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Abstract 

Traditionally, optimizers are “programmed” 
to optimize queries following a set of build- 
in procedures. However, optimizers should be 
robust to its changing environment to gener- 
ate the fittest query execution plans. To re- 
alize adaptiveness, we propose and design an 
adaptive optimizer with two features. First, 
the search space and search strategy of the 
optimizer can be tuned by parameters to al- 
low the optimizer to pick the one that fits 
best during the optimization process. Sec- 
ond, the optimizer features a “learning” capa- 
bility for canned queries that allows existing 
plans to be incrementally replaced by “fitter” 
ones. An experimental study on large multi- 
join queries based on an analytical model is 
used to demonstrate the effectiveness of such 
an approach. 

1 Introduction 

With the widespread adoption of database manage- 
ment systems comes greater expectations from the 
database user community. In particular, there is an in- 
creasing demand for high performance (high through- 
put and low response time). At the same time, 
databases are growing in size and queries are be- 
coming more complex. For a large number of new 
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applications (e.g. deductive databases and object- 
oriented database systems), complex queries that in- 
volve very large number of joins (> 30) are not un- 
common. For example, in object-oriented database 
systems, queries typically involve “path expressions”. 
One way of executing these path expressions is to turn 
them into joins. In these cases, each query that nav- 
igates through the database is likely to involve many 
joins. While using more powerful hardware helps, 
the design of query processing and optimization al- 
gorithms that utilize the system resources effectively 
is equally crucial for maximizing the system perfor- 
mance. 

In this paper, we revisit the problem of optimizing 
large number of joins. We propose a new adaptive 
query optimizer with two novel features to optimizing 
large multi-join relational queries. First, the search 
space of the optimizer can be tuned by parameters.. 
Varying these parameters gives rise to a family of op 
timization heuristics of varying complexities. This al- 
lows the optimizer to pick the one that fits best during 
the optimization process. Second, the optimizer fea- 
tures a “learning” capability for canned queries. By 
repeatedly optimizing a canned query, a different (and 
possibly better) plan than previous optimizations is 
obtained, and the query plan can be refined accord- 
ingly. An experimental study based on an analytical 
model is used to demonstrate the effectiveness of the 
approach. The results of the study show that the pro- 
posed technique is competitive for ad-hoc queries, and 
produces more optimal plans for canned queries even- 
tually. 

Throughout this paper, execution plans for multi- 
join queries will be depicted as trees, with each internal 
node corresponding to a join and each leaf node cor- 
responding to a base relation. To simplify the discus- 
sion, only hash-based join methods [DK0+84, Sha86] 
will be considered.’ As in [SD90], each join in an exe- 

‘All the algorithms studied in this paper are not limited to 
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cution tree will have its building relation to the left and 
its probing relation to the right. Hash tables are built 
on building relations and probed by probing relations. 
If all the internal nodes of an execution tree have at 
least one leaf (i.e., base relation) as a child, then the 
tree is called deep [IK91]. Otherwise it is called bushy. 
A left-deep tree is a deep tree whose probing relations 
are restricted to base relations. Conversely, a right- 
deep tree is a deep tree whose building relations are 
restricted to base relations. As defined, the search 
space of bushy trees includes deep trees, which in turn 
includes left-deep and right-deep trees. 

The rest of this paper is organized as follows. In the 
next section, we give an overview of adaptive query op- 
timization. Section 3 proposes an optimization frame- 
work for multi-join queries. In Section 4, we describe 
how the framework may be extended with learning ca- 
pability. Section 5 presents the experiments and re- 
sults that were conducted, and finally, conclusions are 
drawn in Section 6. 

2 Adaptive Query Optimization 

In this section, we give an overview of adaptive query 
optimization. After motivating the need for adaptive 
query optimizer, we propose the design of such an op- 
timizer and discuss issues that must be addressed for 
it to be realized. We shall also compare such an ap- 
proach with existing optimization techniques. 

2.1 The Fittest Survives 

Most of today’s optimizers are “programmed” to per- 
form in a certain way. For example, reoptimizing a 
query will go through the same optimization process 
and produce the same query plan, and nothing can be 
done to improve a sub-optimal plan. As another ex- 
ample, it will consume the same amount of resources 
to optimize a query regardless of the system load. As 
such, it lacks the ability to accommodate the ever- 
changing environment. 

However, it is crucial for an optimizer to be able 
to adapt to different situations because it can lead to 
better overall system performance (we shall illustrate 
with examples in the following subsections). To “rev- 
olutionize” the current technology, a new generation 
of optimizers must be built that can adapt to different 
scenarios, such as the query, the system resource, and 
the optimization objectives. We shall discuss some of 
these here. 

hash-based join methods. Considering k join methods require 
choosing the best join methods for each join. This will increase 
the search space and complexity of the algorithm by a factor of 
O(P) where n is the number of joins [TL91]. 

Adaptive to Query 

The optimizer must adapt to different queries differ- 
ently depending on the query type (whether it is an ad- 
hoc query or a canned query), its complexity (number 
of relations) and the cardinalities of the relations. 

