
Join Index Hierarchies for Supporting Efficient
Navigations in Object-Oriented Databases *

Zhaohui Xie
School of Computing Science

Simon Fraser University
Burnaby, B.C., V5A lS6, Canada

zhaohui@cs.sfu.ca

Abstract

A join index hierarchy method is proposed to
handle the “goto’s on disk” problem in object-
oriented query processing. The method con-
structs a hierarchy of join indices and trans-
forms a sequence of pointer chasing operations
into a simple search in an appropriate join in-
dex file, and thus accelerates navigation in
object-oriented databases. The method ex-
tends the join index structure studied in re-
lational and spatial databases, supports both
forward and backward navigations among ob-
jects and classes, and localizes update prop-
agations in the hierarchy. Our performance
study shows that partial join index hierar-
chy outperforms several other indexing mech-
anisms in object-oriented query processing.

1 Introduction

Query processing and optimization is crucial to
the performance of object-oriented database systems.
Substantial researches into query processing and query
optimization in object-oriented databases have been

*research partially supported by NSERC Grant OGP03723,
IRIS-2 Grants HMI-I and K-2, and the Centrc for Systems
Science of Simon F&m University.

Permirrion to copy without fee all or part of this material is
granted pwoidcd that the copier are not made or dirtribrted for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and itr date appear, and notice ia
given that copying is by permission of the Very Large Data Bose
Endowment. To copy otherwire, or to republish, nquire~ a fee
and/or rpecial pemaiaeion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

Jiawei Han
School of Computing Science

Simon Fraser University
Burnaby, B.C., V5A lS6, Canada

han@cs.sfu.ca

conducted in recent years with encouraging progress
reported, e.g., [2, 3, 4, 5, 7, 13, 15, 171.

Since object-oriented databases support complex
data objects and enable explicit and natural represen-
tation of logical relationships among complex objects
via class/subclass hierarchies, attributes, methods, ob-
ject identities, etc., navigation among different classes
and objects via class hierarchies and/or class composi-
tion hierarchies is an essential operation. Navigations
from one object in a class to objects in other classes
are essentially “pointer chasing” (using object identity
“OID” references) operations which may cause signif-
icant performance degradation because the objects to
be accessed may be stored at widely scattered loca-
tions and many disk read operations may be required
to fetch them into main memory [4]. The attempts to
solve this problem can be classified into three classes
of techniques: the indexing method, the read-ahead
buffering method (e.g., [ll]), and parallel complex ob-
ject assembly method (e.g., [5]).

Following the philosophy of indexing methods, a
join index hierarchy method is proposed in this pa-
per, which extends the join index technique developed
in relational databases [16] and its variations in spatial
databases [12, 91, constructs hierarchies of join indices
to accelerate navigations via a sequence of objects and
classes. In a broad sense, a join index in our method
stores the pairs of identifiers of objects of two classes
that are connected via dir& or indirec2 logical rela-
tionships. Thoee formed by direct logical relationships
are called base join indices; whereas those represent
indirecf logical relationships are called derived join in-
dices. Base and derived join indices form a join index
hierarchy. A join index hierarchy supports navigations
through a sequence of classes in either forward or back-
ward navigation direction and supports efficient up-
date propagation starting with the base join indices

522

by localizing update propagations in the hierarchy.
The following considerations motivate the proposal

of the join index hierarchy structures.
First, by construction of join index hierarchies, the

“pointer chasing,, problem, that is, accessing objects
and their properties via a sequence of referencing
pointers to widely scattered disk locations, is trans-
formed into simple accessing of appropriate join index
files. This may significantly reduce the I/O accessing
cost in object-oriented query processing. The price
for this I/O cost reduction is the increase of space
for storing join index files, which is practically im-
plementable since large inexpensive disk memories are
available with reasonable cost based on the current
hardware technology.

Secondly, with join index hierarchies, appropriate
join index files for specific navigation operations can
be selected by consulting the index hierarchy direc-
tory. Moreover, update propagation can be localized
to a few base and derived join index files in the hi-
erarchy. Both forward and backward navigations can
be supported with minimum storage and update over-
heads. The structure is especially good for frequent
navigations and infrequent updates.

Thirdly, using join index hierarchies, object-at-a-
time styled navigation is transformed into efficient, set-
oriented and associative access of join indices. More-
over, it supports navigations among objects connected
not only via a sequence of attribute relationships but
also via a sequence of methods and deduction rules.
This is accomplished by precomputing methods and
rules and storing the related information in join in-
dices. By doing so, the object-at-a-time evaluation
of computationally intensive methods or deduction-
intensive rules can be transformed into efficient and
set-oriented accessing of precomputed relationships.
Moreover, retrieval from either directions becomes
available even for methods and deduction rules.

Fourthly, in some cases, the join of some classes on
certain attributes may generate a substantially large
join index file because of its large join selectivity, or
some class may sustain regular and frequent updates.
Joins involving such kind of characteristics should be
considered as “fire walls” in the construction of join
index hierarchies. The system should prohibit the con-
struction of such join indices or the merge of such join
indices into the hierarchy in order to avoid the poten-
tial explosion on the size of join index files or the heavy
cost of updates. Queries involving such joins can be
processed by performing concrete joins or using the
base join index files, if available.

The remaining of the paper is organized as follows.
In section 2, following a preliminary survey of the pre-
vious work on join indices and object-oriented naviga-

tion techniques, three join index hierarchy structures
are introduced. In section 3, the construction and up-
date maintenance of join index hierarchies are stud-
ied. In section 4, an analytical evaluation of three join
index hierarchy structures and some potentially com-
petitive associative indexing structures are presented.
In section 5, implementation considerations, improve-
ments and extensions of the approach are discussed.
Finally, the study is summarized in section 6.

