
Efficient Incremental Garbage Collection for
Client-Server Object Database Systems

Laurent Amsaleg Michael Franklin*
INRIA Rocquencourt University of Maryland

Laurent .Amsaleg@inria.fr franklin@cs.umd.edu

Olivier Grubert
IBM Research Division

gruber@almaden.ibm.com

Abstract

We describe an eficient server-based algorithm
for garbage collecting object-oriented databases in a
client/server environment. The algorithm is incremen-
tal and runs concurrently with client transactions. Un-
like previous algorithms, it does not hold any locks on
data and does not require callbacks to clients. It is fault
tolerant, but performs very little logging. The algorithm
has been designed to be integrated into existing OODB
systems, and therefore it works with standard implemen-
tation techniques such as two-phase locking and write-
ahead-logging. In addition, it supports client-server per-
formance optimizations such as client caching and flexible
management of client buffers. We describe an implemen-
tation of the algorithm in the EXODUS storage manager
and present results from an initial performance study.

1 Introduction

A primary strength of Object Oriented Database Man-
agement Systems (OODBMS) lies in their ability to
model complex objects and the inter-relationships among
them. This modeling power, while allowing for a more
natural representation of many real-world application do-
mains, also raises new problems in the design of funda-
mental lower-level functions such as storage management
and reclamation. It has long been recognized that explicit
storage management (e.g., malloc() and free()) places a
heavy burden on the developers of large programs. Man-
ual detection and reclamation of garbage increases code
complexity and is highly error-prone, raising the risk of
memory leaks and dangling pointers. For these reasons
automated garbage collection for programmin languages
has long been an active area of investigation E Wi192].

The shared and persistent nature of databases provides
further motivation for automated garbage collection. Be-

‘This author’s work was partially performed as a Visiting Fle-
searcher at INRIA Rocquencourt, and was supported by NSF RIA
IRI-94-09575 and a grant from the University of Maryland General
Research Board.

tThis author’s work was performed while he was with INRIA
Rocquencourt .

Permission to copy without fee all OT part of this material is granted
provided that the copies are not made OT distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, OT to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

cause a database is shared, the knowledge of data in-
terconnection may be distributed among many programs
and/or users, making it difficult for programmers to de-
termine when to explicitly reclaim storage. Furthermore,
sharing and persistence increase the potential damage
caused by storage management errors, as mistakes made
by one program can inadvertently affect others. These
considerations argue for a very cautious approach to stor-
age reclamation, however, neglecting to reclaim wasted
space can degrade performance due to increased I/O.

In an OODBMS, the notion of persistence (and hence,
garbage) can be tied to reachability. Reachability is a sim-
ple, implicit way to express persistence that is orthogonal
to object type [ZM90]. The database is an object graph
in which some objects are designated as persistent roots.
Objects that can be reached by traversing a path from
a root can persist beyond the execution of the transac-
tion that created them. Objects that are not reachable
from a root or from the transient program state of an on-
going transaction are garbage; such objects are inaccessi-
ble and thus, they can be safely reclaimed. Reachability-
based persistence is used in the Gemstone [BOS91] and
02 [BDKSl] systems, and garbage collection is required
in the Smalltalk binding for the ODMG object database
standard [Cat94]. In general, however, most existing sys-
tems still rely on explicit object deallocation and/or off-
line storage management utilities. The lack of acceptance
of reachability-based persistence is due in part to the ab-
sence of efficient implementation techniques that can be
integrated with existing systems. The work described
here is aimed at addressing this need.

1.1 OODBMS Garbage Collection Issues

In recent years, there has been increasing research ac-
tivity in OODBMS garbage collection [But87, FCW89,
ONG93, KW93, YNY94]. OODBMS have several fea-
tures that can impact the correctness and/or performance
of traditional garbage collection approaches:

Concurrency: A garbage collector must co-exist with
concurrent transactions and must not adversely impact
their ability to execute.

Client Caching: OODBMS typically cache and up-
date data at clients. The dynamic, replicated, and
distributed nature of these updates makes client-based
garbage collection problematic. Server-based collection is
difficult because a server may have an inconsistent snap-
shot of the database.

Atomic Transactions: The rollback of partially
completed transactions violates the fundamental assump-
tion that unreachable objects always remain unreachable.

42

Persistence: Modern garbage collection algorithms
assume that the volume of live (i.e, non-garbage) objects
is small. Persistence invalidates this assumption.

Fault Tolerance: OODBMS provide resilience to sys-
tem failures. Garbage collection must also operate in a
fault tolerant manner.

Disk-Resident Data: Much of the data in an
OODBMS is on disk - the collector cannot ignore I/O.
1.2 Overview of the Paper
In this paper, we describe a client-server OODBMS
garbage collector that has the following characteristics:

It is server-based, but requires no callbacks to clients
and performs only minimal synchronization with
client transactions.

It works in the context of ACID transactions [GR93]
with standard implementation techniques such as
two-phase locking and write-ahead-logging.

It is incremental and non-disruptive; it holds no locks
on data and requires minimal logging. It has been
designed to be efficient with respect to I/O.

It is fault tolerant - crashes of clients or servers
during garbage collection will not corrupt the state
of the database.

It can co-exist with performance enhancements such
as inter-transaction caching at clients and “steal”
buffer management between clients and servers.

It has been implemented and measured in the client-
server EXODUS storage manager.

Similar to other recent work on DBMS garbage col-
lection [CWZ94, YNY94] we use a partitioned approach
in order to avoid having to scan the entire database be-
fore reclaiming any space. In contrast to the other work,
which advocated copying or reference counting, we use a
non-copying Mark and Sweep algorithm.

The remainder of this paper is structured as follows:
Section 2 describes our architectural assumptions and
motivates our choice of garbage collection approach. Sec-
tion 3 describes three problem scenarios that must be
addressed when adapting this approach to a client-server
OODBMS. Section 4 describes the partitioned Mark and
Sweep collection algorithm. Section 5 details the im-
plementation of the algorithm in EXODUS. Section 6
presents an overview of our performance studies on the
implemented system. Section 7 discusses related work.
Section 8 presents conclusions and future work.

2 Setting the Stage
2.1 Client-Server OODBMS Architecture

Client-server OODBMS architectures typically use data-
shipping - data items are sent from servers to clients
so that query processing (in.addition to application pro-
cessing) can be performed at the clients. We focus on
page servers, in which physical data units (i.e., pages) are
transferred between servers and clients [DeWSO, CFZ94].
Upon request, data pages required by an application are
replicated and brought into the client’s local memory.

These pages may be cached at the client both within a
transaction and across transaction boundaries. Clients
perform updates on their cached page copies. If clients
follow a “steal” buffer management policy with the server,
then these updated pages can be sent back to the server
at any time and in any order, during the execution of
the updating transaction. This flexibility, while provid-
ing opportunities for improved performance, also raises
potential problems for garbage collection algorithms.
2.2 Assumptions
Our solution depends upon several assumptions about the
OODBMS architecture:

Assumption Al: All user operations that access or
modify object pointers are done using two-phase
locks that are held until the end of transaction (i.e.,
degree 3 consistency [GR93]).

Assumption A2: The validity of object identifiers
(OIDs) is maintained only for those OIDs that reside
in the database or in the transient state (e.g., pro-
gram variables, stacks, etc.) of active transactions.
For example, an OID extracted from the database
and stored elsewhere is not guaranteed to be valid
for use by a subsequent transaction.

