
Eager Aggregation and Lazy Aggregation

Weipeng P. Yan Per-Bike Larson
Department of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl
{pwyan,palarson}@bluebox.uwaterloo.ca

Abstract

Efficient processing of aggregation queries is
essential for decision support applications.
This paper describes a class of query trans-
formations, called eager aggregation and laty
aggregation, that allows a query optimizer to
move group-by operations up and down the
query tree. Eager aggregation partially pushes
a groupby past a join. After a group-by is
partially pushed down, we still need to per-
form the original groupby in the upper query
block. Eager aggregation reduces the number
of input rows to the join and thus may result
in a better overall plan. The reverse trans-
formation, lazy aggregation, pulls a group-by
above a join and combines two group-by op-
erations into one. This transformation is typ-
ically of interest when an aggregation query
references a grouped view (a view containing
a groupby). Experimental results show that
the technique is very beneficial for queries in
the TPC-D benchmark.

1 Introduction

Aggregation is widely used in decision support sys-
tems. All queries in the TPC-D[Raa95] benchmark
contain aggregation. Efficient processing of aggrega-
tion ,queries is essential for performance in decision
support applications and large scale applications.

Permission to copy without fee all or part of this material is
granted provided that the copies arc not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, 01 to republish, requires a fee
and/or special pcmzission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Swizerland, 1995

We proposed a new query optimization technique,
group-by push down and group-by pull up, which inter-
changes the order of group-by and joinspL94, YL95].
Groupby push down is to push groupby past a join.
Its major benefit is that the group-by may reduce the
number of input rows of the join. Group-by pull up is
to delay the processing of groupby until after a join.
Its major benefit is that the join may reduce the num-
ber of input rows to the group-by, if the join is selec-
tive. Figure 1 shows the idea of commuting group-by
and join. In Figure l(a), we join Table Tl(Gl,Jl,Sl)
and T2(G2,J2) on join columns Jl and 52 then group
the result on grouping columns Gl and G2, followed
by aggregation on Sl. Figure 1 (b) shows an alter-
native way where group-by is performed before join.
Note that group-by and join commutation cannot al-
ways be done. The necessary and sufficient condition
is provided in [YL94, YL95].

SUM(S1) +

@$jg Jl=J&

t sum(s1, AS ss/ z
Jl=JZa T T2

/‘\

WJ2)

Tl T2 Tl

(Gl,Jl,Sl) (G2,52)
(Gl,Jl,Sl)

(a) Group-by Pull up (b) Group-by Push down

Figure 1: Group-by and Join Commutation

The technique to only partially push down a group-
by past a join can be extended. For some queries
containing joins and groupby, we can perform group
by on some of the tables, then the join, and finally
another group-by. The first groupby, which we call
eager group-by, reduces the number of input rows to
the join and thus may result in a better plan. We
call the groups generated by the early groupby par-
tial groups because they will be merged by the second

345

group-by. When the amount of data reduction does
not justify the cost of eager group-by, we should prob-
ably delay group-by until after the join, which we term
lazy group-by. Both directions of the transformation
should be considered in query optimization. We call
the technique of performing aggregation before join
eager aggregation, and delaying aggregation until after
join lazy aggregation.

Figure 2(a) and (b) show the basic idea of ea-
ger/lazy group-by. Eager group-by performs eager ag-
gregation on all tables containing aggregation columns.
Lazy group-by is its reverse transformation.

The following examples illustrate the basic idea of
eager group-by and lazy group-by. The examples are
based on a subset of the TPC-D database[Raa95]. The
tables are defined in Appendix A.

Example 1 : Find the total loss of revenue on OT-

ders handled by each clerk due to parts being returned
by customers. Output clerk and loss of revenue.

SELECT O-CLERK,
SDM(L-EXTENDEDPRICE * (I-L-DISCOUNT))

FROM LINEITEM, ORDERS
WHERE O-ORDhKEY = L-ORDERKEY

AND LJETURNFLAG = 'R'
GROUP BY O-CLERK

Each order is handled by one clerk so we can first
find the loss of revenue for each order. We then join
the aggregated view with table ORDERS to find the total
loss for each clerk.

SELECT O-CLERK,
FROM (SELECT

FROM
WHERE
GROUP BY

SUM(REVENDE)
L-ORDERKEY. SUM(L-EXTENDEDPRICE
*(l-L-DISCOUNT)) AS REVENUE
LINEITEM
L-RETURNFLAG = 'R'
L-ORDERKEY) AS LOSS, ORDERS

WHERE O-ORDBRKEY = L-ORDERKEY
GROUP BY O-CLERK

The eager (inner) group-by reduces the number of
input rows to the join. If the LINEITEM table is clus-
tered on L-ORDERKEY, the eager group-by can be done
at almost no additional cost. Experiment on DB2
V2 Beta3 confirms that eager group-by reduces the
elapsed time by 16%. The following example shows
that lazy group-by can be beneficial.

Example 2 : Find the total loss of revenue on OT-

ders from May 1995 handled by each clerk due to parts
being returned by customers. Output clerk and loss of
revenue.