The cost of processing an ad-hoc query really com- 
prises of two components: the optimization cost and 
the processing cost. There is clearly a tradeoff be- 
tween the optimization cost and the processing cost 
- a long optimization cost generally leads to a short 
processing cost whereas a short optimization cost may 
lead to a long processing cost. The optimizer must 
adapt accordingly depending on the complexity of the 
query, and the cardinalities of the relations. For ex- 
ample, consider two multi-join queries with the same 
join graph and same number of relations - query 1 
involves small relations while query 2’s relations are 
large. Under a traditional optimizer, the optimization 
cost for both queries are equally high. While it is ben- 
eficial to spend a high optimization cost for query 2 
since its execution time is expected to be longer than 
query 1, query l’s optimization cost may be too high 
compared to its processing cost since it involves only 
small relations and its execution time is expected to 
be short. Had the optimizer been capable of adapting, 
it might have restricted the search space for query 1 
to keep down the optimization time and enlarged the 
search space for query 2 to generate better plans for 
both queries. In other words, the search space that fits 
best for the particular query should be selected during 
the optimization. 

For complex canned queries, once a plan is gener- 
ated, it is traditionally left unchanged until some crit- 
ical statistics are modified. If a plan is sub-optimal, it 
will remain so. Moreover, we may not even know how 
far or close is the plan from the optimal solution. The 
sub-optimality of a plan will become more common for 
complex queries and more crucial since repeated exe- 
cutions of the queries may degrade the system perfor- 
mance. An adaptive optimizer, however, may improve 
the plan of a canned query by “learning” from previ- 
ous optimizations of a canned query and incrementally 
refine the existing plan. In other words, “fitter” plan 
will survive and replace the less fit ones. 

Adaptive to System Resource 

An adaptive optimizer should be adaptive to the sys- 
tern workload. For example, when the system work- 
load is high, then the optimizer may traverse a smaller 
search space. On the contrary, a large search space 
(and hence higher optimization time) can be tolerated 
when the system workload is low. 

The optimizer should also treat the optimization 
time as a critical resource. In this way, the longer 
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the optimization time a query is assigned, the bet- 
ter the quality of the plan will be.2 Complex canned 
queries have traditionally been assigned high optimiza- 
tion cost because the high cost can be amortized over 
multiple runs of the queries. However, it may not be 
practical to assign a long optimization time to a query 
(even canned query) in a single optimization process 
because today’s applications are mission critical and 
runs 24 hours a day, 7 days a week, 365 days a year. 
To overcome the problem of overcommitting optimiza- 
tion resource, an adaptive optimizer can “break up” a 
long optimization time to a query into shorter times- 

Zices. The query is then optimized multiple times each 
with a optimization period equivalent to a timeslice. 
To avoid generating the same plan (as is done tradi- 
tionally), the optimizer adapts and learns from pre- 
vious optimizations so that the quality of the plan of 
a query can be improved at each optimization of the 
query. The effect is equivalent to that of optimizing 
the query using a long optimization time. Note that 
the query is not optimized consecutively otherwise it 
is no different from existing techniques. Instead, the 
query is optimized at different runs, i.e. if the query 
is submitted 10 times, then it may be optimized 10 
times, each resulting in a different plan. 

Adaptive to Optimization Objectives 

Another important aspect of an adaptive optimizer is 
that it must adjust to different optimization objectives 
for different applications and queries. An urgent re- 
quest requires the optimizer to minimize the response 
time. On the other hand, the optimizer may want 
to maximize the resource usage for “batch” queries. 
Some applications may require optimizing a weighted 
sum of the response time and resource consumption. 
Yet another optimization objective that is becoming 
increasingly important is that of minimizing dollar 
charges. This objective is particularly important to 
users whose queries involve accessing other organiza- 
tion’s resources. 

Even if the user does not specify an objective, the 
optimizer should adapt the optimization objective in 
some ways. For example, if the system load is heavy, 
it may be more appropriate to optimize resource uti- 
lization. When the system load is light, minimizing 
the response time may become acceptable. 

2.2 The Architecture of an Adaptive Query 
Optimizer 

An adaptive query optimizer must be able to 

2Randomixed algorithms are examples of existing algorithms 
that treat optimization time as a resource though it expended 
all in a single optimization process. 

1. traverse a different search space at different invo- 
cation (even for the same query). 

2. enhance the plans of canned queries over times 

Figure 1 shows the design of such an optimizer. The 
optimizer comprises two main components: the tuner 

and the plan generator. 
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Figure 1: An Adaptive Query Optimizer. 

Our plan generator is highly parameterized. We 
shall leave the discussion of the parameters to the next 
section. It suffices for the moment to know that vary- 
ing the set of parameters results in different optimiza- 
tion heuristics of varying complexity. Depending on 
the setting at the time the query is submitted, the par- 
ticular algorithm will be used to optimize the query. 

The tuner is a new component which acts as the 
“administrator” of the optimizer. Its responsibility is 
to set the values of the parameters for different queries, 
applications and resources. The decision of the tuner 
is based on several pieces of information: (a) the query 
to be optimized, (b) the system workload at time of op 
timization, and (c) the rules/guidelines that has been 
established. For example, a simple rule may be to 
assign the amount of optimization time according to 
the number of relations in the query. Other rules may 
be determined by the complexity of the queries, the 
system load, etc. 

Now, let us walk through the optimization process 
of a query. For an ad-hoc query, the plan generator 
(a) passes the query information to the tuner, (b) the 
tuner determines the parameter settings for the plan 
generator, and (c) the plan generator looks up the 
dictionary to obtain the statistics and access meth- 
ods available, and produced a query plan based on 
the optimization algorithm (obtained by the parame- 
ter settings). 

For a canned query, if it is the first time the query 
is submitted, then it is treated as an ad-hoc query. 
However, the generated plan is retained together with 
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the query. Additionally, information about the search 
space traversed is kept. If it is not the first run, after 
obtaining the parameter settings from the tuner, the 
plan generator will optimize the query using a differ- 
ent search space from that which the query was last 
optimized. The cost of the generated plan is compared 
with that of the existing plan, and the better plan is 
retained and used. 