2 Join Index Hierarchy

2.1 Previous work

Join index structure was first proposed by Valduriez
[16] for optimizing join and semijoin operations in re-
lational databases. A join index file stores pairs of the
surrogates of joining tuples from two relations, which
transforms expensive joins to selections in join index
files. Since efficient accessing structures can be con-
structed on join indices, it has been shown that re-
lational join using join index structures outperforms
other relational join methods in many cases [16].

Join index structures can be applied to different ap-
plication domains. For example, a spatial join index
structure was developed by Rotem [12] and organized
in the form of grid files. Further, certain precomputed
information (e.g. distance) can be associated with such
spatial join index structure to speed up query process-
ing as shown by Lu and Han [9].

In the studies of query optimization in object-
oriented databases, special attention has been paid to
path indices which associate the values of nested at-
tributes with the objects in the head class of a path
expression, e.g., by Maier and Stein [lo], Bertino and
Kim [2] and Bertino [l]. In Maier and Stein [lo],
a series of index components, indices on each level
of the nested attributes, are maintained for the pur-
pose of update propagations. In Bertino and Kim [2],
three index structures are presented: nested index,
path index and multiindex, which have been later ex-
tended to handle inheritance of classes appearing in
a path expression [l]. The nested index structure fa-
cilitates associative search and update by storing to-
gether the key values of the tail attribute and the ob-
jects of the head class and intermediate objects of a
path expression in primary records. An auxiliary in-
dex, which basically keeps direct reference informs
tion between objects, together with the extra infor-
mation in the primary records are used to propagate
updates. The nested index structure in general out-
performs the other two index structures [l]. Shekita
and Carey [14] d escribe a mechanism called field repli-
cations which replicate the values of the nested at-

523

tributes. In-place field replication stores the replicated
data with the objects, whereas se.parate field replica-
tion stores the replicated data in a separated place.
The separated replication is used to solve the issue of
updating the shared replicated data. Inverted path
structures, which are similar to the index components
in [lo], are used to support update propagation. These
approaches support only the associated retrieval of ob-
jects through nested attributes but not navigations in
both directions along a reference chain.

Kemper and Moerkotte [6] present a data structure
called access support relation which keeps the identi-
fiers of those objects connected by attribute relation-
ships in a path expression and can span over the refer-
ence chains of a path expression. Several alternatives
which include full, canonical, left and right extensions
and decomposition of access support relations for a
given path expression are discussed. The optimal one
is determined according to the domain-specific infor-
mation such as the probabilities of different types of
queries and updates. The join index hierarchy ap-
proach proposed here shares certain similarity with
this approach. However, the storage size of each com-
ponent in an access support relation could be large be-
cause all the identifier sequences of the joinable objects
along an object path corresponding to the component
are stored, and any two objects in the two classes could
be connected by more than one object path. Further,
an update on one object may need to be propagated
to several components or to the entire access support
relation, which could be costly.

2.2 Preliminaries

Following the previous research, a join index hierarchy
structure is proposed here to support efficient naviga-
tion through multiple object classes. The variations
of a join index hierarchy can be constructed based on
the richness of the derived join index structures. Three
kinds of structures: based-only, complete, and partial,
are investigated in terms of their construction, naviga-
tion and update propagation.

A database schema is a directed graph in which the
nodes correspond to classes, and edges to relationships
between classes. Suppose At is an attribute of class
Ci, and Ak ranges over class Ci . Then there exists
a directed edge from Ci to Cj in the schema graph,
labeled with At. Moreover, if for i = 0, 1, . . . , n - 1,
there is a directed edge from Ci to Ci+i, labeled with
A i+i, in a database schema, then (C’s, Al, Cl, A2, . . . ,
A,, C,,) is a schema path.

Regarding to a schema path (CO, AI, Cl, Aa, . . . ,
A,, , Cn) over a database schema, a join index file (node)
JZ(i, j) (1 5 i < j 5 fl) consists of a set of tuples

A Schema Path in a Database Schema

Figure 1: A Schema Path of Length 5

(OZD(oi),OZD(oj),m), where oi and oj are objects
of classes Ci and Cj respectively, and there exists an
object path (oi, oi+l, . . . , oj-1, oj) such that for k =
O,l ,..., j-i- 1, oi+k+l is referenced by oi+k via the
attribute Ai+k+l, and m is the number of the above
distinct object paths that connect the objects oi and
Oj .

Join index nodes connecting different object classes
along a schema path form a join index hierarchy, de-
noted as JZH(Cs, Al, Cl, AI,. . . , A,,, C,,), or simply
JZH(O,n). The longest join index path, JZ(O,n), is
the root of the hierarchy. Each node JZ(i, j) where
j - i > 1 may have two direct children JZ(i, j - k) and
JZ(i+Z,j)whereO<)< j-iandO<Z< j-i. The
join index nodes JZ(i, i + l), for i = 0, 1, . . . , n - 1,
are at the bottom of the hierarchy, and are therefore,
called base join indices.

Figure 1 shows a schema path of length 5 on a class
composition hierarchy and Figure 2(a)(b)(c) illustrates
the following three join index hierarchy structures.

1. A complete join index hierarchy (C-JIH), as
shown in Figure 2(a), consists of a complete set
of all the possible base and derived join indices.
It supports navigations between any two directly
or indirectly connected object classes along the
schema path.

2. A base join index “hierarchy” (B-JIH), as
shown in Figure 2(b), consists of only base join
indices. It supports direct navigations only be-
tween any two adjacent classes. It cannot be en-
titled as a “hierarchy” in a rigorous sense but can
be viewed as a degenerate hierarchy with all the
higher level join index nodes missing, and these
nodes can be derived from the base join indices.

3. A partial join index hierarchy (P-JIH), as
shown in Figure 2(c), consists of a proper subset
of the set of derived join indices in a complete join
index hierarchy. It supports direct navigations
between a pm-specified set of object class pairs
since it materializes only the corresponding join
indices and their related auxiliary (derived) join
indices.

