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Abstract 

We formulate the content-based image in- 
dexing problem as a multi-dimensional 
nearest-neighbor search problem, and de- 
velop/implement an optimistic vantage-point 
tree algorithm that can dynamically adapt 
the indexed search process to the character- 
istics of given queries. Based on our perfor- 
mance study, the system typically only needs 
to touch less than 20 % of the index entries 
for well -behaved queries, i.e., when the query 
images are relatively close to their nearest 
neighbors in the database. We also report 
in this paper the results of extensive perfor- 
mance experiments, which characterise the 
impacts of various configuration and work- 
load parameters on the performance of the 
proposed algorithm. 

1 Introduction 

Multimedia information systems integrate text, im- 
ages, audio/video, and graphics data in a single frame- 
work. They also require computer systems designers to 
re-visit certain systems issues with completely different 
design tradeoffs than conventional ones. One example 
is to put image/video into a database system. Query 
facilities are typically regarded as the very basic ser- 
vice that a database system should offer. Specifically, 
users should be able to access the data in the database 
based either explicitly on the data entity’s name or 
implicitly on the data’s contents. The mechanisms for 
content-based access to alphanumeric data have been 
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extensively studied and are now considered relatively 
well understood. However, the notion of content-based 
image/video access at this point still remains elusive 
at best. 

There are two fundamental problems associated 
with content-based query systems for imaging data: 
how to specify queries, and how to access the in- 
tended data efficiently for given queries. For tra- 
ditional database systems, the semantics of content- 
based access are finding data items that are exact 
matches of specified keywords in the queries. As a re- 
sult, it is relatively straightforward to specify queries 
and to search for the matching data items. For im- 
age/video database systems, both query specification 
and data access become much harder. One potential 
approach to specify image queries is to use a text-based 
formalism to describe the image contents, based on the 
assumption that it is always possible to abstract high- 
level symbolic descriptions from low-level image data. 
Obviously this is not even possible based on natural 
languages, let alone any formal languages. For exam- 
ple, it is not clear how one can describe the texture 
or color of an image satisfactorily only based on tex- 
tual descriptions. In some sense, this approach relies 
heavily on the advancement of knowledge representa- 
tion. One possibility is to adopt the query-by-example 
paradigm [OZSO93]. That is, users can use either 
hand-drawn sketches or existing images as query tem- 
plates, and ask the system for images similar to the 
query images. This is the so-called “like-this image re- 
trieval.” Although this might seem to solve the image 
description problem, new problems arise. For example, 
using existing images as queries poses the question of 
how one gets the first image. Admittedly, it is pos- 
sible to use keyword-based queries or data browsing 
techniques to access the first image that is reasonably 
close to the desired ones. Whether these techniques 
can satisfy the need of most interesting applications 
remains to be seen. User-drawn sketches have similar 
problems of accuracy and ease of use, with an addi- 
tional complication of cursive pattern recognition. 
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Even if it is possible to specify query images pre- 
cisely, there is still the issue of “like-this semantics.” In 
other words, when users present a query image and ask 
for similar images, how exactly is similarity defined? 
Since an image can be characterized in various ways, 
it is almost impossible for the system to retrieve the 
desired images without further specifications. Conse- 
quently, even with image-based queries, the users still 
need to specify particular aspects of the query images, 
e.g., color and/or shape, on which the system should 
emphasize while performing similarity search. 

Retrieving images similar to a given query image is 
a rather old problem in the field of pattern recogni- 
tion. However, there are several important differences 
between image database retrieval and pattern recog- 
nition. First, the images in an image database may 
contain arbitrarily complex scenes and therefore are 
typically much more complicated than those in pat- 
tern recognition systems, which typically deal with ar- 
tifacts or highly abstract figures. Second, the number 
of images in an image database is usually much larger 
than that of a pattern recognition system. In fact, 
most pattern recognition systems only need sequential 
searching simply because the number of candidate pat- 
terns to match is relatively small. Third, sometimes 
pattern recognition systems will make high-level inter- 
pretations directly based on features extracted from 
the given patterns. In these cases, it is imperative 
that the feature extraction procedure be absolutely 
correct. In contrast, the realistic expectation for an 
image database system’s access mechanism should be 
to filter out un-related data, leaving further identifi- 
cation and semantic interpretation of image objects 
to human users. More precisely, pattern recognition 
aims at identifying positive matches, whereas an im- 
age database access method is considered successful 
when enough negative matches are ruled out to the 
extent that interactive browsing becomes feasible. As 
a corollary, the accuracy requirements for feature ex- 
traction is less stringent for image database systems. 
Actually, a feature extractor is considered useable for 
image database systems as long as the errors made by 
the feature extractor in query images and candidate 
images in the database are consistent. 