Such an adaptive optimizer is highly desirable, and 
has 

1. 

2. 

2.3 

the following advantages: 

It can act as an optimizer generator. A system can 
choose a fixed set of parameters, and “generate” 
its own optimizer. This corresponds to traditional 
optimizers. 

More importantly, the variability allows the sys- 
tem to apply different algorithms to different ap- 

plications and queries. The flexibility to vary the 
optimization algorithm (and hence the optimiza- 
tion cost) allows us to tune an overall minimum 
cost for different queries and applications. 

The Issues 

To realize the full potential of an adaptive query op- 
timizer such as the one discussed above, several issues 
has yet to be addressed: 

1. What are the set of parameters that can be used 
to tune the optimizer search space? 

2. How should these parameters be tuned? 

3. How can the optimizer “learn” and model opti- 
mization time as a resource for canned queries? 

In this paper, we address the first and last issues 
which we describe in greater details in the next two sec- 
tions respectively. The challenging task of tuning the 
optimizer depends on applications, and requires some 
amount of research before a set of rules/guidelines can 
be developed. 

2.4 Related Work 

Several researches have addressed the issue of adap- 
tive query optimization, most of which focus on in- 
creasing the search space. Earlier work on increasing 
the search space used by the query optimizers have 
mainly addressed the benefits of allowing composite 
inners [Koo80, RR82]. 

The Exodus’ rule-based optimizer generator can 
vary the search space considered by an optimizer by 
changing the rules and methods of its input [GD87]. 
As such, different optimizers with different search 
space can be adapted to different applications. HOW- 
ever, once an optimizer is generated, its search space 
cannot be varied without generating a new optimizer. 

In [OL90], Starburst’s extensible join enumerator 
adopts a generate and filter approach. The join gener- 
ator, which is based on dyna.mic programming, gener- 
ates a set of feasible plans. This set can be adjusted by 
parameters that control the use of Cartesian products 
and composite inners. A set of filters may then be used 
to further pruned the generated plans. However, the 
exponential complexity of dynamic programming may 
limit the optimizer to queries that involve not more 
than 15 relations. The Starburst optimizer also has 
a greedy join enumerator that can generate left-deep, 
right-deep and bushy execution trees. It also has a 
tuning knob to control just how bushy an execution 
tree can get. 

Lanzelotte and Valduriez [LV91] proposed a promis- 
ing approach in which a hierarchy may be used to rep- 
resent optimization algorithms. Each internal node of 
the hierarchy represents a category in which its chil- 
dren nodes belong to. The leaf nodes represent the 
set of optimization algorithms used by the optimizer. 
In this way, an optimizer can be built that will vary 
its search space for different queries by simply select- 
ing the desirable algorithms within the desirable cat- 
egories. However, this will mean that the number of 
different search space will be proportional to the num- 
ber of optimization algorithms. Moreover, how the 
search space for each of the optimization algorithms 
may be varied was largely ignored. 

3 The Tunable Optimization F’rame- 
work 

A first step towards adaptive query optimization is to 
design an optimizer whose search space can be tuned 
to adapt to different scenarios. In this section, we pro- 
pose an optimization framework with tuning capabil- 
ity. The framework iteratively se1ects.a set of relations 
to be optimized, and the optimization process may be 
guided by a smaller set of the selected relations. The 
framework is targeted at ad-hoc queries. Because it is 
highly tunable by parameters, it can be set to generate 
a good plan in a reasonable amount of time. We shall 
describe how to extend the framework to support in- 
cremental optimization for canned queries in Section 4. 

3.1 Tuning Parameters 

Before we look at the framework, let us consider the 
parameters that we have identified for tuning the 
search space. In this section, we describe the three cat- 
egories that were chosen. The three categories, which 
are described in more detail below, are: 

1. search space based, 

2. algorithm and algorithm specific, and 
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3. optimization objective. 

3.1.1 Search Space Based 

The search space can be tuned by (1) the shape of 
the execution tree (TreeShape), (2) enabling or avoid- 
ing cross products (AuoidCrossProducts), and (3) the 
number of relations to be optimized in each iteration 
(NumRel). Varying any of these parameters affects the 
search space directly. 

Parameter 1: TreeShape. This parameter restricts 
the shape of the execution tree. It is set to either 
left-deep, right-deep, deep, or bushy. Left- and right- 
deep trees have the smallest search spaces, followed by 
deep and bushy trees [OL90]. 

Pammeter 2: AvoidCrossProducts (A CP). This pa- 
rameter is set to either True or False. If it is set to 
True, then cross products are avoided whenever possi- 
ble. Otherwise, two relations may be joined regardless 
of whether there is any join predicate between them. 
In the event that AvoidCrossProducts is set to Z’rue 
and cross products are unavoidable, then they are de- 
ferred until the end of the query. 

Parameter 3: NumRet. This parameter determines 
the maximum number of relations to be optimized in 
each iteration. For example, given a 40-relation join, 
setting NumRet to 15 leads to 3 iterations needed to 
produce the final plan. ‘While it is independent of 
the optimization algorithm employed, it may be re- 
stricted by practical constraints. For example, if dy- 
namic programming is used as the optimization algo- 
rithm, then the maximum number of relations should 
not be more than 15 because of the exponential com- 
plexity of dynamic programming. On the other hand, 
if a greedy heuristic with polynomial time complexity 
is used, then it can be set to as large as the number of 
relations in the query. 