Figure 2(c) demonstrates a typical partial join index

524

0 Iff h \

JI(O,:)
' Iwell

J(45)

(b,ABMJllhhdexliimldy

(c) A Patlbl Join Index l-kmhy

Figure 2: Three Kinds of Join Index Hierarchies
Corresponding to the Schema Path in Figure 1

hierarchy which supports direct navigations between
CO and C’s, Cl and Ca, and CO and Cs. Their corre-
sponding JI nodes: JZ(O,5), .ZZ(1,5) and JZ(O,3), cir-
cled in the figure, are called target nodes. Notice that
a materialized intermediate level node JZ(i, j) may be
used not only for supporting navigations between Ci
and Cj but also (and sometimes more importantly) for
accelerating update propagations from the base join
indices to higher level join indices such as JZ(O,5). For
example, if there were no intermediate level join index
nodes in the hierarchy JZH(O,5), four join-like (de-
fined later) operations are needed on average to prop
agate an update from the base join indices to the target
nodes JZ(O,5), JZ(1,5) and JZ(O,3). With the help of
intermediate level join indices, it takes an average of
3.2 join-like operations to propagate an update from

the base join indices.
In a join index hierarchy JZH(0, n), the base join

index nodes .ZZ(i, i + 1) (for i = 0,. . . , n - 1) reside at
level 1, and the root node .ZZ(O, n) at level n. Although
a complete join index hierarchy could be quite large,
each individual join index node is usually of reasonable
size. In many csses, it is unnecessary to materialize all
of the join index nodes in the hierarchy since it is ben-
eficial to support only the frequently used navigations.
Given a set of frequently accessed schema paths, a par-
tial join index hierarchy can be constructed to support
the corresponding navigations.

In a join index hierarchy, a set of join index nodes
which must be supported (due to frequent references)
are called target join indices, e.g. JZ(O,5) , JZ(1,5) and
.ZZ(O,3) in Figure 2(a); whereas the others which are
mainly used for update propagation are called auxiliary
join indicas, e.g. JZ(1,3), and .ZZ(3,5). Auxiliary join
indices can of course be used, as a by-product, for
support of the navigations between the corresponding
classes. The target, auxiliary and base join indices
are maierialized join indices. The unmaterialized join
indices are called virtual join indices.

Update propagation includes three types of up-
dates.

Insert an attribute relationship Ai+l between an
object oi in clash Ci and an object oi+l in class

This corresponds to inserting a tuple
~$~(oi),OZD(o,+l), I) to the base join index
JZ(i, i + 1).
Delete an attribute relationship Ai+l between
an object oi in claa~ Ci and an object oi+l in
class Ci+l. This corresponds to deleting a tuple
(OZD(Oi), OZD(Oi+l), 1) from JZ(i, i + 1);
Modify an attribute relationship Ai+l from that
between an object oi E Ci and another object
oi+l E Ci+l to that between oi E Ci and 0&1 E

. This corresponds to deleting an existing tu-
$z;bZD(oi), OZD(oi+l), 1) from JZ(i i+ 1) and
inserting a new tuple (OZD(oj), OZD(Ai+l), 1) to
JZ(i, i + 1).

As a notational convention, AJZ(i, j) denotes a
set of tuples being inserted into .ZZ(i, j). A.ZZ(i, j)
consists of tuples (OZD(oi), OZD(oj),m) and m >
0, indicating that there are m new object paths
connecting oi and oj. Similarly, vJZ(i, j) repre-
sents a set of tuples being deleted from JZ(i, j).
It consists of tuples (OZD(oi), OZD(oj),-m) and
m > 0, indicating that there are m object paths
connecting oi and oj being deleted. bJZ(i, j) de-
notes v.ZZ(i, j) followed by A.ZZ(i, j). A join op-
erator UWen, which is similar to a join operation
in relational databases, is introduced. JZ(i,E) w,

525

JZ(k, j) contains a tuple (OZD(Oi), OZD(Oj), mi X

rnz) if there is a tuple (OZD(oi), OID(oh),ml)
in JZ(i,k) and a tuple (OID(o~),OID(oj),mz) in
JZ(h, j). That is, if there are ml distinct object
paths from oi to ok and ma distinct object paths
from Ok t0 Oj, there are ml x mr object paths
from Oi t0 Oj. Notice that identical tuples, such as
(OZD(Oi), ozD(Oj),mk) (for L = 0, 1,. . .,p) are au-
tomatically merged into one with their path numbers
accumulated, i.e., (OZD(Oi), OZD(Oj), ~~=s mk).

3 Construction and Maintenance of
Join Index Hierarchies

3.1 Construction of a partial join index hier-
m&Y

A partial join index hierarchy can be constructed in
three steps: (1) find a set of necessary auxiliary join
indices for a given set of target indices; (2) build the
corresponding base join indices; and (3) build the tar-
get and auxiliary join indices from the lowest level up.

Example 3.1 In Figure 2(a), the join index JZ(1,5)
can be computed from JZ(l,4) and 51(4,5), where
.ZZ(1,4) can be derived in turn from JZ(1,3) and
.ZZ(3,4), and JZ(1,3) from JZ(l,2) and 51(2,3).

The base join indices for JZ(l,5) are the set:

VW, 2), w, 3), JZ(3,4), JZ(4,5)1

The auxiliary join indices for supporting efficient up-
date of .ZZ(1,5) are:

{JW, 4), JZ(L 3))

Notice that there could be other choices in selecting
auxiliary JIs, such as {.ZZ(l, 3), .ZZ(3,5)}, etc. 0

Example 3.2 To directly support the navigations be-
tween CO and Cs, Cr and C’s, and Cc and C’s, the set
of target join indices are (JZ(O,5), .ZZ(O, 3), JZ(1,5)},
and the set of base join indices are

{JZ(O, 11, JZ(I, 2), 5Z(2,3), 5Z(3,4), 5Z(4,5)1.

