
The Fittest Survives: An Adaptive Approach to Query
Optimization

Hongjun Lu Kian-Lee Tan Son Dao
Dept Information Systems and Computer Science Hughes Research Laboratories

National University of Singapore Information Sciences Lab.
Lower Kent Ridge, Singapore 0511 Malibu, CA 90265, USA

Abstract

Traditionally, optimizers are “programmed”
to optimize queries following a set of build-
in procedures. However, optimizers should be
robust to its changing environment to gener-
ate the fittest query execution plans. To re-
alize adaptiveness, we propose and design an
adaptive optimizer with two features. First,
the search space and search strategy of the
optimizer can be tuned by parameters to al-
low the optimizer to pick the one that fits
best during the optimization process. Sec-
ond, the optimizer features a “learning” capa-
bility for canned queries that allows existing
plans to be incrementally replaced by “fitter”
ones. An experimental study on large multi-
join queries based on an analytical model is
used to demonstrate the effectiveness of such
an approach.

1 Introduction

With the widespread adoption of database manage-
ment systems comes greater expectations from the
database user community. In particular, there is an in-
creasing demand for high performance (high through-
put and low response time). At the same time,
databases are growing in size and queries are be-
coming more complex. For a large number of new

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

applications (e.g. deductive databases and object-
oriented database systems), complex queries that in-
volve very large number of joins (> 30) are not un-
common. For example, in object-oriented database
systems, queries typically involve “path expressions”.
One way of executing these path expressions is to turn
them into joins. In these cases, each query that nav-
igates through the database is likely to involve many
joins. While using more powerful hardware helps,
the design of query processing and optimization al-
gorithms that utilize the system resources effectively
is equally crucial for maximizing the system perfor-
mance.

In this paper, we revisit the problem of optimizing
large number of joins. We propose a new adaptive
query optimizer with two novel features to optimizing
large multi-join relational queries. First, the search
space of the optimizer can be tuned by parameters..
Varying these parameters gives rise to a family of op
timization heuristics of varying complexities. This al-
lows the optimizer to pick the one that fits best during
the optimization process. Second, the optimizer fea-
tures a “learning” capability for canned queries. By
repeatedly optimizing a canned query, a different (and
possibly better) plan than previous optimizations is
obtained, and the query plan can be refined accord-
ingly. An experimental study based on an analytical
model is used to demonstrate the effectiveness of the
approach. The results of the study show that the pro-
posed technique is competitive for ad-hoc queries, and
produces more optimal plans for canned queries even-
tually.

Throughout this paper, execution plans for multi-
join queries will be depicted as trees, with each internal
node corresponding to a join and each leaf node cor-
responding to a base relation. To simplify the discus-
sion, only hash-based join methods [DK0+84, Sha86]
will be considered.’ As in [SD90], each join in an exe-

‘All the algorithms studied in this paper are not limited to

251

cution tree will have its building relation to the left and
its probing relation to the right. Hash tables are built
on building relations and probed by probing relations.
If all the internal nodes of an execution tree have at
least one leaf (i.e., base relation) as a child, then the
tree is called deep [IK91]. Otherwise it is called bushy.
A left-deep tree is a deep tree whose probing relations
are restricted to base relations. Conversely, a right-
deep tree is a deep tree whose building relations are
restricted to base relations. As defined, the search
space of bushy trees includes deep trees, which in turn
includes left-deep and right-deep trees.

The rest of this paper is organized as follows. In the
next section, we give an overview of adaptive query op-
timization. Section 3 proposes an optimization frame-
work for multi-join queries. In Section 4, we describe
how the framework may be extended with learning ca-
pability. Section 5 presents the experiments and re-
sults that were conducted, and finally, conclusions are
drawn in Section 6.

2 Adaptive Query Optimization

In this section, we give an overview of adaptive query
optimization. After motivating the need for adaptive
query optimizer, we propose the design of such an op-
timizer and discuss issues that must be addressed for
it to be realized. We shall also compare such an ap-
proach with existing optimization techniques.

2.1 The Fittest Survives

Most of today’s optimizers are “programmed” to per-
form in a certain way. For example, reoptimizing a
query will go through the same optimization process
and produce the same query plan, and nothing can be
done to improve a sub-optimal plan. As another ex-
ample, it will consume the same amount of resources
to optimize a query regardless of the system load. As
such, it lacks the ability to accommodate the ever-
changing environment.

However, it is crucial for an optimizer to be able
to adapt to different situations because it can lead to
better overall system performance (we shall illustrate
with examples in the following subsections). To “rev-
olutionize” the current technology, a new generation
of optimizers must be built that can adapt to different
scenarios, such as the query, the system resource, and
the optimization objectives. We shall discuss some of
these here.

hash-based join methods. Considering k join methods require
choosing the best join methods for each join. This will increase
the search space and complexity of the algorithm by a factor of
O(P) where n is the number of joins [TL91].

Adaptive to Query

The optimizer must adapt to different queries differ-
ently depending on the query type (whether it is an ad-
hoc query or a canned query), its complexity (number
of relations) and the cardinalities of the relations.

The cost of processing an ad-hoc query really com-
prises of two components: the optimization cost and
the processing cost. There is clearly a tradeoff be-
tween the optimization cost and the processing cost
- a long optimization cost generally leads to a short
processing cost whereas a short optimization cost may
lead to a long processing cost. The optimizer must
adapt accordingly depending on the complexity of the
query, and the cardinalities of the relations. For ex-
ample, consider two multi-join queries with the same
join graph and same number of relations - query 1
involves small relations while query 2’s relations are
large. Under a traditional optimizer, the optimization
cost for both queries are equally high. While it is ben-
eficial to spend a high optimization cost for query 2
since its execution time is expected to be longer than
query 1, query l’s optimization cost may be too high
compared to its processing cost since it involves only
small relations and its execution time is expected to
be short. Had the optimizer been capable of adapting,
it might have restricted the search space for query 1
to keep down the optimization time and enlarged the
search space for query 2 to generate better plans for
both queries. In other words, the search space that fits
best for the particular query should be selected during
the optimization.

