
Content-Based Image Indexing

Tzi-cker Chiueh
Computer Science Department

State University of New York at Stony Brook
Stony Brook, NY 11794-4400

chiueh@cs.sunysb.edu

Abstract

We formulate the content-based image in-
dexing problem as a multi-dimensional
nearest-neighbor search problem, and de-
velop/implement an optimistic vantage-point
tree algorithm that can dynamically adapt
the indexed search process to the character-
istics of given queries. Based on our perfor-
mance study, the system typically only needs
to touch less than 20 % of the index entries
for well -behaved queries, i.e., when the query
images are relatively close to their nearest
neighbors in the database. We also report
in this paper the results of extensive perfor-
mance experiments, which characterise the
impacts of various configuration and work-
load parameters on the performance of the
proposed algorithm.

1 Introduction

Multimedia information systems integrate text, im-
ages, audio/video, and graphics data in a single frame-
work. They also require computer systems designers to
re-visit certain systems issues with completely different
design tradeoffs than conventional ones. One example
is to put image/video into a database system. Query
facilities are typically regarded as the very basic ser-
vice that a database system should offer. Specifically,
users should be able to access the data in the database
based either explicitly on the data entity’s name or
implicitly on the data’s contents. The mechanisms for
content-based access to alphanumeric data have been

oPcmrieeion to copy without fee all ot part of thir material
ir granted provided that the copice are not made ot dirtributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appca+, and notice
ir given that copying is by pcmirrion of the Very Large Data
Bare Endowment. To copy otherwire, ot to republish, requirea
a fee and/o+ rpccial pcrmirrion from the Endowment.

OProceedings of the 20th VLDB Conference
Santiago, Chile, 1994

extensively studied and are now considered relatively
well understood. However, the notion of content-based
image/video access at this point still remains elusive
at best.

There are two fundamental problems associated
with content-based query systems for imaging data:
how to specify queries, and how to access the in-
tended data efficiently for given queries. For tra-
ditional database systems, the semantics of content-
based access are finding data items that are exact
matches of specified keywords in the queries. As a re-
sult, it is relatively straightforward to specify queries
and to search for the matching data items. For im-
age/video database systems, both query specification
and data access become much harder. One potential
approach to specify image queries is to use a text-based
formalism to describe the image contents, based on the
assumption that it is always possible to abstract high-
level symbolic descriptions from low-level image data.
Obviously this is not even possible based on natural
languages, let alone any formal languages. For exam-
ple, it is not clear how one can describe the texture
or color of an image satisfactorily only based on tex-
tual descriptions. In some sense, this approach relies
heavily on the advancement of knowledge representa-
tion. One possibility is to adopt the query-by-example
paradigm [OZSO93]. That is, users can use either
hand-drawn sketches or existing images as query tem-
plates, and ask the system for images similar to the
query images. This is the so-called “like-this image re-
trieval.” Although this might seem to solve the image
description problem, new problems arise. For example,
using existing images as queries poses the question of
how one gets the first image. Admittedly, it is pos-
sible to use keyword-based queries or data browsing
techniques to access the first image that is reasonably
close to the desired ones. Whether these techniques
can satisfy the need of most interesting applications
remains to be seen. User-drawn sketches have similar
problems of accuracy and ease of use, with an addi-
tional complication of cursive pattern recognition.

582

Even if it is possible to specify query images pre-
cisely, there is still the issue of “like-this semantics.” In
other words, when users present a query image and ask
for similar images, how exactly is similarity defined?
Since an image can be characterized in various ways,
it is almost impossible for the system to retrieve the
desired images without further specifications. Conse-
quently, even with image-based queries, the users still
need to specify particular aspects of the query images,
e.g., color and/or shape, on which the system should
emphasize while performing similarity search.

Retrieving images similar to a given query image is
a rather old problem in the field of pattern recogni-
tion. However, there are several important differences
between image database retrieval and pattern recog-
nition. First, the images in an image database may
contain arbitrarily complex scenes and therefore are
typically much more complicated than those in pat-
tern recognition systems, which typically deal with ar-
tifacts or highly abstract figures. Second, the number
of images in an image database is usually much larger
than that of a pattern recognition system. In fact,
most pattern recognition systems only need sequential
searching simply because the number of candidate pat-
terns to match is relatively small. Third, sometimes
pattern recognition systems will make high-level inter-
pretations directly based on features extracted from
the given patterns. In these cases, it is imperative
that the feature extraction procedure be absolutely
correct. In contrast, the realistic expectation for an
image database system’s access mechanism should be
to filter out un-related data, leaving further identifi-
cation and semantic interpretation of image objects
to human users. More precisely, pattern recognition
aims at identifying positive matches, whereas an im-
age database access method is considered successful
when enough negative matches are ruled out to the
extent that interactive browsing becomes feasible. As
a corollary, the accuracy requirements for feature ex-
traction is less stringent for image database systems.
Actually, a feature extractor is considered useable for
image database systems as long as the errors made by
the feature extractor in query images and candidate
images in the database are consistent.