Three different kinds of partial join index hierar-
chies are presented in Figure 3(a)(b) and Figure 4.

The sets of auxiliary JIs which supports the
three target JIs are {JZ(O, 2), JZ(2,4), 51(2,5)} in
Figure 3(a), {.ZZ(1,3),.ZZ(1,4)} in Figure 3(b) and
{JZ(l, 3), .ZZ(3,5)} in Figure 4. 0

Given a set of target join index nodes, the join in-
dex nodes which need to be materialized are the union

Jl(O.1) Jl(W Jl(2.3) Jl(3A) Jl(45)

(a) A Padal Join Index Hiidty Supporbing

Jl(OS), Jl(O.3) and Jl(1.5)

avg#doperatiamforqdde=4

’ 5$)\,

I:

;J;;t ;)‘,

P-

Jl(o,J%/gz,\

JW9 Jl(W Jl(3E) Jl(46)

(b)A Partial Join Index tliirchy Supporting
Jl(O,5), Jl(0.3) end Jl(1.5)

avg t d operalims lof updak3.4

Figure 3: Two Partial Join Index Hierarchy Structures
for Supporting JI(O,5), JI(O,3) and JI(1,5)

of the base and auxiliary sets derived from each target
join index node. Since there could be more than one
choice in the derivation, the optimal choice should be
the one which minimizes (1) the total number of auxil-
iary join indices (and then the total storage costs); and
(2) the total number of W, operations in updating the
target join indices. This is performed by Algorithm
3.1.

Algorithm 3.1 Construction of a minimum
auxiliary set of JIs

Input: A set of classes Cc,. . . , C,,, and a set of target
JI nodes (i.e., frequently referenced class pairs) in
the schema path C’s, AI, Cl, AZ, . . . , A,, C,,.

Output: A minimum set of auxiliary JIs nodes.

Method: The method collects the set of auxiliary
nodes which are used to generate the set of tar-
get nodes, and then selects those containing the
minimum numbers of nodes, as shown below.

1. Starting with the set of target nodes, find S:
the set of their immediate auxiliary nodes. No-
tice that the set of immediate auxiliary nodes

526

for 8 (target or auxiliary) node Jl(i, j) is
{Jl(i, k), Jl(,,j)} for i < L < j with the removal
of Jl(i, k) or .JI(k, j) if it is a target node or a
base node. If there is an empty set resulted from
this removal, return the empty set. Otherwise, if
there are more than one such 1: available, each t:
generates one set, and the result is a set of sets.
Thus, S is in the form of {{Jl(i, k), . . . , Jl(k, j)},
. . ., {Jl(i,m), . . .,Jl(m, j)}}.

For each JI in the set s in S, find its immediate
auxiliary nodes. If its immediate auxiliary nodes
consists of I sets, al, . . . , 01, make 1 copies of s,
and add each of ai (1 < i < I) to a copy, which
forms 1 new sets. This process repeats until no
new immediate auxiliary nodes can be found. The
result is a set of auxiliary node sets which are used
for generating the set of target nodes.

For each set s in the generated set of auxiliary
nodes, count the number of (auxiliary) nodes.
Only those with the minimum number of nodes
are retained.

From the retained sets obtained in Step 2 (i.e.,
the set in which each set contains the minimum
number of auxiliary nodes), calculate the number
of W, operations required for updating each set
and select the one which requires the minimum
number of W, operations. Cl

Example 3.3 We examine how the algorithm works
on Example 3.2. At the beginning,

Since JI(0, 1) is a base join index and 51(1,5) is
a target join index and they can be employed to de-
rive JI(O,5), the immediate auxiliary set of JI(O,5) is
empty. Thus,

s = HJW, 5), qo, 3)))

The target join index JI(1,5) has three im-
mediate auxiliary sets {J1(1,4)}, {51(2,5)} and
{JW, 3), Jq3,5)); whereas the target join index
JI(O,3) has two immediate auxiliary sets {JI(O, 2))
and {51(1,3)}. Among these nodes, only J1(1,4)
and J1(2,5) have nonempty auxiliary sets. The for-
mer has {51(1,3)} and {51(2,4)}, and the latter has
{51(2,4)}, and {51(3,5)}. Therefore, the set of pos-
sible auxiliary node sets should be all of their combi-
nations, that is,

S={{JW, 4), JW, 3)9 JW 2)1, W(L4),
51(2,4), w, 2)h w(2,5), 51(2,4), wo, 2)h
W(2,5), 51(3,5), JI(O, 2))) VW, 3), 51(3,5),
JI(O, 2)h w(1,4), w, 3)), w(1,4), ~1(2,4),

,

JI(0,

Figure 4: Build a Partial Join Index Hierarchy and
Propagate Update

w, 3)h w(2,5), 51(2,4), w, 3)h w2,5),
31(3,5), JW, 3)h W(3,5), JW, 3))).

Both {J1(1,4),JI(1,3)} and {51(3,5),51(1,3)}
have the minimum number of auxiliary join indices.
The first one corresponds to the partial join index hi-
erarchy structure in Figure 3(b), whereas the second
one to that in Figure 4. The average numbers of W,
operations for update propagation in Figure 3(b) and
Figure 4 are 3.4 and 3.2 respectively. This is computed
by averaging the sum of the numbers of all the CU, op-
erations needed for propagation of the updates on the
base join index nodes. Obviously, the second partial
join index hierarchy is the most preferable one. 0

Algorithm 3.2 Construction of a partial join in-
dex hierarchy.

Input: A set of frequently referenced class pairs (i.e.,
target JI nodes) in a schema path C’s, Al, Cl, AZ,
-*-, A,,, C,, and the corresponding classes.

Output: JIH(CO,AI,CI,AI, . . .,A,,, C,,), a partial
join index hierarchy which supports navigations
between these pairs of classes.

Method: The computation includes both finding the
minimum set of auxiliary JI nodes and computing
all the necessary JIs.

