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Abstract 

The current main memory (DRAM) access 
speeds lag far behind CPU speeds. Cache 
memory, made of static RAM, is being used 
in today’s architectures to bridge this gap. It 
provides access latencies of 2-4 processor cy- 
cles, in contrast to main memory which re- 
quires 15-25 cycles. Therefore, the perfor- 
mance of the CPU depends upon how well 
the cache can be utilized. We show that there 
are significant benefits in redesigning our tra- 
ditional query processing algorithms so that 
they can make better use of the cache. The 
new algorithms run 8%-200% faster than the 
traditional ones. 

1 Introduction 

The DRAM access speeds have not reduced much com- 
pared to the CPU cycle time reduction resulting from 
the improvements in VLSI technology. Cache memories, 
made of fast static RAM, help alleviate this disparity by 
exploiting the spatial and temporal locality in the data 
accesses of a program. However, programs with poor 
access locality waste significantly many cycles transfer- 
ring the data to and from the cache memory resulting 
in poor CPU performance. 

The above observation makes it important that the 
algorithms for various relational operations should be 
designed to take maximum advantage of the cache mem- 
ory. In this paper we study the existing algorithms in 
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terms of their cache performance. We redesign the tra- 
ditional algorithms by taking into account the fact that 
modern computers have CPU caches. However, this 
paper is not about query optimization incorporating the 
cache memory as a parameter. In this paper we concen- 
trate on the join and aggregation algorithms. 

The conventional wisdom in database community is 
that query evaluation touches so much data that locality 
in data accesses is inherently poor. Further, there is a 
widespread but false belief that once data is in memory 
it is accessed as fast as it could be. We have challenged 
the conventional beliefs by showing that by designing 
cache conscious algorithms one can significantly speed 
up the CPU processing portion of query processing. For 
main-memory database systems (or largely-memory res- 
ident database systems) this is very significant. Further, 
the recent work by Nyberg et al. [NBC+941 suggests 
that the I/O response time can be reduced through the 
use of software assisted disk striping thus making the 
CPU cost of the query processing dominate i.e. a rela- 
tion can be read into the memory faster than it is pro- 
cessed. This clearly makes cache optimizations, which 
speed up CPU processing, extremely relevant for disk- 
resident data also. 

In related work, Nyberg et al. [NBC+941 have shown 
that for achieving high performance sorting, one should 
worry about cache memory. They have emphasized a 
large cache and do not explore alternative optimization 
techniques. In some sense, our work picks up where 
they have left off. We show how we can incorpo- 
rate cache memory in the design process of the algo- 
rithm and not as an afterthought. We do not argue for 
very large caches but show that given any size cache, 
our techniques are useful. This paper does not pro- 
pose that a completely different algorithm be designed 
for each hardware platform. Rather the proposal is that 
the same algorithm can be ported on different platforms 
after a phase of performance tuning using some cache 
profiler. 

Once the designer is aware of the presence of cache 
and its behavior, some techniques do not seem arcane. 
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However, in general, cache behavior is fairly complex 
and one needs to use some cache profiling tool like 
cprof [LW94] as an aid to study the cache behavior of 
a particular algorithm. Sometimes, we find ourselves 
revisiting some of the same optimizations in a differ- 
ent guise as made for the memory/disk portion of the 
memory hierarchy. At the same time one must note 
that these two are not equivalent problems. Among the 
major differences are: cache is entirely hardware man- 
aged and user has no direct control over what resides in 
cache; caches are not fully associative unlike disk cache 
in main memory; and lastly we can not, in general, trade 
off CPU cycles for improving cache performance which 
is the most important difference between memory/disk 
and cache/memory optimizations. 

The rest of the paper is organized as follows. Sec- 
tion 2 briefly reviews cache memories. Section 3 de- 
scribes some known techniques for cache optimizations. 
In section 4 we present the query processing algorithms 
and study how cache optimization helps. Section 5 of- 
fers our conclusions. 

2 Overview of Cache Memories 

Cache memories are small, fast static RAM memories 
that improve program performance by holding recently 
referenced data [Smi82]. Memory references satisfied by 
the cache, called hits, proceed at processor speed; those 
unsatisfied, called misses, incur a cache miss penalty 
and have to fetch the corresponding cache block from 
the main memory. The management of the cache is done 
entirely by the hardware with no direct user control. 

Unlike other levels of the memory hierarchy, caches 
are sometimes divided into instruction-only and data- 
only caches. Separate caches offer the opportunity of 
optimizing each cache separately. In this study we con- 
strain ourselves to data cache performance. 

