis [BMS93], 
by process-centered specifications in Estelle, Lotos or 
SDL [Tur93], or by (visual) process languages of work 
flow management tools like Regatta [Swe93]. 

As a highly simplified example, a paper submitted 
to a workshop can be represented by the following data 
type that contains a (persistent) thread attribute: 
Let Paper=Tuple title,authors,abstract,text :String 

reviewer:Person rating:Rating 
refereeActivity:thread.T(Ok) 

end 
From the viewpoint of the PC chair, each paper has 

to be reviewed individually, and the set of submitted 
papers has to undergo the following reviewing activity. 
for each p in db.submissions do 

p.refereeActivity:= thread.new(:Paper :Ok 
reviewpaper p) 

thread.run(:Ok p.refereeActivity) 
end 
joinAll(select p.refereeActivity from p in db.submissions) 

Reviewing the set of all submitted papers is mod- 
eled by creating and executing one p.refereeActivity 
per paper p which can then run concurrently with- 
out interference. Standard query language notations 
can be used to perform bulk operations on sets of 
threads, for example, to wait until all threads attached 
to db.submissions have terminated. The user-defined 
function joinAl takes a sets of threads and blocks the 
current thread until all of the threads have terminated. 
let joinAll(threads :set.T(thread.T(Ok))) :Ok = 

for each t in threads do thread.join(:Ok t) 
end 

The activity of individual reviewer assignment and 
reew recording is modeled by the following code: 
let r’eviewPaper(p :Paper) :Ok = begin 
repeat p.reviewer:=chooseReviewer(availableReviewers) 
until acceptedByReviewer(p.reviewer p) 
sendPaperToReviewer(p.reviewer p) 
try p.rating:= waitForReview(p.reviewer) 
when reviewerNotAvailableExc then reviewPaper 
end 

end 
Contrary to current database practice, the progress 

of the reviewing process is not captured by a passive 
relational table that stores a state attribute for each 

paper which is then updated by separate transactions 
to values like unassigned, assigned, se&Out, returned, 
. . . . Instead of this, an activity- and goal-oriented 
script modeled by database language code describes 
directly the possible states and state transitions. This 
example makes use of several control structures (loop, 
recursion, exception handling) for sequential activities 
and uses threads for long-term concurrent activites. 
Note that the thread above depends crucially on global 
bindings (to parameter values, global data, and global 
code). 

In this example, thread synchronization has to be 
employed to coordinate parallel activities (the assign- 
ment of reviewers to individual papers that implies 
access to the shared variable availableReviewers) and 
to wait for the termination of subactivities. 

Persistent threads do not lead necessarily to an im- 
perative, detetministic style of activity management. 
Instead of this, higher-level activity models can be sup- 
ported directly by factoring-out synchronization tasks 
(parallelDo, tryOne atomicDo, compensatingDo) 
from applications into higher-order thread libraries. 

5 On thread implementation and for- 
malization 

Several important requirements on persistent thread 
implementations differ substantially from volatile 
thread implementations, for example: 

1. 

2. 

3. 

4. 

5. 

6. 

Thread state representations have to be made re- 
locatable and portable in the sense that states 
need to be abstractly interpretable without ref- 
erence to a specific machine architecture (e.g., 
SPARC register files). 
It is desirable to have automatic garbage collec- 
tion that reclaims the storage of terminated or 
orphaned threads. 
It is necessary to formalize in sufficient detail the 
effects of thread execution on shared entities in 
the persistent store, in particular, if these entities 
have a complex structure. Only then reliable sup- 
port can be provided for concurrency, recovery, or 
garbage collection. 
Store access in distributed persistent memory has 
different performance characteristics than store 
access in centralized shared-memory architec- 
tures. 
In data-intensive applications, the thread state 
can va.ry dramatically in size, for example, to 
accommoda.te the numerous temporary bindings 
that arise during query evaluation. Clearly, sim- 
ple thread implementations based on fixed-sized 
stacks are not acceptable. 
Built-in schedulers have to be able to work with 
a number of persistent threads that may exceed 
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the number of volatile threads by two to three 
numbers of magnitude. 