The first and third differences will impact the image 
processing algorithms that underly content-based im- 
age access systems. They are beyond the scope of this 
paper and will not be discussed further. The second 
difference requires the image database system to have 
an indexing structure for faster access response. When 
designing the indexing mechanism, one should take ad- 
vantage of the subtle distinction between positive iden- 
tification, as in traditional database access problems, 
and negative exclusion, as in image data access. In 
addition, because image features are inherently multi- 

dimensional objects and because it is very rare to have 
exact image match, the image index structure must 
efficiently support multi-dimensional nearest-neighbor 
search. 

The goals of this project are twofold. First, we aim 
at developing an efficient indexing mechanism for re- 
trieving images solely based on the images’ contents or 
features. We have designed and implemented an op- 
timistic vantage-point tree index structure and exam- 
ined its various performance characteristics. Second, 
we want to study the interaction between feature ex- 
traction (image processing) and feature indexing (data 
management). In particular, we’d like to deduce the 
preferred properties of those image features that facil- 
itate the indexed search process, in order to guide the 
development of more sophisticated feature extraction 
algorithms. However, this paper will not address any 
image processing issues related to feature extraction 
and representation. 

The remaining sections of the paper are organized 
as follows. Section 2 gives a formulation of the im- 
age index problem, and discusses the design issues 
involved. Section 3 describes a multi-dimensional 
nearest-neighbor search algorithm in a disk-based en- 
vironment, and its various optimization%. Section 4 
presents extensive performance results from a proto- 
typical implementation of the algorithm. In Section 5, 
earlier works on image database indexing are reviewed 
to set the contributions of this work in perspective. 
We summarized major ideas and results in Section 6 
with an outline of future work. 

2 General Framework 

An image is a two-dimensional array of pixels, each of 
which is represented with certain precision, e.g., using 
8 bits or 24 bits per pixel. From raw images, there are 
various ways of building up high-level abstractions; for 
example, color distributions based on histograms, and 
object contours based on thresholding. This process is 
usually referred to as feature e&-action. We call each 
scalar piece of such high-level abstractions a feature. 
So an example feature may be one of the component 
values of a color attribute, or a component coordinate 
of a shape descriptor. The set of features that com- 
prise a coherent high-level interpretation form a feature 
class. Example feature classes are color, texture, and 
shape. From the standpoints of both data manage- 
ment and pattern recognition, it is better to organize 
database images on a feature-class by feature-class ba- 
sis, rather than based on a lumped feature set that 
includes every image feature. There are two reasons 
to justify this proposition. First, combining multiple 
feature classes usually doesn’t make too much sense se- 
mantically, and users actually lose the flexibility of ac- 
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cessing data based on individual feature class. For ex- 
ample, users may want to access the images only based 
on color information. An access mechanism based on 
aggregate feature sets tend to complicate this type of 
access. Second, suppose each feature is treated as a 
dimension, then combining multiple feature classes in- 
creases the number of dimensions. This will certainly 
aggravate the “dimensionality curse” problem associ- 
ated with many multi-dimensional search algorithms, 
which says that as the dimensionality increases, the 
efficiency of the search algorithm decreases. 

We assume that images in the database and query 
images go through the same feature extraction process. 
So every image is represented as a K-dimensional fea- 
ture vector, where K is the number of features used to 
represent an image. The image search problem can 
then be formulated as follows. Let S denotes the 
set of feature vectors representing the images in the 
database. Let EK designates the K-dimensional fea- 
ture space, then S C_ EK. Given a query image’s fea- 
ture vector q, find the feature vector p E S such that 
d(p, q) is the minimum, where d( .) is the distance met- 
ric used in the feature vector space. The goal of image 
indexing is to sort the feature vectors in S so that ser- 
vicing a query doesn’t always need a sequential scan 
through the entire database. 

It is clear that the choice of EK and d(.) could sig- 
nificantly affect the performance of the search mecha- 
nism. For example, it is possible that the data image 
that is closest to the query image in the feature space 
according to d(.) is not necessarily the most similar 
data image according to visual perception or other ob- 
jective criteria. Knowing that image similarity crite- 
rion is itself an active research problem, in this paper 
we will assume that the accumulated sum of pixel- 
by-pixel differences is the ultimate similarity metric 
between two images. In this model, EK, d(.), and 
the similarity metric are all domain-dependent, and 
should be tailored to individual applications. However, 
the design of the index mechanism should be generic 
enough to accommodate different choices of these pa- 
rameters. 