SELECT O-CLERK, SUM(REVENUE)
FROM ORDERS, LOSS-BY-ORDER
WHERE O-ORDERKEY = L,ORDERKEY

AND O-ORDERDATE BETWEEN "1996-05-01"
AND "1995-05-31"

GROUP BY O-CLERK

SUM&
t

“‘=a
/‘\

SUMISUM’ R
‘@&

i
J1=J2G9

SUM(S1) AS SW/ \

m (ZJ2)

a ’
Tl T2

(Gl,Jl.Sl) (62952)

(a) Lazy grwW

I
Tl

(Gl,Jl,Sl)

(b) Eager group-by

Tl T2 T2
(Gl,Jl,Sl) (WJ2) mJJ2)

(c) Lazy Count

suM~s’&
t

(d) Eager Count

A

51352 a

f’\

J,=>&k-& sAs

t t
Tl l2 Tl T2

(Gl,Jl,Sl) WC2) (Gl,Jl,Sl) K-352)

(e) Double Lazy (t) Double Eager

‘XT

JlJ2 &

I \

Tl T.2 Tl T2
(Gl,Jl,Sl) (G2J23) (Gl,Jl,Sl) W&W

(9) Lazy Split (h) Eager Split

Lazy Aggregation Eager Aggregation _______-______-- -----------------

Figure 2: Eager and Lazy Aggregation

346

where LOSS-BY-ORDER is an aggregated view defined by

CREATE VIEW LOSS-BY-ORDER (L-ORDERKEY, REVENUE)
(SELECT L-ORDERKEY,

~~~~(L-E~TENDEDPRI~E * (~-L-DISCOUNT)) 
FROM LINEITEM 
WHERE LJETURNFLAG = 'R' 
GROUP BY L-ORDERKEY ); 

We can merge the view with the query and rewrite the 
query as 

SELECT 

FROM 
WHERB 

AND 
AND 

GROUP BY 

O-CLERK, 
SUM(L-EXTENDEDPRICE*(l-L-DISCOUNT)) 
LINEITEM. ORDERS 
O-ORDERKEY = L,ORDERKEY 
LJETURNFLAG = 'R' 
O-ORDERDATB BETWEEN "1995-05-01" 

AND "1995-05-31" 
O-CLERK 

The predicate on 0-ORDERDATE is highly selective. 
In this case, we should delay the group-by until after 
the join. A nested loop join with LINEITEM as the inner 
and ORDERS as the outer looks like a very promising 
evaluation strategy. Experiment on DB2 V2 Beta3 
confirms that lazy group-by reduces the elapsed time 
by 60%. 

These examples show that both directions (eager 
group-by and lazy group-by) should be considered in 
query optimization. There may be several ways of per- 
forming eager group-by when there are more than two 
tables in the FROM clause[Yan95]. 

Figure 2 and 3 show the eager/lazy transformations 
introduced in this paper. Eager count transformation 
performs eager aggregation on tables not containing 
aggregation columns, as shown in Figure 2 (d). It first 
counts the number of rows in each group in the early 
aggregation, then performs the join, and finally ag- 
gregates the original aggregation columns. Lasy count 
transformation is its reverse transformation. 

Double eager performs eager count on tables not 
containing aggregation columns and eager group-by on 
the remaining tables which may or may not contain 
aggregation columns, as shown in Figure 2 (f). The 
reverse transformation is double lazy. 

Eager groupby-count, as shown in Figure 3, per- 
forms eager aggregation on a subset of tables contain- 
ing the aggregation columns. Its reverse transforma- 
tion is called lazy groupby-count. 

Eager split, as shown in Figure 2 (h), performs eager 
groupby-count on both input streams before the join, 
when both input streams are involved in aggregation. 
Its reverse transformation is called lazy split. 

Our experiments show that we can apply group- 
by push down/pull up and eager/lazy aggregation to 
twelve of the seventeen queries in the TPC-D bench- 
mark. This significantly reduces the elapsed time for 

six queries. For example, it reduces the elapsed time 
of Query 5 by a factor of ten. 

1.1 Organization of This Paper 

The rest of the paper is organized as follows. Section 2 
reviews aggregation functions in SQL2 and introduces 
the concepts of decomposable aggregation functions, 
and class C and class D aggregation functions. Sec- 
tion 3 defines the class of queries that we consider and 
introduces notations. Section 4 presents the formalism 
that our results are based on. Section 5 introduces and 
proves our main theorem. Sections 6, 7, 8 and 9 in- 
troduce corollaries for eager/lazy group-by, eager/lazy 
count, double eager/lazy and eager/lazy split trans- 
formations. Section 10 proposes algorithms for find- 
ing all possible eager/lazy transformations for a query 
and discusses the way to integrate eager/lazy aggre- 
gation and group-by push down/pull up into existing 
optimizers. In order to simplify the proofs we have not 
considered HAVING in the theorem and corollaries. Sec- 
tion 11 considers the case when the HAVING clause is 
present. Section 12 shows that eager/lazy aggregation 
and group-by push down/pull up is very beneficial for 
TPC-D official queries. Section 13 discusses related 
work. Section 14 concludes the paper. 

2 Aggregation Functions 

In SQLP, a value expression may include aggregation 
functions. There are five aggregation functions: SUM, 
AVG s MIN, MAX and COUNT. Consider the query 

SELECT 2*SUN(Tl.Cl)/COUNT(DISTINCT T2.C2)* 
MIN(Tl.C3*T2.C3) 

FROM Tl,T2 

We can rewrite this query as 

SELECT 2*NCl/NC2*NC3 