Caches are characterized by three major parameters: 
Capacity (C), Block Size(B) and Associativity (A). 

Capacity A cache’s capacity (C) simply defines the 
total number of bytes it may contain. 

BlockSize The block size (B) determines how many 
contiguous bytes are fetched on each cache 
miss. A cache block exploits spatial locality by 
(pre-)fetching multiple contiguous words (thus re- 
ducing chances of a future miss), a cache block, 
whenever a miss occurs. 

Associativity Associativity refers to the numbers of 
unique places in the cache a particular block may 
reside in. If a block can reside in any place in the 
cache (A=C/B) we call it a fully-associative cache, 
if it can reside in exactly one place (A=l) we call it 

direct mapped, if it can reside in exactly A places, 
we call it A-way set associative. In associative 
caches, LRU replacement policy is used to decide 
which cache block will be replaced. Most caches, 
in practice, are either direct mapped or have very 
small set-associativity. 

Cache misses can be categorized into following three 
disjoint types [HS89]. The relation of the cache miss 
types to the cache characteristics is also described. 

Compulsory A reference that misses because it is the 
very first reference to a cache block is classified 
as a compulsory miss. By definition, compulsory 
misses can not be reduced without changing the 
basic algorithm. However, larger cache block size 
will decrease the number of compulsory misses as 
more data will be prefetched in a sequential access 
pattern. 

Capacity A reference that misses in a fully associative 
cache is classified as a capacity miss because the fi- 
nite sized cache is unable to hold all the referenced 
data. Capacity misses can be minimized by in- 
creasing temporal and spatial locality of references 
in the algorithm. Increasing cache size also reduces 
the capacity misses because it captures more local- 
ity. 

Conflict A reference that hits in a fully associative 
cache but misses in an A-way set associative cache 
is classified as a conflict miss. This is because 
even though the cache was large enough to hold 
all the recently referenced data, its associativity 
constraints forced some of the required data out 
of the cache prematurely. Conflict misses are the 
hardest to remove because they occur because of 
address conflicts in the data structure layout and 
are specific to a cache size and associativity. Data 
structures would, in general, have to be remapped 
so as to minimize conflicting addresses. Increasing 
the associativity of a cache will decrease the con- 
Aict misses. 

A cache profiler like cpmf [LW94] finds the cache 
behavior of an algorithm by simulating all data ac- 
cesses in the appropriately configured cache. The ad- 
dress traces are generated by an instruction level pro- 
filer like qpt [Lar93] which are fed to a cache simulator 
which %nds the requisite properties of,the data refer- 
ences. Cprofclassifies the cache misses in the above cat- 
egories by every line of code and by every data structure. 
The programmer can view the cache profile and find the 
cache behavior of the program in detail. However, since 
this simulation is based on virtual addresses, the results 
are only approximately true for a physically addressed 
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cache (like the level 2 cache in the DEC 3000) as non- 
conflicting virtual.addresses may conflict in a physically 
mapped cache. [KH92] shows that this effect is minor 
in most cases (especially when virtual address space is 
much larger than the cache size, which holds for typical 
database applications) and operating systems can use 
simple techniques to overcome the problem of introduc- 
tion of cache conflicts due to virtual to physical memory 
mapping. 

3 Optimization Techniques 

The main aim of optimizing algorithms for cache mem- 
ory is to ensure that as few cache misses occur as possi- 
ble without significantly increasing the number of in- 
structions executed i.e. the CPU overhead. In this 
study, however, we do not concern ourselves with op- 
timizations which depend on the exact cache configura- 
tion in terms of block size and associativity i.e. we do 
not attempt to answer the question how algorithms can 
exploit the associativity or block size per se. The rea- 
son is that changing block size only affects compulsory 
misses, which can not be removed given a particular 
cache. Associativity does help remove conflict misses. 
However, we find that conflict misses are relatively few 
compared to capacity misses and hence not very signif- 
icant in terms of performance. 

Many opportunities for cache optimization are not at 
all obvious at the outset. Many times it is not possible 
to find the cache bottleneck in a code by just looking at 
it and by looking at the CPU runtime. A cache profiler 
is usually needed to find the possibilities for improve- 
ment because it localizes the optimization space, i.e. one 
could concentrate on thinking of the optimizations so as 
to remove the cache misses occuring at that point in the 
program. As mentioned earlier, we used cprof for our 
studies. In the following sections we study some specific 
techniques for removing the cache misses. 