Assumption A3: The system follows the write-ahead-
logging (WAL) protocol between clients and the
server. That is, a client sends the server all log
records pertaining to a page before it sends a dirty
copy of that page to the server, and sends the server
all log records pertaining to a transaction prior to
the commit of that transaction.

Assumption A4: Client buffering follows a “force”
policy: all pages dirtied by a transaction are copied
to the server prior to transaction commit. The force
is to the server’s memory (i.e., no disk I/O is re-
quired) and clients can retain copies of the pages.

Assumptions Al and A2 are fundamental to the algo-
rithm’s correctness; A3 and A4 are important details on
which the implementation of the algorithm is based. A3
must be supported by any client-server DBMS that im-
plements WAL-based recovery at servers (e.g., EXODUS
[Fra92], and ARIES/GSA [MN94]). A4 simplifies recov-
ery and avoids the need for client checkpoints in such sys-
tems. The tradeoffs involved in relaxing A4 are discussed
in [Fra92], [FCL93], and [MN94]. For the purposes of
garbage collection, relaxing A4 would require additional
coordination with the buffer manager to determine when
certain page copies have arrived at the server.
2.3 Choosing a Collection Technique
The main approaches to storage reclamation are refer-
ence counting and tracing-based garbage collection. Ref-
erence counting was deemed inappropriate for our pur-
poses due to its inability to collect unreachable cycles
(i.e., mutually-referential garbage objects) and the over-
head of maintaining reference counts in a fault tolerant
manner. Tracing collectors can be divided into Mark and
Sweep algorithms, which first mark all reachable objects
and then reclaim the unmarked ones, and copy-based al-
gorithms which copy live objects to new locations before
reclaiming an entire storage area. Given the assumptions

43

Figure 1: Transaction Rollback Problem

of the previous section, we believe that a Mark and Sweep
approach can be more efficient and easier to integrate into
an existing OODBMS for the following reasons:

l

0

l

3

Copying causes objects to move between pages,
which can require locks and can complicate recov-
ery [MRVSl, KW93, YNY94].

The clustering produced by a copying-based collec-
tor may be in conflict with database requirements or
user-specified hints (e.g., [BD90, GA94]). For exam-
ple, generation scavenging [Ung84], tends to cluster
objects by their age.

Although copying can reduce fragmentation, slotted
pages, which are used in many database systems, al-
low objects to be moved within a page, mitigating
the potential fragmentation problems of sweeping.

Problem Scenarios
The most straightforward way to implement a Mark and
Sweep garbage collector in an OODBMS would be to run
it at a server as a single monolithic transaction. Such an
implementation, however, would result in a synchroniza-
tion bottleneck that could severely impact the ability for
user transactions to run. Ideally, we would like to run
the Mark and Sweep algorithm outside of the transaction
mechanism; however, a traditional Mark and Sweep algo-
rithm running without transaction protection in a client-
server OODBMS could run into a number of correctness
problems. We have identified three specific types of prob-
lems that can arise in a client-server OODBMS that sup-
ports the “steal” buffering policy (in which pages dirtied
at clients can be sent back to a server at any time during
a transaction’s execution). These problems are described
in the following sections.
3.1 Transaction Rollback

Allowing clients to send updated pages to the server at
any time makes it possible that a garbage collector run-
ning at the server will encounter dirty (i.e., uncommit-
ted) pages. If a page containing uncommitted updates
is garbage collected, the subsequent rollback of those up-
dates may be difficult. An example of this problem is
shown in Figure 1. In this figure (and in the subsequent
ones) the solid black squares represent the persistent root
and objects are represented by circles. Updated objects
are shaded in order to distinguish between before and
after states of the update operations.

In step 1 of the figure, a transaction running at the
client updates object A by removing its reference to ob-
ject B and then flushes a copy of the updated page to

Client Side I Server Side

step 3

Flush
Page 2

step 4

Dangling
Pointer

Figure 2: Multi-Page Update Problem

the server. In step 2, after receiving the updated page,
the server runs the garbage collector which reclaims ob-
ject B, as it is unreachable. In step 3, the transaction is
rolled back. If the rollback does not take garbage col-
lection into account (as shown in the figure) then object
A will contain a dangling reference to an object that no
longer exists. This problem arises because transaction
rollback violates a fundamental invariant of garbage col-
lection, namely that unreachability is a stable property of
an object. Note that this is a non-trivial problem for im-
plementing rollback, as the page containing object B was
never actually updated by the aborted transaction.

3.2 Partial Flush of Multi-page Updates

Similar problems can arise even in the absence of aborts,
when there are updates to inter-object references that
span page boundaries. The garbage collector may see an
inconsistent view of such updates, as there is no guaran-
tee that all of the relevant pages will be sent to the server
prior to garbage collection. There are two specific prob-
lems that can arise: 1) partial flush of updated objects,
and 2) partial flush of newly created objects. Figure 2
shows an example of the first problem. In step 1, the
client changes the parent of object C from object A to
object B, which resides on a different page than C. The
page containing C is then sent to the server, but the page
containing B (the new parent) is not. In step 2 the server
runs garbage collection, and reclaims object C because it
appears to be unreachable. In step 3 the page containing
B is sent to the server. As shown in step 4, the database is
now corrupted, as object B contains a dangling reference.

The second problem that can arise due to partial
flushes involves the creation of new objects, and is shown
in Figure 3. In step 1, the client creates a new object C
that is referenced by object A, which resides on a different
page. The page containing the new object C is then sent
to the server, but the page containing the parent object
A is not sent. In step 2, the garbage collector incorrectly
determines that object C is unreachable, and reclaims it.
This will result in a dangling reference when the page
containing A is sent to the server.

It should be noted that in general, it is not possi-
ble to produce an ordering of page flushes that would
avoid these problems, as there can be circular depen-
dencies among pages due to multiple updates. Further-
more, unlike the transaction rollback problem discussed

44

problems described in the previous section. The algo-
rithm is initially presented for a monolithic (i.e., non-
partitioned) database, and then extended to allow for in-
dependent collection of database partitions. First, how-
ever, we discuss the intuition behind the algorithm.
4.1 Enforcing Correctness
A Mark and Sweep algorithm associates a “color” with
each object in the object space. In our algorithm, an ob-

Figure 3: New Object Allocation Problem ject can have one of two colors: live or garbage; At the
start of the collector, all object colors are initialized to
be “garbage”. Colors are maintained only during garbage
collection and are kept in special color maps that are not
part of the persistent object space. Mark and Sweep is a
two phase algorithm. In the first (or marking) phase, the
object graph is traversed from the root(s) of persistence.
All objects encountered during this traversal are marked
(i.e., colored) as live objects. In a database system (ignor-
ing partitions for the moment), the roots of persistence
are: 1) special database root objects that are entry points
into the database object graph, and 2) program variables
of any active transactions which may contain pointers

A

•3

Create A: redone step 3 into the database. Once the entire graph has been tra-

OB
Create 8: redone
Create C: FAILED (No Space Left)

versed, the weeping phase scans the object space, re-
claiming all obiects that are still marked as garbage. At

Figure 4: Redo Failure During Recovery
the end%f the sweeping phase, garbage collec%on 1; com-
plete.

previously, both of these scenarios can occur even if the
garbage collector reads only committed versions of pages.

3.3 Overwriting Collected Pages

A third set of problems involves the overwriting of
garbage collected pages. One way that this can occur
is during transaction REDO. If an operation uses space
on a garbage collected page that is not reflected on sta-
ble storage at the time of a crash, then REDO could fail
due to a lack of free space on the page. This problem is
illustrated by Figure 4.