1. Find the minimum set of auxiliary JIs based on
the set of target JIs by using Algorithm 3.1.

2. Build base JIs by computing Jl(i,i + 1) for i =
0, 1, . . . , n - 1 and constructing the corresponding
B+-tree indices on i for each base JI.

3. Build auxiliary and target JIs. This is accom-
plished by computing the selected auxiliary JIs
and/or target JIs from the bottom level up us-
ing the W, operation, and constructing the cor-
responding B+-tree indices on i for each derived
JI.

527

4. Build “reverse” JIs for searching in the reverse
direction. (A reverse JI of .ZZ(i, j), .ZZ(j,i),
supports the search from class j to class i via
the schema path in reverse to that of .ZZ(i, j)).
,ZZ(j, i) is derived from .ZZ(i, j) by sorting on j in
a copy of JZ(i, j) and constructing the B+-tree
indices on j. cl

Notice that in step 3 there could be more than one
pair (but at most j-i pairs) of JIs of lower level nodes
which can be used to compute JZ(i, j). A cost model
should be constructed to determine the minimum cost
pair. Moreover, B+-trees can be used to build JIs for
efficient retrieval and for efficient computation of JIs
at higher levels.

The join index hierarchy computes the logical rela-
tionships between the objects not only in two adjacent
classes but also in the “remote” classes linked via a
specified schema path. It maintains both forward and
backward join indices and supports both forward and
backward navigations efficiently.

Furthermore, navigations on the virtual nodes (un-
materialized nodes) can still be performed efficiently
using the partial join index hierarchy. For exam-
ple, any virtual node in Figure 4 can be constructed
by at most one join of two existing materialized JI
nodes. Actually, it is easy to verify for n 5 6, tak-
ing the root of .ZZH(O,n) as the single target node,
there always exists a set of minimum auxiliary nodes,
with minimum update cost, and any virtual node in
JZH(O,n) can be obtained by at most one join of
two existing (base/auxiliary) JI nodes. For example,
{JZ(O, 3), JZ(3,6), .ZZ(1,3), 51(3,5)} is such a mini-
mum auxiliary node set for JZH(O,6). This implies
that any traversal from one object in any class to any
other object class along the schema path with length
less than 7 will need to search at most two (indexed)
JI files using such a small partial join index hierarchy.
Since one rarely constructs a JZH(0, n) for n 2 7 in
practice, traversal along any subpath of a schema path
in both directions can be performed fairly efficiently
using the partial join index hierarchy.

3.2 Update maintenance of a partial join in-
dex hierarchy

An update in one class or in the relationship of one
class with another may cause the update of a base join
index, such as .ZZ(k, k + 1) (and its update is denoted
as a.ZZ(k, k + 1)). Such an update will not affect other
base join indices but may affect some corresponding
join indices at higher levels. It is easy to show that
for an update on ,ZZ(k, k + l), only the materialized
JZ(i, j) with i 5 I and j > E will need to be updated
accordingly. For example, if JZ(1,2) is updated in

Figure 4, only those join indices in the dotted area
need to be updated.

Algorithm 3.3 Update propagation in a join in-
dex hierarchy.

Input: A join index hierarchy JZH(0, n) and
bJZ(k, h + 1).

Output: An updated join index hierarchy.

Method: Perform a bottom-up incremental update
propagation starting at the base join index.

1. Update the base join index JZ(k, k + 1) based on
6JZ(E, k + 1).

2. Update the auxiliary JIs and/or target JIs from
the bottom level up using the W, operation. This
is implemented as follows (Note U, is a union op-
eration with path count addition or deminution.).

for level 1 := 2 to n do
for i := 0 to n - 1 do

if JZ(i,i+ I) ia an auxiliary or target JI
aadilkmdi+l>k

then incrementally update JZ(i, i + 2) to JZ'(i, i + 1).
Note: This is performed as follouw.
6JZ(i,i+ I) := JZ(i,i+ p) MC MZ(i+ p, i+ I), or
6.7Z(i,i+ I) := JZ(i+ q, i+ I) W, UZ(i,i+ q),
wherel<p<k-iandk-i<q<I-1;

JZ'(i,i+ I) := JZ(i,i + 1) U, 6JZ(i,i+ I); Cl

Notice that incremental updates are performed on
both forward and backward join indices. Also, there
are often more than one way to compute &ZZ(i, i +
1) in .Step 2, e.g., either JZ(0, 1) W, 651(1,5) or
&ZZ(O, 3) W, .ZZ(3,5) to compute JZ(O,5) in Figure 4,
and the choice can be determined by a cost analysis.

3.3 Base and complete join index hierarchies

A base join index hierarchy (BJIH) can be constructed
and updated in a way simpler than Algorithms 3.2
and 3.3 (only Step 1 of the algorithms need to be per-
formed) since BJIH is a degenerate hierarchy and no
upward propagation need to be considered.

However, navigation between Cd and Ci+r in a base
join index hierarchy requires the retrieval of a sequence
of I base join indices:

JZ(i, i + l), . . . , JZ(i + 1 - 1, i + I).

This is the major overhead of the base join index hier-
archy in comparison with the partial join index hierar-
chy which requires the retrieval of only one or a very
small number of join indices.

