
A Practical and Modular Method 
to Implement Extended Transaction Models 

Roger Barga and Calton Pu 
email: { barga, calton} @cse. ogi. edu 

Department of Computer Science and Engineering 
Oregon Graduate Institute of Science & Technology 

P.O. Box 91000 Portland, OR 97291-1000 

Abstract 
Although many extended transaction models have been pro- 
posed [Elm93], few practical implementations exist and even 
fewer can support more than one model. We present the 
Reflective Transaction Framework, as a practical and mod- 
ular method to implement extended transaction models. 
We achieve modularity by applying the Open Implemen- 
tation approach [Kic92] (also known as meta-object proto- 
col [KdRBSl]) to the design of the reflective transaction 
framework. We achieve practicality by implementing on 
top of a commercial transaction processing monitor. For 
our implementation of the reflective transaction framework, 
we introduce transaction adapters, add-on modules built on 
top of existing commercial TP components, such as Encina, 
that extend their functionality to support extended trans- 
action features and semantics. Since our framework de- 
sign is based on the transaction processing monitor archi- 
tecture [GR93], it is widely applicable to many modern TP 
monitors. The reflective transaction framework enables us to 
implement a wide range of independently proposed extended 
transaction models, which we demonstrate by implementing 
the split/join model [PKH88] and cooperative transaction 
groups [MP92, RC92]. 

1 Introduction 

Although the ACID properties(atomicity, consistency, 
isolation, and durability) [Reu82] of traditional transac- 
tions in Online Transaction Processing (OLTP) systems 
have proven very useful in banking and airline reserva- 
tions, they are stronger than necessary for many ap- 
plications and in some cases prevent desirable sharing 
of information. Numerous extended transaction models 
have been proposed [Elm931 which relax the ACID prop 
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erties provided by transactions, replacing them with 
weaker guarantees. Despite their popularity, relatively 
little has appeared in the literature on implementingex- 
tended transaction models, and a key remaining ques- 
tion is whether or not they are practical. 

In this paper, we present the Reflective Transac- 
tion Framework as a practical and modular method to 
implement extended transaction models. We achieve 
modularity by applying the Open Implementation ap- 
proach [Kic92], also known as meta-object proto- 
col [KdRBSl], to design the reflective transaction frame- 
work. We achieve practicality by baaing the imple- 
mentation of the reflective transaction framework on 
the Transaction Processing (TP) Monitor Architec- 
ture [GR93], which is widely applicable to many modern 
commercial TP systems. 

One goal of our research is to bring together research 
advances in extended transaction models and commer- 
cial TP monitors, an interaction from which both sides 
may benefit. To this end, our implementation of the 
reflective transaction framework introduces transaction 
adapters, add-on modules built on top of existing com- 
mercial TP components to extend their functionality 
in support of extended transaction features and seman- 
tics. Transaction adapters take advantage of existing 
transaction services to the extent possible, eliminating 
unnecessary infrastructure development and facilitating 
technology transfer. Insight that a commercial TP mon- 
itor could be used was derived, in part, from previous re- 
search in which we extended Encina [Encina], a commer- 
cial TP facility distributed and supported by Transarc, 
to implement Epsilon Serializability [PC93]. In this pa- 
per, we again take advantage of Encina’s modularity to 
implement the reflective transaction framework. 

The reflective transaction framework enables US to 
implement a wide range of extended transaction models, 
and we illustrate this with the implementation of two in- 
dependently proposed extended transaction models for 
collaborative work (split/join [PKH88] and cooperative 
groups [MP92, RC92]). Tl le ability to describe different 
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extended transaction models in a common framework 
has been demonstrated previously in theoretical frame- 
works such as ACTA [CR90]. However, the practical im- 
plementation of such independently proposed extended 
transaction models in an industrial-grade transaction 
management system is new and significant. 

The rest of this paper is organized as follows. We 
present the Reflective Transaction Framework in Sec- 
tion 2. Section 3 illustrates the flexibility of the re- 
flective transaction framework through the example im- 
plementation of two extended transaction models. Sec- 
tion 4 introduces transaction adapters, describes their 
functionality, data structures, and their implementation 
on top of Encina. In Section 5 we discuss our implemen- 
tation and review previous work and compare it with 
our approach. We conclude with a summary, and direc- 
tions for future work. 

2 Reflective Transaction Framework 

Classic transactions are bracketed by the control 
operations Begin-Transaction, Commit-Transaction 
and Abort-Transaction, while extended transactions 
can invoke additional operations to control their execu- 
tion, such as Split-Transaction, Join-Transaction 
or Join-Group. A particular transaction model 
defines both the control operations available to 
transactions that adhere to that model and the se- 
mantics of these operations. For example, whereas 
the Commit-Transaction operation of the standard 
transaction model implies the transaction is terminat- 
ing successfully and that its effects on data objects 
should be made permanent in the database, the 
Commit-Transact ion operation of a member transac- 
tion in a cooperative transaction group implies only 
that its effects on data objects be made persistent and 
visible to other member transactions. To capture this 
distinction, we first separate the programming interface 
of the transaction facility in order to keep the basic 
function of a transaction independent of the advanced 
operations required for extended transactions, and to 
control implementation level concerns. 

2.1 A Separation of Interfaces 

The Reflective Transaction Framework separates the 
programming interface to transactions into distinct lev- 
els, where each level presents a different view of trans- 
action functionality. This separation follows the Open 
Implementation approach [Kic92], in which the func- 
tional interface is separated from the meta interface, 
and the purpose of the meta interface is to modify the 
behavior of the functional interface. In our separation 
of interfaces, presented below, Level 1 and Level 2 are 
functional, subdivided for clarity only. Level 3 is the 

meta interface that modifies the semantics of the trans- 
action functional interface (Levels 1 and 2). 

Level 1 The transaction demarcation interface: 
begin-E-transact ion, commit-E-transaction, and 
abort-E-transaction. The addition of letter E in 
front of transaction’ indicates that these operations 
extend transaction semantics beyond ACID. 