For complex canned queries, once a plan is gener-
ated, it is traditionally left unchanged until some crit-
ical statistics are modified. If a plan is sub-optimal, it
will remain so. Moreover, we may not even know how
far or close is the plan from the optimal solution. The
sub-optimality of a plan will become more common for
complex queries and more crucial since repeated exe-
cutions of the queries may degrade the system perfor-
mance. An adaptive optimizer, however, may improve
the plan of a canned query by “learning” from previ-
ous optimizations of a canned query and incrementally
refine the existing plan. In other words, “fitter” plan
will survive and replace the less fit ones.

Adaptive to System Resource

An adaptive optimizer should be adaptive to the sys-
tern workload. For example, when the system work-
load is high, then the optimizer may traverse a smaller
search space. On the contrary, a large search space
(and hence higher optimization time) can be tolerated
when the system workload is low.

The optimizer should also treat the optimization
time as a critical resource. In this way, the longer

252

the optimization time a query is assigned, the bet-
ter the quality of the plan will be.2 Complex canned
queries have traditionally been assigned high optimiza-
tion cost because the high cost can be amortized over
multiple runs of the queries. However, it may not be
practical to assign a long optimization time to a query
(even canned query) in a single optimization process
because today’s applications are mission critical and
runs 24 hours a day, 7 days a week, 365 days a year.
To overcome the problem of overcommitting optimiza-
tion resource, an adaptive optimizer can “break up” a
long optimization time to a query into shorter times-

Zices. The query is then optimized multiple times each
with a optimization period equivalent to a timeslice.
To avoid generating the same plan (as is done tradi-
tionally), the optimizer adapts and learns from pre-
vious optimizations so that the quality of the plan of
a query can be improved at each optimization of the
query. The effect is equivalent to that of optimizing
the query using a long optimization time. Note that
the query is not optimized consecutively otherwise it
is no different from existing techniques. Instead, the
query is optimized at different runs, i.e. if the query
is submitted 10 times, then it may be optimized 10
times, each resulting in a different plan.

Adaptive to Optimization Objectives

Another important aspect of an adaptive optimizer is
that it must adjust to different optimization objectives
for different applications and queries. An urgent re-
quest requires the optimizer to minimize the response
time. On the other hand, the optimizer may want
to maximize the resource usage for “batch” queries.
Some applications may require optimizing a weighted
sum of the response time and resource consumption.
Yet another optimization objective that is becoming
increasingly important is that of minimizing dollar
charges. This objective is particularly important to
users whose queries involve accessing other organiza-
tion’s resources.

Even if the user does not specify an objective, the
optimizer should adapt the optimization objective in
some ways. For example, if the system load is heavy,
it may be more appropriate to optimize resource uti-
lization. When the system load is light, minimizing
the response time may become acceptable.

2.2 The Architecture of an Adaptive Query
Optimizer

An adaptive query optimizer must be able to

2Randomixed algorithms are examples of existing algorithms
that treat optimization time as a resource though it expended
all in a single optimization process.

1. traverse a different search space at different invo-
cation (even for the same query).

2. enhance the plans of canned queries over times

Figure 1 shows the design of such an optimizer. The
optimizer comprises two main components: the tuner

and the plan generator.

Rules43uideliner

Query

Syslem
workload

Query V

> Tuner Plan Generator
B

P8~MlWtI3~
settings I

J
Owy Executlan Plan

Figure 1: An Adaptive Query Optimizer.

Our plan generator is highly parameterized. We
shall leave the discussion of the parameters to the next
section. It suffices for the moment to know that vary-
ing the set of parameters results in different optimiza-
tion heuristics of varying complexity. Depending on
the setting at the time the query is submitted, the par-
ticular algorithm will be used to optimize the query.

The tuner is a new component which acts as the
“administrator” of the optimizer. Its responsibility is
to set the values of the parameters for different queries,
applications and resources. The decision of the tuner
is based on several pieces of information: (a) the query
to be optimized, (b) the system workload at time of op
timization, and (c) the rules/guidelines that has been
established. For example, a simple rule may be to
assign the amount of optimization time according to
the number of relations in the query. Other rules may
be determined by the complexity of the queries, the
system load, etc.

Now, let us walk through the optimization process
of a query. For an ad-hoc query, the plan generator
(a) passes the query information to the tuner, (b) the
tuner determines the parameter settings for the plan
generator, and (c) the plan generator looks up the
dictionary to obtain the statistics and access meth-
ods available, and produced a query plan based on
the optimization algorithm (obtained by the parame-
ter settings).

For a canned query, if it is the first time the query
is submitted, then it is treated as an ad-hoc query.
However, the generated plan is retained together with

253

the query. Additionally, information about the search
space traversed is kept. If it is not the first run, after
obtaining the parameter settings from the tuner, the
plan generator will optimize the query using a differ-
ent search space from that which the query was last
optimized. The cost of the generated plan is compared
with that of the existing plan, and the better plan is
retained and used.

Such an adaptive optimizer is highly desirable, and
has

1.

2.

2.3

the following advantages:

It can act as an optimizer generator. A system can
choose a fixed set of parameters, and “generate”
its own optimizer. This corresponds to traditional
optimizers.

More importantly, the variability allows the sys-
tem to apply different algorithms to different ap-

plications and queries. The flexibility to vary the
optimization algorithm (and hence the optimiza-
tion cost) allows us to tune an overall minimum
cost for different queries and applications.