3.1.2 Algorithm and Algorithm Specific 

The framework is designed such that existing algo- 
rithms can be extended easily with tuning features. 
This is achieved by specifying the parameter OptAlgo. 
Depending on the set of algorithms that is supported, 
it can be set to DP for dynamic programming, RA 
for randomized algorithms, and GD for greedy-based 
heuristics. Among the randomized algorithms, one can 
choose to use iterative improvement (II) [SCM], sim- 
ulated annealing (SA) [SGSS], genetic algorithm (GA) 
[LV91], or two phase optimization (SPO) [IK90]. 

Some algorithms also have algorithm specific pa- 
rameters. For example, randomized algorithms gener- 
ally require a termination criterion. A commonly used 
measure is the number of iterations whereby there is 

no further improvement over the best plan. As another 
example, the heuristic algorithms proposed in [SYT93] 
increases the search space by keeping a number of al- 
ternative subplans for the same set of relations. The 
maximum number of alternative subplans to be kept 
is specified by a parameter. 

3.1.3 Optimization Objective 

The parameter OptObj specifies the optimization ob- 
jective to be used. It can be set to ResponseTime, 
Resourceconsumption, WeightedSum, or Monetary. 
While it doesn’t affect the search space, as we have 
seen, the flexibility to vary the optimization objective 
for different queries or applications is highly desirable. 
For simplicity, for this paper, we restrict our discussion 
to minimizing elapsed time. Varying the optimization 
objectives require building a parameterized cost mod- 
els only. 

3.2 The Framework 

Figure 2 shows the proposed framework. It com- 
prises several iterations, each of which finds an 
optimal subplan. For simplicity in presentation, 
some details of the algorithm are abstracted. Be- 
fore walking through the algorithm, let us describe 
the functions that are called by it. The function 
selRel(G, Ri, Rj, k, NumRel, ACP) returns S, a set 
of NumRet relations from the join graph G. The 
argument k is a “flag” that indicates whether & 
and Rj must be in S. This is needed only for the 
first iteration. For the subsequent iterations, & and 
Rj are just “dummies” and they are not used any- 
more. If ACP is False, then the relations in S need 
not form a connected subgraph in G; otherwise they 
must lead to a connected subgraph in G. Function 
optimizeGraph(G, S, TreeShape, NumRel, OptAlgo) 
employs the optimization algorithm determined by 
OptAlgo to produce either (1) a partial plan for G 
base on S if NumRel < n or (2) a full plan for G if 
NnmReI = n. TreeShape determines the shape of the 
generated plan. Function postProcess(G, S, subPlan) 
derives a new plan, newSubPtan, from subPlan for a 
subset of the relations in S. It is motivated by observ- 
ing that fixing the number of relations to pick at each 
iteration may lead to poor performance. 

Let us walk through the algorithm in Figure 2. As 
shown on line 2, the algorithm tries all possible pairs 
of relations for its first join. For each starting pair, 
an execution plan is generated. At each iteration, all 
the unjoined pairs of relations are considered (line 6). 
Function selRe1 is then invoked to obtain a set of re- 
lations that OptimizeGraph uses to generate a sub- 
plan (line 7,8). The generated subplan is then post- 
processed (line 9). Next, all the relations that has been 
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Input: A join graph, G, of n relations RI, . . . . R, 
Output: Optimal multi-join plan, OptPlan 

1. OptPlan.cost = 00 
// try all relation pairs as a starting point 

2. for Ri, Rj in G 
3. if (Ri, Rj connected by an edge or 

A CP is False) do 
4. 
5. 
6. 
7. 
8. 

CurrentPlan = 0 
k=l 
while ]G] > 1 do 

S = selRel(G, Ri, Rj, k, NumRel, ACP) 
subPlan = optimizeGraph(G, S, TreeShape, 

NumRel, OptAlgo) 
9. newSubPlan = postProcess(G, S, subPlan) 
10. add newSubPlan to CurrentPlan 
11. collapse R, in G, forall x E newSubPlan 
12. k=k+l 
13. endwhile 
14. endif 
15. if CurrentPlan.cost < OptPlan.cost do 
16. Opt Plan = Current Plan 
17. endif 
18.endfor 
19.output OptPlan 

Figure 2: The tunable optimization framework. 

selected are collapsed into one node in G to reflect the 
fact that they have been joined (line 11). This process 
is repeated until all the relations have been joined, and 
the least costly plan generated among all starting pairs 
of relations forms the final output (line 15-17). 

3.3 Tuning the Search Space 

From the description of the framework, we see that 
varying the tuning parameters can lead to a family of 
optimization algorithms of varying complexities, some 
of which have appeared in the literature and others 
are new. For example, by setting NumRel to all the 
relations, and using dynamic programming ss the op- 
timization algorithm, and setting TreeShape to left- 
deep, we effectively have the traditional system R al- 
gorithm [SAC!+791 with O(2”) complexity for n rela- 
tions. As another example, by setting NumRel to 
all the relations, and using the greedy heuristic in 
[SYT93] as the optimization algorithm, we effectively 
have a greedy algorithm with complexity O(n3). On 
the other hand, setting NumRel to different values 
(smaller than the number of relations) leads to a fam- 
ily of new optimization algorithms. 

4 Incremental Optimization 

As mentioned, traditional optimizers generate the 
same plan for the same query given the same amount 
of resources. If the quality of the plan is far from opti- 
mal, then the performance of the system suffers. This 
may be unacceptable for canned queries since they are 
repeatedly executed. We propose that canned queries 
be incrementally optimized. To do so, the optimizer 
must be “intelligent” enough to “learn” from previous 
optimizations of a query so that the subsequent op- 
timizations can generate different and better plan for 
the query. 