The above framework in itself doesn’t make any as- 
sumption about the capabilities of the image process- 
ing subsystems that extract features. Therefore it is 
not restricted to whole-image matching. As long as 
there are ways to segment objects out of images, it can 
be equally applicable to subimage or object matching. 
Similarly, if the features chosen have invariance prop- 
erties, the index mechanism can also support invari- 
ance across scaling, translation, or rotation transfor- 
mations. In summary, the indexing mechauism is com- 
pletely independent of whether the image features al- 
low sub-image matching or transformation invariance. 

3 Indexing for Mult idi- 
mensional Nearest-Neighbor 
Search 

Given a point in the K-dimensional space, searching 
for its nearest neighbor can be facilitated by sorting 
points in the database first. As mentioned earlier, 
the design goal of an image indexing scheme should 
focus on eliminating unlikely candidates rather than 
pin-pointing the targets directly. So an important re- 
quirement for image indexing schemes is that a data 
point not be the nearest neighbor when the index sub 
system declares that it is not. That is, the indexing 
scheme must work conservatively. 

Conventional spatial index structures use some 
kind of partitioning methods to divide the multi- 
dimensional vector space into partitions. The goal is 
to ensure that each partition have approximately the 
same number of data points so that finding the nearest 
neighbor of a given query point only needs to touch a 
small number of partitions. These partitioning meth- 
ods are almost always based on absolute coordinate 
values of the vector space. For example, a partition in 
a K-dimensional hypercube is characterised by K pairs 
of coordinate values, each of which specifies the cov- 
ering interval in the respective dimension. This type 
of partitioning structure is useful for queries based on 
absolute coordinates, such as range queries, e.g., ilnd 
all the 2D points inside the rectangle defined by [Xl, 
X2] and [yl, Y2]. However, it is not so useful for 
nearest-neighbor search because the search structure 
in general doesn’t maintain the distance information 
between points within a partition and the partition’s 
boundaries. As it turns out, this information is criti- 
cal in pruning the search space for multi-dimensional 
nearest-neighbor search. 

Intuitively, since nearest-neighbor search by defini- 
tion is to look for the one point with the minimum 
point-to-point distance, it is only natural to conceive 
partitioning methods that are bssed on relative dis- 
tance rather than absolute coordinate values. This is 
exactly the central idea behind the vantage-point (VP) 
tree method proposed by P. Yianilos [YLAN92] and will 
be explained in the following subsections. 

3.1 Initial Construction 

In conventional multi-dimensional data structures 
such as K-d trees, the data set is first projected along 
each dimension, and the median of the projection val- 
ues along the dimension that has the maximum spread 
is chosen as a cut point. The data set is partitioned 
into two subsets by comparing each data point’s pro- 
jected value in the corresponding dimension with the 
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Figure 1: Illustration of the Vantage Point 

cut point. The VP tree method abandons the projec- 
tion approach and bases the partitioning on the rela- 
tive distances between the data points and a particular 
vantage point. 

Let’s start with the binary partitioning case, and 
then generalise to n-ary partitioning for disk-based en- 
vironments later. Assume a particular data point in 
the data set, v, is chosen as the vantage point. Then 
the system computes the distance between any other 
point in the data set and u, and gets d(p, o), for 
p E S - {v}. Find the median p among the d(p, w)‘s 
and partition the data set into two halves according 
to cr. Although it may seem that the VP tree method 
just uses a different partitioning metric, the fact that 
it takes a relative-distance approach significantly im- 
proves the pruning effectiveness. 

To illustrate this concept, considers a 2D vector 
space as shown in Figure l(a), where v is the van- 
tage point and /I is the median of the distance values 
of all the other points with respect to v. Therefore 
the data set is partitioned into two subsets: S< and 
S,, corresponding to the data points whose distance 
to w is smaller than or equal to ~1, and larger than /.L, 
respectively. Suppose users request the nearest neigh- 
bor of a query point q with the requirement that the 
maximum distance between a query point and its near- 
est neighbor be smaller than a specific threshold, u. 
That is, if it turns out that the distance between a 
query point and its nearest neighbor is greater than 
u, the nearest neighbor is meaningless and therefore 
not interesting. With these requirements, it can be 
shown that to locate the nearest neighbor of q, the 
system only needs to explore both S< and S> if and 
only if q is enclosed within the two concentric circles 
with radii of maz[O, p - u] and p + u respectively, as 
shown by the dashed circles in Figure l(b), i.e., when 
p - u < d(q, TV) 5 p + u. Otherwise, the system only 
needs to explore one of them, thus effectively pruning 
one half of the search spac& This pruning of the search 

space is based on the principle of triangular inequality. 
Specifically, if d(q, w) 5 p-u, for p E S>, the distance 
between p and q is lower-bounded by 

d(P, q) L Ild(P9 41 - Id(q9 4II 
2 IMP, 4l-b-41 
> b---+4 
= u (1) 

