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Abstract 

We describe an eficient server-based algorithm 
for garbage collecting object-oriented databases in a 
client/server environment. The algorithm is incremen- 
tal and runs concurrently with client transactions. Un- 
like previous algorithms, it does not hold any locks on 
data and does not require callbacks to clients. It is fault 
tolerant, but performs very little logging. The algorithm 
has been designed to be integrated into existing OODB 
systems, and therefore it works with standard implemen- 
tation techniques such as two-phase locking and write- 
ahead-logging. In addition, it supports client-server per- 
formance optimizations such as client caching and flexible 
management of client buffers. We describe an implemen- 
tation of the algorithm in the EXODUS storage manager 
and present results from an initial performance study. 

1 Introduction 

A primary strength of Object Oriented Database Man- 
agement Systems (OODBMS) lies in their ability to 
model complex objects and the inter-relationships among 
them. This modeling power, while allowing for a more 
natural representation of many real-world application do- 
mains, also raises new problems in the design of funda- 
mental lower-level functions such as storage management 
and reclamation. It has long been recognized that explicit 
storage management (e.g., malloc() and free()) places a 
heavy burden on the developers of large programs. Man- 
ual detection and reclamation of garbage increases code 
complexity and is highly error-prone, raising the risk of 
memory leaks and dangling pointers. For these reasons 
automated garbage collection for programmin languages 
has long been an active area of investigation E Wi192]. 

The shared and persistent nature of databases provides 
further motivation for automated garbage collection. Be- 
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cause a database is shared, the knowledge of data in- 
terconnection may be distributed among many programs 
and/or users, making it difficult for programmers to de- 
termine when to explicitly reclaim storage. Furthermore, 
sharing and persistence increase the potential damage 
caused by storage management errors, as mistakes made 
by one program can inadvertently affect others. These 
considerations argue for a very cautious approach to stor- 
age reclamation, however, neglecting to reclaim wasted 
space can degrade performance due to increased I/O. 

In an OODBMS, the notion of persistence (and hence, 
garbage) can be tied to reachability. Reachability is a sim- 
ple, implicit way to express persistence that is orthogonal 
to object type [ZM90]. The database is an object graph 
in which some objects are designated as persistent roots. 
Objects that can be reached by traversing a path from 
a root can persist beyond the execution of the transac- 
tion that created them. Objects that are not reachable 
from a root or from the transient program state of an on- 
going transaction are garbage; such objects are inaccessi- 
ble and thus, they can be safely reclaimed. Reachability- 
based persistence is used in the Gemstone [BOS91] and 
02 [BDKSl] systems, and garbage collection is required 
in the Smalltalk binding for the ODMG object database 
standard [Cat94]. In general, however, most existing sys- 
tems still rely on explicit object deallocation and/or off- 
line storage management utilities. The lack of acceptance 
of reachability-based persistence is due in part to the ab- 
sence of efficient implementation techniques that can be 
integrated with existing systems. The work described 
here is aimed at addressing this need. 

1.1 OODBMS Garbage Collection Issues 

In recent years, there has been increasing research ac- 
tivity in OODBMS garbage collection [But87, FCW89, 
ONG93, KW93, YNY94]. OODBMS have several fea- 
tures that can impact the correctness and/or performance 
of traditional garbage collection approaches: 

Concurrency: A garbage collector must co-exist with 
concurrent transactions and must not adversely impact 
their ability to execute. 

Client Caching: OODBMS typically cache and up- 
date data at clients. The dynamic, replicated, and 
distributed nature of these updates makes client-based 
garbage collection problematic. Server-based collection is 
difficult because a server may have an inconsistent snap- 
shot of the database. 

Atomic Transactions: The rollback of partially 
completed transactions violates the fundamental assump- 
tion that unreachable objects always remain unreachable. 
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Persistence: Modern garbage collection algorithms 
assume that the volume of live (i.e, non-garbage) objects 
is small. Persistence invalidates this assumption. 

Fault Tolerance: OODBMS provide resilience to sys- 
tem failures. Garbage collection must also operate in a 
fault tolerant manner. 

Disk-Resident Data: Much of the data in an 
OODBMS is on disk - the collector cannot ignore I/O. 
1.2 Overview of the Paper 
In this paper, we describe a client-server OODBMS 
garbage collector that has the following characteristics: 

It is server-based, but requires no callbacks to clients 
and performs only minimal synchronization with 
client transactions. 

It works in the context of ACID transactions [GR93] 
with standard implementation techniques such as 
two-phase locking and write-ahead-logging. 

It is incremental and non-disruptive; it holds no locks 
on data and requires minimal logging. It has been 
designed to be efficient with respect to I/O. 

It is fault tolerant - crashes of clients or servers 
during garbage collection will not corrupt the state 
of the database. 

It can co-exist with performance enhancements such 
as inter-transaction caching at clients and “steal” 
buffer management between clients and servers. 

It has been implemented and measured in the client- 
server EXODUS storage manager. 

Similar to other recent work on DBMS garbage col- 
lection [CWZ94, YNY94] we use a partitioned approach 
in order to avoid having to scan the entire database be- 
fore reclaiming any space. In contrast to the other work, 
which advocated copying or reference counting, we use a 
non-copying Mark and Sweep algorithm. 

The remainder of this paper is structured as follows: 
Section 2 describes our architectural assumptions and 
motivates our choice of garbage collection approach. Sec- 
tion 3 describes three problem scenarios that must be 
addressed when adapting this approach to a client-server 
OODBMS. Section 4 describes the partitioned Mark and 
Sweep collection algorithm. Section 5 details the im- 
plementation of the algorithm in EXODUS. Section 6 
presents an overview of our performance studies on the 
implemented system. Section 7 discusses related work. 
Section 8 presents conclusions and future work. 

2 Setting the Stage 
2.1 Client-Server OODBMS Architecture 

Client-server OODBMS architectures typically use data- 
shipping - data items are sent from servers to clients 
so that query processing (in.addition to application pro- 
cessing) can be performed at the clients. We focus on 
page servers, in which physical data units (i.e., pages) are 
transferred between servers and clients [DeWSO, CFZ94]. 
Upon request, data pages required by an application are 
replicated and brought into the client’s local memory. 

These pages may be cached at the client both within a 
transaction and across transaction boundaries. Clients 
perform updates on their cached page copies. If clients 
follow a “steal” buffer management policy with the server, 
then these updated pages can be sent back to the server 
at any time and in any order, during the execution of 
the updating transaction. This flexibility, while provid- 
ing opportunities for improved performance, also raises 
potential problems for garbage collection algorithms. 
2.2 Assumptions 
Our solution depends upon several assumptions about the 
OODBMS architecture: 

Assumption Al: All user operations that access or 
modify object pointers are done using two-phase 
locks that are held until the end of transaction (i.e., 
degree 3 consistency [GR93]). 