3.1 Blocking 

In blocking, an algorithm is restructured to reuse 
chunks of data that fit in the cache. Take the example 
of naive nested loops for computing a non-equijoin. In 
case of disk resident databases the reason for switching 
to nested loops with blocking is to significantly reduce 
disk I/O. However, the motivation to block nested loop 
in case of a memory resident relation does not seem 
apparent at first because of the (incorrect) belief that 
memory accesses are of uniform speed. We found that 
blocking indeed improves performance when tuples are 
blocked such that a block of tuples fits entirely in the 
cache. This is expected because now accesses to the 
tuples of inner relation suffer significantly fewer cache 

misses as we process a block entirely before discarding 
it. 

Example 3.1 

for (i = 0; i < M; i++) 
for (j = 0; j < N; j++) 

process(aCi1 ,bCjl) 

when blocked on array b, will look like 

for (bkNo = 0; bkNo < N / BKSZ; bkNo++) 
for (i = 0; i < M; i++) 

for (j = bkNo*BKSZ; j < (bkNo+l)*BKSZ; j++) 
process(a[il,b[j]) 

which will ensure that the elements of array b in a block 
will almost always be in the cache provided BKSZ is 
less than the cache size, thus significantly improving 
the cache performance. 0 

3.2 Partitioning 

Another technique is to distribute the data in parti- 
tions as in external sorting. These partitions are cre- 
ated such that each partition fits in the cache. Alpha- 
Sort [NBC+941 uses this technique to speedup the in- 
memory sorting. There is an overhead of creating the 
partitions but in most cases the benefit gained over- 
shadows it. In many database algorithms, a good way 
of generating partitions is by hash partitioning the rela- 
tions. For example, in joins, hash partitioned partitions 
can be joined independently. Consider the simple exam- 
ple of sorting: 

Example 3.2 

quicksort(relationCN1) 

is changed to 

partition relation into blocks < cache size 
for each partition r 

quicksort(relation[PARTITIONSIZE]); 
merge all the partitions 

Now, since the entire partition of the array being sorted 
fits in the cache, the quicksort runs significantly faster 
as there are few cache misses. This more than compen- 
sates for the extra merge step resulting in greater overall 
sorting speed (for large enough ,N). This is the essence 
of the in-memory AlphaSort [NBC+941 algorithm. 0 

Note that blocking and partitioning are distinct tech- 
niques. In blocking we restructure the algorithm and 
do not change the layout of the data, whereas in par- 
titioning we reorganize the layout of the data to make 
maximum use of the cache. 
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3.3 Extracting Relevant Data 

Reducing the data which needs to be accessed is another 
effective technique. In sorting, for example, instead of 
sorting whole records one could extract the sorting key 
and a pointer to record and use that for sorting. Smaller 
size data effectively means that more relevant data can 
fit in the cache. One must note that extracting rele- 
vant data can also be a memory optimization, in the 
sense that less memory has to be accessed (and that it 
would be faster, though not as much, even in absence 
of a cache). This optimization can be taken a little fur- 
ther as in using only key prefixes instead of keys for 
sorting [NBC+94]. 

For example, from a 200 byte record, we could extract 
an 12 byte key and a 4 byte pointer to do the sorting. 
Sorting with smaller records will be significantly faster 
as the cache will not get irrelevant data. 

3.4 Loop Fusion 

Many a time separate loops operating on a data struc- 
ture can be merged resulting in better locality of refer- 
ence for the data structure. The example below com- 
bines creation of a key pointer array (see above section) 
and building a hash table. 

Example 3.3 

for (i = 0; i < N; i++) 
a[iI .key = relation[iI .key; 
aCi1 .ptr = relationCi1 .ptr; 

for (i = 0; i < N; i++) 
insert-in-hashtable(a[i]); 

is changed to 

for (i = 0; i < N; i++) 

a[i] .key = relation[i].key; 
a[il .ptr = relation[iI.ptr; 
insert-in-hashtable(a[il); 

which will improve the likelihood that a[i] is in the cache 
when it is inserted in the hash table. •I 

3.5 Data Clustering 

At the physical database design level, one can cluster 
the fields of a tuple in such a way that fields accessed 
contemporaneously are stored together. This results 
in better spatial locality when the two related ‘fields of 
the tuple are accessed. For example, if in a relation a 
particular grozcp by attribute always goes with another 
attribute on which the aggregation is performed, then 
both should be allocated next to each other so that the 
access to group by attribute may prefetch the aggrega- 
tion attribute of the tuple. 