528

Table 1: Database Parameters

Parameters Meaning, Derivation and Default

Dl number of objects in class Ci

IPill number of pages 01 blocks of C~MH Ci

fi average number of references from an object in Ci to objects in C<+l (fan-out)

ri average number of objects in class Ci referencing the same object in Ci+l(=

sz(OZD) number of bytes for storing an object identifier (= 8)
a(m) number of bytes for the counter in a tuple of a join index (= 4)
az(ji) number of bytes of a tuple in a join index (= 2 l ss(OZD) + sz(m))

4P) number of bytes of a page pointer (= 4)

B number of bytes in a block or page of a disk (= 4096)

B;,
average page occupancy factor(= 70%)
fan out of a Bt-tree ([= rscp$~Oro~l)

L f wd(i,i k) average number of distinct objects in Cj referenced by a set of) objects in Ci
bwd(i, j, k) average number of distinct objects in Ci referencinn a set of L objects in C;
IJZ(4i)l number of tuples in JZ(i, j)
II JZ(i,N number of blocks or pages of JZ(i, j) I

Since all the join indices are materialized in a com-
plete join index hierarchy (CJIH), Step 1 of Algorithm
3.2 does not need to be performed in the construction
of CJIH: All of the join indices at each level are con-
sidered as target join indices. The retrieval could be
faster using a complete JIH in comparison with that
using a corresponding partial JIH if the retrieval re-
quires to access a (virtual) node which is not directly
materialized in the partial JIH. However, a complete
JIH obviously takes more storage space and more up-
date propagation cost than a partial JIH although the
update algorithm is similar to Algorithm 3.3.

4 Performance Evaluation of Join In-
dex Hierarchies

An analytical model is constructed to study the per-
formance of different join index hierarchies and access
support relation [6], a competitive index structure for
navigation through a sequence of object classes. The
study is focused on several crucial performance mea
surements, including the storage size of a join index
hierarchy, the cost of navigation (query processing),
and the cost of update propagation over a join index
hierarchy. Table 1 lists some database parameters used
in the cost analysis.

4.1 Storage, navigation and update costs

The number of pages for a join index Jl(i, j) is

Following Valduriez[lG], the number of disk accesses
for a forward navigation from a set of ni objects in Ci

Table 2: Database Parameters

Parameters Co Cl Cr C3 C+ Cs
ICil 1000 2000 4000 3000 1000 5000
fi 1.08 2.08 1.08 1.08 1.0s 3.08

s s = 0.1,0.5,1,1.5,2.0,2.5,3

to objects in Cj using a target join index is

1+ y(ni, r&l, El) + !/(ni, IIJ~(~,i)lL ICilh

where y is a function from Yao[l8],

y(k,m,n)= rm*(l-~n~~~~~l),.
kl

It represents the number of page accesses for retrieving
k objects out of n objects distributed over m pages.
Here it is assumed that a typical B+-tree is of two
levels r . One page access is needed to retrieve the
root node. To find the page pointers for ni object
identifiers, y(ni, [#],]Ci]) leaf pages of the Bt-tree
are accessed. There are y(ni, IIJ~(i,j)ll, IGI) pages
need to be accessed to find the tuplee corresponding to
ni object identifiers. Thus the number of disk accesses
for a forward navigation from a set of ni objects in
Ci to objects in Cj using a base join index hierarchy
structure is

(l+y(ni,[lCil B?;13 Icil) + Y(W) llJZ(C i + 1)117 ICil))
f

‘The results for a B+-tree of more than two levels can be
calculated similarly as in Valduriez(16j.

529

‘GJIH’ *
‘Full-A3Fl. +

0.1 0.5 1 1.5 2 2.5 3
raodeonlamouls

Figure 5: Storage Costs of B-JIH, P-JIH, C-JIH and
Pull-ASR vs. Fan-outs

j-l

k=i+l

+dfwd(C h, ni), IIJI(k, k + l)ll, Ickl)).

The first sum is the number of page accesses when
the join index Jl(i, i + 1) is scanned and related tu-
ples retrieved. The second sum covers the case when
fwd(i,), ni) object identifiers from the previous join
index Jl(k - 1,k) are used to search the join index
Jl(k, k + 1). One page access is needed to retrieve the
root node, and y(fwd(i, k, ni), [#],]Ci]) leaf pages
of the B+-tree are accessed to find the page pointers
for the fwd(i, k, ni) object identifiers. Finally, there
are y(fwd(& k, ni), IIJI(h h+ 1111, IGl) pag- n=d to
be accessed to find the tuples corresponding to the
fwd(i, h, ni) object identifiers.

The update cost is computed similarly.

4.2 Explanation of performance results

Four data structures are compared in our performance
study: (1) C-JIH as shown in Figure 2(a); (2) B-JIH
as shown in Figure 2(b); (3) P-JIH as shown in Figure
2(c); and (4) Full-ASR (full access support relafion),
which stores the full sequences of object identifiers of
the path (of length 5) in one full access support rela-
lion. Notice that cases (2) and (4) correspond to two
extreme cases of the access suppori relation method
proposed in [6], in which the former (case 2) decom-
poses each class pair into one component (i.e., binary
decomposition of a full ASR: thus, a B-JIH is labeled
B-JIH/B-ASR in the performance curves.), whereas
the latter (case 4) merges the access path (sequence)
into one relation.

The fan-out factors (join selectivities) is taken as
the z-axis variable in Figures 5, 6, 7, and 10 because

‘GJIH’ -y-
W3)

‘Full-ASIT +

1' I , 1 I 1 I
0.1 0.5 1 1.5 2 2.5 3

rsoaleonlamoum

Figure 6: Navigation Costs of B-JIH, P-JIH, C-JIH
and Full-ASR vs. Fan-outs

the performance is sensitive to the increase of the fan-
out factors (join selectivities), which matches our ex-
pectation and experimentation. The set of clans sizes,
fan-out values, and scale changes in the analysis are
in Table 2. The scale change factor s is introduced so
that the performance under varying fan-outs can be
presented in one graph. Other database parameters
are set to the default values as shown in Table 1.

Figure 5 shows that the storage costs increase ss the
fan-outs do. Full-ASR stores all the sequences of ob-
ject identifiers in complete or incomplete paths. P-JIH
materializes the root node JI(O,5) of the join index hi-
erarchies and some higher level join indices; whereas
C-JIH materializes all of the higher level join indices.
These are reflected in the storage cost graph. Obvi-
ously, the storage sizes of Full-ASR, P-JIH and C-JR-I
increase faster than that of B-JIH/B-ASR.