In step 1, the client creates 3 objects on a copy of a
page that had previously been garbage collected at the
server. The disk-resident copy of the page, however, does
not yet reflect the collection - it still contains a garbage
object that consumes space (represented by the hexagon
in the figure). In step 2, the client commits, sending along
the updated page and the associated log records; the log
records are forced to stable storage. In step 3, the sys-
tem crashes before the updated page reaches the disk and
recovery is initiated. REDO fails because it attempts to
re-create the three new objects on the uncollected version
of the page, which has free space for just two of them.

A less serious instance of the overwriting problem can
arise when the server sweeps a page and a client updates
its (unswept) cached copy of that page. In this case,
the client will overwrite the work of the collector when it
sends the dirty page back to the server. Unlike the pre-
vious problem, this overwriting is a matter of efficiency
rather than correctness, however, the probability of such
overwriting is increased significantly by inter-transaction
page caching, which allows clients to retain cached page
copies over long periods of time.

4 Partitioned Mark and Sweep
We now present a partitioned Mark and Sweep algorithm
that does not execute as a transaction, yet avoids the

Our algorithm is an incremental Mark and Sweep that
has been extended to enforce the preservation of three
invariants. These invariants are similar in spirit to invari-
ants that have been proposed for traditional incremental
collectors [Dij78, Bak78]. In contrast to that earlier work,
however, these invariants reflect the transactional nature
of database accesses. The invariants are:

Invariant 11: When a transaction cuts a reference to an
object, the object is not eligible for reclamation until
the first collection that is initiated after the comple-
tion (i.e., commit or abort) of that transaction.

Invariant 12: A new object is not eligible for reclama-
tion until the first collection that is initiated after
the completion of the transaction that created it.

Invariant 13: Space reclaimed by the sweeper can be
reused only when the freeing of that space is reflected
on stable storage (i.e., in the stable version of the
database or the log).

Invariant 11, in conjunction with assumption Al (Sec-
tion 2.2), protects against the rollback problem described
in Section 3.1, as it ensures that only objects made un-
reachable by committed transactions are eligible for recla-
mation. It also (in conjunction with assumption A4)
avoids the partial flush problem of Section 3.2; a refer-
ence cut will be ignored by any garbage collector that
runs concurrently with the cutting transaction and a col-
lector that runs after the transaction commits will see
only the after images of all pages updated by the trans-
action (due to A4). Thus, no collection will be done based
on a partially flushed update.

In a similar manner, Invariant 12 protects against the
incorrect reclamation of newly created objects due to par-
tial flushes. Taken together, 11 and 12 allow the collector

45

to run incrementally and concurrently with transactions,
without having to obtain locks. 11 and I2 protect objects
from the problems that could arise when the collector
observes uncommitted states of the database. Further-
more, because 11 and 12 protect objects for the duration
of any transaction that could cause them to be reclaimed,
the collector can ignore the program state (i.e., program
variables, stacks, etc.) of any transactions that are con-
currently executing at the clients.’

It is important to note that 11 and 12, along with the
assumptions listed in Section 2.2 ensure that any object
that is considered to be garbage at the end of a garbage
collection pass is truly unreachable, and can safely be
collected. The key insight is that assumption Al requires
that all accesses to pointers in the database be performed
in the context of strict two-phase locking, and A2 re-
quires that all object pointers used by a transaction be
obtained from the database. Observe that an object be-
comes garbage only when the transaction that cuts the
last reference to the object commits. Such a transaction
must have obtained a write lock on the last reference,
so therefore, Al ensures that at the time that the last
reference is cut, no other concurrent transaction could
have accessed the reference. A2 ensures that no subse-
quent transactions will be able to use the reference. Thus,
Al and A2 taken together ensure that the only transac-
tion that can possibly “i-e-attach” an object to the object
graph is the transaction that caused it to become discon-
nected from the graph. Assumption A4 ensures that any
garbage collection pass that begins after the commit of
such a transaction will see all of the pages updated by
that transaction, and thus, will see the reattachment.

While 11 and 12 protect against problems that could
arise during normal transaction operation and rollback,
13 protects against problems that could arise during crash
recovery - it ensures that REDO reclaims space freed by
sweeper before attempting to REDO any operations that
may have used that space.’ The crux of the garbage
collection algorithm is the efficient maintenance of these
invariants, which we detail in the following subsections.

4.2 Protecting Cut References
In order to enforce 11, we introduce a garbage collector
data structure called the Pruned Reference Table (PRT),
which contains entries for cut references. Each entry con-
tains the OID of the referenced object and the Transac-
tion ID (TransID) of the transaction that cut the refer-
ence. By considering the PRT as an additional root of
persistence, the garbage collector is forced to be conserva-
tive with respect to uncommitted changes. That is, any
object that has an entry in the PRT will be marked as
live and will be traversed by the marker (if it isn’t already
marked live) so that its children objects will be marked as
well. Therefore, a single PRT entry transitively protects
all of the objects that are reachable from the protected
object.

In order to make the necessary entries in the PRT,
all updates to pointer fields in objects must be trapped.

lIt should be noted that 11 and I2 are conservative conditions
for solving the partial flush problem; relaxing them is an interesting
area of future work.

2The sweeping of a page never needs to be undone since 11 and
12 ensure that any reclaimed objects were disconnected from the
object graph by committed transactions.

Traps of this form are typically implemented using a wite
barrier [Wil92, YNY94]. A write barrier detects when an
assignment operation occurs and performs any bookkeep-
ing that is required by the garbage collector. Recall that
the garbage collector (and hence, the PRT) reside at the
server while updates are performed on cached data copies
at clients. Thus, a write barrier in the traditional sense
would be highly inefficient. To solve this problem, we
rely on the fact that clients follow the WAL protocol
(Assumption A3). The WAL protocol ensures that log
records for updates will arrive at the server prior to the
arrival of the data pages that reflect the updates. At the
server, the incoming log records are examined, and those
that represent the cutting of a reference will cause a PRT
entry to be made. Note that unlike previous work that
exploits logs (e.g., [KW93, ONGSS]), this algorithm pro-
cesses log records as they arrive at the server - prior to
their reaching stable storage.

When a transaction terminates (commits or aborts),
its entries in the PRT are flagged. These flagged entries
are removed prior to the start of the next garbage collec-
tion (i.e., the start of the next marking phase). The PRT
entries can not be removed exactly at the time of transac-
tion termination even though all dirtied pages are copied
to the server on commit. This is because an on-going
marker may have already scanned the relevant parts of
the object graph using the previous copies of the objects.
The next time the marker runs, however, it is known that
it will see the effects all of the updates made by the com-
mitted transaction, so the PRT entries for that transac-
tion can be removed. Also, if no collection is in progress
when a transaction terminates, the PRT entries for that
transaction can be removed immediately.
4.3 Protecting New Objects
To protect new objects, we introduce another structure
called the Created Object Table (COT). The COT is used
to enforce 12. As with the PRT, the COT is maintained
at the server and is updated based on log records received
from the clients. When a log record reflecting the creation
of an object arrives at the server, an entry is made in the
COT. This entry contains the OID of the new object and
the TransID of the transaction that created it. In contrast
to the PRT, which is used during marking, the COT is
used during the sweeping phase of garbage collection.

The sweeping phase scans the object space linearly in
order to maximize I/O bandwidth. It reclaims any ob-
jects that have been left colored as garbage by the marker.
For each page, the sweeper checks to see if there are en-
tries in the COT for any of the objects on that page, and
if so, it does not reclaim those objects, regardless of their
color. The collector does not need to traverse the objects
protected by the COT because an object referenced by a
newly created object can only be: 1) another new object
(which must be in the COT), 2) an object that is also
referenced elsewhere (which will be colored “live” by the
marker), or 3) an object referenced solely by this new
object. An object in this last category must have had a
reference read from another object and then cut. Such
an object must therefore be protected by the PRT.