In this study we have concentrated on reducing ca- 
pacity misses. Hence our efforts are more focused on im- 
proving the temporal and spatial locality of the memory 
accesses rather than coming up with an optimal mem- 
ory layout of relations. 

4 Performance Evaluation 

In this section we study: 1. how do we cache optimize 
a query processing algorithm and 2. what difference do 
these optimizations make. 

We ran our performance tests on four different ma- 
chines which are representative of the modern trends in 
microprocessor technology. These are the DECstation 
5000/125, the DEC 3000/300, the HP Apollo 9000/710, 
and the SUN Sparcstation 10/51. We used the na- 
tive compilers (except the SUN on which we used the 
gee) with maximum practical optimization levels. Ta- 
ble 1 details the configuration of the machines we used. 
Here we must observe that cache access characteristics 
depend significantly on the compiler and optimization 
level used. 

While we assume that the data operated on by the 
algorithms is memory-resident, we wanted to approx- 
imate the data layout in memory that would result in 
reading a page of tuples into a buffer pool. Accordingly, 
we stored the tuples in memory in slotted pages; the 
overhead of processing tuples in slotted pages (rather 
than packed arrays of tuples) is included in all of our 
results. Under these assumptions, in practice and in our 
study, an algorithm starts its processing on the relations 
stored in the buffer pool. The join result is left in the 
form of an in-memory join index [Val87]. In section 4.4 
we discuss the tradeoffs and options in the generation 
of result relation. Furthermore, we incorporated the 
optimization of extracting the join attribute (group by 
attribute in case of aggregation) from the tuples for the 
processing whenever it was appropriate. 

For our join algorithms both the relations had 50000 
tuples each. Each tuple is 100 bytes long. Relations 
were generated in such a manner that each tuple in 
the first relation joined with approximately one tuple 
in the second. For aggregate processing, the relation 
had 100000 tuples of 100 byte length. The number of 
groups was 20. In section 4.3 we show that our results 
hold even when we vary these parameters. All reported 
timings are in seconds. 

4.1 Case Study: Optimizing Hash Joins 

We describe how we optimized the basic in-memory 
hash join algorithm [DK0+84] in detail on the DECsta- 
tion 5000/125. We used the cache profiler cprof [LW94] 
to gain detailed information about the cache perfor- 
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Machine Microprocessor Data Cache Size 
DECstation 5000/125 MIPS R3000 64K 

SUN Sparcstation lo/51 SPARC/Viking 16K (on-chip) + 1M 
DEC 3000/300 Alpha AXP A 8K (on-chip) + 256K 

HP Apollo 9000 Series 700/710 HPPA-RISC 1.1 64K 

Table 1: Machine Configurations 

mance of the algorithms. That guided us quickly to 
the code having poor cache behavior and thus exposed 
the opportunities for optimization. 

Assume R and S are the two relations (or fragments 
of relations of a bigger join) being joined which are now 
in the main memory in slotted pages after having been 
read from the disk. 

The in-memory hash join algorithm works as follows. 
First a hash table of the tuples of R is created by hash- 
ing on the join attribute. Then the tuples of the relation 
S are probed by hashing them on the join attribute and 
searching the attribute value in the hash table. Thus the 
implementation of the basic hash join algorithm looks 
like. 

Algorithm 4.1 BaseHash(R,S) 

Bui 1 dHashTab 1 e (H[M) ; 
jor each s in S 

Probe(s, HCRI); 

Upon profiling, the algorithm showed significant 
number of cache misses. Table 2 shows the cache misses 
suffered by each step of the algorithm. Building the 

Step camp. capacity conflict Total 
Build 37500 118731 2181 158412 
Probe 25159 193137 2352 220648 
Overall 62659 311868 4533 379060 

Table 2: Cache Misses in BaseHash Join 

hash table directly on the relation tuples suffers many 
cache misses because the entire hash table is unable to 
fit in the cache. Also, useless data is brought into the 
cache because the cache block prefetching brings in at- 
tributes not required for the join computation resulting 
in wastage of cache capacity. The probe phase has even 
more cache misses because every probe generates a ran- 
dom address in the hash table which is unlikely to be 
in the cache, coupled with the fact that accessing the 
probing tuple itself might result in a cache miss. This is 
only worsened by the cache pollution due to prefetching 
of irrelevant data since we are building the hash table 
from base tuples. 