The first and third differences will impact the image
processing algorithms that underly content-based im-
age access systems. They are beyond the scope of this
paper and will not be discussed further. The second
difference requires the image database system to have
an indexing structure for faster access response. When
designing the indexing mechanism, one should take ad-
vantage of the subtle distinction between positive iden-
tification, as in traditional database access problems,
and negative exclusion, as in image data access. In
addition, because image features are inherently multi-

dimensional objects and because it is very rare to have
exact image match, the image index structure must
efficiently support multi-dimensional nearest-neighbor
search.

The goals of this project are twofold. First, we aim
at developing an efficient indexing mechanism for re-
trieving images solely based on the images’ contents or
features. We have designed and implemented an op-
timistic vantage-point tree index structure and exam-
ined its various performance characteristics. Second,
we want to study the interaction between feature ex-
traction (image processing) and feature indexing (data
management). In particular, we’d like to deduce the
preferred properties of those image features that facil-
itate the indexed search process, in order to guide the
development of more sophisticated feature extraction
algorithms. However, this paper will not address any
image processing issues related to feature extraction
and representation.

The remaining sections of the paper are organized
as follows. Section 2 gives a formulation of the im-
age index problem, and discusses the design issues
involved. Section 3 describes a multi-dimensional
nearest-neighbor search algorithm in a disk-based en-
vironment, and its various optimization%. Section 4
presents extensive performance results from a proto-
typical implementation of the algorithm. In Section 5,
earlier works on image database indexing are reviewed
to set the contributions of this work in perspective.
We summarized major ideas and results in Section 6
with an outline of future work.

2 General Framework

An image is a two-dimensional array of pixels, each of
which is represented with certain precision, e.g., using
8 bits or 24 bits per pixel. From raw images, there are
various ways of building up high-level abstractions; for
example, color distributions based on histograms, and
object contours based on thresholding. This process is
usually referred to as feature e&-action. We call each
scalar piece of such high-level abstractions a feature.
So an example feature may be one of the component
values of a color attribute, or a component coordinate
of a shape descriptor. The set of features that com-
prise a coherent high-level interpretation form a feature
class. Example feature classes are color, texture, and
shape. From the standpoints of both data manage-
ment and pattern recognition, it is better to organize
database images on a feature-class by feature-class ba-
sis, rather than based on a lumped feature set that
includes every image feature. There are two reasons
to justify this proposition. First, combining multiple
feature classes usually doesn’t make too much sense se-
mantically, and users actually lose the flexibility of ac-

583

cessing data based on individual feature class. For ex-
ample, users may want to access the images only based
on color information. An access mechanism based on
aggregate feature sets tend to complicate this type of
access. Second, suppose each feature is treated as a
dimension, then combining multiple feature classes in-
creases the number of dimensions. This will certainly
aggravate the “dimensionality curse” problem associ-
ated with many multi-dimensional search algorithms,
which says that as the dimensionality increases, the
efficiency of the search algorithm decreases.

We assume that images in the database and query
images go through the same feature extraction process.
So every image is represented as a K-dimensional fea-
ture vector, where K is the number of features used to
represent an image. The image search problem can
then be formulated as follows. Let S denotes the
set of feature vectors representing the images in the
database. Let EK designates the K-dimensional fea-
ture space, then S C_ EK. Given a query image’s fea-
ture vector q, find the feature vector p E S such that
d(p, q) is the minimum, where d(.) is the distance met-
ric used in the feature vector space. The goal of image
indexing is to sort the feature vectors in S so that ser-
vicing a query doesn’t always need a sequential scan
through the entire database.

It is clear that the choice of EK and d(.) could sig-
nificantly affect the performance of the search mecha-
nism. For example, it is possible that the data image
that is closest to the query image in the feature space
according to d(.) is not necessarily the most similar
data image according to visual perception or other ob-
jective criteria. Knowing that image similarity crite-
rion is itself an active research problem, in this paper
we will assume that the accumulated sum of pixel-
by-pixel differences is the ultimate similarity metric
between two images. In this model, EK, d(.), and
the similarity metric are all domain-dependent, and
should be tailored to individual applications. However,
the design of the index mechanism should be generic
enough to accommodate different choices of these pa-
rameters.

The above framework in itself doesn’t make any as-
sumption about the capabilities of the image process-
ing subsystems that extract features. Therefore it is
not restricted to whole-image matching. As long as
there are ways to segment objects out of images, it can
be equally applicable to subimage or object matching.
Similarly, if the features chosen have invariance prop-
erties, the index mechanism can also support invari-
ance across scaling, translation, or rotation transfor-
mations. In summary, the indexing mechauism is com-
pletely independent of whether the image features al-
low sub-image matching or transformation invariance.

3 Indexing for Mult idi-
mensional Nearest-Neighbor
Search

Given a point in the K-dimensional space, searching
for its nearest neighbor can be facilitated by sorting
points in the database first. As mentioned earlier,
the design goal of an image indexing scheme should
focus on eliminating unlikely candidates rather than
pin-pointing the targets directly. So an important re-
quirement for image indexing schemes is that a data
point not be the nearest neighbor when the index sub
system declares that it is not. That is, the indexing
scheme must work conservatively.