Level 2 The extended transaction interface (opera- 
tions defined by each extended transaction model): 

l For the split/join transaction model, it is 
Split-Transactionand’Join-Transaction. 

l For the cooperative group transaction model, it 
is Begin-Group, Join-Group, Commit-Group, and 
Abort-Group. 

Level 3 The meta-transaction interface: extends 
the implementation of the TP monitor to support 
the extended transaction interface (Level 2). For the 
extended transaction models considered in this paper, 
the operations needed are: instant iate, reflect , 
delegateop, delegatelock, formDependency, and 
noConf lict . 

The transaction demarcation interface (Level 1) ex- 
ports the basic transaction interface. When used alone 
(Level 2 and Level 3 not involved) it provides classic 
ACID transaction semantics. The extended transaction 
interface (Level 2) exports a model-specific transaction 
interface when extended transaction functionality and 
semantics are required. Finally, the meta-tmnsaction 
interface (Level 3) exports a modifiable interface to 
the underlying transaction processing facility for imple: 
menting extended transaction models. 

This separation of the programming interface to 
the transaction processing system defines an extensible 
framework which can be used to develop applications 
requiring extended transactions and to implement ex- 
tended transaction models. That is, a TP system pro- 
grammer can implement extended transaction models 
by using the extended transaction interface to introduce 
new transaction control operations, and specify their 
implementation using the meta-transaction interface. 
An application programmercan then use both the trans- 
action demarcation interface and the extended trans- 
action interface to develop transactional applications. 
Reflection [Mae871 plays a crucial role in the reflective 
transaction framework, making it possible to open up 
the transaction processing system’s functionality with- 
out revealing unnecessary implementation details. The 
meta-transaction interface makes reflection practical to 
use, by enabling the TP systems programmer to extend 
the underlying transaction processing system’s behavior 
and implementation incrementally. 
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2.2 Metatransactions 

One example of how reflection is applied in the reflective 
transaction framework is metatransactions. Metatrans- 
actions provide an extensible implementation of trans- 
actions that can be used to realize extended transac- 
tions. For example, using a metatransaction, one can 
redefine the general behavior of a transaction: how it 
handles conflicts, what control operations are available 
to the transaction, what happens at commit and abort 
time, etc. In our framework, each extended transaction, 
referred to as an E-transaction, is causally connected 
with a metatransaction. Metatransactions can be ma- 
nipulated in the same manner as “normal” transactions, 
but more importantly, changes made to a metatransac- 
tion through the meta-transaction interface will be au- 
tomatically reflected to the E-transaction. This enables 
the modification and extension of the behavior of the 
associated E-transaction. 

The association of an extended transaction and a 
metatransaction is made when the E-transaction is in- 
stantiated, and ACID properties are initially assigned to 
the E-transaction by default. After instantiating an E- 
transaction, the application can add extended transac- 
tion control operations and semantics to its metatrans- 
action at runtime using the reflect meta-transaction 
operation. For example, an alternative definition of the 
Commit-Transaction operation can be assigned to an 
Etransaction through its metatransaction. This makes 
it possible to adjust the computational behavior of an 
Etransaction to meet the needs of a particular applica- 
tion without modifying the underlying implementation 
of the transaction facility, but rather by changing the 
Etransaction’s metatransaction. 

-l 
I 

BeginSplit 

Metatmnsaction 
Begin Atomic 

Baselevel Me&level Implementation-level 

Figure 1: Transaction/Metatransaction Separation 

When an E-transaction invokes a control operation, 
such as commit-Transaction, the call is trapped and 
handled at the meta-level by the metatransaction(see 
Figure 1). Thus, the operation implementation speci- 
fied by the metatransaction, instead of the default im- 
plementation embedded in the TP system, is used to 

execute the invoked operation. Usually, the metatrans- 
action will simply invoke the operation from the meta- 
level, but it may perform some extra processing before 
or after calling the implementation-level operation and 
perhaps not even call the operation at all. At the end of 
the operation execution, any results are returned to the 
E-transaction exactly like a normal transaction control 
operation call. As illustrated, an E-transaction’s exe- 
cution semantics are cooperatively provided by the con- 
trol operations assigned to its corresponding metatrans- 
action, and by semantic properties of these operations 
which have been fixed by the meta-transaction inter- 
face. In this sense, a suitable grouping of Etransaction 
control operations form an extended transaction model. 

3 Realizing Extended Transaction 
Models - 

In this section, we demonstrate the use of the meta- 
transaction interface and the flexibility of the reflective 
transaction framework by describing the implementa- 
tion of two independently proposed extended transac- 
tion models. Our objective is to identify functional 
components required to implement extended transac- 
tion models, so that we can then proceed to extend the 
underlying transaction processing facilities via transac- 
tion adapters. As such, the many variations that ex- 
ist on the split/join and cooperative group transaction 
models were considered outside the scope of this paper. 

3.1 Split/Join Transaction Model 

In the split/join transaction model [PKH88] it is pos- 
sible for an Etransaction to split into two serializ- 
able E-transactions or join another Etransaction. E 
transactions in the split/join model are associated with 
five transaction management operations: Begin, Split, 
Join, Abort, and Commit. The Begin, Abort, and 
Commit operations have the same semantics as the corre- 
sponding operations of the atomic transaction. We will 
focus the remainder of our discussion of the split/join 
model on the definition and implementation of the ex- 
tended Split and Join operations. 