Assumption A2: The validity of object identifiers 
(OIDs) is maintained only for those OIDs that reside 
in the database or in the transient state (e.g., pro- 
gram variables, stacks, etc.) of active transactions. 
For example, an OID extracted from the database 
and stored elsewhere is not guaranteed to be valid 
for use by a subsequent transaction. 

Assumption A3: The system follows the write-ahead- 
logging (WAL) protocol between clients and the 
server. That is, a client sends the server all log 
records pertaining to a page before it sends a dirty 
copy of that page to the server, and sends the server 
all log records pertaining to a transaction prior to 
the commit of that transaction. 

Assumption A4: Client buffering follows a “force” 
policy: all pages dirtied by a transaction are copied 
to the server prior to transaction commit. The force 
is to the server’s memory (i.e., no disk I/O is re- 
quired) and clients can retain copies of the pages. 

Assumptions Al and A2 are fundamental to the algo- 
rithm’s correctness; A3 and A4 are important details on 
which the implementation of the algorithm is based. A3 
must be supported by any client-server DBMS that im- 
plements WAL-based recovery at servers (e.g., EXODUS 
[Fra92], and ARIES/GSA [MN94]). A4 simplifies recov- 
ery and avoids the need for client checkpoints in such sys- 
tems. The tradeoffs involved in relaxing A4 are discussed 
in [Fra92], [FCL93], and [MN94]. For the purposes of 
garbage collection, relaxing A4 would require additional 
coordination with the buffer manager to determine when 
certain page copies have arrived at the server. 
2.3 Choosing a Collection Technique 
The main approaches to storage reclamation are refer- 
ence counting and tracing-based garbage collection. Ref- 
erence counting was deemed inappropriate for our pur- 
poses due to its inability to collect unreachable cycles 
(i.e., mutually-referential garbage objects) and the over- 
head of maintaining reference counts in a fault tolerant 
manner. Tracing collectors can be divided into Mark and 
Sweep algorithms, which first mark all reachable objects 
and then reclaim the unmarked ones, and copy-based al- 
gorithms which copy live objects to new locations before 
reclaiming an entire storage area. Given the assumptions 
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Figure 1: Transaction Rollback Problem 

of the previous section, we believe that a Mark and Sweep 
approach can be more efficient and easier to integrate into 
an existing OODBMS for the following reasons: 

l 

0 
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Copying causes objects to move between pages, 
which can require locks and can complicate recov- 
ery [MRVSl, KW93, YNY94]. 

The clustering produced by a copying-based collec- 
tor may be in conflict with database requirements or 
user-specified hints (e.g., [BD90, GA94]). For exam- 
ple, generation scavenging [Ung84], tends to cluster 
objects by their age. 

Although copying can reduce fragmentation, slotted 
pages, which are used in many database systems, al- 
low objects to be moved within a page, mitigating 
the potential fragmentation problems of sweeping. 

Problem Scenarios 
The most straightforward way to implement a Mark and 
Sweep garbage collector in an OODBMS would be to run 
it at a server as a single monolithic transaction. Such an 
implementation, however, would result in a synchroniza- 
tion bottleneck that could severely impact the ability for 
user transactions to run. Ideally, we would like to run 
the Mark and Sweep algorithm outside of the transaction 
mechanism; however, a traditional Mark and Sweep algo- 
rithm running without transaction protection in a client- 
server OODBMS could run into a number of correctness 
problems. We have identified three specific types of prob- 
lems that can arise in a client-server OODBMS that sup- 
ports the “steal” buffering policy (in which pages dirtied 
at clients can be sent back to a server at any time during 
a transaction’s execution). These problems are described 
in the following sections. 
3.1 Transaction Rollback 

Allowing clients to send updated pages to the server at 
any time makes it possible that a garbage collector run- 
ning at the server will encounter dirty (i.e., uncommit- 
ted) pages. If a page containing uncommitted updates 
is garbage collected, the subsequent rollback of those up- 
dates may be difficult. An example of this problem is 
shown in Figure 1. In this figure (and in the subsequent 
ones) the solid black squares represent the persistent root 
and objects are represented by circles. Updated objects 
are shaded in order to distinguish between before and 
after states of the update operations. 

In step 1 of the figure, a transaction running at the 
client updates object A by removing its reference to ob- 
ject B and then flushes a copy of the updated page to 

Client Side I Server Side 

step 3 

Flush 
Page 2 

step 4 

Dangling 
Pointer 

Figure 2: Multi-Page Update Problem 

the server. In step 2, after receiving the updated page, 
the server runs the garbage collector which reclaims ob- 
ject B, as it is unreachable. In step 3, the transaction is 
rolled back. If the rollback does not take garbage col- 
lection into account (as shown in the figure) then object 
A will contain a dangling reference to an object that no 
longer exists. This problem arises because transaction 
rollback violates a fundamental invariant of garbage col- 
lection, namely that unreachability is a stable property of 
an object. Note that this is a non-trivial problem for im- 
plementing rollback, as the page containing object B was 
never actually updated by the aborted transaction. 

3.2 Partial Flush of Multi-page Updates 

Similar problems can arise even in the absence of aborts, 
when there are updates to inter-object references that 
span page boundaries. The garbage collector may see an 
inconsistent view of such updates, as there is no guaran- 
tee that all of the relevant pages will be sent to the server 
prior to garbage collection. There are two specific prob- 
lems that can arise: 1) partial flush of updated objects, 
and 2) partial flush of newly created objects. Figure 2 
shows an example of the first problem. In step 1, the 
client changes the parent of object C from object A to 
object B, which resides on a different page than C. The 
page containing C is then sent to the server, but the page 
containing B (the new parent) is not. In step 2 the server 
runs garbage collection, and reclaims object C because it 
appears to be unreachable. In step 3 the page containing 
B is sent to the server. As shown in step 4, the database is 
now corrupted, as object B contains a dangling reference. 

The second problem that can arise due to partial 
flushes involves the creation of new objects, and is shown 
in Figure 3. In step 1, the client creates a new object C 
that is referenced by object A, which resides on a different 
page. The page containing the new object C is then sent 
to the server, but the page containing the parent object 
A is not sent. In step 2, the garbage collector incorrectly 
determines that object C is unreachable, and reclaims it. 
This will result in a dangling reference when the page 
containing A is sent to the server. 