Conventional spatial index structures use some
kind of partitioning methods to divide the multi-
dimensional vector space into partitions. The goal is
to ensure that each partition have approximately the
same number of data points so that finding the nearest
neighbor of a given query point only needs to touch a
small number of partitions. These partitioning meth-
ods are almost always based on absolute coordinate
values of the vector space. For example, a partition in
a K-dimensional hypercube is characterised by K pairs
of coordinate values, each of which specifies the cov-
ering interval in the respective dimension. This type
of partitioning structure is useful for queries based on
absolute coordinates, such as range queries, e.g., ilnd
all the 2D points inside the rectangle defined by [Xl,
X2] and [yl, Y2]. However, it is not so useful for
nearest-neighbor search because the search structure
in general doesn’t maintain the distance information
between points within a partition and the partition’s
boundaries. As it turns out, this information is criti-
cal in pruning the search space for multi-dimensional
nearest-neighbor search.

Intuitively, since nearest-neighbor search by defini-
tion is to look for the one point with the minimum
point-to-point distance, it is only natural to conceive
partitioning methods that are bssed on relative dis-
tance rather than absolute coordinate values. This is
exactly the central idea behind the vantage-point (VP)
tree method proposed by P. Yianilos [YLAN92] and will
be explained in the following subsections.

3.1 Initial Construction

In conventional multi-dimensional data structures
such as K-d trees, the data set is first projected along
each dimension, and the median of the projection val-
ues along the dimension that has the maximum spread
is chosen as a cut point. The data set is partitioned
into two subsets by comparing each data point’s pro-
jected value in the corresponding dimension with the

584

ss

CiJ
S>

c

(a)

Figure 1: Illustration of the Vantage Point

cut point. The VP tree method abandons the projec-
tion approach and bases the partitioning on the rela-
tive distances between the data points and a particular
vantage point.

Let’s start with the binary partitioning case, and
then generalise to n-ary partitioning for disk-based en-
vironments later. Assume a particular data point in
the data set, v, is chosen as the vantage point. Then
the system computes the distance between any other
point in the data set and u, and gets d(p, o), for
p E S - {v}. Find the median p among the d(p, w)‘s
and partition the data set into two halves according
to cr. Although it may seem that the VP tree method
just uses a different partitioning metric, the fact that
it takes a relative-distance approach significantly im-
proves the pruning effectiveness.

To illustrate this concept, considers a 2D vector
space as shown in Figure l(a), where v is the van-
tage point and /I is the median of the distance values
of all the other points with respect to v. Therefore
the data set is partitioned into two subsets: S< and
S,, corresponding to the data points whose distance
to w is smaller than or equal to ~1, and larger than /.L,
respectively. Suppose users request the nearest neigh-
bor of a query point q with the requirement that the
maximum distance between a query point and its near-
est neighbor be smaller than a specific threshold, u.
That is, if it turns out that the distance between a
query point and its nearest neighbor is greater than
u, the nearest neighbor is meaningless and therefore
not interesting. With these requirements, it can be
shown that to locate the nearest neighbor of q, the
system only needs to explore both S< and S> if and
only if q is enclosed within the two concentric circles
with radii of maz[O, p - u] and p + u respectively, as
shown by the dashed circles in Figure l(b), i.e., when
p - u < d(q, TV) 5 p + u. Otherwise, the system only
needs to explore one of them, thus effectively pruning
one half of the search spac& This pruning of the search

space is based on the principle of triangular inequality.
Specifically, if d(q, w) 5 p-u, for p E S>, the distance
between p and q is lower-bounded by

d(P, q) L Ild(P9 41 - Id(q9 4II
2 IMP, 4l-b-41
> b---+4
= u (1)

Therefore S> can be ignored when d(q, v) 5 (p-u).
Similarly, if d(q, v) > /.J + u, for p E S<, the distance
between p and q is lower-bounded by

dh q) L lldh VII- HP, 41 I
> lldh VII- 4
> Icc+u-/4
= u (2)

Therefore S< can be pruned away when d(q, w) >
p + u. When S< and S> are approximate in sise, each
such pruning electively cuts the search space in half.

This partitioning method is applied to each resulting
partition recursively until the number of data points
in a partition is small enough that the overhead of
sequential scans becomes manageable. Therefore, the
entire data set is also organised as a tree as in other
spatial data structures. The difference is that at each
level, a distinct vantage point is chosen to map the
other data points in the subset, rather than simple
projections based on absolute coordinate values.

To search for the nearest neighbor of a query point,
the system first computes the distance between the
query point and the vantage point associated with the
root of the tree, and determines which subset(s) to ex-
plore next. This process proceeds recursively until the
nearest neighbor is found or no such nearest neighbor
whose distance to the query point is smaller than u is
reported. The overall pruning effect is multiplied at
each level as the system traverses down into the VP
tree. An optimisation to the basic traversal algorithm
is that during the traversal, if the distance between
the query point and the current nearest neighbor can-
didate is smaller than u, then CT is reduced to that
distance value. This way subsequent search steps can
avoid unnecessary probing.