When an E-transaction Ti splits, by executing the 
transaction management operation split (Tz) , it must 
first create a new Etransaction (T2) and then delegate 
responsibility for executing some of its operations to this 
new E-transaction. To be more precise, Tr transfers 
to Tt responsibility for all uncommitted operations on 
a particular set of data objects, referred to as the 
DelegateSet. In practice, users define the Delegate&t 
by selecting the objects to split from the re-structured 
E-transaction. At the time of the split, a new .E 
transaction is created, instantiated, and then operations 
invoked on objects in the DelegateSet by Ti are 
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delegated to Tz. Etransactions Ti and Tz can then 
commit or abort independently. Split E-transactions 
can further split, creating new E-transactions. Here, it 
is interesting to note, that the split operation provides 
users with a mechanism to release data objects that 
are no longer needed by an Etransaction and to 
release intermediate results. The split operation is 
synthesized as follows: 

gsplitOperation{ 
' // instantiate new transaction. 

insbntiate(T2); 
// add transaction semantics through reflection. 
reflect(T2, sj-model); 
// delegate locks related to objects in DelegateSet. 
delegateJock(T2, DelegateSet); 
// delegate ops related to objects in DelegateSet. 
delegate,bp(Tl, DelegateSet); 
// begin execution of the nea transaction. 
begin(T2); 
// return control to invoking transaction 
return; 1 

The join transaction operation is the inverse of a split 
transaction operation. When E-transaction Ti exe- 
cutes the transaction management operation join( 
it must delegate its uncommitted operations and asso- 
ciated locks to T2 and then terminate its execution; E- 
transaction Tz must already exist and be instantiated. 
Etransaction .Tg is now responsible for committing or 
aborting these operations, and the updates of T2 must 
be committed together with the effects ‘of Ti. In joining 
an E-transaction, the DelegateSet is simply all uncom- 
mitted operations and associated locks. In this regard, 
a joining transaction behaves similar to a child transac- 
tion in the nested transaction model. We synthesize the 
join operation as follows: 

E-joinOperation{ 
// delegate locks related to objects in DelegateSet. 
delegateJock(T2, DelegateSet); 
// delegate ops related to objects in DelegateSet. 
delegate-op(T2, DelegateSet); 
// terminate execution of Tl. 
commit(Tl); 
// return control to invoking transaction. 

,return; ) 

3.2 Cooperative Group Transaction Model 

In the cooperative group transaction model [MPSS, 
RC92], individual transactions may join a transaction 
group designed to facilitate cooperative access to a 
set of data objects. The cooperative group model 
supports two types of transactions, namely, group 
transactions and member transactions, each having its 
own set of transaction management operations. Only a 
group transaction can create a cooperative transaction 
group and it is then responsible for committing or 
aborting the results of transactions that are members 

of the group. Member transactions can join a specific 
cooperative group and share access to all data objects 
held within that group, while executing atomically with 
respect to the group. Member transactions can abort 
independently without causing the abort of the whole 
group, but only when the group transaction commits are 
the effects of the member transactions made permanent. 

A group transaction in the cooperative group trans- 
action model is associated with the following three 
unique transaction control operations: beginGroup, 
commitGroup, and abortGroup. A member transaction 
is associated with the following four transaction con- 
trol operations: Begin, Commit, Abort, and joinGroup, 
where only the Begin operation has the same semantics 
as the corresponding operation of the atomic transac- 
tion. When a member transaction commits, all locks on 
data objects acquired by the transaction are delegated 
to the group transaction, as is the responsibility to make 
the effects on data objects permanent in the database 
when the group transaction commits. In this sense, the 
member transaction is commit-dependent on the group 
transaction and it only pseudo-commits its results when 
it commits. When a member transaction aborts, all 
locks on data objects, acquired by the transaction are 
delegated to the group transaction and the transac- 
tion’s effects on data objects are discarded. Now, we 
will synthesize the extended transaction management 
operations for the transactions in the cooperative group 
transaction model. 

E-joinGroupOperation(GID)( 
set group = GID 
// Ti can not commit until the group commits. 
create-dependency(Commit, Ti, GID); 
// Ti is abort dependent on the group. 
create-dependency(Abort, CID, Ti); 
// Ti permits group access to the locks it holds. 
no-conflict(Ti, GID); 
// begin execution. 
begin( 
// return control to invoking transaction. 
return; 1 

E-commitgemberOperation( 
// delegate locks to the cooperative group. 
delegate-locks(group); 
// group is responsible for committing operations. 
delegate-ops(group); 
// wait until group terminates. 
commit(self); 
// return control to invoking transaction. 
return; ) 

E-abortNemberOperation{ 
// delegate locks to the cooperative group 
delegateJocks(group); 
// terminate execution 
abort(self); 
// return control to invoking transaction. 
return; ) 
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These examples served to demonstrate how the meta- 
transaction interface can be used to implement two in- 
dependently proposed extended transaction models. We 
describe the implementation of other extended transac- 
tion models in the full version of this conference pa- 
per [BP95]. Through the introduction of metatrans- 
actions we have enabled transactions to exhibit differ- 
ent extended semantics simply by binding to different 
extended transaction control operations. This binding 
can be done dynamically at run time using the meta- 
transaction interface. Metatransactions are realized by 
tmnsaction adapters, and in the following section we 
introduce transaction adapters and describe their im- 
plementation in Encina. 

4 Details of Implementation Method 
In this section, we first present an overview of trans- 
action adapters and then discuss the motivation and 
design strategy behind our transaction adapters imple- 
mentation. Next, we describe the structure of the reflec- 
tive transaction framework in terms of layering transac- 
tion adapters over the TP Monitor Architecture. Fi- 
nally, we introduce the individual transaction adapters, 
and for selected adapters we outline their implementa- 
tion in Encina. For reasons of space, we must limit 
our description of transaction adapters, however more 
detailed descriptions of the reflective transaction frame- 
work and transaction adapters can be found in our other 
papers [BP95, BPZH95]. 

4.1 Overview of Transaction Adapters 
Transaction adapters are add-on modules built on top 
of existing commercial TP components to extend their 
functionality in support of extended transaction fea- 
tures and semantics. Each transaction adapter pro- 
vides a representation (or model) of the underlying 
transaction processing component for use by the meta- 
transaction interface, mechanisms for reasoning about 
and with such a representation, and a set of commands 
for controlling both the representation and the underly- 
ing transaction facility. This set of commands is referred 
to as TRACS, for TRansaction Adapter Command 
Set. TRACS expose features such as operation and 
lock delegation, dependency tracking between transac- 
tions, and relaxed definitions of conflict, as explicit com- 
mands by which extended transaction models can be 
implemented. Thus, instead of applying operations in 
the meta-transaction interface directly to the underly- 
ing transaction system, we base them on an abstract 
and enhanced description of the underlying transaction 
system provided by transaction adapters. 