In this section, we first report on our implementa- 
tion of persistent threads focusing on the issues (1) 
through (4) since the remaining investigations are be- 
yond the scope of this paper. We then sketch thread 
formalization with a clear emphasis on abstract rep- 
resentations of machine code (Tycoon Machine Lan- 
guage, TML), machine states and on explicit modeling 
of machine-store interactions (Tycoon Store Protocol, 
TSP). 

In our experience, a formalization on an appropri- 
ate level of abstraction and with an intensive flavor 
of “constructivity” is absolutely essential for any good 
implementation of a conceptually rich system abstrac- 
tion, such as persistent threads. 

5.1 The Tycoon thread implementation 

The Tycoon thread implementation is divided into 
subtasks solved by three distinct layers of the Tycoon 
system architecture: 

1. The Tycoon compiler front end performs the type 
checking and code generation of application pro- 
grams. Due to the polymorphic nature of Ty- 
coon’s type system, no extensions of the Tycoon 
compiler front end are required to support user- 
defined type constructors like thread.T(R) de- 
scribed in section 4.2. 
Tycoon uses a uniform (tagged) polymorphic data 
representation. Therefore, no modifications to the 
Tycoon code generator are required to support 
operations on first-class persistent threads. The 
binding of the operations thread.new, threadzun, 
etc. to processor-specific compiled C code imple- 
menting thread creation, thread execution etc. is 
accomplished by standard Tycoon language mech- 
anisms. 

2. The Tycoon compiler generates abstra.ct ma- 
chine code (TML). For every hardware architec- 
ture there is a separate Tycoon evaluator, imple- 
mented as an interpreter or a pair of a target ob- 
ject code generator and a runtime library that dy- 
namically loads the target code into the process 
address space. The execution of Tycoon threads 
is performed by TML evaluators that read code 
held in the Tycoon object store and that are able 
to store their evaluation state in a portable for- 
mat in the object store. Thereby, it is possible 
to exchange suspended evaluator states between 
different hardware architectures and to represent 
thread bindings by standard object store identi- 
fiers with the usual sharing semantics. 

3. The Tycoon object store allows evaluators to ab- 
stract from the lifetime and storage details of all 
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Figure 3: Interaction between TML threads 
computational entities (data, code, threads). The 
store encapsulates buffer management, garbage 
collection, cache coherence management and re- 
covery management. Tycoon evaluators access 
the Tycoon store via an abstract store protocol 
(TSP) implemented as a collection of standard- 
ized C functions. 

Figure 3 shows the interaction between multiple 
Tycoon threads accessing a shared persistent object 
store (possibly partitioned into disjoint repositories). 
It shows two operating-system processes, each execut- 
ing a TML evalua.tor tha.t manages a set of Tycoon 
threads. Thread states consist of a machine state (a 
register set) and a dynamic context of variable size. 
Active threads are cached in local process memory. 
Furthermore, the object store permits TML evaluators 
to fix (pin) persistent objects in local process mem- 
ory. It is the object store’s responsibility to ensure the 
coherence between thread states and other persistent 
objects cached in multiple process address spaces. 

5.2 On thread formalization 

A thread forma.liza.tion has to define invariants main- 
tained by the scheduling operations exported by the 
interface Thread (see section 4.3) and it has to spec- 
ify the semantics of individual threads by an inductive 
definition of the bindings and store side-effects per- 
formed for each instruction executed by a thread. The 
first issue has been treated already in the literature, for 
exa.mple, chapter 5 of [NelSl] gives a complete Larch 
specification of the Modula-3 thread package that is 
very similar to Tycoon’s Thread interface. Here we 
concentrate on the second issue. The TML/TSP spec- 
ification sketched in the remainder of this section not 
only affects the granularity level on which thread op- 
erations (e.g. run, join) are performed, but also the 
degree to which further requirements on threads as 
enumerated at the beginning of section 5 can be sup- 
ported. 