It is clear that the choice of vantage points at each
level of the VP tree and the value of u play an impor-
tant role in the performance of the indexing algorithm.
An ideal vantage point should exhibit the following
characteristic: The distribution of the distance values
between other data points and the vantage point is
close to a uniform distribution. Intuitively, this mini-
mises the number of data points in the concentric re-
gions, and therefore reduces the probability of having

585

to explore both subtrees. Given a data set, finding the
optimal vantage point is exceedingly expensive compu-
tationally. Therefore, one uses a randomised algorithm
to approximate the ideal vantage point. It has been
shown in [YIAN92] that this algorithm works reason-
ably well in practice. The basic algorithm is as follows:

Pick a set of candidate vantage points
from the data set;
For each candidate vantage point

Pick a subset of sample points from the
data set;
Compute the distance values from the
vantage point to each sample point;
Calculate the mean and the standard
deviation of these distance values;

Endfor
Choose the candidate vantage point with
the maximum standard deviation;

The choice of u represents the tradeoff between the
likelihood of locating the nearest neighbors and the
searching efforts. When u is small, the concentric re-
gion becomes smaller, and therefore the probability of
having to explore both subtrees is reduced. However,
smaller u also means that the maximum allowable dis-
tance between a query point and its nearest neighbor
is reduced, making it more likely to reject the query
point’s nearest neighbor. Ideally, a default value of u
should be set by the system after analyring the the
distance value distributions. It is also desirable to de-
crease u during the search process by replacing it with
the distance between the current nearest neighbor can-
didate and the query point if that distance is smaller
than initial u. This last point argues for a depth-
first, as opposed to breadth-first, order of searching
through the VP tree because the former tends to reach
the leaves of the tree faster and thus is more likely to
reduce u.

It is essential to pay attention to the characteris-
tics of I/O devices for an index subsystem to be useful
in a database environment. Because magnetic disk-
based systems typically fetch a large chunk of data in
each access to amortise the long fixed overhead, the
indexing scheme must be designed to exploit I/O de-
vices’ capabilities. A universal technique as used in
B-tree algorithms is to increase the branching factor
of the tree. This not only improves disk access effi-
ciency by packing sibling nodes into a disk page, but
also significantly improves the pruning effect since it is
now possible to prune B~~$~l of the data set, where
Branch is the branching factor and is usually much
larger than 2.

The N-ary VP tree construction algorithm is simi-
lar to the binary tree case. For a given data set, the
distance values between the chosen vantage point and

dfp, u)
Si-1 Si Si+l ,

I
Pi-2 Pi-1 pi CL i+l

Figure 2: Partitions According to Distance Values to
the Vantage Point

other data points are first computed. The data set is
then split into N subsets, Si, i = 1 to N, according
to the distance values, preferably making each of Si’s
roughly the same size. Let’s use k, i = 1 to N-l, to
denote the boundary distance value between Si and
s* ,+I. As shown in Figure 2, ~-1 < d(p, v) 5 k, for
all p E Si, assuming that ~0 = 0. Given a query point
p, the system needs to explore Si as long as

Pi - u < d(% v) I Pi+1 + Q (3)

for i = 1 to N. These conditions are also based on the
triangular inequality principle and can be derived in a
way similar to the binary case. So far the discussion
focuses on the initial tree construction. A database
system must also support dynamic insertion and dele-
tion of data items. Therefore an incremental modifl-
cation mechanism of the VP tree is needed to reflect
the run-time changes in the database back to the in-
dex data structures. These are discussed in the next
subsection.

Due to space constraints, the descriptions of in-
cremental modification to the VP tree due to inser-
tion and deletion are omitted and can be found in
[CHIU94].

3.2 Optimization

To address the “dimensionality curse” problem, the
index subsystem must use as few dimensions as possi-
ble. However, mapping an inherently high-dimension
data set into a low-dimension space tends to lose the
information that distinguishes the data items. Con-
sequently the indices based on low-dimension feature
sets may become less discriminative than those based
on high-dimension feature sets. In particular, the
nearest neighbors found through low-dimension indices
are less likely the true nearest neighbors than those
found through high-dimension indices. Theoretically,
it should be possible to select a set of features with the
maximum distinguishing power from an image process-
ing standpoint. In practice, however, this is still con-
sidered rather far-fetched even for research systems.

One potential solution is to use the divide and con-
quer approach. The idea is to to use multiple in-
dex trees, each of which is based on a different sub-
set of features, e.g., color, shape, or texture. With

586

this structure, each index tree is based on a relatively
small number of features, and therefore can avoid the
“dimensionality curse” problem. On the other hand,
the fact that multiple index trees collectively employ
a large number of features should improve the overall
distinguishing capability of the index system. Multiple
index trees also make it easier to identify the distance
metric function d(.) for each feature subset because
the features in the subsets are presumably more corre-
lated with one another than with those in other feature
subsets. Moreover, it is easier for the system to handle
queries that emphasize particular feature classes, e.g.,
image queries based on colors only.