Therefore S> can be ignored when d(q, v) 5 (p-u). 
Similarly, if d(q, v) > /.J + u, for p E S<, the distance 
between p and q is lower-bounded by 

dh q) L lldh VII- HP, 41 I 
> lldh VII- 4 
> Icc+u-/4 
= u (2) 

Therefore S< can be pruned away when d(q, w) > 
p + u. When S< and S> are approximate in sise, each 
such pruning electively cuts the search space in half. 

This partitioning method is applied to each resulting 
partition recursively until the number of data points 
in a partition is small enough that the overhead of 
sequential scans becomes manageable. Therefore, the 
entire data set is also organised as a tree as in other 
spatial data structures. The difference is that at each 
level, a distinct vantage point is chosen to map the 
other data points in the subset, rather than simple 
projections based on absolute coordinate values. 

To search for the nearest neighbor of a query point, 
the system first computes the distance between the 
query point and the vantage point associated with the 
root of the tree, and determines which subset(s) to ex- 
plore next. This process proceeds recursively until the 
nearest neighbor is found or no such nearest neighbor 
whose distance to the query point is smaller than u is 
reported. The overall pruning effect is multiplied at 
each level as the system traverses down into the VP 
tree. An optimisation to the basic traversal algorithm 
is that during the traversal, if the distance between 
the query point and the current nearest neighbor can- 
didate is smaller than u, then CT is reduced to that 
distance value. This way subsequent search steps can 
avoid unnecessary probing. 

It is clear that the choice of vantage points at each 
level of the VP tree and the value of u play an impor- 
tant role in the performance of the indexing algorithm. 
An ideal vantage point should exhibit the following 
characteristic: The distribution of the distance values 
between other data points and the vantage point is 
close to a uniform distribution. Intuitively, this mini- 
mises the number of data points in the concentric re- 
gions, and therefore reduces the probability of having 
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to explore both subtrees. Given a data set, finding the 
optimal vantage point is exceedingly expensive compu- 
tationally. Therefore, one uses a randomised algorithm 
to approximate the ideal vantage point. It has been 
shown in [YIAN92] that this algorithm works reason- 
ably well in practice. The basic algorithm is as follows: 

Pick a set of candidate vantage points 
from the data set; 
For each candidate vantage point 

Pick a subset of sample points from the 
data set; 
Compute the distance values from the 
vantage point to each sample point; 
Calculate the mean and the standard 
deviation of these distance values; 

Endfor 
Choose the candidate vantage point with 
the maximum standard deviation; 

The choice of u represents the tradeoff between the 
likelihood of locating the nearest neighbors and the 
searching efforts. When u is small, the concentric re- 
gion becomes smaller, and therefore the probability of 
having to explore both subtrees is reduced. However, 
smaller u also means that the maximum allowable dis- 
tance between a query point and its nearest neighbor 
is reduced, making it more likely to reject the query 
point’s nearest neighbor. Ideally, a default value of u 
should be set by the system after analyring the the 
distance value distributions. It is also desirable to de- 
crease u during the search process by replacing it with 
the distance between the current nearest neighbor can- 
didate and the query point if that distance is smaller 
than initial u. This last point argues for a depth- 
first, as opposed to breadth-first, order of searching 
through the VP tree because the former tends to reach 
the leaves of the tree faster and thus is more likely to 
reduce u. 

It is essential to pay attention to the characteris- 
tics of I/O devices for an index subsystem to be useful 
in a database environment. Because magnetic disk- 
based systems typically fetch a large chunk of data in 
each access to amortise the long fixed overhead, the 
indexing scheme must be designed to exploit I/O de- 
vices’ capabilities. A universal technique as used in 
B-tree algorithms is to increase the branching factor 
of the tree. This not only improves disk access effi- 
ciency by packing sibling nodes into a disk page, but 
also significantly improves the pruning effect since it is 
now possible to prune B~~$~l of the data set, where 
Branch is the branching factor and is usually much 
larger than 2. 