The Issues

To realize the full potential of an adaptive query op-
timizer such as the one discussed above, several issues
has yet to be addressed:

1. What are the set of parameters that can be used
to tune the optimizer search space?

2. How should these parameters be tuned?

3. How can the optimizer “learn” and model opti-
mization time as a resource for canned queries?

In this paper, we address the first and last issues
which we describe in greater details in the next two sec-
tions respectively. The challenging task of tuning the
optimizer depends on applications, and requires some
amount of research before a set of rules/guidelines can
be developed.

2.4 Related Work

Several researches have addressed the issue of adap-
tive query optimization, most of which focus on in-
creasing the search space. Earlier work on increasing
the search space used by the query optimizers have
mainly addressed the benefits of allowing composite
inners [Koo80, RR82].

The Exodus’ rule-based optimizer generator can
vary the search space considered by an optimizer by
changing the rules and methods of its input [GD87].
As such, different optimizers with different search
space can be adapted to different applications. HOW-
ever, once an optimizer is generated, its search space
cannot be varied without generating a new optimizer.

In [OL90], Starburst’s extensible join enumerator
adopts a generate and filter approach. The join gener-
ator, which is based on dyna.mic programming, gener-
ates a set of feasible plans. This set can be adjusted by
parameters that control the use of Cartesian products
and composite inners. A set of filters may then be used
to further pruned the generated plans. However, the
exponential complexity of dynamic programming may
limit the optimizer to queries that involve not more
than 15 relations. The Starburst optimizer also has
a greedy join enumerator that can generate left-deep,
right-deep and bushy execution trees. It also has a
tuning knob to control just how bushy an execution
tree can get.

Lanzelotte and Valduriez [LV91] proposed a promis-
ing approach in which a hierarchy may be used to rep-
resent optimization algorithms. Each internal node of
the hierarchy represents a category in which its chil-
dren nodes belong to. The leaf nodes represent the
set of optimization algorithms used by the optimizer.
In this way, an optimizer can be built that will vary
its search space for different queries by simply select-
ing the desirable algorithms within the desirable cat-
egories. However, this will mean that the number of
different search space will be proportional to the num-
ber of optimization algorithms. Moreover, how the
search space for each of the optimization algorithms
may be varied was largely ignored.

3 The Tunable Optimization F’rame-
work

A first step towards adaptive query optimization is to
design an optimizer whose search space can be tuned
to adapt to different scenarios. In this section, we pro-
pose an optimization framework with tuning capabil-
ity. The framework iteratively se1ects.a set of relations
to be optimized, and the optimization process may be
guided by a smaller set of the selected relations. The
framework is targeted at ad-hoc queries. Because it is
highly tunable by parameters, it can be set to generate
a good plan in a reasonable amount of time. We shall
describe how to extend the framework to support in-
cremental optimization for canned queries in Section 4.

3.1 Tuning Parameters

Before we look at the framework, let us consider the
parameters that we have identified for tuning the
search space. In this section, we describe the three cat-
egories that were chosen. The three categories, which
are described in more detail below, are:

1. search space based,

2. algorithm and algorithm specific, and

254

3. optimization objective.

3.1.1 Search Space Based

The search space can be tuned by (1) the shape of
the execution tree (TreeShape), (2) enabling or avoid-
ing cross products (AuoidCrossProducts), and (3) the
number of relations to be optimized in each iteration
(NumRel). Varying any of these parameters affects the
search space directly.

Parameter 1: TreeShape. This parameter restricts
the shape of the execution tree. It is set to either
left-deep, right-deep, deep, or bushy. Left- and right-
deep trees have the smallest search spaces, followed by
deep and bushy trees [OL90].

Pammeter 2: AvoidCrossProducts (A CP). This pa-
rameter is set to either True or False. If it is set to
True, then cross products are avoided whenever possi-
ble. Otherwise, two relations may be joined regardless
of whether there is any join predicate between them.
In the event that AvoidCrossProducts is set to Z’rue
and cross products are unavoidable, then they are de-
ferred until the end of the query.

Parameter 3: NumRet. This parameter determines
the maximum number of relations to be optimized in
each iteration. For example, given a 40-relation join,
setting NumRet to 15 leads to 3 iterations needed to
produce the final plan. ‘While it is independent of
the optimization algorithm employed, it may be re-
stricted by practical constraints. For example, if dy-
namic programming is used as the optimization algo-
rithm, then the maximum number of relations should
not be more than 15 because of the exponential com-
plexity of dynamic programming. On the other hand,
if a greedy heuristic with polynomial time complexity
is used, then it can be set to as large as the number of
relations in the query.

3.1.2 Algorithm and Algorithm Specific

The framework is designed such that existing algo-
rithms can be extended easily with tuning features.
This is achieved by specifying the parameter OptAlgo.
Depending on the set of algorithms that is supported,
it can be set to DP for dynamic programming, RA
for randomized algorithms, and GD for greedy-based
heuristics. Among the randomized algorithms, one can
choose to use iterative improvement (II) [SCM], sim-
ulated annealing (SA) [SGSS], genetic algorithm (GA)
[LV91], or two phase optimization (SPO) [IK90].

Some algorithms also have algorithm specific pa-
rameters. For example, randomized algorithms gener-
ally require a termination criterion. A commonly used
measure is the number of iterations whereby there is

no further improvement over the best plan. As another
example, the heuristic algorithms proposed in [SYT93]
increases the search space by keeping a number of al-
ternative subplans for the same set of relations. The
maximum number of alternative subplans to be kept
is specified by a parameter.