The key to the success of multi-tree index search is
that there exists a way to combine the search results
from each index tree. Consider the following simple
example. Suppose we have a five-dimensional feature
space, supported by two index trees based on the first
two and the last three features, respectively. Given a
query point (0, 0, 0, 0, 0), the nearest neighbors in the
corresponding feature subspaces are (0, 0, 100, 100,
100) and (100, 100, 0, 0, 0) respectively. However,
the true nearest neighbor is actually (10, 10, 10, 10,
10). This example illustrates that the result of a global
nearest neighbor search is not a simple AND or OR
of the nearest neighbors found from the component
index trees. One solution is to use a larger u value for
the searches in each component index tree to find all
the neighbors that are within u distance away. The
hope is that the true nearest neighbor belongs to each
of the result sets obtained from the searches of the
component indices, and therefore could be identified
by finding the intersection of these result sets.

The other important issue not addressed in
[YIAN92] is the choice of u. Presumably, values of
u should be completely transparent to users since the
underlying feature set and the distance metrics are
typically hidden from the end users. Therefore, the
first question is how the default value of u is chosen
given a feature database. [YIAN92] implicitly assumes
that users are responsible for the choosing. However,
we believe that this is unrealistic because the index
structures, including EK, d(.), and the distribution of
S are supposed to be completely transparent to the
users. It’s not clear that users are able to make any
decision of the initial u value without these informa-
tion, let alone the optimal u. We have developed an
adaptive algorithm to automate the choice of u and
achieve reasonable performance.

Ideally, there should be a different u value associ-
ated with each vantage point within the index tree,
and the value should be determined based on the dis-
tribution of the distance values with respect to that
vantage point. Intuitively, the default u value is chosen
in such a way that unnecessary probing is minimized.

To reduce search efforts, one makes the optimistic as-
sumption that a query point’s nearest neighbor is al-
ways very close to the query point. This assumption
translates into using the smallest possible u values:
With respect to a vantage point V, azsume that each
partition S< is characterized by the lower and upper
distance value bounds LO[i] and HI[i]. During the
traversal, it is not necessary to explore Si as long as
d(q, v) > Bl[i] + u or d(q, V) < LO[i] - u. Then the
default U(V) value for a vantage point v is chosen to
be

u(v) = p--v LO[i + l] - Hl[i]
i=l 2 (4

Such a choice of u guarantees that any d(q, v) value
will fall within at least one of [LO[i] - u, HIM + u],
and therefore the traversal could proceed with at least
one partition. In our implementation, we use the same
u for every vantage point in the tree, and the default
u value is chosen to be the maximum of all u(v)‘s de-
termined by Equation (4).

The optimistic approach is based on the observa-
tion that there is typically a big difference between
the time needed to locate the nearest neighbor and the
time needed to verify that it is indeed the true nearest
neighbor. Using smaller initial u values significantly
reduces the “veritlcation” work when the query point
is indeed close to its nearest neighbor. On the other
hand, because the initial u value is chosen optimisti-
cally, there must be a fall-back mechanism to handle
those cases in which the assumption is not valid, i.e.,
when a query point’s nearest neighbor iz not very close
to the query point. One can either use an additive or
multiplicative algorithm to adjust the values of u. In
other words, if the nearest neighbor search fails for a
given u, then u is modified according to

or

uN=uN-l+a (5)

UN = CO *TN-’ (6)

where a and 7 are additive and multiplicative con-
stants, and N is the number of trials that have failed.
The rationale of this formula is to minimize the av-
erage overall search efforts by balancing between the
search efforts of individual trials and the number of
trials for each query point. Our implementation made
the following optimization that further improves the
performance: When a leaf node iz visited, the point in
the node that iz closest to the current query point is lo-
cated. Therefore, when a leaf node is visited again dur-
ing subsequent trials for the same query point, the sys-
tem only needs to examine the node’s associated near-
est point without further touching any point in that

587

leaf node, essentially reusing the efforts performed in
previous trials. This technique reinforces the power of
the proposed optimistic approach.

4 Performance Results

4.1 Experiment Set-up

We take a sequence of seven 240x352 video frames, and
decompose each frame into 1,320 8x8 blocks. From
each block, four column average values, four row av-
erage values, and an overall average value (i.e., the
DC value of a block) are extracted to form a nine-
element feature vector. The distance metric we choose
is the infinity norm, i.e., sum of absolute differences.
The blocks in the first five frames form the database
against which queries are run. Therefore there are
totally 6,600 feature vectors in the database. We use
three sets of queries. The first set consists of the blocks
from the last two frames of the original video sequence.
Because of the nature of video sequences, each of these
blocks is considered close to its nearest neighbor in the
database. The average distance between a query block
in this set and its nearest neighbor is 16.39. The sec-
ond set of query blocks are derived by injecting small
uniformly distributed random noises to each block in
the first query set. This set is called the median set
and the average distance between a query block in this
set and its nearest neighbor is 32.64. The third set of
query blocks are derived by injecting large uniformly
distributed random noises to each block in the first
query set. This set is called the far set and the aver-
age distance between a query block iu this set and its
nearest neighbor is now 217.83. For each set, there are
2,640 query blocks, and the final performance numbers
are average values from these 2,640 runs.