It should be noted that in general, it is not possi- 
ble to produce an ordering of page flushes that would 
avoid these problems, as there can be circular depen- 
dencies among pages due to multiple updates. Further- 
more, unlike the transaction rollback problem discussed 
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problems described in the previous section. The algo- 
rithm is initially presented for a monolithic (i.e., non- 
partitioned) database, and then extended to allow for in- 
dependent collection of database partitions. First, how- 
ever, we discuss the intuition behind the algorithm. 
4.1 Enforcing Correctness 
A Mark and Sweep algorithm associates a “color” with 
each object in the object space. In our algorithm, an ob- 

Figure 3: New Object Allocation Problem ject can have one of two colors: live or garbage; At the 
start of the collector, all object colors are initialized to 
be “garbage”. Colors are maintained only during garbage 
collection and are kept in special color maps that are not 
part of the persistent object space. Mark and Sweep is a 
two phase algorithm. In the first (or marking) phase, the 
object graph is traversed from the root(s) of persistence. 
All objects encountered during this traversal are marked 
(i.e., colored) as live objects. In a database system (ignor- 
ing partitions for the moment), the roots of persistence 
are: 1) special database root objects that are entry points 
into the database object graph, and 2) program variables 
of any active transactions which may contain pointers 

A 

•3 

Create A: redone step 3 into the database. Once the entire graph has been tra- 

OB 
Create 8: redone 
Create C: FAILED (No Space Left) 

versed, the weeping phase scans the object space, re- 
claiming all obiects that are still marked as garbage. At 

Figure 4: Redo Failure During Recovery 
the end%f the sweeping phase, garbage collec%on 1; com- 
plete. 

previously, both of these scenarios can occur even if the 
garbage collector reads only committed versions of pages. 

3.3 Overwriting Collected Pages 

A third set of problems involves the overwriting of 
garbage collected pages. One way that this can occur 
is during transaction REDO. If an operation uses space 
on a garbage collected page that is not reflected on sta- 
ble storage at the time of a crash, then REDO could fail 
due to a lack of free space on the page. This problem is 
illustrated by Figure 4. 

In step 1, the client creates 3 objects on a copy of a 
page that had previously been garbage collected at the 
server. The disk-resident copy of the page, however, does 
not yet reflect the collection - it still contains a garbage 
object that consumes space (represented by the hexagon 
in the figure). In step 2, the client commits, sending along 
the updated page and the associated log records; the log 
records are forced to stable storage. In step 3, the sys- 
tem crashes before the updated page reaches the disk and 
recovery is initiated. REDO fails because it attempts to 
re-create the three new objects on the uncollected version 
of the page, which has free space for just two of them. 

A less serious instance of the overwriting problem can 
arise when the server sweeps a page and a client updates 
its (unswept) cached copy of that page. In this case, 
the client will overwrite the work of the collector when it 
sends the dirty page back to the server. Unlike the pre- 
vious problem, this overwriting is a matter of efficiency 
rather than correctness, however, the probability of such 
overwriting is increased significantly by inter-transaction 
page caching, which allows clients to retain cached page 
copies over long periods of time. 

4 Partitioned Mark and Sweep 
We now present a partitioned Mark and Sweep algorithm 
that does not execute as a transaction, yet avoids the 

Our algorithm is an incremental Mark and Sweep that 
has been extended to enforce the preservation of three 
invariants. These invariants are similar in spirit to invari- 
ants that have been proposed for traditional incremental 
collectors [Dij78, Bak78]. In contrast to that earlier work, 
however, these invariants reflect the transactional nature 
of database accesses. The invariants are: 

Invariant 11: When a transaction cuts a reference to an 
object, the object is not eligible for reclamation until 
the first collection that is initiated after the comple- 
tion (i.e., commit or abort) of that transaction. 

Invariant 12: A new object is not eligible for reclama- 
tion until the first collection that is initiated after 
the completion of the transaction that created it. 

Invariant 13: Space reclaimed by the sweeper can be 
reused only when the freeing of that space is reflected 
on stable storage (i.e., in the stable version of the 
database or the log). 

Invariant 11, in conjunction with assumption Al (Sec- 
tion 2.2), protects against the rollback problem described 
in Section 3.1, as it ensures that only objects made un- 
reachable by committed transactions are eligible for recla- 
mation. It also (in conjunction with assumption A4) 
avoids the partial flush problem of Section 3.2; a refer- 
ence cut will be ignored by any garbage collector that 
runs concurrently with the cutting transaction and a col- 
lector that runs after the transaction commits will see 
only the after images of all pages updated by the trans- 
action (due to A4). Thus, no collection will be done based 
on a partially flushed update. 

In a similar manner, Invariant 12 protects against the 
incorrect reclamation of newly created objects due to par- 
tial flushes. Taken together, 11 and 12 allow the collector 
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to run incrementally and concurrently with transactions, 
without having to obtain locks. 11 and I2 protect objects 
from the problems that could arise when the collector 
observes uncommitted states of the database. Further- 
more, because 11 and 12 protect objects for the duration 
of any transaction that could cause them to be reclaimed, 
the collector can ignore the program state (i.e., program 
variables, stacks, etc.) of any transactions that are con- 
currently executing at the clients.’ 

It is important to note that 11 and 12, along with the 
assumptions listed in Section 2.2 ensure that any object 
that is considered to be garbage at the end of a garbage 
collection pass is truly unreachable, and can safely be 
collected. The key insight is that assumption Al requires 
that all accesses to pointers in the database be performed 
in the context of strict two-phase locking, and A2 re- 
quires that all object pointers used by a transaction be 
obtained from the database. Observe that an object be- 
comes garbage only when the transaction that cuts the 
last reference to the object commits. Such a transaction 
must have obtained a write lock on the last reference, 
so therefore, Al ensures that at the time that the last 
reference is cut, no other concurrent transaction could 
have accessed the reference. A2 ensures that no subse- 
quent transactions will be able to use the reference. Thus, 
Al and A2 taken together ensure that the only transac- 
tion that can possibly “i-e-attach” an object to the object 
graph is the transaction that caused it to become discon- 
nected from the graph. Assumption A4 ensures that any 
garbage collection pass that begins after the commit of 
such a transaction will see all of the pages updated by 
that transaction, and thus, will see the reattachment. 

While 11 and 12 protect against problems that could 
arise during normal transaction operation and rollback, 
13 protects against problems that could arise during crash 
recovery - it ensures that REDO reclaims space freed by 
sweeper before attempting to REDO any operations that 
may have used that space.’ The crux of the garbage 
collection algorithm is the efficient maintenance of these 
invariants, which we detail in the following subsections. 

4.2 Protecting Cut References 
In order to enforce 11, we introduce a garbage collector 
data structure called the Pruned Reference Table (PRT), 
which contains entries for cut references. Each entry con- 
tains the OID of the referenced object and the Transac- 
tion ID (TransID) of the transaction that cut the refer- 
ence. By considering the PRT as an additional root of 
persistence, the garbage collector is forced to be conserva- 
tive with respect to uncommitted changes. That is, any 
object that has an entry in the PRT will be marked as 
live and will be traversed by the marker (if it isn’t already 
marked live) so that its children objects will be marked as 
well. Therefore, a single PRT entry transitively protects 
all of the objects that are reachable from the protected 
object. 