First optimization which seems possible is to do at- 
tribute/pointer extraction in the building relation. Note 
that the building relation is accessed possibly several 
times, once for building and again in the probing phase, 
whereas the probing relation is accessed only once. 
Thus by doing the extraction, we increase the locality of 
accesses in both build and probe phases for the building 
relation. The locality improves because now there is no 
pollution of the cache which happens due to automatic 
prefetching of the spatially contiguous data as in the 
base case. This results in the following algorithm. 

Algorithm 4.2 Extraction(R,S) 

for each r in R 
ExtractKeyPointers(r> 
BuildHashTable(r) 

Probecs, HIRII; 

Table 3: Cache Misses in Extraction Join 

As evident from the profile in table 3, this algorithm 
shows reduced number of cache misses in the build and 
the probe phase from the basic algorithms. The over- 
head of attribute/pointer extraction is more than com- 
pensated for the reduction in cache misses in the build 
and probe phases thus reducing the total number of 
cache misses. This reduction in cache misses results in 
a speedup of 7.2% over the basic hash join. 

We still find that there are far too many cache misses 
in the building and probing phases. One strategy is to 
ensure that the built hash table is always kept in the 
cache thus reducing the cache misses in the building and 
probing phases. This can be implemented by dividing 
the relation into several (hash partitioned) partitions 
such that the hash tables built from these partitions 
would fit in the cache. This partitioning of the relation 
is done along with the attribute/pointer extraction (in 
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both relations). Of course, this incurs the overhead of 
creating the partitions and processing them but the im- 
provement due to reduction in cache misses more than 
compensates for that. Thus we come up with the fol- 
lowing algorithm’. 

Algorithm 4.3 Partition+dHash(R,S) 

ExtractKeyPointers-AndJabtition(R) 
ExtractKeyPointers-And-Partition(S) 
for each partition i 

Buil~ashTable(H[R[i~]) 
for each s in S[il 

Probe(s,HCRCill) 

Table 4 shows the cache misses suffered in this al- 
gorithm. We note that there are quite many cache 
misses in partitioning the relations. However, as ex- 
pected, the joining of the partitions themselves suffer 
far fewer cache misses as the building and probing par- 
titions can be entirely cache resident. With this sharp a 
reduction in cache misses we would expect a relatively 
large speedup. However, as mentioned before, the extra 
processing involved in partition creation and process- 
ing reduces some of the advantage thus gained. The 
obtained speedup of the algorithm is 6.6%. 

Table 4: Cache Misses in PartitionedHash Join 

Table 5 summarizes the results of the cache optimiza- 
tions for hash join. Here (and elsewhere), speedup in- 
dicates the speedup over the basic algorithm. 

Algorithm Cache Misses Time Speedup ;I 
Table 5: Optimizations for the Hash Join 

Note that the number of compulsory cache misses 
actually increase with the optimizations. This implies 
that an infinite (or no cache) would actually show that 

‘A keen observer would note that this is analogous to the 
GRACE algorithm [DK0+84] for join processing of disk resident 
relations. 

the basic algorithm is the best. However, this also 
shows the importance of cache optimization, because it 
demonstrates that theoretically similar algorithm8 can 
have significantly differing performance depending on 
the way they utilize the cache. And lastly, it shows that 
one can not, in general, tradeoff CPU cycles for cache 
optimization as the advantage gained by a decrease in 
cache misses can be quickly nullified by the CPU over- 
head as evident by the PartitionedHash algorithm. 

Finally, we measured the performance of these on the 
other machines to show that these techniques are not 
specific to any particular machine but hold in general. 
The timing speedup obtained on them are given in ta- 
ble 6. 

Even though we report performance on different ma- 
chines, when comparing the relative effect of cache opti- 
mizations on different architectures one must be careful 
not to ascribe all differences in the performance to prop- 
erties of the processor, memory, and its cache. While 
these hardware parameters do affect the efficiency of 
the optimizations, we also found that factors such as 
the compiler used also have as strong an effect-we ob- 
served significant differences in the impact of the cache 
optimizations within a single machine by varying the 
compiler optimization level. 

4.2 Other Query Processing Algorithms 

We went through the above optimization process for 
other query processing algorithms, viz. the sort merge 
join, the nested loop join, the hash baaed aggregation 
and the sort based aggregation. In this section we de- 
scribe the algorithms, point out the optimizations we 
made and the speedup obtained on the four machines. 

4.2.1 The Sort Merge Join 

The in-memory sort merge join [BE771 works as follows. 
First, both relations R and S are sorted on the join 
attribute by using an efficient sorting mechanism e.g. 
quicksort. Then the sorted relations are merged and the 
matching tuples are output. As mentioned earlier, we 
use the optimization proposed in [NBC!+94] to extract 
the join attribute and a pointer to the tuple. 