FROM (SELECT mM(cl) AS NCI, 

COUNT(DISTINCT T2.C2) AS NC2, 
#IN(Tl.C3*T2.C3) AS NC3 

FROM Tl,T2 ) TMP-VIEW; 

Any query block that has an arbitrary value ex- 
pression containing more than one aggregation func- 
tions, can always be rewritten so that the new query 
block is a SELECT on top of a view that contains value 
expression having at most one aggregation function. 
Therefore, without loss of generality, we assume that 
our query contains no value expression that has more 
than one aggregation functions. 

2.1 Decomposable Aggregation Functions 

All sets in this paper are multi sets. Let U, denote set 
union preserving duplicates, and ud denote set union 
eliminating duplicates. These operations exist in SQL2 
as UNION ALL and UNION, respectively. 

347 



Definition 1 : (Decomposable Aggregation 
Function) An aggregation function F is decompos- 
able if there exist aggregation functions F1 and F,?2 
such that F(&Ua&) = F2(Fl(Sr),Fl(S2)), where 
S1 and & are two sets of values. We call S1 and Sz 
partial groups. 

SUM(C) is decomposable since SUM(S~U,S~) = 
SUM(SUM(Sl), SUM(S2)); 
COUNT(C) is decomposable since COUNT(SlU,S2) = 
SUM(COUNT(Sl), COUNT(S2)); 
and MIN(C) is decomposable since MIN(Slu,S2) = 
MIN(MIN(Sl), MIN(S2)); and AVG(C) can be han- 
dled as SUM(C) and COUNT(NOT NULL C) and thus is 
decomposable’. 

For aggregation functions like COUMT(DISTINCT 
Cl), it is not trivial to determine whether it is de- 
composable. There may be two rows with the same 
Cl value in Sl and S2. These two rows would then 
contribute 2 instead of 1 in the final count. However, 
if we know in advance that column Ci cannot contain 
duplicate values, then COUMT(DISTINCT Cl) is decom- 
posable. Note that, even though Cl has duplicate val- 
ues, there may be other conditions which ensure that 
rows with the same Cl value belong to the same par- 
tial groups(e.g., Cl is a grouping column). Therefore, 
an aggregation function may or may not be decompos- 
able. Aggregation functions MIN and MAX are always 
decomposable; SUM and COUNT are decomposable when 
they contain no DISTINCT. The issue of determining 
whether an aggregation function is decomposable will 
not be discussed further. From now on we will assume 
that we have the knowledge about whether an aggre- 
gation function is decomposable. 

2.2 Class C and Class D Aggregation hnc- 
tions 

Example 3 : Find the total number of urgent OT 

high priority lineitems handled by each clerk. 

SELECT O-CLERK, 
SUM(CASE WHEN O-ORDERFRIORITY='l-URGENT' 

OR O-ORDERF'RIORITY='2-HIGH' 
THEN 1 ELSE 0 END) 

FROM LINEITEM, ORDERS 
WHERE O-ORDERKEY = L-ORDERKEY 
GROUP BY O-CLERK 

It is equivalent to the following query. 

SELECT O-CLERK, 
SUM(CASE WHEN O-ORDERPRIORITY='l-URGENT' 

OR O-ORDERPRIORITY='2-HIGH' 
THEN 1 ELSE 0 END) * CNT 

FROM (SELECT L-ORDERKEY, COUNT(*) AS CNT 

lspL2 does not support COUMT(IOT IULL Cl) operation, but 
it is fairly easy to implement in any existing systems. 

FROM LINBITEH 
GROUP BY L-ORDERKEY) AS COUNT-BY-ORDER. 
ORDERS 

WHERE 0sORDERKEY = L-ORDERKEY 
GROUP BY O-CLERK 

COUNTEY-ORDER counts the number of lineitems for 
each orders, then joins with table ORDERS to find the 
count required. We call this transformation eager 
count, and its corresponding reverse transformation 
lazy count. Note that, this time, we are performing 
eager aggregation on a table which contains no aggre- 
gation columns. Eager count performs eager aggrega- 
tion on tables not containing any aggregation columns. 
Experiment on DB2 V2 Beta3 shows that eager count 
for this query reduces the elapsed time by 40%. 

When performing eager count and the original ag- 
gregation function is either SUM or COUNT, we need 
to count the number of rows in each group produced 
by the inner group-by and multiply the count with 
the result from the later group by. We call aggrega- 
tion functions satisfying this property class C aggre- 
gation functions(C stands for COUNT), and the count 
obtained from the inner group-by duplication factor. If 
the original aggregation function is SUM(DISTINCT), 
COUNT(DISTINCT), MIN, MAX, or AVG, we can discard 
the count in the subquery block. In other words, we 
can use a DISTINCT in the subquery block. We call 
aggregation functions satisfying this property class D 
aggregation functions(r) stands for DISTINCT). And we 
call this transformation eager distinct, and its corre- 
sponding reverse transformation lazy distinct. There- 
fore, combining this with whether the function is de- 
composable or not, we can have four types of aggre- 
gation functions. Class D aggregation functions are 
insensitive to duplication factors. 

3 Class of Queries Considered 