In order to make the necessary entries in the PRT, 
all updates to pointer fields in objects must be trapped. 

lIt should be noted that 11 and I2 are conservative conditions 
for solving the partial flush problem; relaxing them is an interesting 
area of future work. 

2The sweeping of a page never needs to be undone since 11 and 
12 ensure that any reclaimed objects were disconnected from the 
object graph by committed transactions. 

Traps of this form are typically implemented using a wite 
barrier [Wil92, YNY94]. A write barrier detects when an 
assignment operation occurs and performs any bookkeep- 
ing that is required by the garbage collector. Recall that 
the garbage collector (and hence, the PRT) reside at the 
server while updates are performed on cached data copies 
at clients. Thus, a write barrier in the traditional sense 
would be highly inefficient. To solve this problem, we 
rely on the fact that clients follow the WAL protocol 
(Assumption A3). The WAL protocol ensures that log 
records for updates will arrive at the server prior to the 
arrival of the data pages that reflect the updates. At the 
server, the incoming log records are examined, and those 
that represent the cutting of a reference will cause a PRT 
entry to be made. Note that unlike previous work that 
exploits logs (e.g., [KW93, ONGSS]), this algorithm pro- 
cesses log records as they arrive at the server - prior to 
their reaching stable storage. 

When a transaction terminates (commits or aborts), 
its entries in the PRT are flagged. These flagged entries 
are removed prior to the start of the next garbage collec- 
tion (i.e., the start of the next marking phase). The PRT 
entries can not be removed exactly at the time of transac- 
tion termination even though all dirtied pages are copied 
to the server on commit. This is because an on-going 
marker may have already scanned the relevant parts of 
the object graph using the previous copies of the objects. 
The next time the marker runs, however, it is known that 
it will see the effects all of the updates made by the com- 
mitted transaction, so the PRT entries for that transac- 
tion can be removed. Also, if no collection is in progress 
when a transaction terminates, the PRT entries for that 
transaction can be removed immediately. 
4.3 Protecting New Objects 
To protect new objects, we introduce another structure 
called the Created Object Table (COT). The COT is used 
to enforce 12. As with the PRT, the COT is maintained 
at the server and is updated based on log records received 
from the clients. When a log record reflecting the creation 
of an object arrives at the server, an entry is made in the 
COT. This entry contains the OID of the new object and 
the TransID of the transaction that created it. In contrast 
to the PRT, which is used during marking, the COT is 
used during the sweeping phase of garbage collection. 

The sweeping phase scans the object space linearly in 
order to maximize I/O bandwidth. It reclaims any ob- 
jects that have been left colored as garbage by the marker. 
For each page, the sweeper checks to see if there are en- 
tries in the COT for any of the objects on that page, and 
if so, it does not reclaim those objects, regardless of their 
color. The collector does not need to traverse the objects 
protected by the COT because an object referenced by a 
newly created object can only be: 1) another new object 
(which must be in the COT), 2) an object that is also 
referenced elsewhere (which will be colored “live” by the 
marker), or 3) an object referenced solely by this new 
object. An object in this last category must have had a 
reference read from another object and then cut. Such 
an object must therefore be protected by the PRT. 

In order to avoid unnecessary I/O the sweeper checks 
the color map and COT entries for the page before read- 
ing the page from disk. If the page has no garbage objects 
on it, then the sweeper simply moves on to the next page. 
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If the page has no live objects on it, then the sweeper 
deallocates the page - without reading it in from disk. 
The sweeper can be run incrementally, with the sweep of 
a single page being the finest granule of operation.3 The 
WAL rule (assumption A3) ensures that the sweeper sees 
all COT entries for the pages it sweeps. Removal of COT 
entries is handled in the same manner as PRT entries. 

4.4 Fault Tolerance 
The garbage collector has a simple approach to fault tol- 
erance: in the event of a server crash during a garbage 
collection, the interrupted collection cycle is simply dis- 
carded. If a system crash occurs during the marking 
phase, then no changes had yet been made to data pages, 
so there is no danger of corrupting the database and thus, 
no work to be done for recovery. If a system crash occurs 
during the sweeping phase, then some pages will have 
been swept and some will have not. Unswept pages can 
simply be ignored - they will still contain garbage ob- 
jects, but these will be reclaimed by the next garbage 
collection. As described in Section 3.3, however, pages 
that have been swept could cause errors during restart 
REDO. This problem is avoided by enforcing 13. 

Recall that 13 requires the effects of a page sweep to be 
reflected on stable storage before the space freed on the 
page is re-used. In a sense, it requires that the sweep of 
a page be treated as if it were a “nested top-level trans- 
action” [GR93]. If slotted pages are being used, then one 
way to enforce 13 is to have the sweeper log the color map 
for each page that it modifies. The color map serves as 
a logical log record for the sweep. Color maps contain 
a single bit for every slot in the page, and therefore are 
quite small. Furthermore, no before image data is logged, 
as page sweeps never need to be undone.4 

It is correct to restart a new garbage collector from 
scratch after recovery is complete, because at that point, 
the server has a transaction-consistent snapshot of the 
database so the old PRT and COT entries are not needed. 
Thus, an important side effect of this simple approach to 
fault tolerance is that the PRT and COT do not need to 
be managed in a fault tolerant manner. That is, during 
normal execution, the PRT and COT entries can be kept 
in memory and do not need to be logged. 

4.5 Preventing Overwrite of Collected Pages 
Logging protects the system from problems that can arise 
during transaction REDO, however, it does not protect 
from sweeper work being wasted due to page overwrites. 
This problem can be reduced in two ways. First, the 
sweeper can try to obtain a “no-wait” instant read lock 
on a page. Such a lock is released immediately upon be- 
ing granted, and the sweeper does not block if the lock 
is not granted. If the lock is not granted, then some 
transaction has a write lock on the page. In this case, 
the sweeper simply skips the page, as any work that it 
does will only be overwritten when the transaction hold- 
ing the lock commits. Secondly, the overwrite problem 
is exacerbated in systems that perform inter-transaction 
client caching. For such systems it is possible to have the 
sweeper exploit the cache consistency mechanism in order 

3A latch must be held on the current page being swept in case 
a new copy of that page arrives at the server. 

4As described in Section 5, logging can be even further reduced 
if media recovery is not to be supported. 
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to reduce the potential for clients to update unswept page 
copies. Once such mechanism is described in Section 5. 