Our principal goal in designing transaction adapters 
was to build on top of existing TP monitor software 
to take advantage of existing transaction services to 

the extent possible. Although in retrospect this would 
seem to be the logical approach, it was not at all 
obvious that this was feasible because, in general, TP 
monitor components are tightly tuned for traditional 
transactions with ACID properties. 

To reveal the design of the transaction adapters, we 
followed three simple design steps. The first step was 
to analyze extended transaction models to identify the 
required modular functional components. Part of this 
first step was summarized in Section 2. The second 
step, presented in Section 4.2, was to analyze the TP 
Monitor Architecture to identify the main modules that 
provide basic functionality required for extended trans- 
action models. After mapping the required extended 
transaction model components into the existing TP 
monitor modules, the functionality identified as miss- 
ing is exactly what needed to be provided by transac- 
tion adapters. The third, and final step, was to expose 
the new extended transaction functionality through a 
small number of commands which constitute the trans- 
action adapters. In many cases, the functionality re- 
quired for extended transactions was provided directly 
by the underlying TP facility or easily constructed, but 
in certain cases new data structures and functions had 
to be provided by the appropriate transaction adapter. 
As such, transaction adapters expose not only new ex- 
tended functionality but also certain aspects of the TP 
monitor implementation, allowing users to adjust the 
implementation to better suit their needs. 

4.2 TP Monitor Architecture 

In order to discuss the implementation of our transac- 
tion adapters, we first need to establish a common ba- 
sis for the transaction processing mechanisms involved. 
For this purpose we have chosen the standard trans- 
action processing monitor architecture, introduced in 
Bernstein [BerSO] and detailed in Gray, [GR93], which 
we abbreviate as the “TP Monitor Architecture”. The 
TP Monitor Architecture is abstract enough to allow 
observations on TP systems in general, and yet con- 
crete enough to make implementation details obvious 
in a modern TP monitor, such as Transarc’s Encina or 
Novell’s Tuxedo. We share the same assumptions made 
by the TP Monitor Architecture such as two-phase lock- 
ing (2PL) concurrency control and write-ahead logging 
recovery. These assumptions are prevalent in existing 
TP monitors and many database systems. 

The major functions of the TP Monitor Architecture, 
with respect to the implementation of Etransactions, 
are the execution of transaction management operations 
that control the transaction and concurrency control. 
Hence, we focus our description on the interaction 
among four components: a Tmnsaction Manager, a 
Lock Manager, a Log Manager and a Resource Manager 
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(e.g., DBMS). Th e relationships among a transactional 
application and these four components are depicted in 
Figure 2. In a commercial setting, we might find a 
TP system such as Transarc Encina or Novell Tuxedo 
providing access to various resource managers, such as 
an Oracle or Informix relational DBMS. 
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Figure 2: Components of a TP System 

In the TP Monitor Architecture, ACID transac- 
tions are initiated by a Begin-Transaction call and 
terminated by either a Commit-Transaction or an 
Abort-Transaction call. When initiated, each trans- 
action is assigned a unique identifier and entered into a 
transaction table managed by the Transaction Manager. 
Each entry in the transaction table contains the trans- 
action identifier (TR.ID), the transaction status, and 
other information. When a transaction calls a trans- 
action control operation, such as Commit-Transaction, 
the Transaction Manager is responsible for carrying out 
the execution of the command and recording informa- 
tion in the transaction table. However, the Transac- 
tion Manager in the TP Monitor Architecture does not 
allow a transaction to redefine the implementation of 
transaction management operations, nor does it allow 
the transaction to extend the set of transaction control 
operations available to it. And, while information on 
all active transactions is available to the Transaction 
Manager, it does not allow transactions to dynamically 
restructure their operations or locks, nor does it pro- 
vide support for intertransaction dependency manage- 
ment. Thus, we introduce a transaction management 
adapter to extend the functionality of the Transaction 
Manager and expose its underlying services to imple- 
ment extended transactions. 

The Lock Manager maintains a lock table which 
contains an entry for every data item on which a 
lock has been requested (each request corresponds to 
an operation). Two functions, Lock and Unlock, are 
supported as the interface to the Lock Manager. The 
Lock Manager only detects basic conflicts between 
operations and does not consult any other source of 
information to determine if a potential conflict can be 

relaxed. Thus, our work is to extend this functionality 
to support the semantics of E-transactions and their 
relaxed notions of conflict. In addition, E-transactions 
often cooperate by sharing access to data objects, 
allowing the effects of their operations to be visible 
without producing conflicts, and by delegating locks 
to one another. The Lock Manager does not directly 
support this functionality, so we introduce a lock 
adapter and a conflict adapter to expose and extend the 
functionality of the Lock Manager. 

4.3 Transaction Management Adapter 

The Transaction Management Adapter is responsible for 
directing the execution of extended transaction control 
operations during the life of an Etransaction. The ex- 
ecution of an Etransaction consists of four steps: in- 
stantiation, reflection, execution, and termination. An 
Etransaction is entered into the reflective transaction 
framework through instantiation. After an instantiated 
E-transaction has been assigned a set of extended trans- 
action control operations (semantics) through reflection 
it is said to be ready l. The Etransaction is now pre- 
pared for execution by the TP facility. An Etransaction 
is said to be active if it is executing operations but has 
not yet completed. An E-transaction is said to have 
completed if it has finished executing operations but is 
waiting to commit or abort, and considered terminated 
after it has been committed or aborted. 