4.1 Incremental Optimization using Different 
Search Space 

Our solution is to organize the search space into sub- 
spaces (possibly overlapping), so that at each opti- 
mization of a query, the optimizer works on a different 
subspace. All that is needed of the optimizer is to 
“remember” the subspaces that it has searched in pre- 
vious optimizations. To illustrate the idea, suppose we 
can order the subspaces, say Sr, Sz, and so on, such 
that the ith optimization will search subspace Si. The 
basic idea works as follows. When the optimizer is in- 
voked to optimize a canned query for the first time, it 
searches Sr to produce a plan. At the same time, the 
optimizer will remember the plan. Some time later, 
the same query is to be processed again. The op- 
timizer is called again but this time, it searches Sz 
(knowing that Sr has already been searched). It com- 
pares the new plan with the existing plan, keeps the 
better one and uses it. This process is repeated until 
all the subspaces have been searched, in which case, 
subsequent execution of the query requires no further 
optimization. 

The main issue lies in organizing and ordering the 
search space. We shall demonstrate how this can 
be done in the context of the proposed optimization 
framework described in Section 3. Suppose we have n 
relations and k is the predetermined number of rela- 
tions to be selected for optimization in each iteration 
of the algorithm. We also made several interesting ob- 
servations and conclusions. 

Observation 1: If the k relations selected at each 
iteration of the optimization framework is different at 
each run (we use the term “run” to mean an invoca- 
tion of the optimization framework), we expect a dif- 
ferent plan to be generated: For example, suppose in 
a run, the first iteration selects RI to &. Let the plan 
generated be plan A. Now, consider another run that 
selects &+I to &k in the first iteration. Let this plan 
be plan B. Clearly, plan A is different from plan B. 
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This observation leads to the following conclusions: 

l The set, of relations selected at each iteration can 
be used to partition the subspace that the opti- 
mizer has searched. 

l By making the optimizer remembers the set of 
relations selected, the optimizer can generate dif- 
ferent plans at different runs of the same query. 

Observation 2: The iterations of the optimiza- 
tion framework can be ranked in the following sense. 
The first iteration of the optimization framework is 
the most important because a different set of relations 
selected in the first iteration affects all subsequent it- 
erations. The second iteration ranked second, and so 
on. 

This leads us to the following heuristic: 

To cut down on the complexity of the opti- 
mizer, we can always restrict it to remember 
only the relations for the first few iterations, 
and not all the iterations. 

Observation 3: To target the optimizer for both ad- 
hoc and canned queries, the most important run of the 
optimizer is the first run. Ad-hoc queries need a good 
plan from the first and only run. On the other hand, 
canned queries can hope to incrementally improve on 
the plans that have been generated form earlier runs. 

This also leads to the following heuristic: 

The optimizer should search a larger space 
for the first run, but for subsequent runs, it 
can restrict to a smaller but different search 
space. 

In the current study, we restrict the optimizer to 
just remembering the set of relations selected in the 
first iteration. All that is needed is to try all com- 
bihations of choosing k relations from n. This value 
effectively represents the total number of runs before 
we can say that the plan is “optimal”. So, we begin 
by considering RI to Rk. The next run considers RI 
to &-1 and &+I, and the next run considers RI to 
Rk-1 and &+2, and so on. Generating all these se- 
quences is straightforward. 

Figure 3 shows the framework extended with the 
“learning” capability. It comprises two parts. The first 
part (lines 2-4) corresponds to the case when a canned 
query is optimized in the first run or an ad-hoc query is 
optimized, in which case, the optimization framework 
described earlier is called to produce the plan. The pa- 
rameter SST represents the information remembered 

Input: A join graph, G, of n relations RI, . . . . R, 
Output: Optimal multi-join plan, OptPlan 

1. if planExcists(G) = FALSE do 
2. plan = optFramework(G, SST) 
3. store SST 
4. store plan 
5. else 
6. CurrentPlan = 0 
7. k=l 
8. while IGl > 1 do 
9. S = selRel(G, k, SST, NumRel, ACP) 
10. subPlan = optimiaeGraph(G, S, TreeShape, 

NumRel, OptAlgo) 
11. newSubPlan = postProcess(G, S, subPlan) 
12. add newSubPlan to CurrentPlan 
13. collapse R, in G, forall x E newSubPlan 
14. k=k+l 
15. endwhile 
16. retrieve existing plan, OptPlan 
17. store SST 
18. if CurrentPlan.cost < OptPlan.cost do 
19. OptPlan = CurrentPlan 
20. store OptPlan 
21. endif 
22.endif 
23.output OptPlan 

Figure 3: Indremental optimization framework. 

by the optimizer - the parameter settings and the re- 
lations already considered in the first iteration - for it 
to know the search spaces that have been traversed. 
The generated plan and the SST are then stored. 

The second part (lines 5-23) is executed when an ex- 
isting plan exists. It is essentially a simpler version of 
the optimization framework, i.e. it did not try all pos- 
sible pairs of relations for its first join and the starting 
set of relations is determined by SST. 

4.2 Incremental Optimization with Random- 
ized Algorithms 

While randomized algorithms can be used with the in- 
cremental optimization framework described above, it 
can also be used to optimize queries incrementally in a 
different and straightforward way. Randomized algo- 
rithms generally works iteratively as follows: (1) gen- 
erate an initial plan (randomly), (2) apply transforma- 
tion rules randomly to improve the plans, (3) repeat 
steps 1 and 2 until some termination criterion is met. 