4.6 Collecting Partitions 
In this section we briefly discuss how to extend the mono- 
lithic algorithm to allow independent garbage collection 
of disjoint partitions of the object space. We assume that 
partitions are sets of pages. The actual partitioning of the 
object space can be done according to physical consider- 
ations (e.g., file extents) or logical considerations (e.g., 
by class or relation). Partitions must be disjoint, how- 
ever, objects may reference each other across partition 
boundaries. In order to allow for partitions to be col- 
lected independently, each partition must have an associ- 
ated list of incoming references that originate from other 
partitions. This list is called the Incoming-Reference List 

r 

IRL). Conceptually, the IRL contains the OID of the 
local) destination object and the ID of the partition in 

which the (foreign) source object resides for each such 
reference. The IRL of a partition serves as an additional 
root of persistence for the partition-local collection. Sim- 
ilar schemes are often used by distributed garbage col- 
lection algorithms to handle inter-node references (e.g., 
[SGPSO, ML94]). F’g 1 ure 5 shows an example of two par- 
titions containing objects with cross-partition references. 
Note that the objects themselves point directly to each 
other and do not involve the IRL. 

The IRL mechanism is transparent to programmers, 
and therefore, updates that may require IRL modifica- 
tions must be trapped. This is handled in the same man- 
ner as the PRT and COT: the server examines incom- 
ing log records. When the creation of a cross-partition 
reference is detected, an entry is made in the appropri- 
ate IRL. The removal of IRL entries is performed by the 
garbage collector. The marking phase traverses a parti- 
tion from the persistent roots (including the IRL); when 
it encounters a reference to an object in a different parti- 
tion, it marks the corresponding entry in the remote IRL 
and stops traversing that path. At the end of the mark- 
ing phase, any unmarked remote IRL entries originating 
from the currently collected partition can be removed, 
provided that the transaction that created the entry has 
committed (similar to removing PRT and COT entries). 

There are two drawbacks to this approach. First, in 
contrast to the PRT and the COT, IRLs must be fault- 
tolerant. Upon recovery all IRLs must be restored to 
their state at the time of the crash; otherwise, some re- 
motely referenced objects may be collected erroneously. 
Thus, IRLs must be maintained in database pages (rather 
than with in-memory structures), and updates to them 
must be logged. Secondly, as is well known, this type of 
approach can not collect cycles of garbage that are dis- 
tributed across multiple partitions. Separate algorithms 
such as Hughes’ distributed collector [Hug851 can be used 
to collect such cycles periodically. In general, however, 
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the partitioning of the object space should be done in a 
way that minimizes the number of cross-partition refer- 
ences in order to limit the number of such cycles and to 
keep the IRLs small. 

5 Implementing the Garbage Collector 
As stated in Section 1, the design goals for garbage col- 
lection include: 1) it should impose minimal overhead on 
client transactions, 2) it should be efficient and effective in 
collecting garbage, and 3) it should be relatively straight- 
forward to integrate the collector in existing client-server 
database systems. In order to assess the algorithm in 
light of these requirements, we have implemented a single- 
partition version of it in the client-server version of the 
EXODUS storage manager [Fra92, Exod93]. 

5.1 The EXODUS Storage Manager 
Our initial implementation is based on the EXODUS stor- 
age manager ~3.1 [Exod93]. EXODUS is a client-server, 
multi-user system which runs on many Unix platforms. It 
has been shown to have performance that is competitive 
with existing commercial OODBMS [CDN93]. EXODUS 
supports the transactional management of untyped ob- 
jects of variable length, and has full support for indexing, 
concurrency control, recovery, multiple clients and multi- 
ple servers. Data is locked using a strict two-phase lock- 
ing protocol at the page or coarser granularity. Recovery 
is provided by an ARIES-based [Moh92] WAL protocol 
[Fra92]. The EXODUS server is multi-threaded - every 
user request is assigned a thread when it arrives at the 
server; the server also has its own threads for log manage- 
ment, etc. The server supports asynchronous I/O (using 
multiple I/O processes) so some threads can run while 
other threads are waiting for I/O. EXODUS extends a 
traditional slotted page structure to support objects of 
arbitrary length [Car86]. “S mall” data items (those that 
are smaller than a page) and the headers of larger ones are 
stored on slotted pages. Internally, objects are identified 
using physical OIDs that allow pages to be reorganized 
without changing the identifiers of objects. 

EXODUS is a page server; updates are made by clients 
to their local copies and the resulting log records are 
grouped into pages and sent asynchronously to the server 
responsible for the updated pages. Dirty pages can be 
sent back to the server at any time and in any order 
during the execution of a transaction; a WAL protocol 
ensures that all necessary log records arrive at the server 
before the relevant data page. At commit time, copies 
of any remaining dirty pages are sent to the server. The 
client retains the contents of its cache across transaction 
boundaries, but no locks are held on those pages. Cache 
consistency is maintained using a check-on-access policy 
(based on “Caching 2PL” [Cargl]). 

For recovery purposes all pages are tagged with a Log 
Sequence Number (LSN) which serves as a timestamp for 
the page. The server keeps a small list of the current LSNs 
for pages that have been recently requested by clients. 
When a client requests a lock from the server, the server 
checks this table, and if it can not determine that the 
client has an up-to-date copy of the page, it sends a copy 
of the page along with the lock grant message. 

To summarize, the EXODUS storage manager sup- 
ports the fundamental assumptions on which the garbage 
collector depends (see Section 2.2), and also has desir- 

able properties such as slotted pages. In addition, the 
EXODUS server uses non-preemptive threads and asyn- 
chronous I/O, which simplify the implementation of the 
garbage collector. However, the system also provides 
features that present challenges for garbage collection, 
such as client caching, a steal policy between clients and 
servers, asynchronous interactions between clients and 
servers, a streamlined recovery system, and optimizations 
to avoid logging in certain cases. 
5.2 Implementation Overview 
The implementation of the garbage collector in EXODUS 
is currently a proof-of-concept implementation. It is well 
integrated with concurrency control and recovery and has 
been heavily tested; including its fault tolerant aspects. 
However, there are some limitations of the current imple- 
mentation. First, as stated above, the framework is in 
place to support cross-partition references (we currently 
use an EXODUS “volume” as a partition) and do much of 
the checking that is needed to manage IRLs, but the IRL 
scheme is not yet fully implemented. Second, it collects 
only small-format objects. The extension to large-format 
objects, is straightforward but was not necessary for our 
purposes. Third, because the Exodus storage manager 
does not know the types of the objects that it stores, we 
store a bitmap in the initial bytes of the data portion 
of each object. The bitmap indicates which OID-sized 
ranges of bytes in the object contain actual OIDs and is 
used by the marker during its traversal. These bitmaps 
are created automatically when objects are allocated us- 
ing a C++ constructor. Finally, as discussed in Section 6, 
the scheduling of the garbage collector with respect to 
other EXODUS thread activity is not fully tuned to bal- 
ance collection and transaction processing. 

The modifications that were made to EXODUS can 
be classified into two categories: 1) garbage collection- 
oriented bookkeeping during normal processing, and 2) 
the garbage collection algorithm itself. During normal 
processing, the server scans incoming log records to de- 
termine if the logged updates require any entries to be 
made in the garbage collector data structures. 