4.3.1 Design of the Transaction Management 
Adapter 

Transaction management control operations are orga- 
nized in the metatransaction descriptor under named 
categories, to enable the transaction management 
adapter to recognize the role each operations plays in 
the execution of an E-transaction. For example, the 
following metadescriptor fragment describes the control 
operations available to a split/join-transaction. 

metatransaction Descriptor< 
Ryid is TBID; 
execblode is Active; 
initiateoperations: {<Begin,atomicBegin>) 
processOperations: (<Split,splitOperation)) 
terminateoperations: {~Commit,atomicCommit>, 

<Abort,atomicAbort>, 
<Join,joinOperation>)) 

Here, Descriptor describes the metatransaction 
properties of an E-transaction in which the slots are 
defined as follows. The initiateoperations slot lists 
all control operations that can be called to initiate the 
execution of the E-transaction, the processOperations 
slot lists control operations that can be called during 

'In contrast,when an ACID transactionisinitiated by the TP 
system it enters the ready state 



execution, and the terminateoperations slot lists 
control operations that will result in the termination of 
the E-transaction. 

When an extended transaction control operation is 
invoked by an E-transaction, the actual code executed 
is determined by its metatransaction (see Figure 3). 
Suppose that a split operation is invoked by an E- 
transaction. Processing involves first verifying this E- 
transaction control operation is permitted for the E- 
transaction. This check is performed by simply checking 
the metatransaction descriptor to verify that split is 
listed in the extended transaction control operation set. 
In addition, preTest and postTest invariants can be 
defined for each extended transaction control operation. 
These invariants represent predicates that have to hold 
at the beginning and the end of the execution of the 
operation, respectively. Thus, if the operation name 
is found in the metatransaction descriptor and the 
preTest invariant predicate is satisfied, then the function 
is executed. Afterwards, the postTest invariant is 
evaluated, and then any results from the transaction 
control operation are returned to the E-transaction as 
if for a normal operation call. 

Figure 3: Etransaction control operation redirection 

During the course of its execution, an E-transaction 
may form a dependency with another E-transaction, 
such as a commit or an abort dependency. The transac- 
tion management adapter provides commands to record 
and track transaction dependencies in support of ex- 
tended transactions, such as the pseudo commit of coop- 
erative group transactions. In addition, the transaction 
management adapter provides commands for restructur- 
ing an Etransaction through operation delegation. Be- 
fore discussing the Encina implementation of the trans- 
action management adapter, we summarize commands 
in its TRACS. 

l instantiate(TRID): Create a metatransaction descrip- 
tor for the E-transaction whose transaction identifier 
is TRID. If successful, instantiate returns a rejlec- 
tiwe transaction identifier (RID); otherwise it returns 
an error. The E-transaction does not start executing- 
execution is started by calling exec. 

l reflect(RID,semantics): Assigns a set of transaction 
management operations to the metadescriptor of the E 
transaction whose reflective identifier is RID. For the 
purposes of this paper, the semantics field wiII be one of 
SJ - split/join model, CG - cooperative group model, or 
SJCG - split/join cooperative group model. 

l exec(TRID): Start execution of the E-transaction 
whose transaction identifier is TRID. 

l delegate-ops(TRID,opSet): Delegate ail uncom- 
mitted operations listed in the set opSet to the 
E-transaction whose identifier is TRID. 

l form-dependency(type,TRIDi,TRIDj,opName): 
form a dependency of the specified type between TRIDi 
and TRID,. Many types of dependencies can be 
recorded but the only two required for the extended 
transaction models examined in this paper are CD - 
commit dependency and AD - abort dependency. 

4.3.2 Encina Implementation of the 
Transaction Management Adapter 

The Encina transaction manager assigns a unique trans- 
action identifier (TRID) to each Etransaction when it 
is initiated, creating an entry in the transaction table 
to record the TFUD with other pertinent information, 
and tracks the E-transaction through its execution. For 
Etransactions we augment the information stored in 
the transaction table using a Reflective Transaction Ta- 
ble (RT). An entry is created in the RT when the E 
transaction is instantiated, and is used to store informa- 
tion relevant to the management of the Etransaction. 
While every transaction in Encina will have an entry 
in the transaction table, only Etransactions have an 
entry in the reflective transaction table. Data stored 
in both the transaction table entry and the reflective 
transaction table entry permit bidirectional access to 
the information stored in these tables. 

Though each E-transaction will define its own 
function for processing commit or abort transaction 
management operations, the Transaction Management 
Adapter must provide commit and abort preprocessing 
to manage transaction dependencies. Thus, we define 
two functions, PreCommit and PreAbort, and register 
each with the appropriate callback function [ETPR]. 
The definitions of these new functions are outlined 
below: 

PreCommit(Z) Function Execution Steps: 

1. Scan the list of dependencies emanating from Ti &d 
for each such dependency D between Ti and some E 
transaction Tj do the following: 
l Abort Dependency - if D is an abort dependency, 

then Ti cannot commit because if Tj aborts then Ti 
must abort as well. Ti blocks and retries later. 

l Commit Dependency - if D is a commit dependency 
Ti can only commit after Tj completes (either 
commits or aborts). Ti blocks and retries later. 
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2. At this point, Ti does not depend on any other E- 
transaction. Commit preprocessing is complete and 
control can be returned to the associated commit 
procedure. Change the status of Ti to terminatedin 
the RT. 

3. Scan the list, of dependencies pertaining to Ti and 
remove each such edge from the dependency graph. 
This will effectively remove all dependencies of other 
E-transactions on Ti. 

PreAbort(Ti) Function Execution Steps: 

1. Scan the list of dependencies impinging on Ti and for 
each such dependency D between some Etransaction 
Tj and Ti do the following: 

l Abort Dependency - if D is an abort dependency, 
then Tj must also abort. Invoke the abort proce- 
dure on T3. 

l Commit Dependency - if D is a commit depen- 
dency, then simply remove this dependency. 

2. At this point Ti does not depend on any other E 
transaction. Abort preprocessing is complete and 
control can be returned to the associated commit 
procedure. Change the status of Ti to terminatedin 
the RT and return success. 