Three performance metrics are adopted. They are
the percentage of index entries (PIE) that are accessed
to locate the nearest neighbor, the number of trials
(NT) per query, and the actual running time (ART).
PIE measures the average portion of the index tree
that needs to be examined to service a query. NT gives
how many times the index subsystem needs to enlarge
the u value before locating the nearest neighbor. ART
calibrates the total computation cost for each query.
Because the database is loaded into main memory en-
tirely, our experiment didn’t reflect accurately’ the disk
I/O cost. However, the percentage of index entries ac-
cessed metric should reflect the I/O overhead to a cer-
tain extent. On the other hand, the processing time
measurement is fairly accurate because we use a dedi-
cated machine for these experiments, thus minimising
deviations due to operating systems or multiprogram-
ming. In order to understand the impact of the di-
mensionality of feature vectors, we also construct a

5 ! I I 1 I
’ Threshold Value

0.00 50.00 100.00 150.00 loo.00

Figure 3: Percentage of Index Entries Accessed vs.
Initial u

17-element feature vector database. In this case, alI of
the eight column and eight row average values from a
8x8 block are incorporated into the feature vector.

4.2 Results and Analysis

The first set of results represent the baseline case,
which corresponds to the nine-feature-vector workload
with the additive u value adjustment method. Fig-
ure 3, 4, and 5 show the percentage of index entries
accessed, the number of trials per query, and the ac-
tual running time versus the initial u value under this
workload. The X-axis represents different initial val-
ues of u, and the Y-axis is on a log scale for the PIE
metric. Although the number of iterations per query
is decreasing with larger u (Figure 4), the percentage
of index entries accessed (Figure 3) actually increases.
Thii demonstrates the effectiveness of the dynamic u
adjustment method, compared to schemes based on
fixed u. The actual running time (Figure 5) exhibits
an interesting tradeoff between the processing over-
head associated with multiple iterations and the access
overhead related to touching the index entries. The
graph clearly shows an optimal design point for each
workload, which seems to correlate very well with the
average distance between the vectors in the respective
query set and their nearest neighbors. For example,
the optimal point for the close query set occurs when
the initial u value is between 10 and 30, and the aver-
age distance of the close query set is 16.39.

The second set of results compare the performance
difference between the multiplicative and additive
methods for adjusting u. For our experiment, we

588

40.00

36.66

30.00

zi.00

20.00

15.00

10.00

5j.q+-# ~~hald”due
0.00 5o.w 1w.w 150.00 200.08

Figure 4: Number of !lli& per Query vs. Initial u

1Lw.no ;

16o.ll6 ;

Mom ;
:

12lMMJ ;,

llJO.Rl :
:
Ls ~.___.-.---. __.___-------

2om - mrrrhdd v*
0.00 50.00 100.00 150.00 2w.00

Figure 5: Execution Time per Query vs. Initial u

6’j I I I I

s ,
0.W 50.00 llW.66

I ’ llw&ddVdw
150.00 200.00

Figure 6: Percentage of Index Entries Accessed vs.
InitisI u. Comparison between Mtitiplicative and Ad-
ditive Q a&stment methods, a = u0,7 = 2

:..

0.00 I Thrwhdd Vh
0.w 5o.w 106.06 ls0.w ~.oo

Figure 7: Number of !lkials per Query vs. Initial u.
Comparison between Multiplicative and Additive u
dustment methods, a = au, 7 = 2

589

Execution Tim (Sex) I 10J

140.00 ;
:

120.00 ;,
:

100.&l ,-- !- *, -. ____-----
:...- *.--------* ,_--- -----_____________

..--__________ ____.--------'
80.00

I I I I ' llw&ddValw
0.00 50.&l 100.00 150.04 mo.@l

Figure 8: Execution Time per Query vs. Initial u.
Comparison between Multiplicative and Additive u
adjustment methods, 01= u0,7 = 2

choose the multiplicative constant 7 to be 2 and the
additive constant a to be the initial u value. So it may
well be the case that the following comparison is valid
only for this particular choice, although the general
trend of the performance curves should remain largely
unaffected. Generally speaking, although the multi-
plicative method requires fewer iterations than the ad-
ditive method (Figure i’), the former actually touches
more data (Figure 6) and take more time (Figure 8)
than the latter. The only exception is when the queries
are drawn from the far set and the initial u is small,
where the multiplicative scheme performs significantly
better (Figure 8). Because the multiplicative method
represents a more responsive feedback mechanism than
the additive one, the former should be more effective
in cases where the distance between the query point
and its nearest neighbor is large. It may be interest-
ing to experiment with other choices of multiplicative
and additive constants and compare their performance
behavior.