In order to add garbage collection to the EXODUS 
server, we created a new type of server thread called 
the gcThread. When a collection starts on a partition, 
a new gcThread is spawned. The gcThread initializes 
the garbage collector data structures, runs the marker 
phase and then runs the sweeper phase. At the end of 
the sweeper phase, the gcThread terminates. At present, 
the scheduling of the gcThread works as follows: when 
the gcThread gets the processor, it starts a timer (cur- 
rently set at 50 msec). If the timer expires during the 
marking phase, then the marker finishes examining the 
current object and then gives up the processor. If it ex- 
pires during the sweeping phase, then it finishes sweeping 
the current page and then gives up the processor. The 
gcThread is woken up (after a specified sleep time) when 
there are no client requests waiting for the processor. 

The implementation required approximately 4000 lines 
of new or modified code on the server-side; the bulk of 
which was for the gcThread itself. The client-side re- 
quired only 200-300 lines of new or modified code. The 
algorithm was implemented with only minor changes to 
the description in Section 4. Three implementation is- 
sues, however, deserve mention. First, we exploit the 
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cache consistency mechanism to reduce the potential for 
clients to overwrite the work of the sweeper. The sweeper 
updates the sequence number (LSN) on each page that 
it modifies. Any transaction that subsequently tries to 
lock such a page will then receive the swept copy even if 
it already has a cached copy of the page. To avoid recov- 
ery problems, however, the sequence number placed on 
the page by the sweeper must be guaranteed to be lower 
than the sequence number that will be placed on the page 
by any subsequent client update. 

The second issue arises because EXODUS has no 
general support for allowing non-recovery-related server 
threads to create log records. Although there are 
workarounds, we chose to avoid logging completely in 
the gcThread. We accomplish this by setting a flag in a 
page’s header when the page is swept; the flag is cleared 
when the page is read from disk. If a client obtains a 
page that has the flag set, then it logs the slot allocation 
information (from the page header) prior to performing 
any updates on a page. In this way, log records are only 
generated for those swept pages that had not been writ- 
ten to disk, prior to being obtained by a client. Note that 
the log record is generated only by the first transaction 
to update such a swept page. 

The third issue results from an optimization that 
EXODUS uses to reduce logging during bulk loading and 
other create-intensive operations. When a new page is 
allocated to hold new objects, the individual object cre- 
ations are not logged; rather, the entire page is logged 
when it is copied back to the server. This optimiza- 
tion, while providing better performance for EXODUS, 
deprives the garbage collector of the information on in- 
dividual object creations. As a result, in the EXODUS 
implementation of the collector, we enter page IDS in the 
COT rather than individual OIDs. When the sweeper 
encounters a page that has an entry in the COT, it sim- 
ply skips it. Furthermore, when a newly allocated page 
arrives at the server, the server scans all of the objects on 
the page to determine if any new IRL entries are required. 
At present, the detection of cross-partition references is 
implemented, while the creation of IRL entries is not. 

6 Performance Measurements 
In this section we describe an initial study of three dif- 
ferent performance aspects of the implementation: 1) 
the overhead added to normal client processing, 2) the 
stand-alone performance of the collector, and 3) the per- 
formance of the collector and client transactions when 
running concurrently. 

For all of the experiments presented here, the 
EXODUS server was run on a SPARCstation LX with 
32MB of main memory. The log and the database were 
stored on separate disks, and raw partitions were used in 
order to avoid operating system buffering. The size for 
both data and log pages was set to 8KB. All times were 
obtained using gettimeofdayo and getrusageo. 

The experiments are run on one or more synthetic 
database partitions consisting of simple linked-lists of 
objects. Each object is 80 bytes long, and along with 
EXODUS page and object headers, 84 objects can fit on 
a page. The objects are allocated in contiguous pages in 
an EXODUS file. The pages are fully packed with ob- 
jects, however, we vary the percentage of garbage objects 

in each page as an experimental parameter. We also vary 
the “clustering factor” of objects in pages. This factor 
determines the number of live objects on a page that the 
marker can scan before crossing a page boundary. For ex- 
ample, with “l/2 Clustering”, half of the live objects in a 
page can be traversed before a page boundary is crossed. 
6.1 Bookkeeping Overhead 

The first experiment measures the overhead that is 
incurred during normal transaction operation with no 
garbage collection running. The overhead in this case 
is due to extra work required to maintain the garbage 
collector data structures (e.g., the PRT and COT). This 
includes the extra log-related work that clients must per- 
form and the processing of log records at the server. In 
this experiment, a single client process was run on a 
SPARCstation IPC with 32MB of memory; it was con- 
nected to the server over an Ethernet. 

Four different operations were tested: 1) object allo- 
cation, 2) modification of references in existing objects, 
3) modification of non-reference data in existing objects, 
and 4) read-only access to objects. For each test, the 
operation was performed on every object in the partition 
before committing. In the tests shown here, the data 
partition contained 100,000 objects (1190 pages) and was 
fully clustered. Client and server cache sizes were 1500 
pages - more than enough to hold all of the accessed 
pages, so all clusterings would have similar performance 
here. Each benchmark was run 10 times and the results 
averaged. For each experiment, we report times for both 
a cold and a hot server cache (except for allocate, which 
creates all of the pages it accesses). 

The results are shown in Table 1. For each test, times 
are presented for the both unmodified and modified (with 
GC code) EXODUS systems. In addition, results are 
shown for cases with and without committing the trans- 
actions. With garbage collection, transaction commit in- 
curs the extra overhead of flagging PRT and/or COT en- 
tries. As can be seen in the table, the overhead imposed 
on normal operations by the garbage collection code is 
quite small in all of the cases tested. The highest over- 
heads were seen for the allocation of new objects; this is 
due to the full-page logging for newly allocated pages in 
EXODUS. For this reason, the server must scan the en- 
tire new page in order to locate any cross-partition point- 
ers; individual object creations on already existing pages 
would not incur this cost. 
6.2 Off-Line Garbage Collector Performance 

The second experiment examines the cost of the 
garbage collector when it is run without any concurrent 
user transactions. In this case, we varied the clustering, 
size, and % garbage of the partition. All experiments 
were run with a server cache of 1000 pages. The parti- 
tion size was varied from 500 to 10,000 pages. 

Figure 6 shows the performance of the marking phase 
of the collector with a fully clustered partition for vari- 
ous percentages of garbage. In this case the marker per- 
formance scales linearly with the partition size for all % 
garbage values (except for 100% which remains near 0, as 
there is nothing for the marker to do). Response time im- 
proves as the garbage % is increased because the marker 
traverses only live objects, and there are fewer of these. 