In order to avoid unnecessary I/O the sweeper checks
the color map and COT entries for the page before read-
ing the page from disk. If the page has no garbage objects
on it, then the sweeper simply moves on to the next page.

46

If the page has no live objects on it, then the sweeper
deallocates the page - without reading it in from disk.
The sweeper can be run incrementally, with the sweep of
a single page being the finest granule of operation.3 The
WAL rule (assumption A3) ensures that the sweeper sees
all COT entries for the pages it sweeps. Removal of COT
entries is handled in the same manner as PRT entries.

4.4 Fault Tolerance
The garbage collector has a simple approach to fault tol-
erance: in the event of a server crash during a garbage
collection, the interrupted collection cycle is simply dis-
carded. If a system crash occurs during the marking
phase, then no changes had yet been made to data pages,
so there is no danger of corrupting the database and thus,
no work to be done for recovery. If a system crash occurs
during the sweeping phase, then some pages will have
been swept and some will have not. Unswept pages can
simply be ignored - they will still contain garbage ob-
jects, but these will be reclaimed by the next garbage
collection. As described in Section 3.3, however, pages
that have been swept could cause errors during restart
REDO. This problem is avoided by enforcing 13.

Recall that 13 requires the effects of a page sweep to be
reflected on stable storage before the space freed on the
page is re-used. In a sense, it requires that the sweep of
a page be treated as if it were a “nested top-level trans-
action” [GR93]. If slotted pages are being used, then one
way to enforce 13 is to have the sweeper log the color map
for each page that it modifies. The color map serves as
a logical log record for the sweep. Color maps contain
a single bit for every slot in the page, and therefore are
quite small. Furthermore, no before image data is logged,
as page sweeps never need to be undone.4

It is correct to restart a new garbage collector from
scratch after recovery is complete, because at that point,
the server has a transaction-consistent snapshot of the
database so the old PRT and COT entries are not needed.
Thus, an important side effect of this simple approach to
fault tolerance is that the PRT and COT do not need to
be managed in a fault tolerant manner. That is, during
normal execution, the PRT and COT entries can be kept
in memory and do not need to be logged.

4.5 Preventing Overwrite of Collected Pages
Logging protects the system from problems that can arise
during transaction REDO, however, it does not protect
from sweeper work being wasted due to page overwrites.
This problem can be reduced in two ways. First, the
sweeper can try to obtain a “no-wait” instant read lock
on a page. Such a lock is released immediately upon be-
ing granted, and the sweeper does not block if the lock
is not granted. If the lock is not granted, then some
transaction has a write lock on the page. In this case,
the sweeper simply skips the page, as any work that it
does will only be overwritten when the transaction hold-
ing the lock commits. Secondly, the overwrite problem
is exacerbated in systems that perform inter-transaction
client caching. For such systems it is possible to have the
sweeper exploit the cache consistency mechanism in order

3A latch must be held on the current page being swept in case
a new copy of that page arrives at the server.

4As described in Section 5, logging can be even further reduced
if media recovery is not to be supported.

I L.ocal
Persistent Root

0 Object

0 Incoming
Reference List

- Reference
Partition A Partition B

Figure 5: Partitions and Incoming Reference Lists

to reduce the potential for clients to update unswept page
copies. Once such mechanism is described in Section 5.

4.6 Collecting Partitions
In this section we briefly discuss how to extend the mono-
lithic algorithm to allow independent garbage collection
of disjoint partitions of the object space. We assume that
partitions are sets of pages. The actual partitioning of the
object space can be done according to physical consider-
ations (e.g., file extents) or logical considerations (e.g.,
by class or relation). Partitions must be disjoint, how-
ever, objects may reference each other across partition
boundaries. In order to allow for partitions to be col-
lected independently, each partition must have an associ-
ated list of incoming references that originate from other
partitions. This list is called the Incoming-Reference List

r

IRL). Conceptually, the IRL contains the OID of the
local) destination object and the ID of the partition in

which the (foreign) source object resides for each such
reference. The IRL of a partition serves as an additional
root of persistence for the partition-local collection. Sim-
ilar schemes are often used by distributed garbage col-
lection algorithms to handle inter-node references (e.g.,
[SGPSO, ML94]). F’g 1 ure 5 shows an example of two par-
titions containing objects with cross-partition references.
Note that the objects themselves point directly to each
other and do not involve the IRL.

The IRL mechanism is transparent to programmers,
and therefore, updates that may require IRL modifica-
tions must be trapped. This is handled in the same man-
ner as the PRT and COT: the server examines incom-
ing log records. When the creation of a cross-partition
reference is detected, an entry is made in the appropri-
ate IRL. The removal of IRL entries is performed by the
garbage collector. The marking phase traverses a parti-
tion from the persistent roots (including the IRL); when
it encounters a reference to an object in a different parti-
tion, it marks the corresponding entry in the remote IRL
and stops traversing that path. At the end of the mark-
ing phase, any unmarked remote IRL entries originating
from the currently collected partition can be removed,
provided that the transaction that created the entry has
committed (similar to removing PRT and COT entries).

There are two drawbacks to this approach. First, in
contrast to the PRT and the COT, IRLs must be fault-
tolerant. Upon recovery all IRLs must be restored to
their state at the time of the crash; otherwise, some re-
motely referenced objects may be collected erroneously.
Thus, IRLs must be maintained in database pages (rather
than with in-memory structures), and updates to them
must be logged. Secondly, as is well known, this type of
approach can not collect cycles of garbage that are dis-
tributed across multiple partitions. Separate algorithms
such as Hughes’ distributed collector [Hug851 can be used
to collect such cycles periodically. In general, however,

47

the partitioning of the object space should be done in a
way that minimizes the number of cross-partition refer-
ences in order to limit the number of such cycles and to
keep the IRLs small.

5 Implementing the Garbage Collector
As stated in Section 1, the design goals for garbage col-
lection include: 1) it should impose minimal overhead on
client transactions, 2) it should be efficient and effective in
collecting garbage, and 3) it should be relatively straight-
forward to integrate the collector in existing client-server
database systems. In order to assess the algorithm in
light of these requirements, we have implemented a single-
partition version of it in the client-server version of the
EXODUS storage manager [Fra92, Exod93].

5.1 The EXODUS Storage Manager
Our initial implementation is based on the EXODUS stor-
age manager ~3.1 [Exod93]. EXODUS is a client-server,
multi-user system which runs on many Unix platforms. It
has been shown to have performance that is competitive
with existing commercial OODBMS [CDN93]. EXODUS
supports the transactional management of untyped ob-
jects of variable length, and has full support for indexing,
concurrency control, recovery, multiple clients and multi-
ple servers. Data is locked using a strict two-phase lock-
ing protocol at the page or coarser granularity. Recovery
is provided by an ARIES-based [Moh92] WAL protocol
[Fra92]. The EXODUS server is multi-threaded - every
user request is assigned a thread when it arrives at the
server; the server also has its own threads for log manage-
ment, etc. The server supports asynchronous I/O (using
multiple I/O processes) so some threads can run while
other threads are waiting for I/O. EXODUS extends a
traditional slotted page structure to support objects of
arbitrary length [Car86]. “S mall” data items (those that
are smaller than a page) and the headers of larger ones are
stored on slotted pages. Internally, objects are identified
using physical OIDs that allow pages to be reorganized
without changing the identifiers of objects.