Tycoon’s RISC-style TML code representation is 
shown in figure 4. This instruction set suffices to im- 
plement the full Tycoon language as defined in [MS921 
(and similar higher-order programming languages like 
Fibonacci or Na.pier88). We are currently moving to an 
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c ::= nop 
1 imm( b) 
1 lit; 
1 1OCi 

1;;; I 

I Cl b21 
1 1OCi + Cl 

1 glbicl + ~2 
1 Cl[CZ] + c3 

I v?a Cl c2 c3 

lXnc1 

I co(c1 . ..cn) 

1 Cl ; c2 

I lOOPC1 
Iexitcl ’ 
I trap ~1 with li do ~2 

I raise cl 
I builtin(op)(cl . . . cn) 
I alt CO of 
bl + il . . . b, + i, do 
cl...,cnelsecn+l 

po operation 
base value access 
literal value access 
local variable access 
parameter value access 
function closure value access 
object store variable access 
local variable assignment 
function closure’ initialization 
object store assignment 
function closure allocation 
local variable allocation 
function application 
sequential evaluation 
repeated evaluation 
loop termination 
exception handling 
exception generation 
builtin function application 

multi-way case analysis 

Figure 4: Abstract TML syntax 

even more reduced, continuation-passing style (CPS) 
[App92] code representation that simplifies the static 
and dynamic program analysis and optimization tasks 
that are performed by the compiler, run-time query 
optimizer and thread scheduler (side-effect analysis, 
sharing analysis, inlining, dead code elimination, etc.) 
[GBM94]. However, CPS code needs to be normalized 
(closure converted, exception converted) prior to exe- 
cution to achieve good executions on standard hard- 
ware architectures. 

The semantics of TML programs involves syntac- 
tic entities that are denoted by indexed (i, j, R, n, m) 
variable names as follows: 
TML instructions (see Fig. 4): c E Code 
Base values: b, lit, g, p, 1 E BVal = 2 U {nil} 
Local environments: L = [lo . . . Ik] E Lot 
Dynamic environments: 

E=[lit go...g,, po...pm]~ Em 
Evaluation results: 

v E Val = SVal U {ok, exception(p), exit(p)} 
The semantics of a Tycoon object store is defined 

as a partial mapping from a domain of (tagged) object 
identifiers Ref (disjoint from the set of base values 
BVal) to fixed-sized arrays of state values. A state 
value is either an object identifier or a base value. 
Object identifiers: r, lit E Ref 
State values: so, 1, p, g E SVal = BVal U Ref 

Object stores: S E Store =(Ref x 2 2 SVal) 

x( Ref e Code) 

x(Ref 2 2) 
For example, the operation hit returns the store 

value (0, {}, {}) while the store operation new is de- 

PO 

P’ 

P 

I I I 

Figure 5: The TML machine model 
fined by 

new((StV, StC, StS), n) = (StV’, StC, StS’) 

where 

r $ Dom(StV) 

StV’ = StV + {(r,O) H nil} + {(P, 1) H nil} + 

. . . + {(r, n - 1) H nil} 

StS’ = StS+{r-n} 

It takes a store (StV,StC,StS) and a size n and re- 
turns a new store that contains a new, nil-initialized 
store vector of size n that can be identified by its 
unique OID r. The remaining store operations get, 
set, newclosure, fixexecute are defined analogously. 

The state of a TML thread executing a Tycoon 
function f consists of a quadruple E, S, L, c where E 
aggregates a reference to an immutable vector lit (that 
holds the string, longreal, . . . literals of f), the im- 
mutable global bindings go,. . . , g,, of f, and the im- 
mutable actual parameter po, . . . , pm of f. S describes 
the current state of the object store. L describes 
those local bindings in f that are inaccessible to other 
threads, and c describes the instruction of f that is 
currently being executed. Figure 5 depicts the rela- 
tionship between these thread components. 

The precise semantics of each TML instruction can 
now be described by its impact on TML thread states 
and by the operations executed on the persistent ob- 
ject store [Mat931 (structured operational semantics 
[Plo$l]). This semantic definition is “constructive” in 
the sense that it provides a precise starting point for 
the implementation of TML interpreters. 