The performance of the sweeping phase of the collector 
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Update Ref 52: 543 1 53165 I 1.1% II 34367 1 34920 1 1.6% i 
w/Commit 62736 63381 1.0% 44607 45160 1.2% 
Update Value 51091 51616 33104 33438 1.0% 
w Commit 61365 61998 43327 43671 0.7% 
Read-onlv 27: 586 27792 0.7% 13403 13565 1.2% 
w Commit 27622 27828 0.7% 13439 13601 1.2% 

Table 1: Client Slowdown (msec), Cold and Hot Server Cache 

for the corresponding cases is shown in Figure 7. First, 
notice that all % garbage values have similar sweeper 
performance except for 0% and 100%. If the color map 
shows that page has 0% garbage, then the sweeper does 
not bother to fetch the page from disk. Likewise, if a 
page contains only garbage, the sweeper can free the page 
without fetching it from disk. The difference in perfor- 
mance here, comes from the overhead for freeing a page 
in EXODUS. In all other cases, the sweeper performance 
is virtually independent of the percentage of garbage in a 
page, as it must fetch each page that needs to be swept. 
When the partition is smaller than 1000 pages, all of the 
pages that the sweeper would need to fetch are already 
in the buffer because of the marker. Once the partition 
exceeds the cache size, then this pre-fetching effect is com- 
pletely lost (in this case), as the layout of the objects in 
the partition cause the marker and sweeper to scan the 
partition in the same order. 

Figure 8 shows how the performance of the marking 
phase varies for different clustering factors. When the 
partition is small enough to fit in memory (1000 pages, 
here) then marking performance is not affected by clus- 
tering. However, once the partition exceeds the size of 
the buffer, then the marker begins to incur I/O due to 
inter-page references. As can be seen in the figure, full 
clustering is the best case for the marking phase, as it 
allows marking to process pages sequentially, minimizing 
I/O. As the clustering factor is reduced, the I/O require- 
ments of the marker increase. This effect is to be expected 
and raises the issue of the garbage collector’s impact on 
concurrent user transactions. This issue is addressed in 
the following section. 

6.3 On-Line Performance 
The third set of experiments examines the performance 
when client transactions and the collector execute concur- 
rently. Although garbage collection can improve perfor- 
mance in the long run by reducing the amount of wasted 
space in the database, performance can suffer while the 
collector is running due to synchronization with transac- 
tions and the load it places on the server. Given that our 
collector performs no synchronization with client transac- 
tions, and (as shown in Section 6.1) imposes small off-line 
costs on clients, the main impact that it will likely have 
on client responsiveness is the load placed on the server 
when the collector is running. 

Because the collector is fully incremental, the negative 
impact on client performance can be traded off against 
the execution time of the collector by varying the ag- 
gressiveness with which the collector is scheduled at the 
server. Favoring transactions at the server will reduce 
the slowdown experienced by clients when the collector 

is running. However, this slowdown will be incurred over 
a longer time period, as the collector will take longer to 
complete its job. Furthermore, slowing down the collector 
can hurt performance by impacting its ability to quickly 
free up wasted space. 

In order to find a balance between transaction and 
garbage collector execution, we experimented with the 
scheduling of the gcThread at the server. The results of 
the off-line collector experiments (described in the pre- 
vious section) led us to concentrate on the costs of the 
collector in an I/O-bound setting. In this experiment, 
the transaction workload was generated by five client pro- 
cesses, each running on a separate SPARCstation l+ with 
32MB of memory. Each client repeatedly ran transac- 
tions consisting of a read-only, full traversal on a private 
partition. In addition, we continuously ran the garbage 
collector on a sixth partition. We used partitions consist- 
ing of 1200 pages (10MB) each, with full clustering and 
5% garbage.5 The client caches were only 200 pages and 
the server buffer was set to a total of 1200 pages. Given 
the sequential nature of the transactions and the garbage 
collector in this workload, the hit rate at both client and 
server buffers was effectively zero. 

Section 5.2 described the integration of the gcThread 
with the EXODUS scheduler. In order to vary the 
scheduling of the collector, we adjusted the value of the 
sleep time (i.e., minimum delay) that the scheduler im- 
poses on the garbage collector before allocating it a new 
processor time slice. This delay is imposed on the col- 
lector whenever there are client requests waiting for ser- 
vice. Multiple client requests are allowed to run before 
the gcThread is given the processor. 

In this experiment we varied the collector sleep time 
from 0 msec to 1 second. Figure 9 shows the results of 
this experiment for the range from 0 msec to 100 msec. 
The lowest line shows the performance of the collector 
running alone, with a 200 page server buffer (i.e., the 
same amount as is allocated when running concurrently 
with the transactions). The flat dotted line shows the av- 
erage response time for a client when the five clients are 
run without the garbage collector. The other two lines 
show the performance of the transactions and the collec- 
tor when they are executed concurrently. As would be ex- 
pected, when the collector sleep time is small, its response 
time is low, and the transactions suffer. As the sleep time 
is increased, this relationship reverses. What is striking 
in this figure is that at a sleep time of about 20msec, 
the transactions and the collector (which have similar 

5To keep the garbage percentage fixed at 5% in this experiment, 
the sweeper does not actually reclaim the garbage objects, however 
it still performs all checking and marks the pages dirty. 
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I/O patterns in this experiment) are roughly balanced. 
Beyond this point however, the transactions quickly ap- 
proach their minimal response times, while the collec- 
tor jumps to a response time of between 600 and 760 
seconds. At present we are still investigating the inter- 
actions with the EXODUS thread scheduler that cause 
the sudden jump in collector response time. However, 
this experiment (and others) showed that a sleep time 
of 20 msec provides a reasonable balance between collec- 
tor and transaction scheduling. Therefore, we used that 
value in our subsequent experiments. 

The final set of experiments that we describe here, ex- 
plores the interaction of the collector and transactions us- 
ing several different databases in both CPU-intensive and 
I/O-intensive settings. The transactional load in these 
experiments is the same as that used in the previous ex- 
periment. In order to run in a CPU-intensive mode, how- 
ever, we ran all five clients and the collector on the same, 
server memory-resident partition. These results and the 
results for the I/O-bound case (all running on separate 
partitions, as before) are shown in Table 2. 

The Single Partition numbers in the table show that 
in the CPU-intensive case, the collector overhead remains 
around 10% or lower. The Multiple Partition numbers 

‘The collector performance continues to oscillate within this 
range for the cases we tested (up to a 1 second sleep time). 
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Figure 9: Effect of Collector Sleeping Time 
(Full Clustering, 5% Garbage, Multiple Partitions) 

show that as expected, the collector overhead is higher in 
an I/O-bound system, ranging from 12% to nearly 48%. 