3.1.3 Optimization Objective

The parameter OptObj specifies the optimization ob-
jective to be used. It can be set to ResponseTime,
Resourceconsumption, WeightedSum, or Monetary.
While it doesn’t affect the search space, as we have
seen, the flexibility to vary the optimization objective
for different queries or applications is highly desirable.
For simplicity, for this paper, we restrict our discussion
to minimizing elapsed time. Varying the optimization
objectives require building a parameterized cost mod-
els only.

3.2 The Framework

Figure 2 shows the proposed framework. It com-
prises several iterations, each of which finds an
optimal subplan. For simplicity in presentation,
some details of the algorithm are abstracted. Be-
fore walking through the algorithm, let us describe
the functions that are called by it. The function
selRel(G, Ri, Rj, k, NumRel, ACP) returns S, a set
of NumRet relations from the join graph G. The
argument k is a “flag” that indicates whether &
and Rj must be in S. This is needed only for the
first iteration. For the subsequent iterations, & and
Rj are just “dummies” and they are not used any-
more. If ACP is False, then the relations in S need
not form a connected subgraph in G; otherwise they
must lead to a connected subgraph in G. Function
optimizeGraph(G, S, TreeShape, NumRel, OptAlgo)
employs the optimization algorithm determined by
OptAlgo to produce either (1) a partial plan for G
base on S if NumRel < n or (2) a full plan for G if
NnmReI = n. TreeShape determines the shape of the
generated plan. Function postProcess(G, S, subPlan)
derives a new plan, newSubPtan, from subPlan for a
subset of the relations in S. It is motivated by observ-
ing that fixing the number of relations to pick at each
iteration may lead to poor performance.

Let us walk through the algorithm in Figure 2. As
shown on line 2, the algorithm tries all possible pairs
of relations for its first join. For each starting pair,
an execution plan is generated. At each iteration, all
the unjoined pairs of relations are considered (line 6).
Function selRe1 is then invoked to obtain a set of re-
lations that OptimizeGraph uses to generate a sub-
plan (line 7,8). The generated subplan is then post-
processed (line 9). Next, all the relations that has been

255

Input: A join graph, G, of n relations RI, R,
Output: Optimal multi-join plan, OptPlan

1. OptPlan.cost = 00
// try all relation pairs as a starting point

2. for Ri, Rj in G
3. if (Ri, Rj connected by an edge or

A CP is False) do
4.
5.
6.
7.
8.

CurrentPlan = 0
k=l
while]G] > 1 do

S = selRel(G, Ri, Rj, k, NumRel, ACP)
subPlan = optimizeGraph(G, S, TreeShape,

NumRel, OptAlgo)
9. newSubPlan = postProcess(G, S, subPlan)
10. add newSubPlan to CurrentPlan
11. collapse R, in G, forall x E newSubPlan
12. k=k+l
13. endwhile
14. endif
15. if CurrentPlan.cost < OptPlan.cost do
16. Opt Plan = Current Plan
17. endif
18.endfor
19.output OptPlan

Figure 2: The tunable optimization framework.

selected are collapsed into one node in G to reflect the
fact that they have been joined (line 11). This process
is repeated until all the relations have been joined, and
the least costly plan generated among all starting pairs
of relations forms the final output (line 15-17).

3.3 Tuning the Search Space

From the description of the framework, we see that
varying the tuning parameters can lead to a family of
optimization algorithms of varying complexities, some
of which have appeared in the literature and others
are new. For example, by setting NumRel to all the
relations, and using dynamic programming ss the op-
timization algorithm, and setting TreeShape to left-
deep, we effectively have the traditional system R al-
gorithm [SAC!+791 with O(2”) complexity for n rela-
tions. As another example, by setting NumRel to
all the relations, and using the greedy heuristic in
[SYT93] as the optimization algorithm, we effectively
have a greedy algorithm with complexity O(n3). On
the other hand, setting NumRel to different values
(smaller than the number of relations) leads to a fam-
ily of new optimization algorithms.

4 Incremental Optimization

As mentioned, traditional optimizers generate the
same plan for the same query given the same amount
of resources. If the quality of the plan is far from opti-
mal, then the performance of the system suffers. This
may be unacceptable for canned queries since they are
repeatedly executed. We propose that canned queries
be incrementally optimized. To do so, the optimizer
must be “intelligent” enough to “learn” from previous
optimizations of a query so that the subsequent op-
timizations can generate different and better plan for
the query.

4.1 Incremental Optimization using Different
Search Space

Our solution is to organize the search space into sub-
spaces (possibly overlapping), so that at each opti-
mization of a query, the optimizer works on a different
subspace. All that is needed of the optimizer is to
“remember” the subspaces that it has searched in pre-
vious optimizations. To illustrate the idea, suppose we
can order the subspaces, say Sr, Sz, and so on, such
that the ith optimization will search subspace Si. The
basic idea works as follows. When the optimizer is in-
voked to optimize a canned query for the first time, it
searches Sr to produce a plan. At the same time, the
optimizer will remember the plan. Some time later,
the same query is to be processed again. The op-
timizer is called again but this time, it searches Sz
(knowing that Sr has already been searched). It com-
pares the new plan with the existing plan, keeps the
better one and uses it. This process is repeated until
all the subspaces have been searched, in which case,
subsequent execution of the query requires no further
optimization.

The main issue lies in organizing and ordering the
search space. We shall demonstrate how this can
be done in the context of the proposed optimization
framework described in Section 3. Suppose we have n
relations and k is the predetermined number of rela-
tions to be selected for optimization in each iteration
of the algorithm. We also made several interesting ob-
servations and conclusions.