Figure 6 presents how the navigation costs increase
as the fan-outs grow. It is assumed that the forward
and backward counts 50% and 50% in the total cost of
the navigation respectively. The navigations between
Cc and Cz, Ci and Cz, C’s and C’s, and Ci and C’S
weigh 50%, 20%, 20% and 10% in the total cost respec-
tively. Notice that the navigation between Ci and 194
is not supported directly in the chosen P-JIH. The se-
lectivity of navigation starting point is fixed as follows.
If the navigation starts at Ci, the selectivity is chosen
to be se1 * @ where se1 is the selectivity of the naviga-
tion starting at Co. Here sel is set at 0.01, therefore,
every navigation starts with 10 objects. P-JIH and
C-JIH perform much better than B-JIH/B-ASR and
Full-ASR. Full-ASR has the poorest performance be-
cause the whole ASR has to be retrieved (the relation
is usually sorted on both head and tail classes to fa-
cilitate retrieval from the starting and the end points)
when the navigations other than the one between head

530

‘PJIK -e-
‘C-JIH’ *

‘FIJI-ASR’ +

11 I I I I I I
0.1 0.5 1 1.5 2 2.5 3

ssdsonfsfwuts

Figure 7: Update Costs of B-JIB P-JIH, C-JIH and Figure 9: Navigation Costs of B-JIH, P-JIH, C-JIH
Full-ASR vs. Fan-outs and Full-ASR vs. Navigation Selectivities

‘FuIMSFl’ +
I

1’ , I I I I
0 0.2 0.8 1

Figure 8: Costs of Navigation and Update mix for
B-JIH, P-JIH, C-JIH and Full-ASR

and tail classes are required.
Figure 7 illustrates the update costs. It is assumed

that the update probability of all the base join indices
are equal. Obviously, B-JIH/B-ASR has the lowest
update overhead since each time only base join indices
need to be updated. The update cost of Full-ASR is
higher than those of other index structures and grows
faster.

Figure 8 describes the cost of navigation and update
operation mix. The total cost is defined as (1 - p)*
NavigationCost+p* UpdateCost, where p is the update
probability, and p = 0.2 means that there are 20%
probability of updates and 80% probability of naviga
tions among all the operations. The scale s on fan-out
is set to be 1.5. With less frequent update (update
probability less than 0.5), the overall performance of
P-JIH and C-JIH is much better than that of B-JIH/B-
ASR. All the three structures perform better than Full-

‘FuICASfT t

Figure 10: Storage Explosion with Large Fan-outs

ASR.
Figure 9 presents the navigation costs vs. naviga-

tion selectivities. The scale s on fan-outs is set to be
1.5. The selectivity at CO is set from 0.001 to 0.5. The
navigation cost grows as the navigation selectivity in-
creases.

Figure 10 presents the storage requirements vs.
large fan-outs. The reason that only large fan-outs are
analyzed but not large cardinalities of classes is be-
cause our other performance results2 shows that the
costs of storage, navigation and updates do not grow
very fast as the cardinalities of classes increase. As one
can predict, the storage cost (and hence the navigation
and update costs) grows rapidly when the fan-out ra-
tio grows. Full-ASR has the highest storage cost since
multiple access paths from Ci-i to Ci will have to be
multiplexed when pairing with the objects in Ci+r , etc.

%ot shown here due to space limitation.

531

This also suggests that the fan-outs should be consid-
ered as an important factor for setting “hre walls” to
avoid cost explosion.

In summary, the performance study shows that
both P-JIH and C-JIH outperform BJIH/BASR and
Full-ASR in navigation and overall performance. P-
JIH has better storage and better update costs than
C-JIH. Clearly, join index hierarchy, especially the par-
tial one, provides an interesting data structure to sup
port efficient navigations in object-oriented databases.

5 Discussion

5.1 Join index hierarchy which supports other
kinds of navigations

The join index hierarchies discussed in the previous-
sections are designed for support of class composition
hierarchies, i.e., navigations through a sequence of ob-
ject classes via their attribute relationships. Similar
join index hierarchies can be applied to support of nav-
igations through class/subclass hierarchies, or through
a sequence of classes via the relationships specified by
methods and/or deduction rules.

Some relationships between different classes of ob-
jects may not be specified by existing attributes but
by deduction rules or computational methods. For ex-
ample, the relationships between the objects in two
classes, Parks and Lakes, could be specified by a spa-
tial computational routine, which computes, based on
a geographic map, whether one is inside the other, or
whether two intersect, or their shortest (or highway)
distances, otherwise.

The method- or deduction rule- specified object
linkage can be constructed using the structure of
join index hierarchy as well, by evaluation of the
method/rule at the join index construction time rather
than at the query processing time.

One advantage of the construction of join indices
for rule- or method- defined object linkages could be
the transformation of the expensive rule/method com-
putation from query evaluation time to join index con-
struction time. Since a method or a rule may involve
recursion or iterative computation of a relatively large
number of complex (such as spatial) objects, it could
be quite expensive to perform such computation at the
query processing time. The evaluation of such linkages
at the join index construction time and the storage of
the join indices together with other frequently used in-
formation (such ss distance, etc. [9]) in join indices will
trade storage space for query evaluation efficiency. It
will be especially beneficial if such computation must
be performed repeatedly or iteratively.

Furthermore, by storage of important information

in join indices, some queries, especially those involving
traversing in the direction in reverse to those specified
in the methods or rules, can be answered efficiently.
For example, to find all the lake and park pairs whose
intersected regions greater than 1 square kilometer,
one can retrieve the join indices and return the results
directly (if the information-associated join indices [9]
are constructed and the area of intersection is the asso-
ciated information). However, it is impossible to com-
pute a region from an area based on the same method
which defines only the computation of an area from a
geographic object but not in reverse.