This set of tests represents a study of the worst case 
performance of the garbage collector for several reasons. 
First, the garbage collector is run continuously - after 
completing the collection of a partition, it immediately 
begins a new collection. In practice, the garbage collec- 
tor would be run only periodically, and, as discussed in 
Section 6.1, only a small overhead is imposed on client 
transactions when the collector is not running. Secondly, 
in these tests, the client transactions read the same num- 
ber of pages regardless of the amount of garbage in the 
pages; thus, only the performance costs, but not the ben- 
efits of garbage collection (i.e., reduced I/O) are shown 
here. Finally, the tests present a constant, heavy load 
to the server, which is an undesirable (but sometimes 
unavoidable) condition under which to run garbage col- 
lection. For example, in the multiple-partition case, the 
server is completely I/O-bound. 

For these reasons, we believe that the overhead im- 
posed upon clients while the collector is running is rea- 
sonable. It is important to stress that unlike garbage 
collectors that require synchronization with client trans- 
actions, in this collector the bulk of the overhead is due to 
the I/O requirements of detecting and reclaiming garbage 
objects. Such overhead would be incurred by any tracing- 
based garbage collector, and can be adjusted due to the 
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Table 2: Client and Collector Performance (Seconds) 

incremental nature of the collector. 

7 Related Work 
As stated in the introduction, garbage collection has 
been intensively studied in the context of traditional 
programming languages [Wi192]. The invariants that 
an incremental collector must respect were first pro- 
posed by [Dij78, Bak78]. Our work addresses the effi- 
cient implementation of similar invariants in a (transac- 
tional) client-server DBMS context. The earliest study 
of garbage collection for object-oriented databases was 
done by Butler [But87]. This work simulated the be- 
havior of several kinds of collectors running against a 
centralized OODBMS, but did not consider interactions 
with concurrency control, recovery, and caching mecha- 
nisms. More recent work has investigated fault-tolerant 
garbage collection techniques for transactional persistent 
systems in centralized [KW93, ONG93] and distributed 
[MRVSl, MS911 architectures. This work addresses fault 
tolerance but does not consider dynamic page replica- 
tion and caching as arises in a client-server environment. 
Heuristics for selecting which partition is the most cost- 
effective for a partition-based algorithm to collect have 
been studied in [CWZ94]. This work, however, did not 
address the details of collection algorithm itself. 

rithm differs in that it uses a special write barrier and 
that the collector obtains (non-two phase) locks on data 
items. The write barrier traps updates at the clients and 
adds any new object references to a local list. This list is 
shipped to the server when a client commits or when the 
client receives a callback message from the server. The 
server requests these lists and the contents of applica- 
tion process stacks from the clients before the collector 
enters its sweep phase. The lists and other references 
are used during the marking phase as additional roots 
of persistence. In terms of locks, the marking phase ob- 
tains and holds a read lock on a page while it is accessing 
the page. These locks cause the marker to synchronize 
with the transactions. In contrast, our partitioned Mark 
and Sweep algorithm does not hold any locks on pages, 
does not send callbacks to clients, and can ignore the 
program state of on-going transactions. Measurements 
of the implementation showed that the write barrier has 
only minimal impact on client performance; our measure- 
ments support this result. 

A reference counting collection scheme for MIT’s Thor 
system is described in [ML94]. Thor is a distributed 
OODBMS which uses optimistic concurrency control to 
regulate accesses to objects. This paper focuses on dis- 
tributed collection across servers in a client-server envi- 
ronment rather than on collection that is local to a server. 
Each time a client fetches an object from a server, the 
server records the OID of the object and all the OIDs 
that are referenced by the fetched object in a local ta- 
ble. Server tables are cleaned as a side effect of local 
collections. These tables can be viewed as a before im- 
age log, which avoids the reclamation of pruned objects 
prior to transaction commit. The algorithm uses a “no- 
steal” policy so that modified objects are not sent to the 
servers prior to commit. This policy avoids the problems 
due to partial flushes of updates (Section 3.2) at the ex- 
pense of reduced flexibility in client cache management. 
[ML941 describes the algorithm but does not discuss an 
implementation and provides no performance analysis. 

Several other algorithms are examined in [YNY94], 
including a partitioned copy-based collection algorithm. 
This algorithm obtains non-two-phase exclusive transac- 
tional locks for moving objects and uses callbacks, it also 
requires the use of logical OIDs. Based on the results of 
the simulation studies, the copy-based algorithm is advo- 
cated over partitioned Mark and Sweep due to its ability 
to recluster the database. In contrast, we have chosen 
to allow clustering to be treated separately by the sys- 
tem in order to gain the efficiency and relative ease of 
implementation of Mark and Sweep. 

8 Conclusions 
OODBMS features such as client caching, “steal” man- 
agement of client buffers, transactions, and fault toler- 
ance raise three major problems for the development of 
an efficient garbage collector for client-server OODBMS 
environments. These problems are tied to the rollback of 
transactions, the partial flushing of multi-page updates, 
and the potential for overwriting of garbage collected 
pages due to recovery and/or client caching. 

The work that is most relevant to our algorithm is 
[YNY94]. This paper examines the performance of sev- 
eral reclamation algorithms for client-server persistent 
object stores. Some of the results are obtained from an 
implementation of an incremental partitioned Mark and 
Sweep algorithm, although very few details of this algo- 
rithm or its implementation are given. Most of the results 
are obtained using a simulation of several algorithms. 

Similarly to our algorithm, their partitioned Mark and 
Sweep collector runs at the server and can execute con- 
currently with client transactions. However, their algo- 

We described a garbage collection algorithm based on a 
partitioned Mark and Sweep approach. By exploiting the 
flow of log records between clients and server, we are able 
to enforce the correctness of our algorithm. The collec- 
tor is incremental, but requires very little synchronization 
with client transactions (e.g., it holds no locks), performs 
minimal logging, and requires no client callbacks or spe- 
cial hardware. The algorithm has been implemented in 
EXODUS, and integrated with the concurrency control 
and recovery of that system. Furthermore, the garbage 
collector affected fewer than 300 lines of code in the client 
side of the system, and required no changes to the com- 
plex protocols already in place, such as those for recovery, 
concurrency, caching, or clustering. 
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An initial study showed that the collector bookkeep- 
ing mechanisms added little overhead to client operations, 
and that the performance impact of the collector is pri- 
marily due to the I/O load for detecting and reclaiming 
garbage, which is unavoidable in any tracing collector. 
The study also raised scheduling issues that must be ad- 
dressed in order to moderate the impact of garbage col- 
lection I/O activity on overall system performance. 

In terms of the current implementation, remaining 
tasks include implementing the mechanisms for handling 
cross-partition references, and more closely investigat- 
ing the interaction between the gcThread and EXODUS 
thread scheduling to balance garbage collection and client 
transaction processing. In terms of future work, we plan 
to investigate the relaxation of some of the assumptions 
and invariants on which the collector is based in order to 
support a wider range of existing OODBMS. We also plan 
to use the implementation to investigate data partition- 
ing, partition selection, and garbage collector scheduling 
strategies, and to more closely explore alternative collec- 
tion approaches such as scavenging. 
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