Observation 1: If the k relations selected at each
iteration of the optimization framework is different at
each run (we use the term “run” to mean an invoca-
tion of the optimization framework), we expect a dif-
ferent plan to be generated: For example, suppose in
a run, the first iteration selects RI to &. Let the plan
generated be plan A. Now, consider another run that
selects &+I to &k in the first iteration. Let this plan
be plan B. Clearly, plan A is different from plan B.

256

This observation leads to the following conclusions:

l The set, of relations selected at each iteration can
be used to partition the subspace that the opti-
mizer has searched.

l By making the optimizer remembers the set of
relations selected, the optimizer can generate dif-
ferent plans at different runs of the same query.

Observation 2: The iterations of the optimiza-
tion framework can be ranked in the following sense.
The first iteration of the optimization framework is
the most important because a different set of relations
selected in the first iteration affects all subsequent it-
erations. The second iteration ranked second, and so
on.

This leads us to the following heuristic:

To cut down on the complexity of the opti-
mizer, we can always restrict it to remember
only the relations for the first few iterations,
and not all the iterations.

Observation 3: To target the optimizer for both ad-
hoc and canned queries, the most important run of the
optimizer is the first run. Ad-hoc queries need a good
plan from the first and only run. On the other hand,
canned queries can hope to incrementally improve on
the plans that have been generated form earlier runs.

This also leads to the following heuristic:

The optimizer should search a larger space
for the first run, but for subsequent runs, it
can restrict to a smaller but different search
space.

In the current study, we restrict the optimizer to
just remembering the set of relations selected in the
first iteration. All that is needed is to try all com-
bihations of choosing k relations from n. This value
effectively represents the total number of runs before
we can say that the plan is “optimal”. So, we begin
by considering RI to Rk. The next run considers RI
to &-1 and &+I, and the next run considers RI to
Rk-1 and &+2, and so on. Generating all these se-
quences is straightforward.

Figure 3 shows the framework extended with the
“learning” capability. It comprises two parts. The first
part (lines 2-4) corresponds to the case when a canned
query is optimized in the first run or an ad-hoc query is
optimized, in which case, the optimization framework
described earlier is called to produce the plan. The pa-
rameter SST represents the information remembered

Input: A join graph, G, of n relations RI, R,
Output: Optimal multi-join plan, OptPlan

1. if planExcists(G) = FALSE do
2. plan = optFramework(G, SST)
3. store SST
4. store plan
5. else
6. CurrentPlan = 0
7. k=l
8. while IGl > 1 do
9. S = selRel(G, k, SST, NumRel, ACP)
10. subPlan = optimiaeGraph(G, S, TreeShape,

NumRel, OptAlgo)
11. newSubPlan = postProcess(G, S, subPlan)
12. add newSubPlan to CurrentPlan
13. collapse R, in G, forall x E newSubPlan
14. k=k+l
15. endwhile
16. retrieve existing plan, OptPlan
17. store SST
18. if CurrentPlan.cost < OptPlan.cost do
19. OptPlan = CurrentPlan
20. store OptPlan
21. endif
22.endif
23.output OptPlan

Figure 3: Indremental optimization framework.

by the optimizer - the parameter settings and the re-
lations already considered in the first iteration - for it
to know the search spaces that have been traversed.
The generated plan and the SST are then stored.

The second part (lines 5-23) is executed when an ex-
isting plan exists. It is essentially a simpler version of
the optimization framework, i.e. it did not try all pos-
sible pairs of relations for its first join and the starting
set of relations is determined by SST.

4.2 Incremental Optimization with Random-
ized Algorithms

While randomized algorithms can be used with the in-
cremental optimization framework described above, it
can also be used to optimize queries incrementally in a
different and straightforward way. Randomized algo-
rithms generally works iteratively as follows: (1) gen-
erate an initial plan (randomly), (2) apply transforma-
tion rules randomly to improve the plans, (3) repeat
steps 1 and 2 until some termination criterion is met.

Clearly, if the optimizer can ensure that, each in-
vocation generates a different initial plan in step 1,
then we have an incremental randomized optimizer.
All that is required is for the optimizer to remember
the set of initial plans that has been generated. Instead

257

of a random generation, we can systematically gener-
ate an initial plan by specifying the order of the plan.
This can be done in a manner similar to that described
for the incremental optimization framework, i.e. the
optimizer remembers a subset of relations that must
be joined to generate the initial plan.

4.3 Some Simple Optimizations

There are some dptimizations that can be incorporated
to cut down the optimization cost, i.e. we don’t have
to try all combinations that may be generated for SST.
First, some combinations may not generate good plans
and such cases can be pruned away immediately. For
example, if the selected relations results in a discon-
nected join subgraph, we can skip this case, and try
the next one that results in a connected graph.

Second, some combinations may lead to the same
plan, and we can terminate “prematurely”. For exam-
ple, suppose the first run selects R1 to &, and the
second run results in choosing RI to &-I and &+I.
And it turns out that in the first iteration of both runs,
the actual number of relations used are 9, and they are
both RI to Rg. then, in the second run, we can bypass
all subsequent iterations because the generated plan is
definitely the same as the existing plan.

Finally, it may not be necessary to try all combi-
nations. If the database administrator is comfortable
with the quality of a plan (for example, there is no im-
provement after some threshold number of runs), then
incremental optimization can be turned off.

5 Preliminary Results

In this section, we describe the experiments that were
conducted baaed on an analytical cost model, and the
results of the experiments. The cost model is similar
to the one used in [SYT93]. Two optimizers were im-
plemented in C and the experiments were tested on
a Sun Spare-2 machine. The purpose of the experi-
ment is to demonstrate the necessity and feasibility of
adaptive query optimization.

5.1 Optimizers Studied

In this study, two adaptive query optimizers were
built. One W~LJ based on dynamic programming, while
the other used a randomized algorithm. For the for-
mer, we will refer to it a3 Incremental Dynamic Pro-
gramming (IDP) optimizer, and for the latter, we will
call it the Incremental Randomized Algorithm (IRN)
optimizer.