The basic algorithm sorts both the relations and 
merges them. 

Algorithm 4.4 BaseSort(R,S) 

ExtractKeyPointers(R) 
ExtractKeyPointers(S) 
Sort CR) 
Sort 6) 
Merge (R,S) 

In this algorithm, the sorting suffers several cache 
misses because none of the attribute-pointers of R or S 
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Table 6: Speedups obtained on the other machines 

are in the cache. First simple optimization which we im- 
plemented was to do the sorting immediately after the 
attribute/pointer extraction resulting in the following 
algorithm. 

Algorithm 4.5 ImmediateSort(R,S) 

ExtractKeyPointers(R> 
sort (It> 
ExtractKeyPointers(S> 

sort (S> 
Merge (R, S> 

However, since both R and S are bigger than the 
cache, the sorting itself suffers several cache misses. The 
optimization is to make (hash partitioned) partitions of 
sizes such that the one partition of both relations will 
fit in the cache. This significantly reduces the cache 
misses suffered in the sorting phase. In the final step, 
each partition is merged pairwise. This optimization 
is similar to the PartitionedHash join algorithm above 
where smaller partitions ensure fewer cache misses. 

Algorithm 4.6 PartitionedSort(R,S) 

ExtractKeyPointers-AndSartition(R> 
for each partition i 

Sort (RCil> 
ExtractKeyPointers-AndPortition(S> 
for each partition i 

Sort (Stil> 
for each partition i 

Merge(R[i’il,S[i.l> 

After looking at the cache profile of the PartitionedSort 
we notice that the cache misses could be further reduced 
in the merge phase by fusing the sorting and merging of 
each of the partitions i.e. instead of first sorting all and 
then merging all the partitions, we sort and immediately 
merge the partitions. This loop fusion results in the 
following algorithm. 

Algorithm 4.7 ImprovedSort(R,S) 

ExtractKeyPointers-And-Partition(R) 
ExtractKeyPointers-AndPcrtition(S> 
for each partition i 

Sort (R[il> 
Sort (SCi.l> 
Merge(R[iJ,S[i.7> 

Table 7 shows the running times and the speedup 
shown by the algorithms on the four machines. 

We note that the partitioning helps much more in 
the case of the sort merge join compared to the hash 
join because the sorting operation is much more mem- 
ory intensive and computationally expensive i.e. the 
reduction in the number of cache misses is much larger 
because of the partitioning and the relative overhead of 
making the partition is correspondingly much smaller. 

4.2.2 Non-equijoin Algorithms: Nested Loops 

The nested loop algorithm is the most common way 
of handling non-equijoins. The in-memory version of 
nested loop is straightforward and takes O(lRI * ISI) 
time. In the traditional way of thinking about database 
algorithms, we feel that nothing much can be done to 
improve the performance of the nested loop join once 
the relations are in memory. But we had a lot in store 
for us. 

The basic algorithm is as follows. 

Algorithm 4.8 BaseNestedLoop(R,S) 

ExtractKeyPointers(R> 
ExtractKeyPointers(S> 
for each tuple r in R 

for each tuple s in S 
if join(r,s> then 

produce result 

Upon looking at the cache profile, we quickly realized 
that we were incurring far too many cache misses than 
were necessary. This is because the sequential access 
of the inner relation S has poor cache locality. Block- 
ing on the inner relation such that each block fits in 
the cache improves the locality of access for the inner 
relation. This is because the entire block is in cache 
while it is processed and therefore it suffers very few 
cache misses. In BaseNestedLoop, every access to the 
tuples of inner relation will probably result in a cache 
miss as the sequential access would replace the tuples 
before they could be reused. The blocked nested loop 
algorithm is as follows. 
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Table 7: Optimizations for the Sort Merge Join 

Algorithm 4.9 BlockedNestedLoop(R,S) 

ExtroctKeyPointers(R) 
ExtractKeyPointers(S) 
for each block b of S 

for each tuple r in R 
for each tuple s in b 

if join(r,s) then 
produce result 

Table 8 shows the running times and the speed shown 
by the algorithms. The reason that the optimization on 
SUN lo/51 doesn’t show much improvement is because 
of the improved performance of the base case as all the 
key pointers fit in the 1MB secondary cache even in the 
base case. 

4.2.3 Aggregation Algorithms 

Aggregation with the group by clause involves more than 
a simple scan of the participating relation [Eps79]. We 
consider the two popular aggregation algorithms: the 
hash based aggregation and the sort based aggregation. 