Any column occurring as an operand of an aggregation 
function (COUNT, MIN, MAX, SUM, AVG) in the SELECT 
clause is called an aggregation column. Any column 
occurring in the SELECT clause which is not an aggrega- 
tion column is called a selection column. Aggregation 
columns may belong to more than one tables. We par- 
tition the tables in the FROM clause into two groups: 
those tables that contain aggregation columns and 
those that may or may not contain any such columns. 
Technically, each group can be treated as a single ta- 
ble consisting of the Cartesian product of the member 
tables. Therefore, without loss of generality, we can 
assume that the FROM clause contains only two tables, 
& and &. Let Rd denote the table containing aggre- 
gation columns and R, the table that may or may not 
contain any such columns. 

The search conditions in the NMERE clause can be 

348 



expressed as Cd A Co A C,,, where Cd, Co, and C,, are 
in COnjUnCtiVe normal form, Cd Only involves columns 
in &, C,, only involves columns in R,, and each dis- 
junctive component in Co involves columns from both 
& and R,. Note that subqueries are allowed. 

The grouping columns mentioned in the GROUP BY 
clause may contain columns from & and R,, de- 
noted by C& and GA,,, respectively. According 
to SQL2[ISO92], the selection columns in the SELECT 
clause must be a subset of the grouping columns. We 
denote the selection columns as SC& and SGA, , sub- 
sets of GAd and GA,,, respectively. For the time being, 
we assume that the query does not contain a HAVING 
clause(relaxed in Section 11). The columns of & par- 
ticipating in the join and grouping is denoted by GA:, 
and the columns of R, participating in the join and 
grouping is denoted by GA,+. 

In summary, we consider queries of the following 
form: 

SELECT [ALL/DISTINCT] SGdd, SGA,, F(AA) 
FROl4 &is Ru 
WHERE cd A c,, A c, 
GROUP BY Gdci, GA, 

where 
Gdd: 

GA,: 

S&id: 

SGA,,: 

AA: 

cd: 
c,: 

co: 

a(C0): 
F: 

F(AA): 

grouping columns of table Rd; 

grouping columns of table R,; GAd and GA, 
cannot both be empty. 

selection columns, must be a subset of grouping 
cohmns G.&i; 

selection columns, must be a subset of grouping 
columns GA,; 
aggregation columns of table & and possible 
table R,. When considering eager/lazy group- 
by, eager/lazy count and double eager/lazy, AA 
belong to Rd. When considering eager/lazy 
groupby-count and eager/lazy split, AA belong 
to & and R, and is denoted by the union of 
aggregation columns AA,, and A&, where AA, 
and AAd belong to & and R, respectively. 

conjunctive predicates on columns of table &; 

conjunctive predicates on columns of table R,; 
conjunctive predicates involving columns of both 
tables Rd and R,, e.g., join predicates; 

columns involved in CO ; 

array of aggregation functions and/or arithmetic 
aggregation expressions applied on AA (may be 
empty). When considering eager/lazy groupby- 
count and eager/lazy split, F is denoted by the 
union of aggregation functions Fa and F,,, where 
Fd and Fd are applied on AAd and AA, respec- 
tively. 

application of aggregation functions and/or 
,arithmetic aggregation expressions F on aggre- 
gation columns AA; 

GA: : 

GA:: 

FAA: 

E Gdd U a(&) - R,, i.e., the columns of & 
participating in the join and grouping; 

E Gdd U a(Co) - &, i.e., the columns of R, 
participating in the join and grouping 

resulting columns of the application of function 
array F on AA in the fhst group-by when eager 
group-by is performed on the above query. 

4 Formalization 

In this section we define the formal “machinery” we 
need for the theorems and proofs to follow. 

SQL2[ISO92] represents missing information by a 
special value NULL. It adopts a three-valued logic in 
evaluating a conditional expression. We define func- 
tional dependencies using strict SQL2 semantics tak- 
ing into account the effect of NULLS in SQLP. When 
NULLS do not occur in the the columns involved in 
a functional dependency, our definition of functional 
dependency is the same as the traditional functional 
dependency. The detailed definitions are included in 
pL94]. Due to space limitation, they are not included 
here. Let A and B be two sets of columns, A fimction- 
ally determines B is denoted by A-B. 

4.1 An Algebra for Representing SQL Queries 

Specifying operations using standard SQL is tedious. 
As a shorthand notation, we define an algebra whose 
basic operations are defined by simple SQL statements. 
Because all operations are defined in terms of SQL, 
there is no need to prove the semantic equivalence be- 
tween the algebra and the SQL statements. Note that 