The N-ary VP tree construction algorithm is simi- 
lar to the binary tree case. For a given data set, the 
distance values between the chosen vantage point and 

dfp, u) 
Si-1 Si Si+l , 

I 
Pi-2 Pi-1 pi CL i+l 

Figure 2: Partitions According to Distance Values to 
the Vantage Point 

other data points are first computed. The data set is 
then split into N subsets, Si, i = 1 to N, according 
to the distance values, preferably making each of Si’s 
roughly the same size. Let’s use k, i = 1 to N-l, to 
denote the boundary distance value between Si and 
s* ,+I. As shown in Figure 2, ~-1 < d(p, v) 5 k, for 
all p E Si, assuming that ~0 = 0. Given a query point 
p, the system needs to explore Si as long as 

Pi - u < d(% v) I Pi+1 + Q (3) 

for i = 1 to N. These conditions are also based on the 
triangular inequality principle and can be derived in a 
way similar to the binary case. So far the discussion 
focuses on the initial tree construction. A database 
system must also support dynamic insertion and dele- 
tion of data items. Therefore an incremental modifl- 
cation mechanism of the VP tree is needed to reflect 
the run-time changes in the database back to the in- 
dex data structures. These are discussed in the next 
subsection. 

Due to space constraints, the descriptions of in- 
cremental modification to the VP tree due to inser- 
tion and deletion are omitted and can be found in 
[CHIU94]. 

3.2 Optimization 

To address the “dimensionality curse” problem, the 
index subsystem must use as few dimensions as possi- 
ble. However, mapping an inherently high-dimension 
data set into a low-dimension space tends to lose the 
information that distinguishes the data items. Con- 
sequently the indices based on low-dimension feature 
sets may become less discriminative than those based 
on high-dimension feature sets. In particular, the 
nearest neighbors found through low-dimension indices 
are less likely the true nearest neighbors than those 
found through high-dimension indices. Theoretically, 
it should be possible to select a set of features with the 
maximum distinguishing power from an image process- 
ing standpoint. In practice, however, this is still con- 
sidered rather far-fetched even for research systems. 

One potential solution is to use the divide and con- 
quer approach. The idea is to to use multiple in- 
dex trees, each of which is based on a different sub- 
set of features, e.g., color, shape, or texture. With 
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this structure, each index tree is based on a relatively 
small number of features, and therefore can avoid the 
“dimensionality curse” problem. On the other hand, 
the fact that multiple index trees collectively employ 
a large number of features should improve the overall 
distinguishing capability of the index system. Multiple 
index trees also make it easier to identify the distance 
metric function d(.) for each feature subset because 
the features in the subsets are presumably more corre- 
lated with one another than with those in other feature 
subsets. Moreover, it is easier for the system to handle 
queries that emphasize particular feature classes, e.g., 
image queries based on colors only. 

The key to the success of multi-tree index search is 
that there exists a way to combine the search results 
from each index tree. Consider the following simple 
example. Suppose we have a five-dimensional feature 
space, supported by two index trees based on the first 
two and the last three features, respectively. Given a 
query point (0, 0, 0, 0, 0), the nearest neighbors in the 
corresponding feature subspaces are (0, 0, 100, 100, 
100) and (100, 100, 0, 0, 0) respectively. However, 
the true nearest neighbor is actually (10, 10, 10, 10, 
10). This example illustrates that the result of a global 
nearest neighbor search is not a simple AND or OR 
of the nearest neighbors found from the component 
index trees. One solution is to use a larger u value for 
the searches in each component index tree to find all 
the neighbors that are within u distance away. The 
hope is that the true nearest neighbor belongs to each 
of the result sets obtained from the searches of the 
component indices, and therefore could be identified 
by finding the intersection of these result sets. 

The other important issue not addressed in 
[YIAN92] is the choice of u. Presumably, values of 
u should be completely transparent to users since the 
underlying feature set and the distance metrics are 
typically hidden from the end users. Therefore, the 
first question is how the default value of u is chosen 
given a feature database. [YIAN92] implicitly assumes 
that users are responsible for the choosing. However, 
we believe that this is unrealistic because the index 
structures, including EK, d(.), and the distribution of 
S are supposed to be completely transparent to the 
users. It’s not clear that users are able to make any 
decision of the initial u value without these informa- 
tion, let alone the optimal u. We have developed an 
adaptive algorithm to automate the choice of u and 
achieve reasonable performance. 

Ideally, there should be a different u value associ- 
ated with each vantage point within the index tree, 
and the value should be determined based on the dis- 
tribution of the distance values with respect to that 
vantage point. Intuitively, the default u value is chosen 
in such a way that unnecessary probing is minimized. 