Hash Based Aggregation The in-memory hash ag- 
gregation on relation R works as follows. We accumu- 
late the result in a hash table by hashing the tuples of 
the relation R on the group by attribute and computing 
the cumulative sum and count (analogous information 
must be kept for other aggregate functions like min). At 
first sight, it seems that since there is little computation 
required to do the aggregation, there is little room for 
improvement. But we were taken by a surprise. 

The basic algorithm builds a hash table of the result 
relation by hashing tuples of the R relation and accu- 
mulates the sum (and count) for aggregation purposes 
for every group. 

Algorithm 4.10 BaseHash 

for each tuple t in R 
Hash(t) 
Insert/update the hashtable entry for the group 

It was natural to attempt the Extraction optimization 
for the hash aggregation as it had worked well in the 
hash join. 

Algorithm 4.11 Extraction(R) 

for each tuple t in R 
ExtractKeyPointerCt) 
Hash(t) 
Insert/update the hashtable entry for the group 

However, we found that it does not improve the per- 
formance of the hash aggregation. The reason being 
that in aggregation, the hash table is accessed only once 
(which is a compulsory cache miss) and therefore key 
pointer extraction does not help. In the join, in con- 
trast, the hash table is accessed twice: once for build 
and again for probe, the key pointer extraction reduces 
the cache misses in the second access thereby improving 
the performance. This shows that cache optimizations 
can be subtle and specific to a particular algorithm. 

We still noticed many cache misses when the aggre- 
gation attribute was accessed for accumulating the sum 
(and count). We then clustered the two and found a 
significant reduction in cache misses and improvement 
in performance. Of course, this is not an algorithmic 
optimization but something which can be taken care of 
at the level of physical database design. 

Table 9 shows the running times and the speedup 
shown by the algorithms. 

Sort Based Aggregation In the traditional sorting 
based approach to compute group by aggregation, first 
the relation is sorted on the group by attribute thus col- 
lecting the tuples of the same group together. Then the 
sorted relation is scanned producing tuples per group. 
The basic algorithm is then as follows. 

Algorithm 4.12 BaseSort 

ExtractKeyPointer(R) 
Sort CR) 
for each t in R 

Initialize/update the group entry for the group 

Since sorting suffers quite many cache misses, we de- 
cided to use the “partitions” optimization for sorting so 
that it suffers few cache misses. Hash partitioning is 
not really practical here because the number of groups 
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Table 8: Optimizations for Nested Loop Algorithm 

Table 9: Optimizations for the Hash Based Aggregation 

could be very small. Hence, we make random parti- 
tions, sort and do aggregation on each of the partitions. 
However, this requires an extra step of merging these 
partition aggregates to form the global aggregate. But 
we find that this extra overhead is more than compen- 
sated by the reduction in cache misses. This two phase 
algorithm is as follows. 

Algorithm 4.13 TuroPhase(R) 

ExtractKeyPointer-AnbPortition(R> 
for each partition i 

Sort (RCil) 
for each t in R[il 

Initialise/update the group entry for the group 
merge the aggregates obtained in each partition 

In the following section we present some parametric 
studies we conducted to show that the cache optimiza- 
tions hold in significantly varying parameter values. 

4.3 Parametric Studies 

We study the effect of varying relation size, tuple size 
and. the join selectivity on the speedup obtained by the 
algorithms. In each category of the algorithms, we show 
how the speedup of the most optimal version over the 
basic algorithm varies with these changes in parameters 
and study its implications. 

4.3.1 Varying Relation Size 

The speedup of the join algorithms, Extraction hash 
join and ImprovedSort sort-merge join, as a function of 
relation size is shown in figure 1. We note that whereas 
the speedup of the MergedStep hash join algorithm de 
creases slightly with increase in relation size, that of 
the ImprovedSort sort-merge join improves significantly 

with increase in relation size. This is important as it 
shows that cache optimizations are of two kinds: 

1. Cache optimizations which depend on the fact that 

2. 

cache would retain a part of the data from previ- 
ous temporally close accesses. These do not ensure 
that all the data would be in the cache. Hence, the 
relative performance gain could decrease with an 
increase in problem size. These kind of optimiza- 
tions would benefit from a large cache. 
Examples of this kind are loop fusion, extracting 
relevant data. Since Extraction hash join uses key 
pointer extraction and depends on the cache to 
keep its data, it suffers a little with increase in 
problem size. 