EXODUS is a page server; updates are made by clients
to their local copies and the resulting log records are
grouped into pages and sent asynchronously to the server
responsible for the updated pages. Dirty pages can be
sent back to the server at any time and in any order
during the execution of a transaction; a WAL protocol
ensures that all necessary log records arrive at the server
before the relevant data page. At commit time, copies
of any remaining dirty pages are sent to the server. The
client retains the contents of its cache across transaction
boundaries, but no locks are held on those pages. Cache
consistency is maintained using a check-on-access policy
(based on “Caching 2PL” [Cargl]).

For recovery purposes all pages are tagged with a Log
Sequence Number (LSN) which serves as a timestamp for
the page. The server keeps a small list of the current LSNs
for pages that have been recently requested by clients.
When a client requests a lock from the server, the server
checks this table, and if it can not determine that the
client has an up-to-date copy of the page, it sends a copy
of the page along with the lock grant message.

To summarize, the EXODUS storage manager sup-
ports the fundamental assumptions on which the garbage
collector depends (see Section 2.2), and also has desir-

able properties such as slotted pages. In addition, the
EXODUS server uses non-preemptive threads and asyn-
chronous I/O, which simplify the implementation of the
garbage collector. However, the system also provides
features that present challenges for garbage collection,
such as client caching, a steal policy between clients and
servers, asynchronous interactions between clients and
servers, a streamlined recovery system, and optimizations
to avoid logging in certain cases.
5.2 Implementation Overview
The implementation of the garbage collector in EXODUS
is currently a proof-of-concept implementation. It is well
integrated with concurrency control and recovery and has
been heavily tested; including its fault tolerant aspects.
However, there are some limitations of the current imple-
mentation. First, as stated above, the framework is in
place to support cross-partition references (we currently
use an EXODUS “volume” as a partition) and do much of
the checking that is needed to manage IRLs, but the IRL
scheme is not yet fully implemented. Second, it collects
only small-format objects. The extension to large-format
objects, is straightforward but was not necessary for our
purposes. Third, because the Exodus storage manager
does not know the types of the objects that it stores, we
store a bitmap in the initial bytes of the data portion
of each object. The bitmap indicates which OID-sized
ranges of bytes in the object contain actual OIDs and is
used by the marker during its traversal. These bitmaps
are created automatically when objects are allocated us-
ing a C++ constructor. Finally, as discussed in Section 6,
the scheduling of the garbage collector with respect to
other EXODUS thread activity is not fully tuned to bal-
ance collection and transaction processing.

The modifications that were made to EXODUS can
be classified into two categories: 1) garbage collection-
oriented bookkeeping during normal processing, and 2)
the garbage collection algorithm itself. During normal
processing, the server scans incoming log records to de-
termine if the logged updates require any entries to be
made in the garbage collector data structures.

In order to add garbage collection to the EXODUS
server, we created a new type of server thread called
the gcThread. When a collection starts on a partition,
a new gcThread is spawned. The gcThread initializes
the garbage collector data structures, runs the marker
phase and then runs the sweeper phase. At the end of
the sweeper phase, the gcThread terminates. At present,
the scheduling of the gcThread works as follows: when
the gcThread gets the processor, it starts a timer (cur-
rently set at 50 msec). If the timer expires during the
marking phase, then the marker finishes examining the
current object and then gives up the processor. If it ex-
pires during the sweeping phase, then it finishes sweeping
the current page and then gives up the processor. The
gcThread is woken up (after a specified sleep time) when
there are no client requests waiting for the processor.

The implementation required approximately 4000 lines
of new or modified code on the server-side; the bulk of
which was for the gcThread itself. The client-side re-
quired only 200-300 lines of new or modified code. The
algorithm was implemented with only minor changes to
the description in Section 4. Three implementation is-
sues, however, deserve mention. First, we exploit the

48

cache consistency mechanism to reduce the potential for
clients to overwrite the work of the sweeper. The sweeper
updates the sequence number (LSN) on each page that
it modifies. Any transaction that subsequently tries to
lock such a page will then receive the swept copy even if
it already has a cached copy of the page. To avoid recov-
ery problems, however, the sequence number placed on
the page by the sweeper must be guaranteed to be lower
than the sequence number that will be placed on the page
by any subsequent client update.

The second issue arises because EXODUS has no
general support for allowing non-recovery-related server
threads to create log records. Although there are
workarounds, we chose to avoid logging completely in
the gcThread. We accomplish this by setting a flag in a
page’s header when the page is swept; the flag is cleared
when the page is read from disk. If a client obtains a
page that has the flag set, then it logs the slot allocation
information (from the page header) prior to performing
any updates on a page. In this way, log records are only
generated for those swept pages that had not been writ-
ten to disk, prior to being obtained by a client. Note that
the log record is generated only by the first transaction
to update such a swept page.

The third issue results from an optimization that
EXODUS uses to reduce logging during bulk loading and
other create-intensive operations. When a new page is
allocated to hold new objects, the individual object cre-
ations are not logged; rather, the entire page is logged
when it is copied back to the server. This optimiza-
tion, while providing better performance for EXODUS,
deprives the garbage collector of the information on in-
dividual object creations. As a result, in the EXODUS
implementation of the collector, we enter page IDS in the
COT rather than individual OIDs. When the sweeper
encounters a page that has an entry in the COT, it sim-
ply skips it. Furthermore, when a newly allocated page
arrives at the server, the server scans all of the objects on
the page to determine if any new IRL entries are required.
At present, the detection of cross-partition references is
implemented, while the creation of IRL entries is not.

6 Performance Measurements
In this section we describe an initial study of three dif-
ferent performance aspects of the implementation: 1)
the overhead added to normal client processing, 2) the
stand-alone performance of the collector, and 3) the per-
formance of the collector and client transactions when
running concurrently.

For all of the experiments presented here, the
EXODUS server was run on a SPARCstation LX with
32MB of main memory. The log and the database were
stored on separate disks, and raw partitions were used in
order to avoid operating system buffering. The size for
both data and log pages was set to 8KB. All times were
obtained using gettimeofdayo and getrusageo.

The experiments are run on one or more synthetic
database partitions consisting of simple linked-lists of
objects. Each object is 80 bytes long, and along with
EXODUS page and object headers, 84 objects can fit on
a page. The objects are allocated in contiguous pages in
an EXODUS file. The pages are fully packed with ob-
jects, however, we vary the percentage of garbage objects

in each page as an experimental parameter. We also vary
the “clustering factor” of objects in pages. This factor
determines the number of live objects on a page that the
marker can scan before crossing a page boundary. For ex-
ample, with “l/2 Clustering”, half of the live objects in a
page can be traversed before a page boundary is crossed.
6.1 Bookkeeping Overhead

The first experiment measures the overhead that is
incurred during normal transaction operation with no
garbage collection running. The overhead in this case
is due to extra work required to maintain the garbage
collector data structures (e.g., the PRT and COT). This
includes the extra log-related work that clients must per-
form and the processing of log records at the server. In
this experiment, a single client process was run on a
SPARCstation IPC with 32MB of memory; it was con-
nected to the server over an Ethernet.

Four different operations were tested: 1) object allo-
cation, 2) modification of references in existing objects,
3) modification of non-reference data in existing objects,
and 4) read-only access to objects. For each test, the
operation was performed on every object in the partition
before committing. In the tests shown here, the data
partition contained 100,000 objects (1190 pages) and was
fully clustered. Client and server cache sizes were 1500
pages - more than enough to hold all of the accessed
pages, so all clusterings would have similar performance
here. Each benchmark was run 10 times and the results
averaged. For each experiment, we report times for both
a cold and a hot server cache (except for allocate, which
creates all of the pages it accesses).