The IDP optimizer iteratively selects a set of
NumRel relations, and employs the modified dynamic
programming algorithm proposed in [SYT93] as the
optimization algorithm to produce a subplan for the

selected relations. The modified dynamic program-
ming algorithm extends the traditional dynamic pro-
gramming to include memory consumption while using
elapsed time as the cost metric [SYT93]. For practical
reasons, NumRel is restricted to a maximum value of
15.

For the IRN optimizer, the optimization algorithm
used in each iteration is the two phase optimization al-
gorithm (2PO) [IK90]. 2P0 comprises of two phases.
In the first phase, the randomized algorithm Iterative
Improvement is applied to produce a quick solution.
In the second phase, the randomized algorithm Sim-
ulated Annealing is used to further improve on the
plans generated in the first phase. As shown in [IK90],
the optimization cost can still be very large for large
number of relations too. As such, we have restricted
NvmRel to at most 40 in our study. Therefore, if the
number of relations is less than or equal to 40, the
straightforward technique is used.

5.2 Workload

We experimented with acyclic multi-join queries only.
For each query, the optimizers took a join graph along
with statistics on relation cardinalities and join selec-
tivities as their input. The data for a query was gener-
ated in two steps as in [SYT93]. First an acyclic join
graph was generated, then relation cardinalities and
join selectivities were assigned to the graph.

As in [SYT93], three relation types (small, medium,
and large) were used. The cardinality of small,
medium, and large relations were uniformly di&
tributed over [lOK, 20K], [lOOK, 200K], and [lM, 2M]
records, respectively. Using these relation types, the
algorithm assigns cardinalities and join selectivities as
follows:

The type (small, medium, or large), but not the
cardinality, of the final result was picked.

Each node (i.e., relation) R was randomly as-
signed a type (small, medium, or large) and then
randomly assigned a cardinality in that type’s
range.

The join selectivity js of each edge (RI, Rz) was

chosen by first picking a value v for]jRl x Rzjl

in P-5. m~WM llR2ll), (1.5 ~m4llR4 ll~2ll)l
and then solving js . (j]Rl x R2ll) = v

If the product of all the relation cardinalities and all
the join selectivities (i.e., the cardinality of the final
result) fell within the range of the final result type cho-
sen in step l), then the algorithm exited. Otherwise
it backtracked to step 2), and tried new join selectiv-
ities. The algorithm restarted itself if it found that it
had ba.cktracked over 500 times. The calculation for

258

js reflects the fact that a join’s size is often a function
of its input relations. The multipliers of 0.5 and 1.5
were added to increase the variance in the size of in-
termediate results. All join selectivities were treated
as independent.

Three sets of tests were conducted and are summa-
rized in Table 1. For example, in test-small, 80% of
the relations were small relations, 10% were medium
and 10% were large.

Table 1: Types of tests
Because of the high optimization cost, in our ex-

periments, we run 200 queries of 20-relation join, 50 of
40-relation join, and 20 of 60-relation, 80-relation and
lOO-relation join.

5.3 Experiment 1: Dynamic Programming
Based Optimizer

This experiment studied the performance of the IDP
optimizer that is based on dynamic programming. All
the algorithms studied avoid cross products. We de-
rived the following heuristics by varying the parame-
ters as follows:3

BY-n: bushy tree with n as NumRel

DE-n: deep tree with n as NumRel

LD-n: left-deep tree with n as NumRel

We studied two values of n: 10 and 15. All the re-
sults (the processing cost and optimization cost) are
scaled with respect to the processing cost of BY-15.
Figure 4 shows the result for 40 relation joins. Look-
ing at the results for test-small, we see that all the
algorithms are relatively close in terms of processing
cost. This is so because most of the relation sizes are
small, and pipelining can be exploited without incur-
ring excessive cost to write intermediate results back
to disk. LD-10 which performed worst in terms of
processing cost is, on average, about 50% worse than
BY-15. However, the optimization cost for BY-15 is
the highest while that for LD-10 is the lowest. In fact,
the optimization cost for BY-15 is very much larger its
processing cost. As a result, it turns out that the al-
gorithm that performs best overall is DE-lo. Though
DElO’s processing cost is high, its low optimization

3We have not studied right-deep trees since the results in
[SYT93] showed that the averageperformanceof right-deep trees
are the worst among all the four tree shapes.

cost is more than enough to outweigh the effect of the

Figure 4: Comparison of IDP-based heuristics for 40-
relation joins.

Turning to the results for test-large, we see a sightly
different picture. First, the relative difference between
the quality of the plans produced by the algorithms in-
creases. This is because the relations are larger in size,
and the effect of join orders become more important.
Second, the ratio of optimization cost to processing
cost decreases because ofthe high processing cost. As
a result, the winning algorithm (in terms of overall
cost) is now BY-lo.

Both results pointed out two very interesting obser-
vations. First, no single algorithm dominates perfor-
mance. While BY-15 generates the best quality plan,
DE-10 performs best overall for test-small and BY-10
performs best overall for test-large. This implies that
using only a single optimization algorithm (as is done
in traditional query optimizer) is not sufficient - there
is a need for adaptive query sptimization. Second, it
is not the algorithm that geneiates the best quality
plan wins, but it is the ‘Vitter” one (which may vary
from query to query) that generates the best overall
cost wins.

To further demonstrate the effectiveness of adaptive
query optimization, we employ a simple tuning rule:

Let M denote the available memory and S be
the total size of the base relations. Then, if
S < 5 M, employ DE-lo, else if S < 15 M,
employ BY-10 else employ BY-15.