3. Scan the list of dependencies pertaining to Ti and 
remove each such edge from the dependency graph. 
This will effectively remove all dependencies of other 
E-transactions on Ti . 

To summarize the Encina implementation of the 
transaction management adapter, the data structures 
and implementation of each command in the TRACS 
are described below: 

Reflective transaction table (RT): Each entry 
in the RT is assigned a unique identifier, or reflective 
transaction identifier (RID), and contains the following 
information: 

l TRID: transaction identifier of E-transaction T. 

l Group: TRID of T’s parent or cooperative group, in any. 

l Status: the operational status of the E-transaction, 
which will be one of the following: instantiated, ready, 
active, completed, and terminated. 

l Transaction Management Operations: In the form of 
a property list of (OperationName, function) pairs. 
Property values are retrieved by using the operation 
name, providing the address of the function that is to 
be executed by the E-transaction. 

The reflective transaction table is created by placing 
the reflective descriptors in a chained hash table based 
on the transaction’s TRID. 

The transaction dependencies graph (TRAND): 
This is a directed graph where the nodes in TRAND 
represent E-transactions and an edge from node Ti to Tj 
labeled with type represents a dependency of type between 
E-transaction Ti and E-transaction T3. TRAND is composed 
of node structures that contain the following information: 

. TRIDf,,, 

. RIDfrom 
l dependency list of (type, TRIDt,, RIDto, opName) 

Nodes in TRAND include pointers into both the 
transaction table and the reflective transaction table for 
both E-transactions involved in the dependency, as well 
as information on the type of dependency. The node 
and edge data structures composing TRAND are doubly 
hashed on the TRID of the two Etransactions involved 
so that dependencies emanating from or impinging on 
an E-transaction can be located efficiently. 

The Encina implementation of commands in the 
Transaction Management TRACS are described below: 

instant iate(TRID): Create a reflective transaction de- 
scriptor (RD) for, the Etransaction and generate a reflective 
identifier (RID), storing the RD in the reflective transaction 
table (RT). Create an entry in the transaction table (TT) for 
the new E-transaction and generate a transaction identifief 
(TRID). Record the TRID in the RT entry corresponding 
to the E-transaction, and create a property list for the E 
transaction using the command tran-l?ropertyAdd (Re- 
flectiveID, RID) to record the RID. Register preabort and 
precommit callback functions for dependency management 
using the functions callbackBeforeAbort(preAbort) and 
callbackBeforePrepare(preCommit), and set the status 
of the Etransaction in the RT to instantiated. 

reflect(RID, conteet): The transaction management 
operations associated with the named contezt, such as 
Split-Join or Cooperative Group, are assigned to the E 
transaction. This assignment takes the form of a property 
list of (operatiotl-name, function) pairs. For each transaction 
management operation associated with contezt a property 
pair is created and the memory addresses of the function 
associated with the operation is registered. The function 
(address) associated with the transaction management op 
eration will be executed by this Etransaction when the op 
eration is called. Set the status of the Etransaction in the 
RT to ready. 

formdependency( type, Ti, Tj, opName) : Insert a 
new edge in TRAND. Before this new edge is added to the 
graph a check is performed to prevent a dependency cycle 
from being created. If successful, that is, no cycles were 
detected by the addition of this new edge in TRAND, the 
function returns success; otherwise it returns fail. 

removedependency( type, Ti, Tj ,opName) : Fk- 
moves an edge from the dependency graph TRAND. 

delegate_ops(Tj ,DelegateSet) : Transfer uncommit- 
ted operations listed in DelegateSet from Ti to Tj, and ad- 
just dependencies in the TRAND graph accordingly. 
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4.4 Conflict Adapter 
Depending on the semantics of an E-transaction and 
its relationship to other E-transactions, not all conflicts 
between E-transactions need to produce dependencies 
or serialization orderings. To capture this, the conflict 
adapter can selectively present and change the definition 
of conflict for one or more underlying data objects 
or E-transactions. By adapting the definition of 
conflict offered by the underlying TP system, the 
conflict adapter is able to provide support for a variety 
of extended transaction models and semantics-based 
concurrency control protocols [BPZH95]. 

The conflict adapter relaxes conflicts between E- 
transactions by two means: a compatibility table 
defining conflict relationships between operations, and 
a no-conflict table that records all conflicts explicitly 
relaxed between Etransactions. Based on these two 
sources of information, the conflict adapter uses the 
following rule to determine whether there is a conflict 
between two Etransactions: 

Definition 1 (Relazed Conflict Rule): A conflict 
detected by the basic conflict detection mechanism can 
be relaxed if either of the following conditions hold 
true: 

1. the semantics of the data object indicate that the 
operation for which the lock is being requested is 
compatible with all uncommitted operations holding a 
lock in an incompatible mode; 

2. the Etransaction holding the lock on the data object has 
explicitly indicated that the E-transaction requesting the 
lock has permission to perform the operation, regardless 
of the basic conflict; 

Thus, the relaxed conflict rule used by the conflict 
adapter states that an E-transaction may acquire a 
lock if all other E-transactions owning the lock in 
a mode incompatible with T are relaxed by either 
operation semantics or explicit agreement between 
the E-transactions. The generality of the relaxed 
conflict rule allows the conflict adapter to capture 
many semantics-based concurrency control protocols 
discussed in the literature [BPZH95], and combine them 
with extended transactions models. 

If an incompatible lock request is granted to an E- 
transaction Ti because of a relaxed conflict, a depen- 
dency Ti + Tj may be created for each Etransaction 
such that Tj owns a lock in a mode incompati- 
ble with Ti. The type of dependency formed be- 
tween E-transaction Ti and Tj will be provided by ei- 
ther the operation compatibility table or the no con- 
flict table, and recorded in the dependency graph 
using the transaction management adapter command 
formdependency(type,Ti,Tj,opName). These de- 
pendency relationships will be tracked across both op- 

eration and lock delegation by the transaction manage- 
ment adapter. For example, if there is a commit de- 
pendency Ti +CD Tj and Ti delegates its locks to Tk 
through a join operation, then the dependency is up- 
dated to Tk -#CD Tj. 