The results are shown in Table 1. For each test, times
are presented for the both unmodified and modified (with
GC code) EXODUS systems. In addition, results are
shown for cases with and without committing the trans-
actions. With garbage collection, transaction commit in-
curs the extra overhead of flagging PRT and/or COT en-
tries. As can be seen in the table, the overhead imposed
on normal operations by the garbage collection code is
quite small in all of the cases tested. The highest over-
heads were seen for the allocation of new objects; this is
due to the full-page logging for newly allocated pages in
EXODUS. For this reason, the server must scan the en-
tire new page in order to locate any cross-partition point-
ers; individual object creations on already existing pages
would not incur this cost.
6.2 Off-Line Garbage Collector Performance

The second experiment examines the cost of the
garbage collector when it is run without any concurrent
user transactions. In this case, we varied the clustering,
size, and % garbage of the partition. All experiments
were run with a server cache of 1000 pages. The parti-
tion size was varied from 500 to 10,000 pages.

Figure 6 shows the performance of the marking phase
of the collector with a fully clustered partition for vari-
ous percentages of garbage. In this case the marker per-
formance scales linearly with the partition size for all %
garbage values (except for 100% which remains near 0, as
there is nothing for the marker to do). Response time im-
proves as the garbage % is increased because the marker
traverses only live objects, and there are fewer of these.

The performance of the sweeping phase of the collector

49

I Cold Server Cache
I

Hot Server Cache
_ stlon Original 1 / w GC Overhead Original I w/GC I Overhead

Allocate 38176 1 40382 (5.8%
w/Commit 54989 I 59049 I 1 ----- I 7.4% II ..-,- I

I
I
I

I
Update Ref 52: 543 1 53165 I 1.1% II 34367 1 34920 1 1.6% i
w/Commit 62736 63381 1.0% 44607 45160 1.2%
Update Value 51091 51616 33104 33438 1.0%
w Commit 61365 61998 43327 43671 0.7%
Read-onlv 27: 586 27792 0.7% 13403 13565 1.2%
w Commit 27622 27828 0.7% 13439 13601 1.2%

Table 1: Client Slowdown (msec), Cold and Hot Server Cache

for the corresponding cases is shown in Figure 7. First,
notice that all % garbage values have similar sweeper
performance except for 0% and 100%. If the color map
shows that page has 0% garbage, then the sweeper does
not bother to fetch the page from disk. Likewise, if a
page contains only garbage, the sweeper can free the page
without fetching it from disk. The difference in perfor-
mance here, comes from the overhead for freeing a page
in EXODUS. In all other cases, the sweeper performance
is virtually independent of the percentage of garbage in a
page, as it must fetch each page that needs to be swept.
When the partition is smaller than 1000 pages, all of the
pages that the sweeper would need to fetch are already
in the buffer because of the marker. Once the partition
exceeds the cache size, then this pre-fetching effect is com-
pletely lost (in this case), as the layout of the objects in
the partition cause the marker and sweeper to scan the
partition in the same order.

Figure 8 shows how the performance of the marking
phase varies for different clustering factors. When the
partition is small enough to fit in memory (1000 pages,
here) then marking performance is not affected by clus-
tering. However, once the partition exceeds the size of
the buffer, then the marker begins to incur I/O due to
inter-page references. As can be seen in the figure, full
clustering is the best case for the marking phase, as it
allows marking to process pages sequentially, minimizing
I/O. As the clustering factor is reduced, the I/O require-
ments of the marker increase. This effect is to be expected
and raises the issue of the garbage collector’s impact on
concurrent user transactions. This issue is addressed in
the following section.

6.3 On-Line Performance
The third set of experiments examines the performance
when client transactions and the collector execute concur-
rently. Although garbage collection can improve perfor-
mance in the long run by reducing the amount of wasted
space in the database, performance can suffer while the
collector is running due to synchronization with transac-
tions and the load it places on the server. Given that our
collector performs no synchronization with client transac-
tions, and (as shown in Section 6.1) imposes small off-line
costs on clients, the main impact that it will likely have
on client responsiveness is the load placed on the server
when the collector is running.

Because the collector is fully incremental, the negative
impact on client performance can be traded off against
the execution time of the collector by varying the ag-
gressiveness with which the collector is scheduled at the
server. Favoring transactions at the server will reduce
the slowdown experienced by clients when the collector

is running. However, this slowdown will be incurred over
a longer time period, as the collector will take longer to
complete its job. Furthermore, slowing down the collector
can hurt performance by impacting its ability to quickly
free up wasted space.

In order to find a balance between transaction and
garbage collector execution, we experimented with the
scheduling of the gcThread at the server. The results of
the off-line collector experiments (described in the pre-
vious section) led us to concentrate on the costs of the
collector in an I/O-bound setting. In this experiment,
the transaction workload was generated by five client pro-
cesses, each running on a separate SPARCstation l+ with
32MB of memory. Each client repeatedly ran transac-
tions consisting of a read-only, full traversal on a private
partition. In addition, we continuously ran the garbage
collector on a sixth partition. We used partitions consist-
ing of 1200 pages (10MB) each, with full clustering and
5% garbage.5 The client caches were only 200 pages and
the server buffer was set to a total of 1200 pages. Given
the sequential nature of the transactions and the garbage
collector in this workload, the hit rate at both client and
server buffers was effectively zero.

Section 5.2 described the integration of the gcThread
with the EXODUS scheduler. In order to vary the
scheduling of the collector, we adjusted the value of the
sleep time (i.e., minimum delay) that the scheduler im-
poses on the garbage collector before allocating it a new
processor time slice. This delay is imposed on the col-
lector whenever there are client requests waiting for ser-
vice. Multiple client requests are allowed to run before
the gcThread is given the processor.

In this experiment we varied the collector sleep time
from 0 msec to 1 second. Figure 9 shows the results of
this experiment for the range from 0 msec to 100 msec.
The lowest line shows the performance of the collector
running alone, with a 200 page server buffer (i.e., the
same amount as is allocated when running concurrently
with the transactions). The flat dotted line shows the av-
erage response time for a client when the five clients are
run without the garbage collector. The other two lines
show the performance of the transactions and the collec-
tor when they are executed concurrently. As would be ex-
pected, when the collector sleep time is small, its response
time is low, and the transactions suffer. As the sleep time
is increased, this relationship reverses. What is striking
in this figure is that at a sleep time of about 20msec,
the transactions and the collector (which have similar

5To keep the garbage percentage fixed at 5% in this experiment,
the sweeper does not actually reclaim the garbage objects, however
it still performs all checking and marks the pages dirty.

50

50, I

/ho, 5, 10%
100

90 45 I
40 -

35 -

30 -

2.5

20

15 -

10 -

2.55 - 100% ?
I

1000 2500 5000 7500 10000
Partition Size (in 8k Pages)

Figure 6: Marker Performance (seconds)
(Full Clustering, Varying % Garbage)

400, I

350-

300 -

G
250 - /...01110

d
,__.” _..’

200 - ,,/’
,..’

i! __..”
I=

. ..’
150- .,.’