Cache optimization which attempt to ensure that 
cache would retain all the data while it is being 
processed. This is achieved by ensuring that only 
that part of the data would be accessed temporally 
closely which can be retained in the cache. Hence, 
the relative performance gain would increase with 
an increase in the problem size. These kind of op- 
timization would not benefit significantly from a 
larger cache. 
Examples of this kind are partitioning, blocking. 
Since ImprovedSort uses partitioning its relative 
performance gain improves with increasing prob- 
lem size. 

4.3.2 Varying Tuple Size 

With attribute/pointer extraction, we expect that the 
performance of the algorithms will not be significantly 
affected by change in tuple size. Figure 2 shows that 
increase in tuple size does not significantly affect the 
speedup of the algorithms. 
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Table 10: Optimizations for the Sort Based Aggregation 

Extraction Hash Join ImprovedSort Sort-Merge Join 
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Figure 1: Speedup of Join Algorithms with Varying Relation Size 
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Figure 2: Speedup of Join Algorithms with Varying Tuple Size 
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Figure 3: Speedup of Join Algorithm with Varying Join Selectivity 

4.3.3 Varying Join Selectivity 

We define join selectivity as tInnerRelation, . Result Relation[ we find 

that varying join selectivity also does not affect the 
speedup substantially. This is evinced in figure 3. 

The results above confirm that the optimizations dis- 
cussed in the paper are general and hold in substantially 
differing circumstances. 

We finally discuss some issues in result generation. 

4.4 Generating The Result Relation in 
Join Algorithms 

There are two main choices regarding result generation 
in join algorithms. 

1. the result tuple is produced on the fly (e.g. as soon 
as a match is found in case of a join). 

2. upon finding a match two pointers to the partici- 
pating tuples are stored along with a projection list 
thus generating an in-memory join index [Val87]. 
Later, depending upon need, the result is gener- 
ated by accessing the pointed to tuples and doing 
the projection. This can be considered as lazy eval- 
uation of the result relation. 

Our experiments show that lazy evaluation of the re- 
sult relation is almost as fast on the fly evaluation for 
the algorithms considered. This is because the lazy eval- 
uation, in general, has better cache behavior than on the 
fly generation. Generating the tuples on the fly results 
in cache pollution because the generated tuples displace 
the data required for join processing itself. Lazy eval- 
uation, in contrast, does not pollute the cache but has 
the overhead of the join index creation resulting in com- 
parable performance of the two approaches. Table 11 

shows the above for the DECstation 5000/125 for a few 
algorithms. 

Table 11: On The Fly vs. Lazy Evaluation 

In lazy evaluation, the result generation is indepen- 
dent of the actual computation of the join and there- 
fore it does not affect the performance of the actual join 
computation. One would expect it to result in a fixed 
overhead cost dependent only on the characteristics of 
the result relation (e.g. size of result tuples, size of re- 
sult relation etc.) and independent of the actual join 
algorithm used. However our experiments showed this 
theoretically “fixed” overhead of lazy evaluation is, in 
practice, slightly variable but always within 5% of each 
other across the algorithms we studied. This variability 
is because of the characteristics of the created join index 
which determines the order in which the tuples will be 
accessed. In sort merge join, a tuple which is accessed 
more than once will have all its accesses together. In 
absence of duplicate accesses, the hash join with its se- 
quential access of the probing relation tuples will show 
slightly better performance. However, since all these 
are but secondary effects, their performance impact is 
not significant. 

Furthermore, in main-memory databases, we need 
not ever generate the final tuples but only access 
through the resulting pointer structure on the fly. Also, 
if the buffer pool is large enough to keep all relations 



participating in a multi-way join then we need not gen- 
erate complete intermedjate result. 

For the reasons mentioned above, we decided not to 
generate the actual result relation. Instead, we left the 
result in the intermediate pointer format. 

5 Conclusions 

We have shown that designing algorithms with cache 
consideration significantly improves their performance. 
This is most noticeable in the more CPU intensive al- 
gorithms, e.g. the nested loop algorithm improves by 
almost 4 times when we redesign it with the cache in 
mind. However, much of the time the opportunities for 
improvement are not evident and one has to use a cache 
profiler to find the poorly performing parts of the code. 

In summary, we have shown that main memory 
should not be the end of optimization for database al- 
gorithms. Designing algorithms that exploit the cache 
has significant performance dividends and this is be- 
coming increasingly important for the newer generation 
of microprocessors whose performance critically depend 
upon effective usage of cache memory. It would be in- 
teresting to study how algorithms can exploit specific 
cache configurations and conversely what cache config- 
urations are better suited for database applications. 
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