5.2 “Fire walls” in the construction of join in-
dex hierarchies

There may exist long object referencing sequences in
queries, and any object class may serve as the start-
ing point in a sequence of object referencing. Never-
theless, this does not suggest the construction of join
index hierarchies on a very long sequence of schema
path because of the size of such a hierarchy and the
cost of updates. Therefore, it is often necessary to
partition a long schema path into a few short ones, or
prohibitive to build some join indices or merge them
into join index hierarchies.

A class linkage (by either attribute relationship,
methods, or rules) which is not suitable for construct-
ing join indices or for being merged into a join index
hierarchy is called the “fire wall” of the hierarchy. It
is important to identify fire walls and partition a long
schema path into a set of smaller ones for the con-
struction of easily accessible or updatable join index
hierarchies.

“Fire walls” are suggested to set in the following
places in the design of a join index hierarchy.

1.

2.

3.

Rarely referenced class linkages: Some class link-
ages, though referable, are rarely used in appli-
cations, based on the examination of a relatively
long history of referencing patterns. It is rela-
tively safe to set up a fire wall at a rarely refer-
enced point since it is fair to let rarely used refer-
encing pay a little higher cost in accessing.

Large join selec2iviGes: A large join selectivity im-
plies a potentially large (or huge) join index rela-
tion. The further construction of upper level join
indices would usually result in large join index re-
lations as well. The break of the chain at this
point may contribute to a relatively small join in-
dex relation and/or hierarchy.

Frequenily updated or multiple-source class link-
ages: Some join index may sustain frequent up-
dates or be derived from multiple objects, classes

532

or class relationships (such as, those computed us-
ing multiple objects or classes by methods). Such
kind of class linkages may need frequent or sophis-
ticate updates and update propagation to upper
level join indices will likely be costly and thus it
could be beneficial to set up “fire walls” there.

6 Conclusions

A join index hierarchy approach has been proposed
and investigated here for efficient navigation through a
sequence of object classes in object-oriented databases.
The join index hierarchy organizes a set of (direct and
indirect) join index nodes into a hierarchy. Three kinds
of join index hierarchies are proposed and studied. Our
analysis and performance study show that partial join
index hierarchy has reasonably small space and update
overheads and speeds up query processing consider-
ably in both forward and backward navigations.

Join index hierarchy is an interesting indexing
structure which could be a promising candidate at
solving “pointer chasing” problems in object-oriented
database query processing. More experiments need to
be conducted in the performance study of join index
hierarchies. Furthermore, it is interesting to compare
and/or integrate the join index hierarchy method with
other object query optimization techniques, such as
read-ahead buffering [ll] and complex object assem-
bly [51.

References

[l] E. Bertino. An indexing technique for object-oriented
databases. In Proc. Int. Conf. Data Engineering, 160-
170, Kobe, Japan, April 1991.

[2] E. Bertino and W. Kim. Indexing techniques for
queries on nested objects. IEEE lkuns. Knowledge
and Data Engineering, 1(2):196-214, 1989.

[3] S. Cluet and C. Delobel. A general framework for
the optimization of object-oriented queries. In Proc.
ACM-SIGMOD Conf. Management of Data, 383-392,

1992.

[4] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Survey, 25(2):73-170,
June 1993.

[5] T. Keller, G. Graefe, and D. Maier. Efficient as-
sembly of complex objects. In Proc. ACM-SZGMOD
Conf. Management of Data, 148-157, Denver, CO,
May 1991.

[6] A. Kemper and G. Moerkotte. Access support in ob-
ject bases. In Proc. ACM-SIGMOD Conj. Manage-
ment of Data, 364-374, Atlantic City, NJ, May 1990.

VI

PI

PI

[lOI

WI

WI

[131

1141

1151

P61

P71

P31

A. Kemper and G Moerkotte. Advanced query pro-
cessing in object bases using access support relations.
In Proc. Int. Conf. Very Large Databaee, 290-301,
Brisbane, Australia, August 1990.

K. C. Kim, W. Kim, and A. Dale. Indexing tech-
niques for object-oriented databases. In W. Kim
and F. II. Lochovsky, editors, Object-oriented con-
cepts, Databases, and Applications, 371-394. Addison-
Wesley, 1989.

W. Lu and J. Han. Distance-associated join indices
for spatial range search. In Proc. 8th Int. Conf. Data
Engineering, 284-292, Phoenix, AZ, Feb. 1992.

D. Maier and J. Stein. Indexing in an object-oriented
DBMS. In Proc. IEEE Int. Workshop on Object-
oriented Database System, 171-182, Asilomar, Pacific
Grove, CA, September 1986.

M. Palmer and S. B. Zdonik. FIDO: a each that learns
to fetch. In Proc. Int. Conf. Very Large Database,
Barcelona, Spain, 1991.

D. Kotem. Spatial join indices. In Proc. 7th Int. Cont.
Data Engineering, 500-509, Kobe, Japan, April 1991.

G. M. Shaw and S. B. Zdonik. A query algebra
for object-oriented databases. In Proc. Int. Conf.
Data Engineering, 154-165, Los Angeles, CA, Febru-
ary 1990.

E. J. Shekita and M. J. Carey. Performance enhance-
ment through replication in an object-oriented DBMS.
In Proc. ACM-SIGMOD Conf. Management of Data,
325-336, 1989.

D. D. Straube and M. T. Ozsu. Queries and query
processing in object-oriented database systems. ACM
tins. O&e and Information Systems, 6(4):387-430,
Ott 1990.

P. VaIduriez. Join indices. ACM Tkans. Database Sys-
tems, 12(2):218-246, 1987.

S. L. Vandenberg and D. J. Dewitt. Algebraic support
for complex objects with arrays, identity, and inher-
itances. In Proc. ACM-SIGMOD Conf. Management
of Data, 158-167, Denver, CO, May 1991.

S. B. Yao. Approximating block accesses in
database organizations. Communications of the ACM,
20(4):260-261, April 1977.

533