The next set of results show the performance im-
pacts of the dimensionality of the feature space on the
performance of the indexing system. Here we assume
the u adjustment method is additive, but the multi-
plicative case shows similar results. In the case of the
close query set, the PIE (Figure 9) and the NT (Figure
10) are relatively close to each other for the g-feature
case and 17-feature case. But the ART (Figure 11)
shows at least a factor of two difference. In the case of
the far query set, the differences between the far and
close sets in all three metrics are more pronounced in

4 4
3.5 3.5

3 3

15 15

1 1

15 15

le+ol le+ol

8 8
1 1

6 6

5 5
0.00 0.00 100.08 100.08 lJlo.00 lJlo.00 3moo 3moo

Threshold Value

Figure 9: Percentage of Index Entries Accessed per
Query vs. Initial u. Impact of the dimensional@ of
the feature space

Number of Trials

Figure 10: Number of !I%& per Query vs. Initial u.
Impact of the climensionality of the feature space

590

Tbrahdd Value

Figure 11: Execution Time per Query vs. Initial u.
Bnpsct of the dimensionality of the feature space

the O-feature c8se than in the 17-feature case. This
result implies that the dimensionality curse problem is
even more serious when presented with the far queries
than close ones.

The last experiment explores the performance im-
pact of the branching factor of the index tree, or al-
ternatively, the number of index entries in a page.
Here the X-axis represents the branching factor and
the curves represent different combinations of work-
load parameters, u adjustment methods, and initial u
values. In the case of PIE, Figure 12 (the additive
case) and Figure 13 (the multiplicative c8se) display
remarkable similarity in terms of the general trend.
Although larger branching factors imply more effec-
tive pruning, this is only the c8se when the database
is relatively large. Because the test database is rel-
atively small, larger branching factors could actually
need to access more index entries at the intermediate
levels of the tree because the coverage of each partition
is so small that there are actually more than one h’s
can satisfy Equation (3). This explains why in Figure
12 and Figure 13, the percentage of index entries in-
cre8ses with the branching factor and eventually levels
off. The other performance problem associated with
larger branching factors is that it requires more com-
parisons at each level of the tree to determine which
partitions need further exploration. This effect shows
up in the average execution time (Figure 14 and Figure
15). The curves go up monotonically with increasing
branching factors. This means that the larger CPU
processing overhead associated with larger branching
factors outweighs the benefits of touching less data. Cf

‘El33 Bmnd6npFador
20.00 40.00 60.00 00.00

Figure 12: Percentage of Index Entries Accessed vs.
Branching Factor. Jinp8ct of the branching factor of
the VP tree, with additive u adjustment

Paantile (%I

6 doswnul,6

5 1.
.I ?iGGw--- ._________ ----.

dose,mulbO
,irm-;,-..- - - .

4 ,

Bnnehi~! Fador

Figure 13: Percentage of Index Entries Accessed vs.
Branching Factor. Impact of the branching factor of
the VP tree, with multiplicative u 4ustment

591

0.10

0.00
Brmdti~~ Faclor

20.00 40.00 60.00 oom

Figure 14: Execution Time per Query vs. Branching
Factor. linpact of the branching factor of the VP tree,
with additive u aGustment

Ersuuon Time (SW x lo-3

200.00

190.00
!!i!fEF
. __...__---.__.

lmxl

170.00
E=c-@---’

160.00
lso.00
140.00
130.00
120.00

110.00
100.00
90.00
00.00
70.00
00.00
SO.00
4o.lxl
3o.rm

Bn,,d,ing Factor
40.00 6oAlo 00.00

Figure 15: Execution Time per Query vs. Branching
Factor. Jinpact of the branching factor of the VP tree,
with multiplicative u adjustment

course, since our experiment is completely based on
main memory implementations, this conclusion may
not hold when the data volume is so big that the I/O
cost becomes dominant.

5 Related Works

The Vantage-Point Tree method is proposed in
mN92] mainly as a main-memory-based method
for multi-dimensional nearest-neighbor search. No at-
tempt has been made in that work to take advantage
of the characteristics of image data and to apply it to
a disk-based environment. The major contribution of
our work is the development of the optimistic u value
adjustment mechanism that at once solves the prob-
lem of choosing the initial u value and achieves the
critical balance between recall and precision rates by
dynamically tailoring the range of search to the char-
acteristics of the queries. [ARYA92] proposes another
algorithm to the multi-dimensional nearest-neighbor
search problem based on a randomization approach.
However, this algorithm doesn’t seem to be as effective
as the Vantage-Point Tree method. Both [JAGASl]
and [MEHR93] describe experiments to retrieve image
objects based on their shapes. However, the emphasis
of these works is on the image representation schemes
to support occlusion or partial matching, rather than
on efficient indexing mechanisms to speed up the ac-
cess. IBM Almaden’s QBIC project [NIBL93] supports
various mechanisms to do semi-automatic segmenta-
tion and interactive retrieval. However, relatively lit-
tle emphasis has been put in efficient indexing for im-
age objects. [GROS92][GROS89] described an index-
ing scheme very similar to the one presented here in
that they also have a pruning mechanism based on the
principle of triangular inequality. However, their in-
dex structure is still based on absolute feature values
rather than the relative distance among feature vec-
tors. As a result, the traversal through the index tree
becomes unnecessarily complicated. Moreover, their
method doesn’t include a mechanism corresponding
to our dynamic u adjustment scheme. Consequently,
their method probably won’t perform as well as ours,
especially when the distances between the query im-
ages and their nearest neighbors exhibit a large dy-
namic range.