__./

loo-

50 ------------.---------“2
25 --_-_-_...._ _..+ .__....___.__.....--. -- -.....---‘--‘. - ~Full + *-, . ..^ ._ __-_

0 500 10001500 2500 5000
Partition size (in 8k Pages)

Figure 8: Marker Performance (seconds)
(Varying Clustering Factor, 0% Garbage)

I/O patterns in this experiment) are roughly balanced.
Beyond this point however, the transactions quickly ap-
proach their minimal response times, while the collec-
tor jumps to a response time of between 600 and 760
seconds. At present we are still investigating the inter-
actions with the EXODUS thread scheduler that cause
the sudden jump in collector response time. However,
this experiment (and others) showed that a sleep time
of 20 msec provides a reasonable balance between collec-
tor and transaction scheduling. Therefore, we used that
value in our subsequent experiments.

The final set of experiments that we describe here, ex-
plores the interaction of the collector and transactions us-
ing several different databases in both CPU-intensive and
I/O-intensive settings. The transactional load in these
experiments is the same as that used in the previous ex-
periment. In order to run in a CPU-intensive mode, how-
ever, we ran all five clients and the collector on the same,
server memory-resident partition. These results and the
results for the I/O-bound case (all running on separate
partitions, as before) are shown in Table 2.

The Single Partition numbers in the table show that
in the CPU-intensive case, the collector overhead remains
around 10% or lower. The Multiple Partition numbers

‘The collector performance continues to oscillate within this
range for the cases we tested (up to a 1 second sleep time).

80 1

70-

z 80-

9:
E” 50- 45.
F 40-

35-

-..,‘- ~ ,~~~.,.,_........._. e----.‘-” ---.----*--
1000 2500 5000 7500 10000

Partition Size (in 8k Pages)

Figure 7: Sweeper Performance (seconds)
(Full Clustering, Varying % Garbage)

650
600
550 -
500 -

G 450
9: 400 -
; 350-
I= 300 -

250 - .*..+-..*

Clients w/W
. . +...+ + _-.-. -- -+-- +_ + +.- +_ __

Clients Alone
50. GC Alone

..* .* -“w-x.G...~. ~..X.. .-.I- -.- 44 -I -., * .- a. - -1:
or I I I I I 1 1 I I 3

0 10 20 30 40 50 60 70 80 90 100
Collector Sleeping Time (msec.)

Figure 9: Effect of Collector Sleeping Time
(Full Clustering, 5% Garbage, Multiple Partitions)

show that as expected, the collector overhead is higher in
an I/O-bound system, ranging from 12% to nearly 48%.

This set of tests represents a study of the worst case
performance of the garbage collector for several reasons.
First, the garbage collector is run continuously - after
completing the collection of a partition, it immediately
begins a new collection. In practice, the garbage collec-
tor would be run only periodically, and, as discussed in
Section 6.1, only a small overhead is imposed on client
transactions when the collector is not running. Secondly,
in these tests, the client transactions read the same num-
ber of pages regardless of the amount of garbage in the
pages; thus, only the performance costs, but not the ben-
efits of garbage collection (i.e., reduced I/O) are shown
here. Finally, the tests present a constant, heavy load
to the server, which is an undesirable (but sometimes
unavoidable) condition under which to run garbage col-
lection. For example, in the multiple-partition case, the
server is completely I/O-bound.

For these reasons, we believe that the overhead im-
posed upon clients while the collector is running is rea-
sonable. It is important to stress that unlike garbage
collectors that require synchronization with client trans-
actions, in this collector the bulk of the overhead is due to
the I/O requirements of detecting and reclaiming garbage
objects. Such overhead would be incurred by any tracing-
based garbage collector, and can be adjusted due to the

51

Table 2: Client and Collector Performance (Seconds)

incremental nature of the collector.

7 Related Work
As stated in the introduction, garbage collection has
been intensively studied in the context of traditional
programming languages [Wi192]. The invariants that
an incremental collector must respect were first pro-
posed by [Dij78, Bak78]. Our work addresses the effi-
cient implementation of similar invariants in a (transac-
tional) client-server DBMS context. The earliest study
of garbage collection for object-oriented databases was
done by Butler [But87]. This work simulated the be-
havior of several kinds of collectors running against a
centralized OODBMS, but did not consider interactions
with concurrency control, recovery, and caching mecha-
nisms. More recent work has investigated fault-tolerant
garbage collection techniques for transactional persistent
systems in centralized [KW93, ONG93] and distributed
[MRVSl, MS911 architectures. This work addresses fault
tolerance but does not consider dynamic page replica-
tion and caching as arises in a client-server environment.
Heuristics for selecting which partition is the most cost-
effective for a partition-based algorithm to collect have
been studied in [CWZ94]. This work, however, did not
address the details of collection algorithm itself.

rithm differs in that it uses a special write barrier and
that the collector obtains (non-two phase) locks on data
items. The write barrier traps updates at the clients and
adds any new object references to a local list. This list is
shipped to the server when a client commits or when the
client receives a callback message from the server. The
server requests these lists and the contents of applica-
tion process stacks from the clients before the collector
enters its sweep phase. The lists and other references
are used during the marking phase as additional roots
of persistence. In terms of locks, the marking phase ob-
tains and holds a read lock on a page while it is accessing
the page. These locks cause the marker to synchronize
with the transactions. In contrast, our partitioned Mark
and Sweep algorithm does not hold any locks on pages,
does not send callbacks to clients, and can ignore the
program state of on-going transactions. Measurements
of the implementation showed that the write barrier has
only minimal impact on client performance; our measure-
ments support this result.

A reference counting collection scheme for MIT’s Thor
system is described in [ML94]. Thor is a distributed
OODBMS which uses optimistic concurrency control to
regulate accesses to objects. This paper focuses on dis-
tributed collection across servers in a client-server envi-
ronment rather than on collection that is local to a server.
Each time a client fetches an object from a server, the
server records the OID of the object and all the OIDs
that are referenced by the fetched object in a local ta-
ble. Server tables are cleaned as a side effect of local
collections. These tables can be viewed as a before im-
age log, which avoids the reclamation of pruned objects
prior to transaction commit. The algorithm uses a “no-
steal” policy so that modified objects are not sent to the
servers prior to commit. This policy avoids the problems
due to partial flushes of updates (Section 3.2) at the ex-
pense of reduced flexibility in client cache management.
[ML941 describes the algorithm but does not discuss an
implementation and provides no performance analysis.

Several other algorithms are examined in [YNY94],
including a partitioned copy-based collection algorithm.
This algorithm obtains non-two-phase exclusive transac-
tional locks for moving objects and uses callbacks, it also
requires the use of logical OIDs. Based on the results of
the simulation studies, the copy-based algorithm is advo-
cated over partitioned Mark and Sweep due to its ability
to recluster the database. In contrast, we have chosen
to allow clustering to be treated separately by the sys-
tem in order to gain the efficiency and relative ease of
implementation of Mark and Sweep.

8 Conclusions
OODBMS features such as client caching, “steal” man-
agement of client buffers, transactions, and fault toler-
ance raise three major problems for the development of
an efficient garbage collector for client-server OODBMS
environments. These problems are tied to the rollback of
transactions, the partial flushing of multi-page updates,
and the potential for overwriting of garbage collected
pages due to recovery and/or client caching.

The work that is most relevant to our algorithm is
[YNY94]. This paper examines the performance of sev-
eral reclamation algorithms for client-server persistent
object stores. Some of the results are obtained from an
implementation of an incremental partitioned Mark and
Sweep algorithm, although very few details of this algo-
rithm or its implementation are given. Most of the results
are obtained using a simulation of several algorithms.