The evaluation of a TML instruction is described 
using the following notation: 

The execution of the (composite) instruction c in a dy- 
namic context E, an object store state 4 with local 
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state variables ~51 leads to an object store state &, lo- 
cal state variables Lz apd an evaluation result V. This 
definition implies that an instruction cannot modify 
its dynamic context E. 

For example, the deduction rule [Eva] seql defines 
that the execution of the sequential composition cl ; 122 
in an environment E, against a store S1, with local 
state variables L1 is equivalent to the evaluation of 
cl in this thread state returning a (possibly modified) 
object store S2, a (possibly modified) set of local state 
variables Lz, and a value II, followed by the execution 
of c2 in this modified environment, again returning a 
(modified) object store Ss, (modified) state variables 
LB, and a value v’. 

[Eval SeqJ 
E, SI, Ll I- ~1 3 (S2, ~52,~) 

~9, S2, ~52 I- ~2 * (S3r ~53,~‘) 

E, SI, LI I- cl ; c2 =+ (S3, LB, v’) 

Note that the evaluation result v of the first instruc- 
tion is discarded and that the evaluation result of the 
instruction sequence is the result v’ of the second in- 
struction. This is typical for an imperative program- 
ming style, where statements do not compute a result 
but simply perform side-effects on the store. 

The semantics of TML function applications is de- 
fined as follows: In a first step, an object store ref- 
erence r is computed which identifies a function clo- 
sure in the object store S2 with code c’, literals lit 
and global variable bindings go . . .g,,. In a next step, 
the actual parameters po . . .p,,, are evaluated (strict 
left-to-right evaluation order). The code c’ is exe- 
cuted in a newly-allocated dynamic context consisting 
of lit, go . ..gn and po...pm. After c’ has been eval- 
uated, the dynamic context of the calling function is 
restored as it has been left behind by the evaluation 
of the last argument. 

E,Sl,Ll t--*(Sz,Lz,r) 

fixexecute(S2, r) = (c’, lit, go,. . . , gn) 

E,Si+l,Li+l~Cij(Si+3,Li+J,Pi) i=O...?78 

[lit go . . . g* po . . . p,], snlts, La+3 t- c’ * (S, Lnt4, v) 
E, SI, LI I- c(co . . . Cm) * (S, Lmt3, w) 

A complete definition ot the Tycoon thread evalu- 
ation semantics using the above notation is given in 
[Mat93]. 

6 Concluding remarks 

This paper gives an abstract view of the evolution of 
database models and languages in terms of bindings 
between code, data and threads. We argue that the 
next logical step in this evolution is an improved sup- 
port for activity-oriented applications by introducing 

first-class persistent threads. We also report on our 
work in formalizing, implementing and using persis- 
tent threads in the polymorphic Tycoon database pro- 
gramming environment. 

Our distinction between nine patterns of bindings 
in persistent systems makes it possible to classify 
database systems based on their support for persistent 
data, object, and activity management. Moreover, our 
presentation of the pitfalls encountered in the imple- 
mentation of C+D and D-+C bindings in existing sys- 
tems is intended as a hint to implementois of D+T 
bindings not to under-estimate the intrinsic complex- 
ity of persistent threads and to realize the relative sim- 
plicity of the proposed Tycoon execution model and its 
implementation architecture. 

Finally, it should be noted that persistent threads 
are an expressive and efficient, but rather low-level 
concept for tbe management of cooperative activi- 
ties. Therefore, we are currently investigating related 
database synchronization and communication models 
that have been proposed in the literature [GMSU, 
Reu89, BDS+93] and how such models can be realized 
as polymorphic libraries encapsulating Tycoon’s per- 
sistent threads. This approach to a flexible reconcilia- 
tion of system and user needs has proved to be highly 
successful in modern programming and operating en- 
vironments which offer several higher-level models like 
monitors, ACID transactions, transactional RPCs and 
communicating processes on a common, standardized 
thread abstraction available on multiple system plat- 
forms [POSSO, OSF93]. 
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