6 Conclusion

Indexing improves the speed of image data access be-
cause it substitutes index manipulation for raw image
manipulation, and because it reduces the amount of
search efforts at run time. The first reason is prob-
ably more significant since the I/O and computation

592

requirements of manipulating images could easily over-
whelm most current workstation-class machines. We
formulate the content-based image indexing problem
as a multi-dimensional nearest-neighbor search prob-
lem, and choose a newly developed index algorithm
called the Vuntuge-Point Dee method to solve this
problem. This algorithm is particularly effective for
nearest-neighbor search because it uses relative dis-
tance as the decomposition criterion rather than the
absolute feature values used in conventional multi-
dimensional spatial data structure. One of the most
important performance parameters for this indexing
algorithm is the choice of u. We develop an optimistic
algorithm to dynamically adjust the u value in order
to achieve a better balance between precision and re-
call rates against a wide variety of workloads. This
algorithm also successfully relieves users of the burden
of choosing u values, an important factor that deter-
mines whether the indexing scheme is useable in prac-
tice. Based on our preliminary performance study, one
only needs to touch less than twenty percent of the
database for well-behaved queries, i.e., the query im-
ages are relatively close to their nearest neighbors in
the database. We also perform extensive performance
studies to investigate the impacts of various configura-
tion and workload parameters on the performance of
this algorithm.

As for future work, there are three possible direc-
tions that we are currently working on. First, explor-
ing the interaction between feature selection and index
structures. Right now we developed the image index-
ing scheme without regards to the nature of extracted
features. In practice, the index algorithm can achieve
the optimal performance only when the feature vectors
assume certain characteristics. For example, in our
case, the VP tree method works best when the feature
vectors are uniformly distributed in the K-dimensional
space. Especially in image databases, choosing the op
timal feature set seems to us the single most impor-
tant issue for solving the content-based image retrieval
problem. Second, we plan to further explore the idea
of multiple index structures and experiment with con-
current execution of multiple indexed searches. Lastly,
we are interested in extending the current implemen-
tation to a disk-based environment and integrate with
parallel I/O capabilities provided by advanced disk ar-
ray technologies.

7 Acknowledgement

8 Reference

[ARYA92] S. Arya, D. Mount, “Approximate
Nearest Neighbor Queries in Fixed Dimensions,”
Proceedings of the Third Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 2’71-280,
Orlando, Fla., 1992.

[CHIU94] T. Chiueh, “Content-based Image In-
dexing,” ECSL TR-‘7, Computer Science Depart-
ment, SUNY at Stony Brook, January 1994.

[GROS92] Grosky, W.I., et al. “A picto-
rial index mechanism for model-based match-
ing.” DATA and KNOWLEDGE ENGINEER-
ING (1992) ~01.8, no.4, p. 309-27.

[GROS89] Grosky, W.I., et al. “A pictorial in-
dex mechanism for model-based matching.” PRO-
CEEDINGS FIFTH INTERNATIONAL CON-
FERENCE ON DATA ENGINEERING, Los An-
geles, CA, USA, 6-10 Feb. 1989.

[JAGASl] Jagadish, H.V. “A retrieval technique
for similar shapes.” 1991 ACM SIGMOD Inter-
national Conference on Management of Data,
Denver, CO, USA, 29-31 May 1991. SIGMOD
RECORD (June 1991) ~01.20, no.2, p. 208-17.

[MEHR93] R. Mehrotra, J. Gary, “Feature-Based
Retrieval of Similar Shapes,” International Con-
ference on Data Engineering, ‘93, pp. 108-115.

[NIBL93] Niblack, W., et al. “The QBIC project:
querying images by content using color, texture,
and shape.” Storage and Retrieval for Image and
Video Databases. Held: San Jose, CA, USA, 23
Feb. 1993. PROCEEDINGS OF THE SPIE -
TEE INTERNATIONAL SOCIETY FOR OPTI-
CAL ENGINEERING (1993) vo1.1908, p. 173-87.

[OZSO93] Oesoyoglu, G., et al. “Example-based
graphical database query languages.” COM-
PUTER (May 1993) ~01.26, no.5, p. 25-38.

[YLAN92] P. Yianilos, “Data Structures and Al-
gorithms for Nearest Neighbor Search in General
Metric Spaces,” Proceedings of the Third Annual
ACM-SIAM Symposium on Discrete Algorithms,
pp. 311-321, Orlando, Fla., 1992.

This work was performed while the author visited
Siemens Corporate Research during the Summer of
1993. The discussions with the Image Database group
led by Dr. Arding Hsu are greatly acknowledged.

593