transformation rules for “standard” relational algebra 
do not necessarily apply to this new algebra. The op 
erations are defined as follows. 

l B[GA] R: Group table R on grouping columns 
GA = {GAI, GAz, . . . . GA,}. This operation is 
defined by the query 2 SELECT * FROM R ORDER 
BY GA. The result of this operation is a grouped 
table. 

l RI x R2: The Cartesian product of table RI and 
R2. 

l a[C]R: Select all rows of table R that satisfy con- 
dition C. Duplicate rows are not eliminated. This 
operation is defined by the query SELECT * FROM 
R WHERE C. 

l xd[B]R, where d = A or D: Project table R on 
columns B, without eliminating duplicates when 

2Certainly, this query does more than GROUP BY by ordering 
the resulting groups. However, this appears to be the only valid 
SQL query that can represent this operation. It is appropriate 
for our purpose as long as we keep the difference in mind. 

349 



d = A and with duplicate elimination when d = 
D. This operation is defined by the query SELECT 
CALL /DISTINCT] B FROM R. 

l $Jr;l~;A”[“=“l yAUd$4, fz@A), . . . . fn(AA)), 
1, 2, . . ..A.,}, and F = 

{fl, f2, . . ..f”}. AA are aggregation columns of 
grouped table R and F are arithmetic aggrega- 
tion expressions operating on AA. We must em- 
phasis the requirement that table R is grouped 
by some grouping columns C. All rows of table 
R must agree on the values of all columns except 
AA columns. Each fi, where i = 1,2, . . . . n, is an 
arithmetic expression(which can simply be an ag- 
gregation function) applied to some columns in 
AA of each group of R and yields one value. An 
example of fi(AA) is COUNT(A1) + sUM(A2 + As). 
Duplicates in the overall result are not eliminated. 
This operation is defined by the query SELECT 
GA,A, F(AA) FROM R GROUP BY GA,whereGAis 
the grouping columns of R, and A is a set of 
none grouping columns that are functionally de- 
termined by GA and may be empty. Note that 
this is not a syntactically valid SQL2 statement 
since the columns A in the SELECT clause are not 
mentioned in the GROUP BY clause. However, since 
GA+ A, from a query processing point of view, 
this is semantically sound. 

Therefore, the class of query we consider can be 
expressed as 

nd[SGA,j, SGA,, FAA] F[AA]rA[GAd, GA,, , AA] 

G[GAd, G&]+‘d A co A Cu](& x &a) 

where d = A or d = D, and FAA are the aggre- 
gation values after applying F[AA] on each group. 
The last projection simply projects the rows on the 
columns wanted, and may eliminate duplicates. If 
all the columns wanted are the same as all existing 
columns, and the projection does not eliminate dupli- 
cates, then we usually omit the last projection in the 
expression. 

All sets in this paper are multisets which may con- 
tain duplicates. Td, T” denote instances of table & and 
R,; T[SJ is used as a shorthand for nA[qT, where S 
is a set of columns and T is a grouped or ungrouped 
table, or a row. 

5 Main Theorem 

When performing eager count, we need to consider two 
cases: 

1. F contains only class D aggregation functions. We 
can simply add a DISTINCT to the SELECT list of 
the subquery block and no modification to the 
original aggregation functions is needed. 

2. F contains both class C and class D aggregation 
functions. In this case, we need to use a COUNT 
aggregation function in the SELECT list of the sub- 
query block. The aggregation value of a class C 
aggregation function f is the count multiplied by 
the value resulting from applying f. Therefore, 
we need to change F into F,, in which every 
class C aggregation function f of F is replaced 
by f * count. For example, if F(C1, C2, C3) is 
(SUM(Cl>,COUNT(C2),MIN(C3)), then 
F,(Cl, C2, C3, count) 
is (SUM(C1) ,MAX(C2) ,MIN(C3))o(count, 1, I) = 
(SUM(Cl)*count,MAX(C2) ,MIN(C3)). The oper- 
ator o is vector product. We call F, the duplicated 
aggregation functions of F. As a shorthand nota 
tion, we use F(C1, C2, . . . . C,,) * count to repre- 
sent F,, while keeping in, mind that we only need 
to multiply class C aggregation function by the 
count. Note that we need an additional argument 
to F,e 

Note that, it is not necessary that the functions in 
F be decomposable. 

SUM(SSl), SUM(S2)‘CNT t 

t 

WWP SY 
SUM(Sl), SUM(S2) 9 

Tl T2 
(Gl,Jl,Sl) (G2,J2,S2) (Gl ;,Sl) 

Lazy groupbycount Eager groupby-count 

Lazy aggregation Eager aggregation 

Figure 3: The Main Theorem 
Consider the query to the left of Figure 3. It aggre- 

gates columns from both input streams. In the query 
on the right, we can first perform aggregation on one 
of the input stream. We need to not only find the sum 
of partial groups, but also keep track of the number 
of rows in each partial group for the aggregation on 