Clearly, if the optimizer can ensure that, each in- 
vocation generates a different initial plan in step 1, 
then we have an incremental randomized optimizer. 
All that is required is for the optimizer to remember 
the set of initial plans that has been generated. Instead 
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of a random generation, we can systematically gener- 
ate an initial plan by specifying the order of the plan. 
This can be done in a manner similar to that described 
for the incremental optimization framework, i.e. the 
optimizer remembers a subset of relations that must 
be joined to generate the initial plan. 

4.3 Some Simple Optimizations 

There are some dptimizations that can be incorporated 
to cut down the optimization cost, i.e. we don’t have 
to try all combinations that may be generated for SST. 
First, some combinations may not generate good plans 
and such cases can be pruned away immediately. For 
example, if the selected relations results in a discon- 
nected join subgraph, we can skip this case, and try 
the next one that results in a connected graph. 

Second, some combinations may lead to the same 
plan, and we can terminate “prematurely”. For exam- 
ple, suppose the first run selects R1 to &, and the 
second run results in choosing RI to &-I and &+I. 
And it turns out that in the first iteration of both runs, 
the actual number of relations used are 9, and they are 
both RI to Rg. then, in the second run, we can bypass 
all subsequent iterations because the generated plan is 
definitely the same as the existing plan. 

Finally, it may not be necessary to try all combi- 
nations. If the database administrator is comfortable 
with the quality of a plan (for example, there is no im- 
provement after some threshold number of runs), then 
incremental optimization can be turned off. 

5 Preliminary Results 

In this section, we describe the experiments that were 
conducted baaed on an analytical cost model, and the 
results of the experiments. The cost model is similar 
to the one used in [SYT93]. Two optimizers were im- 
plemented in C and the experiments were tested on 
a Sun Spare-2 machine. The purpose of the experi- 
ment is to demonstrate the necessity and feasibility of 
adaptive query optimization. 

5.1 Optimizers Studied 

In this study, two adaptive query optimizers were 
built. One W~LJ based on dynamic programming, while 
the other used a randomized algorithm. For the for- 
mer, we will refer to it a3 Incremental Dynamic Pro- 
gramming (IDP) optimizer, and for the latter, we will 
call it the Incremental Randomized Algorithm (IRN) 
optimizer. 

The IDP optimizer iteratively selects a set of 
NumRel relations, and employs the modified dynamic 
programming algorithm proposed in [SYT93] as the 
optimization algorithm to produce a subplan for the 

selected relations. The modified dynamic program- 
ming algorithm extends the traditional dynamic pro- 
gramming to include memory consumption while using 
elapsed time as the cost metric [SYT93]. For practical 
reasons, NumRel is restricted to a maximum value of 
15. 

For the IRN optimizer, the optimization algorithm 
used in each iteration is the two phase optimization al- 
gorithm (2PO) [IK90]. 2P0 comprises of two phases. 
In the first phase, the randomized algorithm Iterative 
Improvement is applied to produce a quick solution. 
In the second phase, the randomized algorithm Sim- 
ulated Annealing is used to further improve on the 
plans generated in the first phase. As shown in [IK90], 
the optimization cost can still be very large for large 
number of relations too. As such, we have restricted 
NvmRel to at most 40 in our study. Therefore, if the 
number of relations is less than or equal to 40, the 
straightforward technique is used. 

5.2 Workload 

We experimented with acyclic multi-join queries only. 
For each query, the optimizers took a join graph along 
with statistics on relation cardinalities and join selec- 
tivities as their input. The data for a query was gener- 
ated in two steps as in [SYT93]. First an acyclic join 
graph was generated, then relation cardinalities and 
join selectivities were assigned to the graph. 

As in [SYT93], three relation types (small, medium, 
and large) were used. The cardinality of small, 
medium, and large relations were uniformly di& 
tributed over [lOK, 20K], [lOOK, 200K], and [lM, 2M] 
records, respectively. Using these relation types, the 
algorithm assigns cardinalities and join selectivities as 
follows: 

The type (small, medium, or large), but not the 
cardinality, of the final result was picked. 

Each node (i.e., relation) R was randomly as- 
signed a type (small, medium, or large) and then 
randomly assigned a cardinality in that type’s 
range. 

The join selectivity js of each edge (RI, Rz) was 

chosen by first picking a value v for ]jRl x Rzjl 

in P-5. m~WM llR2ll), (1.5 ~m4llR4 ll~2ll)l 
and then solving js . (j]Rl x R2ll) = v 

If the product of all the relation cardinalities and all 
the join selectivities (i.e., the cardinality of the final 
result) fell within the range of the final result type cho- 
sen in step l), then the algorithm exited. Otherwise 
it backtracked to step 2), and tried new join selectiv- 
ities. The algorithm restarted itself if it found that it 
had ba.cktracked over 500 times. The calculation for 
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js reflects the fact that a join’s size is often a function 
of its input relations. The multipliers of 0.5 and 1.5 
were added to increase the variance in the size of in- 
termediate results. All join selectivities were treated 
as independent. 

Three sets of tests were conducted and are summa- 
rized in Table 1. For example, in test-small, 80% of 
the relations were small relations, 10% were medium 
and 10% were large. 

Table 1: Types of tests 
Because of the high optimization cost, in our ex- 

periments, we run 200 queries of 20-relation join, 50 of 
40-relation join, and 20 of 60-relation, 80-relation and 
lOO-relation join. 