This experiment wss’conducted with test-mixed and
Table 2 summarizes the results, In the table, each
entry represents the number of plans (in terms of per-
centage) that performed best overall. For example,
BY-10 generated the best overall plans 59% of the
time, while BY-15’s high optimization lead it to per-
form best overall for only 8%. The tuned optimizer,

259

however, performed best for 74% of the queries. The
results clearly show that the ability to adapt is a cru-
cial component in future optimizer. Even a simple rule
as the one we have suffices to lead to good performance
overall.

Tuned IDP BY-15 BY-10 1 DE-10
74% 8% 59% 1 33%

Table 2: Results of tuning IDP optimizer on test-
mixed.

To study the effect of the IDP optimizer on canned
queries, we experimented with 10 queries from test-
mixed (due to the high optimization cost). Figure 5
shows the results. Here we used only algorithm BY-
15. The axis indicates the average number of times
the optimizer has been invoked before a better plan
was obtained. The first bar in the figure (when there
is only 1 run) is the first run. The results of sub-
sequent runs are scaled with respect to this run. In
other words, a value of 0.9 implies that the cost of the
plan is 90% that of the first run. We made two ob-
servations. First, the first run provides a good plan
within a reasonable optimization cost. Second, unlike
traditional optimizer, IDP can improve on plans of a
canned query (though it may take a long time to do
so). This is especially important since canned queries
are executed repeatedly and a sub-optimal plan may
degrade performance. Note that even a small percent-
age improvement could be a lot in terms of base time.

1 46 105 133 254 366 534

Figure 5: Plan refinements for 40-Relation Joins using
BY-15.

5.4 Experiment 2: Randomized-Based Opti-
mizer

This experiment studied the performance of, the IRN
optimizer that is based on 2P0. All the algorithms
studied avoid cross products and uses bushy trees. We
derived five heuristics by controlling the running time
of the algorithms. This is achieved by varying the ter-
mination criteria of the 2P0 algorithm (see Appendix
II), i.e. we set k to 1, 2, 4, 8 and 16. We denote the

derived algorithms as IRN-k, for k = 1, 2, 4, 8 and 16.
All the results (the processing cost and optimization
cost) are scaled with respect to the processing cost of
IRN-16.

Figure 6 shows the result for 40 relation joins. Look-
ing at the results for test-small (Figure 6(a)), as ex-
pected, we see that though IRN-16 produces the best
quality plans, its high optimization cost lead it to pro-
duce the worst overall plans. Instead, we see that the
heuristic IRN-1 that produces the worst plans per-
formed best overall. Like its IDP counterpart, the
main reason is because we are dealing with small rela-
tions. Turning to the results in Figure 6(b), we see that
a higher optimization cost may be necessary for large
relations to generate a better overall plan. As shown,
the best algorithm is now IRN-8. It is interesting to
note that IRN-16 remains the worst. Once again, the
results demonstrate the need for an optimizer to adapt,
especially for algorithms that have high variability in

nization cost.

Figure 6: Comparison of IRN-based heuristics for 40-
relation joins.

We also employ a simple tuning rule to study the
effectiveness of adaptive query optimization:

Let M denote the available memory and S be
the total size of the base relations. Then, if
S < 4 M, employ IRN-1, else if S < 10 M,
employ IRN-2 else if S < 20 employ IRN-4,
else employ IRN-8.

This experiment was conducted with test-mixed and
Table 3 summarizes the results. As can be seen, the
tuned optimizer performed best (in terms of the per-
centage of “optimal” overall cost). Several reasons ac-
count for the low percentage (only 63%). First, the

260

optimization cost for randomized algorithms is harder
to predict. Second, the rule that we have adopted is
a very simple one. However, the results clearly shows
the need for adaptability in future optimizer.

Tuned IRN 1 IRN-1 1 IRN-2 1 IRN-4 1 IRN-8
63% 1 42% 1 0 1 23% 1 35%

Table 3: Results of tuning IRN optimizer on test-
mixed.

Finally, we studied the effect of the IRN optimizer
on canned queries. 10 queries from test-mixed were
used. And we only considered algorithm IRN-8. Fig-
ure 7 shows the results. The axis indicates the average
number of times the optimizer has been invoked. We
see that IRN can improve on plans of a canned query
by up to 20%.

I

I 1 50 100 200 300 400 500

Figure 7: Plan refinements for 40-Relation Joins using
IRN-8.

5.5 Experiment 3: Comparison of Optimizers

We also conducted a performance study between IDP
and IRN optimizers to give us a flavor of the relative
performance between the two optimizers. The follow-
ing three heuristics were studied:

IDP-BY-10 employs the IDP optimizer that con-
siders a bushy search space with eich iteration
working on at most 10 relations

IRN-8-20 employs the IRN optimizer that consid-
ers a bushy search space. In addition, k is set to
8, and the number of relations to be considered in
each iteration is 20.

IRN-8-40 is similar to IRN-8-20 except that the
numb& of relations in each iteration is 40.

Before we present the results, we would like to remind
the readers that the numbers of queries used are fairly
small, a.nd so the results should be seen as valid in
the context of the queries (though we believe it should
hold for larger number of queries).

Figure 8 shows the results of the experiments on
the overall costs on test-mix. Clearly, none of the
algorithms performed best. IDP-BY-10 performed
best for queries involving 20 and 40 relations, IRN-
8-20 performed best for queries involving 60 relations,
and IRN-8-40 performed best for 80-relation and lOO-
relation join queries. For small number of relations,
the optimization cost is a crucial determinant in the
overall cost. For larger number of relations, the choice
of an algorithm that produces good quality plans is
more critical. Again, this result shows the importance
of adapting an optimizer. In fact, more than one basic
optimization .algorithm (as in dynamic programming,
randomization algorithms) should be supported.