For the extended transaction models considered in 
this paper, we have utilized only one command in the 
conflict adapter TRACS, namely noconflict: 

noconflict(Tj, [dataobjects]): when issued by E 
transaction Ti it indicates that even if Ti has a data object 
in the set [dataabject &)I locked in a mode that normally 
conflicts with TJ, Tj can still perform operations on the data 
object as far as Ti is concerned. If the list of data objects 
is empty, then Ti permits Tj access to any data object on 
which it holds a lock. 

A complete description of the conflict adapter 
and its associated TRACS, along with a descrip- 
tion of its Encina implementation is described 
elsewhere [BPZH95]. 

4.5 Lock Adapter 
Locks on data objects can restrict the ability of a trans- 
action to see the effects of other transactions on data 
objects while they are executing. The lock adapter al- 
lows greater control over the visibility of data objects by 
enabling an E-transaction to grant other E-transactions 
access to data objects on which they hold locks. The 
lock adapter enables an E-transaction to delegate own- 
ership of its locks to another Etransaction prior to ter- 
mination through the delegatelock command. The 
delegatelock command allows the E-transaction to 
specify whether it wishes to delegate all the locks it curl 
rently holds or only those for specified data objects. The 
conflict adapter records access rights granted between 
E-transactions in the no-conflict table, while the lock 
adapter provides the E-transactions access to the locked 
data object(s). It is the responsibility of the transaction 
programmer to guard against unwanted non-serializable 
behavior when using this feature. 

The Lock Adapter provides this enhanced access to 
the lock table through commands which extend the 
functionality of the underlying lock service. Specifically, 
it provides E-transactions the ability to both delegate 
locks and share access to locked data objects. The 
principal command supported by the lock adapter 
TRACS is delegatelock: 

delegatelock(Tj, [dataobjects] > when issued by E 
transaction Ti, it releases all locks that Ti owns on the 
data objects listed in the set dataobjects and transfers 
ownership to E-transaction Tj. If the field listing the data 
objects is empty then this corresponds to all locks that 
Ti holds. The lock adapter supports additional options 
for specifying what locks are to be delegated, which are 
described elsewhere [BPZH95]. 
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5 Discussion 

In this section, we first discuss aspects of layering our 
implementation of the reflective transaction framework 
on the Encina TP Monitor. We then attempt to place 
the contribution of our work in perspective, and to 
clarify its relationship to work similar in spirit to ours. 

5.1 Extending the Encina TP Monitor 

TP monitors provide a general framework for trans- 
action processing, supplying the “glue” to bind the 
many software components of a TP system through 
services like multithreaded processes, interprocess com- 
munication, queue management, and system man- 
agement [BerSO]. While early TP monitors were 
constructed from tightly integrated product-specific 
services, modern TP monitors, such as Transarc’s 
Encina [Encina], are layered on modular transaction 
middleware services. These transaction middleware ser- 
vices provide the basic building blocks for many of the 
features that a TP monitor must provide, and have a 
wide variety of uses. For example, IBM recently built 
a new implementation of its CICS TP monitor layered 
on transaction middleware developed by Tpansarc, the 
same middleware used in the Encina TP monitor. 

The transaction services for the Encina TPM are 
provided by the Encina Toolkit, which is composed 
of separate transaction middleware service modules. 
Each module provides its transaction services through 
a relatively simple and uniform application program- 
ming interface (API). The core transaction services 
of the Toolkit are provided by the following modules: 
Tmnsaction Service Module(TRAN) provides transac- 
tion demarcation (begin, commit, abort), distributed 
two-phase commit management, and nested transac- 
tions; Lock Service Module (LOCK) provides a logical 
locking package that guarantees serializability; Log Ser- 
vice Module (LOG) provides write-ahead log support 
for transaction updates, archiving, and crash recovery; 
Transactional RPC Module (TRPC) extends DCE re- 
mote procedure call facility (RPC) to have exactly-once 
transaction semantics. Together, these modules provide 
the basic building blocks for the services of the standard 
TP monitor architecture [GR93, pp. 211. 

It was a basic tenet that our reflective transaction 
framework should be built as a relatively thin layer over 
the transaction middleware services provided by the 
Transarc Toolkit. In our design, transaction adapters 
are simply higher-level compositions of the transaction 
middleware services in order to realize extended transac- 
tion models. Specifically, the transaction management 
adapter extends the TRA N module to manage extended 
transactions, while the conflict and lock adapters ex- 
tend the lock services provided by the LOCK module. 
In some cases, the Toolkit module functionality is di- 

rectly exposed by the adapters. For example, the lock 
adapter uses the standard API to LOCK to release and 
acquire locks in support of delegation. In other cases, 
the Toolkit module functionality is essentially hidden 
and the necessary functionality is provided by the trans- 
action adapter. For instance, TRAN callbacks are used 
to pass transaction specific information from Encina to 
the reflective transaction table in the transaction man- 
agement adapter, and to provide a convenient point for 
performing transaction dependency checks. 

In general, our experience with the Encina Toolkit 
was that it is well designed and provided a good 
foundation upon which to implement the reflective 
transaction framework. To date, we have only used the 
Toolkit as defined through the API and callback facility. 
The modularity and extensibility of the Toolkit, along 
with the functionality it provides have simplified our 
development effort and made it possible for us to focus 
on the design of the Reflective Transaction Framework. 

5.2 Comparison With Related Research 

Since the introduction, of extended transaction models, 
research towards their realization has focused primarily 
on proposing specialized execution facilities, or extend- 
ing programming and database languages with primi- 
tives for extended transactions. We refer the reader to 
Elmagarmid [Elm931 for a collection of recent work. 