5.3 Experiment 1: Dynamic Programming 
Based Optimizer 

This experiment studied the performance of the IDP 
optimizer that is based on dynamic programming. All 
the algorithms studied avoid cross products. We de- 
rived the following heuristics by varying the parame- 
ters as follows:3 

BY-n: bushy tree with n as NumRel 

DE-n: deep tree with n as NumRel 

LD-n: left-deep tree with n as NumRel 

We studied two values of n: 10 and 15. All the re- 
sults (the processing cost and optimization cost) are 
scaled with respect to the processing cost of BY-15. 
Figure 4 shows the result for 40 relation joins. Look- 
ing at the results for test-small, we see that all the 
algorithms are relatively close in terms of processing 
cost. This is so because most of the relation sizes are 
small, and pipelining can be exploited without incur- 
ring excessive cost to write intermediate results back 
to disk. LD-10 which performed worst in terms of 
processing cost is, on average, about 50% worse than 
BY-15. However, the optimization cost for BY-15 is 
the highest while that for LD-10 is the lowest. In fact, 
the optimization cost for BY-15 is very much larger its 
processing cost. As a result, it turns out that the al- 
gorithm that performs best overall is DE-lo. Though 
DElO’s processing cost is high, its low optimization 

3We have not studied right-deep trees since the results in 
[SYT93] showed that the averageperformanceof right-deep trees 
are the worst among all the four tree shapes. 

cost is more than enough to outweigh the effect of the 

Figure 4: Comparison of IDP-based heuristics for 40- 
relation joins. 

Turning to the results for test-large, we see a sightly 
different picture. First, the relative difference between 
the quality of the plans produced by the algorithms in- 
creases. This is because the relations are larger in size, 
and the effect of join orders become more important. 
Second, the ratio of optimization cost to processing 
cost decreases because ofthe high processing cost. As 
a result, the winning algorithm (in terms of overall 
cost) is now BY-lo. 

Both results pointed out two very interesting obser- 
vations. First, no single algorithm dominates perfor- 
mance. While BY-15 generates the best quality plan, 
DE-10 performs best overall for test-small and BY-10 
performs best overall for test-large. This implies that 
using only a single optimization algorithm (as is done 
in traditional query optimizer) is not sufficient - there 
is a need for adaptive query sptimization. Second, it 
is not the algorithm that geneiates the best quality 
plan wins, but it is the ‘Vitter” one (which may vary 
from query to query) that generates the best overall 
cost wins. 

To further demonstrate the effectiveness of adaptive 
query optimization, we employ a simple tuning rule: 

Let M denote the available memory and S be 
the total size of the base relations. Then, if 
S < 5 M, employ DE-lo, else if S < 15 M, 
employ BY-10 else employ BY-15. 

This experiment wss’conducted with test-mixed and 
Table 2 summarizes the results, In the table, each 
entry represents the number of plans (in terms of per- 
centage) that performed best overall. For example, 
BY-10 generated the best overall plans 59% of the 
time, while BY-15’s high optimization lead it to per- 
form best overall for only 8%. The tuned optimizer, 
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however, performed best for 74% of the queries. The 
results clearly show that the ability to adapt is a cru- 
cial component in future optimizer. Even a simple rule 
as the one we have suffices to lead to good performance 
overall. 

Tuned IDP BY-15 BY-10 1 DE-10 
74% 8% 59% 1 33% 

Table 2: Results of tuning IDP optimizer on test- 
mixed. 

To study the effect of the IDP optimizer on canned 
queries, we experimented with 10 queries from test- 
mixed (due to the high optimization cost). Figure 5 
shows the results. Here we used only algorithm BY- 
15. The axis indicates the average number of times 
the optimizer has been invoked before a better plan 
was obtained. The first bar in the figure (when there 
is only 1 run) is the first run. The results of sub- 
sequent runs are scaled with respect to this run. In 
other words, a value of 0.9 implies that the cost of the 
plan is 90% that of the first run. We made two ob- 
servations. First, the first run provides a good plan 
within a reasonable optimization cost. Second, unlike 
traditional optimizer, IDP can improve on plans of a 
canned query (though it may take a long time to do 
so). This is especially important since canned queries 
are executed repeatedly and a sub-optimal plan may 
degrade performance. Note that even a small percent- 
age improvement could be a lot in terms of base time. 

1 46 105 133 254 366 534 

Figure 5: Plan refinements for 40-Relation Joins using 
BY-15. 

5.4 Experiment 2: Randomized-Based Opti- 
mizer 

This experiment studied the performance of, the IRN 
optimizer that is based on 2P0. All the algorithms 
studied avoid cross products and uses bushy trees. We 
derived five heuristics by controlling the running time 
of the algorithms. This is achieved by varying the ter- 
mination criteria of the 2P0 algorithm (see Appendix 
II), i.e. we set k to 1, 2, 4, 8 and 16. We denote the 

derived algorithms as IRN-k, for k = 1, 2, 4, 8 and 16. 
All the results (the processing cost and optimization 
cost) are scaled with respect to the processing cost of 
IRN-16. 

Figure 6 shows the result for 40 relation joins. Look- 
ing at the results for test-small (Figure 6(a)), as ex- 
pected, we see that though IRN-16 produces the best 
quality plans, its high optimization cost lead it to pro- 
duce the worst overall plans. Instead, we see that the 
heuristic IRN-1 that produces the worst plans per- 
formed best overall. Like its IDP counterpart, the 
main reason is because we are dealing with small rela- 
tions. Turning to the results in Figure 6(b), we see that 
a higher optimization cost may be necessary for large 
relations to generate a better overall plan. As shown, 
the best algorithm is now IRN-8. It is interesting to 
note that IRN-16 remains the worst. Once again, the 
results demonstrate the need for an optimizer to adapt, 
especially for algorithms that have high variability in 

nization cost. 