the table(T2) that are aggregated only after the join. 
This is the basic idea of eager groupby-count. 

In the following theorem, let (1) NGAd denote a set 
of columns in Rd; (2) CNT the column produced by 
COUNT(*) after grouping a[Cd]& on NG&; (3) FA& 
the rest of the columns produced by Fd in the first 
group-by of table U[Cd]Td on NG&; and (4) F,, the 
duplicated aggregation function of F,,. Also assume 
that (1) AA = AAd ud AA, where AAd contains only 

350 



columns in &, and AA,, contains only columns in R,; 
(2) F = Fd ud F, where Fd applies to AAd and F,, 
applies to AA,,. 

Theorem 1 (Eager/Lazy Groupby-Count(Main 
Theorem)): The expcpressions 

El : F[A&, A&]n[G&, GA,, AAd, AA,] 

G[G&, G&]@d A co A cu](& x R,) 

and 

E2 : ?Td[G&, GA,, FAA] 

(Fua[AAu, CNT], FddFA&]) 

flA [G& GA,,, AA,,, PAAd, CNll] 

G[GAd, GAMCo, ‘%](((Fdl[-‘h], C0UNTl-j) 

c#=‘b, GA,+, A&]~[NGAd]+‘d]Rd) x R,) 

are equivalent if (1) aggregation functions Fd contain 
only decomposable aggregation functions and can be de- 
composed into Fdl and Fd2; (2) F,, contain class C OT 

D aggregation functions and (3) NGAd+ GA: hold 
in U[cd]&. 

The main theorem is illustrated in Figure 3. The ag- 
gregation columns are split into two sets, which belong 
to & and R,, tables respectively. For the transforma- 
tion from El to E2 (eager aggregation), we push down 
the & tables and perform eager aggregation on AAd 
and obtain the count before the join. After the join, we 
then perform aggregation on FA& and AA,. There- 
fore, we basically split the aggregation into two parts, 
one is pre-evaluated before the join and one is evalu- 
ated after the join. We call the transformation from 
El to E2 eager groupby-count and its reverse transfor- 
mation lazy gmupby-count. 

The requirement NG&+ GA: is not a neces- 
sary conditions. If NG& ti G& in some instance 
of a[Cd]&, then the first group-by of E2 may group 
rows together when they do not belong to the same 
group in El. However, incorrectly assigned rows may 
be eliminated by the join and we may still get the cor- 
rect result. If NG& does not functionally determine 
the join columns of table &, the join in E2 is un- 
defined since a group may contain different values on 
the join columns. To obtain necessary and sufficient 
condition, we need to extend the meaning of F[AA], 
which is beyond the scope of this paper. 
Proof: 

Consider a group Gd in g[NG&]u[cd]Td for some 
instance Td of Rd. Since NG&+ GA:, all rows in 
G,j have the same G& value and have the same value 
for the join columns of Rd. Therefore, if one row of 
G,j qualifies in the join of b[Cd A Co A C&l (Td X T,), 

all rows of Gd qualify. If one row of Gd joins with a 
set of rows S, from ~[C,,]T,,, all rows of Gd join with 

S,. Note that the above statements hold for all joins, 
not just equijoins. 

Since S,, depends on Gd, we denote the set of rows 
joining with Gd as S, (Gd). The set resulting from 
the join of Gd and S, is Gd x S,(Gd), i.e., a Carte- 
sian product. (Fdl[A&], COUNT~)Gd denotes the 
row resulting from applying Fdr and COUNT on AAd of 
the group Gd. 

Let Gdi, Gds be two (partial groups) produced by 
B[NGA,+[Cd]rd. We have two cases to consider. 
Case 1: Gdi[G&] = Gdz[G&] and S, (Gdl)[GA,] = 
S,,(Gds)[GA,]. In Es, after the join, all rows in 

((Fdl [A&], COUNTIJ) 

(“[NGAd, GA,+, A&]‘&) x St, (Gdl) 

and 

((Fdl[A&], COUNTU) 

TINGAd, GA,+, AA&h) x su (Gd2) 

are merged into the same group by the second group- 
by(after the join). 

In El, each row in Gdi and Gd2 joins with each row 
in &(Gdl) and &(Gd2), respectively. Therefore, all 
rows in Gdr x S, (Gdl) and Gds x S,(Gds) are merged 
into the same group by the group-by. Since every ag- 
gregation function in Fd can be decomposed as Fdi 
and Fds, the aggregation values in the row produced 
by 

Fd[A-‘ti]~A[G&, GA,, A&] 

((Gdl X &(Gdl))Ua(Gd2 X &(&a))) 

in El are equal to the aggregation values produced by 

Fd2 [FA&]m [G-b, G-L, FA&] 

(((Fdl[AA&bdNG&, GA,+, A&]‘%) x s&h)) 

Ua((Fdl[A&]m[NG&, GA,+, A&]Gda) x su(Gd2))) 

in E2* 
Since every aggregation function in F,, is either class 

C or D, the aggregation values in the row produced by 

E&%&r&&, GA,, AAul((Gdl x & (Gdl)) 

UaGdz( Xsu (Gdz))) 

in El are equal to the aggregation values produced by 

J’u,[AA,, CNT]ci[G&, GA,, AA,, CNT] 

(((COUNTbA[N’=d, GAd+]Gdl) x & (‘%l))Uo 

((COUNTbA[NG&, GA,+]Gdz) x St,(h))) 

in E2. 
Case 2: Gdl [G&l # G-&G&] 01 & (Gdl)[G&] # 

S,, (Gd2) [GA,]. In Ez? the rows in 

((Fdl[AAd], COUWI) 

n[NG&, GA,+, A&]&l) x St, (Gdl) 

351 



and 

((Fdl[AAd], CouNTO) 

4NG&, GA:, AA&da) x &(&a) 

are not merged into the same group by the second 