To reduce search efforts, one makes the optimistic as- 
sumption that a query point’s nearest neighbor is al- 
ways very close to the query point. This assumption 
translates into using the smallest possible u values: 
With respect to a vantage point V, azsume that each 
partition S< is characterized by the lower and upper 
distance value bounds LO[i] and HI[i]. During the 
traversal, it is not necessary to explore Si as long as 
d(q, v) > Bl[i] + u or d(q, V) < LO[i] - u. Then the 
default U(V) value for a vantage point v is chosen to 
be 

u(v) = p--v LO[i + l] - Hl[i] 
i=l 2 (4 

Such a choice of u guarantees that any d(q, v) value 
will fall within at least one of [LO[i] - u, HIM + u], 
and therefore the traversal could proceed with at least 
one partition. In our implementation, we use the same 
u for every vantage point in the tree, and the default 
u value is chosen to be the maximum of all u(v)‘s de- 
termined by Equation (4). 

The optimistic approach is based on the observa- 
tion that there is typically a big difference between 
the time needed to locate the nearest neighbor and the 
time needed to verify that it is indeed the true nearest 
neighbor. Using smaller initial u values significantly 
reduces the “veritlcation” work when the query point 
is indeed close to its nearest neighbor. On the other 
hand, because the initial u value is chosen optimisti- 
cally, there must be a fall-back mechanism to handle 
those cases in which the assumption is not valid, i.e., 
when a query point’s nearest neighbor iz not very close 
to the query point. One can either use an additive or 
multiplicative algorithm to adjust the values of u. In 
other words, if the nearest neighbor search fails for a 
given u, then u is modified according to 

or 

uN=uN-l+a (5) 

UN = CO *TN-’ (6) 

where a and 7 are additive and multiplicative con- 
stants, and N is the number of trials that have failed. 
The rationale of this formula is to minimize the av- 
erage overall search efforts by balancing between the 
search efforts of individual trials and the number of 
trials for each query point. Our implementation made 
the following optimization that further improves the 
performance: When a leaf node iz visited, the point in 
the node that iz closest to the current query point is lo- 
cated. Therefore, when a leaf node is visited again dur- 
ing subsequent trials for the same query point, the sys- 
tem only needs to examine the node’s associated near- 
est point without further touching any point in that 
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leaf node, essentially reusing the efforts performed in 
previous trials. This technique reinforces the power of 
the proposed optimistic approach. 

4 Performance Results 

4.1 Experiment Set-up 

We take a sequence of seven 240x352 video frames, and 
decompose each frame into 1,320 8x8 blocks. From 
each block, four column average values, four row av- 
erage values, and an overall average value (i.e., the 
DC value of a block) are extracted to form a nine- 
element feature vector. The distance metric we choose 
is the infinity norm, i.e., sum of absolute differences. 
The blocks in the first five frames form the database 
against which queries are run. Therefore there are 
totally 6,600 feature vectors in the database. We use 
three sets of queries. The first set consists of the blocks 
from the last two frames of the original video sequence. 
Because of the nature of video sequences, each of these 
blocks is considered close to its nearest neighbor in the 
database. The average distance between a query block 
in this set and its nearest neighbor is 16.39. The sec- 
ond set of query blocks are derived by injecting small 
uniformly distributed random noises to each block in 
the first query set. This set is called the median set 
and the average distance between a query block in this 
set and its nearest neighbor is 32.64. The third set of 
query blocks are derived by injecting large uniformly 
distributed random noises to each block in the first 
query set. This set is called the far set and the aver- 
age distance between a query block iu this set and its 
nearest neighbor is now 217.83. For each set, there are 
2,640 query blocks, and the final performance numbers 
are average values from these 2,640 runs. 

Three performance metrics are adopted. They are 
the percentage of index entries (PIE) that are accessed 
to locate the nearest neighbor, the number of trials 
(NT) per query, and the actual running time (ART). 
PIE measures the average portion of the index tree 
that needs to be examined to service a query. NT gives 
how many times the index subsystem needs to enlarge 
the u value before locating the nearest neighbor. ART 
calibrates the total computation cost for each query. 
Because the database is loaded into main memory en- 
tirely, our experiment didn’t reflect accurately’ the disk 
I/O cost. However, the percentage of index entries ac- 
cessed metric should reflect the I/O overhead to a cer- 
tain extent. On the other hand, the processing time 
measurement is fairly accurate because we use a dedi- 
cated machine for these experiments, thus minimising 
deviations due to operating systems or multiprogram- 
ming. In order to understand the impact of the di- 
mensionality of feature vectors, we also construct a 

5 ! I I 1 I 
’ Threshold Value 

0.00 50.00 100.00 150.00 loo.00 

Figure 3: Percentage of Index Entries Accessed vs. 
Initial u 

17-element feature vector database. In this case, alI of 
the eight column and eight row average values from a 
8x8 block are incorporated into the feature vector. 