Figure 6: Comparison of IRN-based heuristics for 40- 
relation joins. 

We also employ a simple tuning rule to study the 
effectiveness of adaptive query optimization: 

Let M denote the available memory and S be 
the total size of the base relations. Then, if 
S < 4 M, employ IRN-1, else if S < 10 M, 
employ IRN-2 else if S < 20 employ IRN-4, 
else employ IRN-8. 

This experiment was conducted with test-mixed and 
Table 3 summarizes the results. As can be seen, the 
tuned optimizer performed best (in terms of the per- 
centage of “optimal” overall cost). Several reasons ac- 
count for the low percentage (only 63%). First, the 
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optimization cost for randomized algorithms is harder 
to predict. Second, the rule that we have adopted is 
a very simple one. However, the results clearly shows 
the need for adaptability in future optimizer. 

Tuned IRN 1 IRN-1 1 IRN-2 1 IRN-4 1 IRN-8 
63% 1 42% 1 0 1 23% 1 35% 

Table 3: Results of tuning IRN optimizer on test- 
mixed. 

Finally, we studied the effect of the IRN optimizer 
on canned queries. 10 queries from test-mixed were 
used. And we only considered algorithm IRN-8. Fig- 
ure 7 shows the results. The axis indicates the average 
number of times the optimizer has been invoked. We 
see that IRN can improve on plans of a canned query 
by up to 20%. 

I 

I 1 50 100 200 300 400 500 

Figure 7: Plan refinements for 40-Relation Joins using 
IRN-8. 

5.5 Experiment 3: Comparison of Optimizers 

We also conducted a performance study between IDP 
and IRN optimizers to give us a flavor of the relative 
performance between the two optimizers. The follow- 
ing three heuristics were studied: 

IDP-BY-10 employs the IDP optimizer that con- 
siders a bushy search space with eich iteration 
working on at most 10 relations 

IRN-8-20 employs the IRN optimizer that consid- 
ers a bushy search space. In addition, k is set to 
8, and the number of relations to be considered in 
each iteration is 20. 

IRN-8-40 is similar to IRN-8-20 except that the 
numb& of relations in each iteration is 40. 

Before we present the results, we would like to remind 
the readers that the numbers of queries used are fairly 
small, a.nd so the results should be seen as valid in 
the context of the queries (though we believe it should 
hold for larger number of queries). 

Figure 8 shows the results of the experiments on 
the overall costs on test-mix. Clearly, none of the 
algorithms performed best. IDP-BY-10 performed 
best for queries involving 20 and 40 relations, IRN- 
8-20 performed best for queries involving 60 relations, 
and IRN-8-40 performed best for 80-relation and lOO- 
relation join queries. For small number of relations, 
the optimization cost is a crucial determinant in the 
overall cost. For larger number of relations, the choice 
of an algorithm that produces good quality plans is 
more critical. Again, this result shows the importance 
of adapting an optimizer. In fact, more than one basic 
optimization .algorithm (as in dynamic programming, 
randomization algorithms) should be supported. 
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Figure 8: Comparison of IDP and IRN optimizers. 

6 Conclusion 

In this paper, we have described adaptive query opti- 
mization, a novel approach to optimizing large multi- 
join relational queries. Unlike traditional optimizers 
which are “programmed” to perform in a certain way, 
an adaptive query optimizer must be robust to the 
ever-changing environment to maximize the system 
performance. To realize adaptiveness, we designed an 
optimizer with two features. First, the search space 
of the optimizer can be tuned by parameters. Varying 
these parameters gives rise to a family of optimiza- 
tion heuristics of varying complexities. This allows 
the optimizer to pick the one that fits best during the 
optimization process. Second, the optimizer features 
a “learning” capability for canned queries such that 
repeated optimizations of a canned query may lead 
to different (and possibly better) plans than previous 
optimizations. This allows existing plans to be incre- 
mentally replaced by “fitter” ones. Our experimental 
study based on an analytical model demonstrated the 
necessity and effectiveness of such an approach. 

We plan to extend this work in several directions. 
First, we want to develop a set of rules to tune the 
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optimizer automatically. Second, the proposed incre- 
mental optimization strategy has a limitation. For ex- 
ample, if NumRef is set to the number of relations in 
the query, it is not clear how and what information 
should be maintained to facilitate incremental opti- 
mization. Third, the number of spaces that must be 
searched remains exponential. Controlling this num- 
ber without sacrificing the optimality of the solution is 
topic for further study. Finally, we have assumed that 
a query is optimized for a fixed set of run-time pa- 
rameters such as buffer size. As argued in recent work 
[CG94, IN92], th e actual buffer available at runtime 
may be different from that assumed by the optimizer 
during compilation/optimization. Previous work have 
sought to generate a set of plans, each targeting a dif- 
ferent parameter setting [CG94, IN92]. At runtime, 
the most suitable plan is then picked and processed. 
The concept of incremental optimization can be ap- 
plied here too. For example, for a given query, a set 
of k plans targeted at different buffer availability is 
generated and organized using an existing index (such 
as a B+tree on the buffer size) to facilitate fast ac- 
cess. When the query is to be processed, new plans 
can be generated incrementally and replaced those less 
Iit ones. We plan to look into this. 
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