7

6

!

5

Average 4
Scaled
cost 3

X
- I -BY-IO -

Y& N-8-20 -0. -
IRN-8-40 .x. s

P

00
0 20 40 60 80 100

Number of joins

Figure 8: Comparison of IDP and IRN optimizers.

6 Conclusion

In this paper, we have described adaptive query opti-
mization, a novel approach to optimizing large multi-
join relational queries. Unlike traditional optimizers
which are “programmed” to perform in a certain way,
an adaptive query optimizer must be robust to the
ever-changing environment to maximize the system
performance. To realize adaptiveness, we designed an
optimizer with two features. First, the search space
of the optimizer can be tuned by parameters. Varying
these parameters gives rise to a family of optimiza-
tion heuristics of varying complexities. This allows
the optimizer to pick the one that fits best during the
optimization process. Second, the optimizer features
a “learning” capability for canned queries such that
repeated optimizations of a canned query may lead
to different (and possibly better) plans than previous
optimizations. This allows existing plans to be incre-
mentally replaced by “fitter” ones. Our experimental
study based on an analytical model demonstrated the
necessity and effectiveness of such an approach.

We plan to extend this work in several directions.
First, we want to develop a set of rules to tune the

261

optimizer automatically. Second, the proposed incre-
mental optimization strategy has a limitation. For ex-
ample, if NumRef is set to the number of relations in
the query, it is not clear how and what information
should be maintained to facilitate incremental opti-
mization. Third, the number of spaces that must be
searched remains exponential. Controlling this num-
ber without sacrificing the optimality of the solution is
topic for further study. Finally, we have assumed that
a query is optimized for a fixed set of run-time pa-
rameters such as buffer size. As argued in recent work
[CG94, IN92], th e actual buffer available at runtime
may be different from that assumed by the optimizer
during compilation/optimization. Previous work have
sought to generate a set of plans, each targeting a dif-
ferent parameter setting [CG94, IN92]. At runtime,
the most suitable plan is then picked and processed.
The concept of incremental optimization can be ap-
plied here too. For example, for a given query, a set
of k plans targeted at different buffer availability is
generated and organized using an existing index (such
as a B+tree on the buffer size) to facilitate fast ac-
cess. When the query is to be processed, new plans
can be generated incrementally and replaced those less
Iit ones. We plan to look into this.

References

[CG94]

[DK0+84]

[GD87]

[IK90]

[IK91]

R.L. Cole and G. Graefe. Optimization of
dynamic query evaluation plans. In 1994
ACM-SIGMOD Conference, pages 150-
160, Minneapolis, Minnesota, May 1994.

D. Dewitt, R. Katz, F. Olken, L. Shapiro,
M. Stonebraker, and D. Wood. Imple-
mentation techniques for main memory
database systems. In 1984 ACM-SIGMOD
Conference, Boston, NY, June 1984.

G. Graefe and D.J. Dewitt. The exo-
dus optimizer generator. In 1987 ACM-
SIGMOD Conference, May 1987.

Y.E. Ioannidis and Y. Kang. Random-
ized algorithms for optimizing large join
queries. In 1990 ACM-SIGMOD Confer-
ence, pages 312-321, Atlantic, NJ, June
1990.

Y.E. Ioannidis and Y. Kang. Left-deep
vs bushy trees: An analysis of strategy
spaces and its implications for query op-
timization. In 1991 ACM-SIGMOD Con-
ference, pages 168-177, Denver, Colorado,
May 1991.

[IN921

[Koo80]

[LV91]

[OL90]

[RR821

[SAC+791

[SD901

[SGSS]

[Sha86]

[SYT93]

[TL91]

Y.E. Ioannidis and R.T. Ng. Parametric
query optimization. In 18th VLDB Confer-
ence, pages 103-114, Vancouver, Canada,
August 1992.

R.P. Kooi. The optimization of queries
on relational databases. Technical Report
Report No. CES-80-8, Case Western Re-
serve University, Cleveland, Ohio, Septem-
ber 1980.

R.S.G. Lanzelotte and P. Valduriez. Ex-
tending the search strategy in a query
optimizer. In 17th VLDB Conference,
Barcelona, Spain, September 1991.

K. Ono and G. Lohman. Measuring the
complexity of join enumeration in rela-
tional query optimization. In 16th VLDB
Conference, pages 314-324, Brisbane, Aus-
tralia, August 1990.

A. Rosenthal and D. Reiner. ‘An architec-
ture for query optimization. In 1982 ACM-
SIGMOD Conference, June 1982.

P.G. Selinger, M.M. Astrahan, D.D.
Chamberlin, R.A. Lorie, and T.G.. Price.
Access path selection in a relational
database management system. In 1979
ACM-SIGMOD Conference, pages 23-34,
Boston, Massachusetts, June 1979.

D.A. Schneider and D.J. Dewitt. Trade-
offs in processing complex join queries via
hashing in multiprocessor database ma-
chines. In 16th VLDB Conference, Bris-
bane, Australia, September 1990.

A. Swami and A. Gupta. Optimization of
large join queries. In 1988 ACM-SIGMOD
Conference, pages 8-17, Chicago, Ilinois,
June 1988.

L. Shapiro. Join processing in database
systems with large main memories. ACM
TODS, 11(3):239-264, September 198.6.

E.J. Shekita, H.C. Young, and K.L. Tan.
Multi-join query optimization for symmet-
ric multi-processors. In 29th VLDB Con-
ference, pages 479-492, Dublin, Ireland,
August 1993.

K.L. Tan and H. Lu. On the strategy space
of multi-way join query optimization. SIG-
MOD RECORD, 20(4):81-82, December
1991.

262