4.2 Results and Analysis 

The first set of results represent the baseline case, 
which corresponds to the nine-feature-vector workload 
with the additive u value adjustment method. Fig- 
ure 3, 4, and 5 show the percentage of index entries 
accessed, the number of trials per query, and the ac- 
tual running time versus the initial u value under this 
workload. The X-axis represents different initial val- 
ues of u, and the Y-axis is on a log scale for the PIE 
metric. Although the number of iterations per query 
is decreasing with larger u (Figure 4), the percentage 
of index entries accessed (Figure 3) actually increases. 
Thii demonstrates the effectiveness of the dynamic u 
adjustment method, compared to schemes based on 
fixed u. The actual running time (Figure 5) exhibits 
an interesting tradeoff between the processing over- 
head associated with multiple iterations and the access 
overhead related to touching the index entries. The 
graph clearly shows an optimal design point for each 
workload, which seems to correlate very well with the 
average distance between the vectors in the respective 
query set and their nearest neighbors. For example, 
the optimal point for the close query set occurs when 
the initial u value is between 10 and 30, and the aver- 
age distance of the close query set is 16.39. 

The second set of results compare the performance 
difference between the multiplicative and additive 
methods for adjusting u. For our experiment, we 
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Comparison between Multiplicative and Additive u 
adjustment methods, 01= u0,7 = 2 

choose the multiplicative constant 7 to be 2 and the 
additive constant a to be the initial u value. So it may 
well be the case that the following comparison is valid 
only for this particular choice, although the general 
trend of the performance curves should remain largely 
unaffected. Generally speaking, although the multi- 
plicative method requires fewer iterations than the ad- 
ditive method (Figure i’), the former actually touches 
more data (Figure 6) and take more time (Figure 8) 
than the latter. The only exception is when the queries 
are drawn from the far set and the initial u is small, 
where the multiplicative scheme performs significantly 
better (Figure 8). Because the multiplicative method 
represents a more responsive feedback mechanism than 
the additive one, the former should be more effective 
in cases where the distance between the query point 
and its nearest neighbor is large. It may be interest- 
ing to experiment with other choices of multiplicative 
and additive constants and compare their performance 
behavior. 

The next set of results show the performance im- 
pacts of the dimensionality of the feature space on the 
performance of the indexing system. Here we assume 
the u adjustment method is additive, but the multi- 
plicative case shows similar results. In the case of the 
close query set, the PIE (Figure 9) and the NT (Figure 
10) are relatively close to each other for the g-feature 
case and 17-feature case. But the ART (Figure 11) 
shows at least a factor of two difference. In the case of 
the far query set, the differences between the far and 
close sets in all three metrics are more pronounced in 
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Figure 9: Percentage of Index Entries Accessed per 
Query vs. Initial u. Impact of the dimensional@ of 
the feature space 
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Figure 10: Number of !I%& per Query vs. Initial u. 
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Figure 11: Execution Time per Query vs. Initial u. 
Bnpsct of the dimensionality of the feature space 

the O-feature c8se than in the 17-feature case. This 
result implies that the dimensionality curse problem is 
even more serious when presented with the far queries 
than close ones. 

The last experiment explores the performance im- 
pact of the branching factor of the index tree, or al- 
ternatively, the number of index entries in a page. 
Here the X-axis represents the branching factor and 
the curves represent different combinations of work- 
load parameters, u adjustment methods, and initial u 
values. In the case of PIE, Figure 12 (the additive 
case) and Figure 13 (the multiplicative c8se) display 
remarkable similarity in terms of the general trend. 
Although larger branching factors imply more effec- 
tive pruning, this is only the c8se when the database 
is relatively large. Because the test database is rel- 
atively small, larger branching factors could actually 
need to access more index entries at the intermediate 
levels of the tree because the coverage of each partition 
is so small that there are actually more than one h’s 
can satisfy Equation (3). This explains why in Figure 
12 and Figure 13, the percentage of index entries in- 
cre8ses with the branching factor and eventually levels 
off. The other performance problem associated with 
larger branching factors is that it requires more com- 
parisons at each level of the tree to determine which 
partitions need further exploration. This effect shows 
up in the average execution time (Figure 14 and Figure 
15). The curves go up monotonically with increasing 
branching factors. This means that the larger CPU 
processing overhead associated with larger branching 
factors outweighs the benefits of touching less data. Cf 
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Figure 12: Percentage of Index Entries Accessed vs. 
Branching Factor. Jinp8ct of the branching factor of 
the VP tree, with additive u adjustment 
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Figure 13: Percentage of Index Entries Accessed vs. 
Branching Factor. Impact of the branching factor of 
the VP tree, with multiplicative u 4ustment 
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Figure 15: Execution Time per Query vs. Branching 
Factor. Jinpact of the branching factor of the VP tree, 
with multiplicative u adjustment 

course, since our experiment is completely based on 
main memory implementations, this conclusion may 
not hold when the data volume is so big that the I/O 
cost becomes dominant. 