In contrast, the reflective transaction framework rep 
resents an evolutionary approach. Rather than at- 
tempting to develop a specialized transaction execution 
facility, the reflective transaction framework seeks to 
build support for extended transactions from transac- 
tion facilities which support classic transactions. From 
a purely pragmatic standpoint, our research differs from 
previous work in that we can use existing commercial 
products that runs across different platforms to imple- 
ment different extended transaction ,models. Our re- 
search poses and answers the question “Is it possible to 
extend the TP monitor architecture in a practical and 
modular manner in order to realize extended transaction 
models”. By doing so, it opens up the possibility of im- 
plementing a wide range of extended transaction mod- 
els on industrial-grade transaction management systems 
where they can be applied in real-world applications. 

The ability to specify different extended transaction 
models using a small set of modeling primitives was first 
demonstrated in the formal framework of ACTA [CR90]. 
In ACTA five simple building blocks are used to spec- 
ify the essential components of extended transaction 
models, namely history, inter-tmnsaction dependencies, 
transaction conflict, transaction view, and delegation. 
Even though ACTA was not intended to be executable, 
it provided us with valuable insight into the design of 
the reflective transaction framework. We distilled the 
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essence of selected ACTA building blocks into a func- 
tional realization for implementing extended transac- 
tion models. The result, in part, was the functionality 
provided by transaction adapters: the transaction man- 
agement adapter includes transaction dependency man- 
agement and operation delegation functions, the con- 
flict adapter includes transaction conflict and transac- 
tion view funtions, while the lock adapter includes lock 
delegation functions. It is this close alliance with ACTA 
that enables the reflective transaction framework to im- 
plement a wide range of extended transaction models. 
On the design side, the meta-transaction interface and 
functionality of transaction adapters are close enough 
to ACTA to be applicable to many different extended 
transaction models. And on the implementation side, 
transaction adapters are close enough to the TP moni- 
tor architecture to support a practical implementation 
on top of commercial software. 

An example of the language primitives approach is 
ASSET [BDG+94], in which the ability to implement 
extended transaction models is provided at a very low 
level by embedding ACTA-based primitives in the host 
language of an object-oriented database. Using AS- 
SET, an application programmer can construct ex- 
tended tranactions from scratch by properly compos- 
ing the available languistic primitives. In contrast, 
TSME [GHKM94] p re resents the specialized transac- 
tion facility approach, in which the ability to imple- 
ment extended transaction models is provided at a high 
level through a transaction specification language and 
mechanisms which configure the run-time transaction 
facility to realize extended extended transactions. Us- 
ing TSME, an application programmer can construct 
certain extended transactions using certain expressions 
in the specification language, which are then mapped to 
certain pre-built configurations in the transaction man- 
agement mechanism. In a sense, the reflective trans- 
action framework represents a fusion of these two ap 
proaches. The meta-transaction interface provides the 
low-level flexibility of language primitives, enabling an 
application programmer to construct extended transac- 
tions from scratch, while the extended transaction inter- 
face and transaction adapters provide the.high-level in- 
terface and functionality of a specialized transaction fa- 
cility, enabling an application programmer to construct 
extended transaction from existing components. 

Prototype implementations of special-purpose ex- 
tended transaction models can be found in the liter- 
ature. Some well known representatives include the 
APRICOTS system [Sch93] (A PRototype Implemen- 
tation of a COnTract System [WR93]), the multi-level 
transaction model [WH93], and the Flex transaction 
model used in the InterBase project [BEK93]. Also re- 
lated, an approach to implement extended transaction 

models using a commercial workflow manager has been 
suggested in [MAG+95], though the generality of this 
approach remains to be seen. 

In a final note on related work, a feature which further 
distinguishes our work is the application of the Open 
Implementation approach. We found three tangible 
benefits in taking the Open Implementation approach 
in designing the reflective transaction framework. First, 
the separation of the functional and meta interface to 
the transaction processing facility allows programmers 
to adjust and extend the design and implementation of 
the system to suit their particular needs easily. Pro- 
grammers can introduce new transaction control opera- 
tions by simply defining new operations in the extended 
transaction interface, or they can redefine the semantics 
of an existing transaction control operation using the 
meta-transaction interface. Second, using metatransac- 
tions to deal with the wide range of different transaction 
models enables us to rely on an underlying transaction 
facility for the basic implementation. This not only sim- 
plified our development effort, but also enables us to 
evaluate extended transaction models on an industrial- 
grade transaction management system in real, working 
environments. Third, permitting each transaction to 
have its own metatransaction makes it possible for an 
application to assign different extended transaction se- 
mantics to different transactions according to the needs 
of their application. 

6 Concluding Remarks 
We have presented the reflective transaction framework 
as a practical and modular method to implement ex- 
tended transaction models. We achieved modularity by 
applying the Open Implementation approach to design 
the reflective transaction framework, and we achieved 
practicality by extending commercial TP monitor soft- 
ware to implement the reflective transaction framework. 
Although the implementation details were product spe- 
cific (Transarc’s Encina), our .framework was designed 
in the context of the TP Monitor Architecture, so it is 
applicable to many modern commercial TP monitors. 
Our early experience shows that the reflective transac- 
tion framework is general enough to implement a wide 
range of extended transaction models [BP95]. 

While the importance of extended transaction mod- 
els has been known for many years, their use in real- 
world applications has been hampered by the lack of 
practical implementations. Furthermore, since most ex- 
tended transaction models have been merely theoretical 
constructs, there are a number of important design is- 
sues that have generally not been discussed in the liter- 
ature [Moh94]. Our hope is that the reflective transac- 
tion framework will remedy this situation, providing a 
clear migration path to incorporate research advances in 
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extended transaction models into commercial TP moni- 
tors. This will enable us to draw conclusions from direct 
experience in applying extended models in real, working 
environments. 

We are proceeding with active research based on 
the Reflective Transaction Framework and transaction 
adapters. We plan to refine the reflective transaction 
framework, evaluate the performance of our Encina im- 
plementation for selected extended transaction models, 
and study the broader issues of the concurrent execu- 
tion of different extended transaction models to better 
understand their interference and synchronization. 
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