Similarly to our algorithm, their partitioned Mark and
Sweep collector runs at the server and can execute con-
currently with client transactions. However, their algo-

We described a garbage collection algorithm based on a
partitioned Mark and Sweep approach. By exploiting the
flow of log records between clients and server, we are able
to enforce the correctness of our algorithm. The collec-
tor is incremental, but requires very little synchronization
with client transactions (e.g., it holds no locks), performs
minimal logging, and requires no client callbacks or spe-
cial hardware. The algorithm has been implemented in
EXODUS, and integrated with the concurrency control
and recovery of that system. Furthermore, the garbage
collector affected fewer than 300 lines of code in the client
side of the system, and required no changes to the com-
plex protocols already in place, such as those for recovery,
concurrency, caching, or clustering.

52

An initial study showed that the collector bookkeep-
ing mechanisms added little overhead to client operations,
and that the performance impact of the collector is pri-
marily due to the I/O load for detecting and reclaiming
garbage, which is unavoidable in any tracing collector.
The study also raised scheduling issues that must be ad-
dressed in order to moderate the impact of garbage col-
lection I/O activity on overall system performance.

In terms of the current implementation, remaining
tasks include implementing the mechanisms for handling
cross-partition references, and more closely investigat-
ing the interaction between the gcThread and EXODUS
thread scheduling to balance garbage collection and client
transaction processing. In terms of future work, we plan
to investigate the relaxation of some of the assumptions
and invariants on which the collector is based in order to
support a wider range of existing OODBMS. We also plan
to use the implementation to investigate data partition-
ing, partition selection, and garbage collector scheduling
strategies, and to more closely explore alternative collec-
tion approaches such as scavenging.

Acknowledgements

The authors thank Mike Zwilling for providing invaluable
assistance and information about EXODUS on many oc-
casions and Patrick Valduriez for providing us the oppor-
tunity to collaborate on this work.

References

[Bak78] H. Baker. List Processing in Real Time on a Serial
Computer. CACM, 21(4), Apr. 1978.

[BD90] V. Benzaken and C. Delobel. Enhancing Performance
in a Persistent Object Store: Clustering Strategies in Oz. In
4th Int. Workshop on Persistent Object Systems, Martha-
Vineyard, MA, Sep. 1990.

[BDKSl] F. Bancilhon, C. Delobel, and P. Kannellakis. Build-
ing an Object-Oriented Database : the 02 story. Morgan
Kaufmann, 1991.

[BOS91] P. Butterworth, A. Otis, and J. Stein. The Gem-
Stone Object Database Management System. CA CM,
34(10), Oct. 1991.

[But871 M. Butler. Storage Reclamation in Object Oriented
Database Systems. In SIGMOD Conf., San Francisco, CA,
May 1987.

[Cat941 R. CatteII. The ODMG Object Database Standard,
Rel 1.1. Morgan-Kaufman, San Mateo, CA, 1994.

[CDN93] M. Carey, D. Dewitt, J. Naughton. The 007
Benchmark. In SIGMOD Conf., Washington D.C., May
1993.

[Car861 M. Carey, et al. Object and File Management in the
EXODUS Extensible Database System. In VLDB Conf.,
Kyoto, Japan, 1986.

[Car911 M. Carey, et al. Data Caching Tradeoffs in CIient-
Server DBMS Architectures. In SIGMOD Conf., Denver,
CO, Jun. 1991.

[CFZ94] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-
Grained Sharing in a Page Server OODBMS. In SIGMOD
Co+., Minneapolis, MN, May 1994.

[CWZ94] J. Cook, A. Wolf, and B. Zorn. Partition Selection
Policies in Object Database Garbage Collection. In SIG-
MOD Conf., Mineapolis, MN, May 1994.

[DeWSO] D. Dewitt, et al. A Study of Three Alterna-
tive Workstation-Server Architectures for Object-Oriented
Database Systems. In VLDB Conf., Brisbane, Aug 1990.

[Dij78] E. Dijkstra, et al. On-the-Fly Garbage Collection: An
Exercise in Cooperation. CACM, 21(11), Nov. 1978.

[Exod93] EXODUS Project Group. EXODUS Storage Man-
ager Architectural Overview, 1993.

[FCL93] M. Franklin, M. Carey, and M. Livny. Local Disk
Caching in Client-Server Database Systems. In VLDB
Conf., Dublin, Ireland, Aug. 1993.

[FCW89] M. Franklin, G. Copeland, and G. Weikum. What’s
Different About Garbage Collection For Persistent Pro-
gramming Languages? Tech. Rep. ACA-ST-062-89, MCC,
Austin, TX, Feb. 1989.

[Fra92] M. Franklin, et al. Crash Recovery in CIient-Server
EXODUS. In SIGMOD Conf., San Diego, CA, Jun. 1992.

[GA941 0. Gruber and L. AmsaIeg. Object Grouping in Eos,
pages 117-131. In [ODV94], May 1994.

[GR93] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan-Kaufman, 1993.

[Hug851 J. Hughes. A Distributed Garbage Collection Algo-
rithm. In Functional Languages and Computer Architec-
tures, LNCS 201, Springer-Verlag, Sep. 1985.

[KW93] E. Kolodner and W. Weihl. Atomic Incremental
Garbage Collection and Recovery for Large Stable Heap.
In SIGMOD Conf., Washington D.C., Jun. 1993.

[Moh92] C. Mohan, et al. ARIES: A Transaction Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging. ACM TODS, 17(l), Mar 1992.

[ML941 U. Maheshwari and B. Liskov. Fault-Tolerant Dis-
tributed Garbage Collection in a Client-Server Obiect-
Oriented Datab&e. In PDIS Conf., Austin, TX, Sep. i994.

[MN941 C. Mohan and I. Narang. ARIES/GSA: A method
for Database Recovery in Client-Server Architectures. In
SIGMOD Conf., Minneapolis, MN, May 1994.

[MRVSl] L. Mancini, V. RoteIIa, and S. Venosa. Copying
Garbage Collection for Distributed Object Stores. In SRDS
Conf., Pisa, Italy, Sep. 1991.

[MS911 L. Mancini and S. Shrinivastava. Fault-tolerant Ref-
erence Counting for Garbage Collection in Distributed Sys-
tems. Computer Journal, 34(6), Dec. 1991.

[ODV94] T. i)zsu, U. DayaI, and P. Valduriez. Distributed
Object Management. Morgan-Kaufman, 1994.

[ONG93] J. O’Toole, S. Nettles, and D. Gifford. Concurrent
Compacting Garbage Collection of a Persistent Heap. In
SOSP Conf., Asheville, NC, Dec. 1993. ACM Press.

[SGPSO] M. Shapiro, 0. Gruber, and D. Plainfossk. A
Garbage Detection Protocol for a Realistic Distributed
Object-support System. Tech. Rep. INRIA-1320, INRIA,
Rocquencourt, Nov. 1990.

[Ung84] D. Ungar. Generation Scavenging: A Non-disruptive
High-Performance Storage Reclamation Algorithm. In
ACM SIGSOFT/SIGPLAN Software Engineering Symp.
on Practical Software Development Env., Apr. 1984.

[WiI92] P. Wilson. Uniprocessor Garbage Collection Tech-
niques. In Int. Workshop on Memory Management, volume
637 of LNCS, St. MaIo, France, Sep. 1992. Springer-Verlag.

[YNY94] V. Yong, J. Naughton, and J. Yu. Storage Reclama-
tion and Reorganization in Client-Server Persistent Object
Stores. In Data Engineering Conf., Houston, TX, Feb. 1994.

[ZM90] S. Zdonik and D. Maier. Readings in Object-Oriented
Database Systems. Morgan Kaufmann, 1990.

53