group-by(after the join). In Er, each row in Gdr and 
Gds joins with each row in & (Gdi) and S, (Gdz), re- 
spectively. However, the rows in Gdr x S,, (Gdr) and 
Gdz x S,,(Gdz) are not merged into the same group by 
the group-by. Since F is decomposable, the aggrega- 
tion values in 

Fd [A&]nA [G&, GA,, A&] 

(Gdl X su (‘&I) 

in Er are equal to the aggregation values in 

Fd@‘&]u[GAd, GA”, F&z] 

((h[A&]m[NG&, GA,+, AA&al) X sty (‘&l)) 

in Ez. 
Also, e aggregation values in the row produced by 

+L.l Fu[A u, CNT]%t[Gfti, GA,, AAl 
(Gdl X$Gdl)) 

in El are equal ‘to the aggregation values produced by 

in E2. Cl “1 
The Main Theorem assumes that the final se- 

lection columns are the same as the grouping 
columns(GAd, GA,) and the final projection must 
be an ALL projection. We&an actually relaxes 
these two restrictions, i.e., the fin 1 selection columns \ 
may be a subset(SGAd, SGA,)\of the grouping 
columns(GAd, GA,), and the final projection may be 
a DISTINCT projection. This is also true for all other 
corollaries in this paper. For a formal description of 
the transformation and proof, please refer to [yan95]. 

6 Eager Group-by and Lazy Group-by 

In the Main Theorem, if we let GAd contain all the 
aggregation columns, that is, all aggregation columns 
belong to & tables, then we obtain the following corol- 
lary. 

In the following corollary, let NGAd denote a set of 
columns in table Rd. and FAAd the columns produced 
by applying F[AA] after grouping table Rd on NG&. 

Corollary 1 (Eager Group-by and Lazy Group- 
by) : The expcpressions 

El : F[AA]nA[G&, GA,, AA]B[GAd, GA,] 

fl[Cd A co A cti](Rd X &) 

and 

E2 : F2 [FAA&A [G&, GA,, FAA&(G& GA,] 

xA[G&, GA,, FAAd]@o A Ct,] 

( (S [A&A [NG& GA,f 7 AAl 

~[NG&]~[Cd]Rd) X Ru) 

are equivalent if NG&-+ GA: holds in b[cd]Rd and 
all aggregation functions in F[AA] are decomposable 
and can be decomposed into FI and F2. 

Eager group-by transformation introduces a new 
group-by, and lazy group-by transformation eliminates 
a group-by. 

The proof of the corollary is straightforward. Since 
AA,, is empty, Fua[AAU, CNTJ is empty. Deleting all 
terms relating to AA,, in E2 of the Main Theorem gives 
Ez of the corollary. 

7 Eager/Lazy Count and Eager/Lazy 
Distinct 

In the Main Theorem, if we let GA, contain all the 
aggregation columns, that is, all aggregation columns 
belong to R, tables, then we obtain the following corol- 
lary. In the following corollary, NGAd denotes a set 
of grouping columns belonging to &, and CNT the 
column produced by COUNT(*) after grouping o[c,j]& 
on NGAa. 

Corollary 2 (Eager Count/Lazy Count): The 
expressions 

EI : 

and 

E2 : 

F[A~]~&‘&, GA,, AA]B[GAa, GA,] 

+d A co A cu] (Rd X R,) 

F,,[AA, CNT]nA[GAd, GA,, AA, CNT] 

g[GAd, GA&A [GAd, GA,, AA, CNT] 

fl[Co, CU]((COUNT@A[NG&, G&+] 

s[NGAd]a[Cd]Rd) X &) 

are equivalent if F are class C or class D aggregation 
fin&ions and NGAd+ GA: hold in a[Cd]Rd. 

In E2 above, COUNT(1 after the inner group-by in E2 
means that we add a COUNT(*) to the select list of the 
subquery block. 

The proof of the corollary is straightforward. Since 
AAd is empty, Fd, Fdr and Fdz are all empty. Re- 
moving all terms relating to AAd in Ez of the Main 
Theorem gives E2 of the corollary. 

We call the transformation from El to E2 eager 
count and from E2 to El lazy count. 

Clearly, when F in the theorem contains only class 
D aggregation functions, we can simply use a DISTINCT 

352 



in the subquery block. We then call the transformation 
from El to Ez eager distinct and from Ea to El lazy 
distinct. Note that in this case, F, is the same as F. 

8 Double Eager and Double Lazy 

Now we are ready to tackle the double eager and dou- 
ble lazy transformations. Consider the query in Fig- 
ure 2(e). It aggregates the columns belonging to one 
input stream (Tl). In the query in Figure 2(f), we per- 
form eager group-by on the stream (Tl) containing 
aggregation columns and eager count on the stream 
(T2) not containing any aggregation columns. We call 
the transformation double eager. Double eager can be 
understood as an eager group-by followed by an eager 
count transformation. The reverse transformation is 
called double lazy. 

In the following corollary, NGA, denotes a set of 
columns in IS,,, NGAd a set of grouping columns be- 
longing to & tables, FAA the columns produced by 
Fl in the first group-by of table u[Cd]& on NG&, 
and CNT the column produced by COUNT(*) after 
grouping g[CU]R, on NGA,. Also assume that AA 
belongs to Rd. 

Corollary 3 (Double Eager/Double Lazy): the 
expressions 

El : F[AAITA[GA~, GA,, AA]B[GAd, GA,] 

a[Cd A co A cu](Rd X Ru) 

and I 