5 Related Works 

The Vantage-Point Tree method is proposed in 
mN92] mainly as a main-memory-based method 
for multi-dimensional nearest-neighbor search. No at- 
tempt has been made in that work to take advantage 
of the characteristics of image data and to apply it to 
a disk-based environment. The major contribution of 
our work is the development of the optimistic u value 
adjustment mechanism that at once solves the prob- 
lem of choosing the initial u value and achieves the 
critical balance between recall and precision rates by 
dynamically tailoring the range of search to the char- 
acteristics of the queries. [ARYA92] proposes another 
algorithm to the multi-dimensional nearest-neighbor 
search problem based on a randomization approach. 
However, this algorithm doesn’t seem to be as effective 
as the Vantage-Point Tree method. Both [JAGASl] 
and [MEHR93] describe experiments to retrieve image 
objects based on their shapes. However, the emphasis 
of these works is on the image representation schemes 
to support occlusion or partial matching, rather than 
on efficient indexing mechanisms to speed up the ac- 
cess. IBM Almaden’s QBIC project [NIBL93] supports 
various mechanisms to do semi-automatic segmenta- 
tion and interactive retrieval. However, relatively lit- 
tle emphasis has been put in efficient indexing for im- 
age objects. [GROS92][GROS89] described an index- 
ing scheme very similar to the one presented here in 
that they also have a pruning mechanism based on the 
principle of triangular inequality. However, their in- 
dex structure is still based on absolute feature values 
rather than the relative distance among feature vec- 
tors. As a result, the traversal through the index tree 
becomes unnecessarily complicated. Moreover, their 
method doesn’t include a mechanism corresponding 
to our dynamic u adjustment scheme. Consequently, 
their method probably won’t perform as well as ours, 
especially when the distances between the query im- 
ages and their nearest neighbors exhibit a large dy- 
namic range. 

6 Conclusion 

Indexing improves the speed of image data access be- 
cause it substitutes index manipulation for raw image 
manipulation, and because it reduces the amount of 
search efforts at run time. The first reason is prob- 
ably more significant since the I/O and computation 
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requirements of manipulating images could easily over- 
whelm most current workstation-class machines. We 
formulate the content-based image indexing problem 
as a multi-dimensional nearest-neighbor search prob- 
lem, and choose a newly developed index algorithm 
called the Vuntuge-Point Dee method to solve this 
problem. This algorithm is particularly effective for 
nearest-neighbor search because it uses relative dis- 
tance as the decomposition criterion rather than the 
absolute feature values used in conventional multi- 
dimensional spatial data structure. One of the most 
important performance parameters for this indexing 
algorithm is the choice of u. We develop an optimistic 
algorithm to dynamically adjust the u value in order 
to achieve a better balance between precision and re- 
call rates against a wide variety of workloads. This 
algorithm also successfully relieves users of the burden 
of choosing u values, an important factor that deter- 
mines whether the indexing scheme is useable in prac- 
tice. Based on our preliminary performance study, one 
only needs to touch less than twenty percent of the 
database for well-behaved queries, i.e., the query im- 
ages are relatively close to their nearest neighbors in 
the database. We also perform extensive performance 
studies to investigate the impacts of various configura- 
tion and workload parameters on the performance of 
this algorithm. 

As for future work, there are three possible direc- 
tions that we are currently working on. First, explor- 
ing the interaction between feature selection and index 
structures. Right now we developed the image index- 
ing scheme without regards to the nature of extracted 
features. In practice, the index algorithm can achieve 
the optimal performance only when the feature vectors 
assume certain characteristics. For example, in our 
case, the VP tree method works best when the feature 
vectors are uniformly distributed in the K-dimensional 
space. Especially in image databases, choosing the op 
timal feature set seems to us the single most impor- 
tant issue for solving the content-based image retrieval 
problem. Second, we plan to further explore the idea 
of multiple index structures and experiment with con- 
current execution of multiple indexed searches. Lastly, 
we are interested in extending the current implemen- 
tation to a disk-based environment and integrate with 
parallel I/O capabilities provided by advanced disk ar- 
ray technologies. 
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