Ez : F,[Fz[FAA], CNT]rA[GAd, GA,,, FAA, CNT] 

C?[GAd, GA&[Co]((COUNTO 

flA[NGAu, GAu+]G[NGAu]&L]Ru) 

x (FI[AA]TA[NG& G&+, AA]G[NGAd] 
@dRd)) 

are equivalent if (1) NGA,+ GA,, holds in 
+Z’,,]R,, (2) NGAd+ GAd holds in a[&]&, (3) 
all aggregation functions in F are decomposable and 
can be decomposed as Fl and F2, (4) all aggregation 
functions in F are class C OT D and its duplicated ag- 
gregation function is F,. 

The proof of this corollary is straightforward. It 
can be done by first performing an eager/lazy group- 
by and then an eager/lazy count. 

Again, when F in the corollary contains only class D 
aggregation functions, we can simply use a DISTINCT 
in the subquery block of R,. Note that in this case, F, 
is the same as F. The following corollary shows when 
the group-by at the top query block may be eliminated. 

Corollary 4 
(Double Group-by Push-Down/Double Group- 
by Pull-Up): A ssume that the conditions in Co~ol- 
lary 3 holds. If, in addition, (1) GA;---, NGAd holds 
in u[Cd]Rd, (2) GA,++ NGA, holds in u[C,,] R,, 
and (3) (GA,, Gdd) functionally determines the join 
columns in r[Cd A Co A CU] (Rd x R,), then the es 
pressions 

El : F[A+A[G&, GA,, AA]B[GAd, GA,] 

c[cd A co A Cu](Rd X Ru) 

and 

E2 : ?rA[GAd, GA,, FAA * CNT@[GAd, GA,,] 

u[COI((COUNTO~~A[NGA,, GA,+]B[NGA,] 
4WL) x (F[A+A[NG&, G&+, AA] 

i?[NG&]u[Cd]&)) 

are equivalent. 

This Corollary eliminates the groupby at the top 
query block. This can be viewed as a more general 
case of groupby push down, which pushs down group- 
by into two lower query blocks. We call the transfor- 
mation double group-by push down. Its reverse trans- 
formation, which pull up group-by’s from two lower 
query blocks, is called double group-by pull up. Please 
refer to pan951 for the proof. 

A simple way to ensure that the conditions of the 
corollary hold is to use GA: and GA: as NGAd and 
NGA, . Then, if (GA,, G&) functionally determines 
the join columns, we can apply the Corollary. 

Similarly, it is also possible to eliminate the group 
by at the top query block after eager count, eager 
groupby-count and eager split to obtain the push down 
versions for these transformations, and analogly, the 
pull up versions for the lazy aggregations. Due to 
space limitation, we cannot provide the conditions 
here. Please refer to pan951 for detailed conditions 
and proofs. Note that, the push down/pull up version 
of eager/lazy groupby is group-by push down/pull up. 

9 Eager Split and Lazy Split 

If we apply eager groupby-count twice to Rd and R, 
respectively, we can perform eager aggregation on both 
tables before the join. We call this transformation ea- 
ger split since the aggregation is computed separately 
before the join. We call the reverse transformation 
lazy split. Both transformations are illustrated in Fig- 
ure 2(g) and (h). 

In the following corollary, (1) NG& and NGA, de- 
notes a set of columns in Rd and R,, respectively; (2) 
CNT, the column produced by COUNT(*) after group- 
ing u[Cd]& on NGAd; (3) CNTz the column pro- 
duced by COUNT(*) after grouping u[C,]R, on NGA,; 

353 



(4) FAAd the columns produced by Fd in the first ag- 
gregation of table 6[Cd]Rd on NGAd; (5) FAA, the 
columns produced by F,, in the first aggregation of 
table o[C,]R, on NGA,; and (6) Fd,, and F,,, the 
duplicated aggregation function of Fd and F,, respec- 
tively. Also assume that (1) AA = AAd ud AA,, where 
AAd contains only columns in &, and AA,, contains 
only columns in R,; (2) F = Fd ud F, where Fd ap- 
plies to AAd and F,, applies to AA,,. 

Corollary 5 (Eager Split and Lazy Split:) The 
expressions 

El : F[A&, ~A,]~A[G& GA,, AAd, AA,] 

g[GAd, G&]&‘d A co A Cu](Rd x Ru) 

and 

columns(NC&). According to Corollary 1, we can 
add more Rd columns to NGAd without changing the 
result of the query. Normally we want to choose a 
new set of grouping columns only if the new set has 
some ordering properties that save sorting time. For 
example, if the ordering property on a new column 
is supported by a clustering index, then after the new 
column is added into NC&, it can be used as the ma- 
jor of the sorting columns(assuming sorting is used for 
GROUP BY). The subsequent sort may be faster since 
the minor columns are sorted in a smaller range, plus 
the advantage of sequential fetching of data rows. In 
this case, even if one of the GA$ columns has an index, 
since the index is not clustered, it may be more expen- 
sive to perform the grouping using GA: as the group- 
ing columns than using the clustering index column 
and GA: as the grouping columns. Therefore, we want 
to consider possible beneficial addition of columns to E2 : %[G&, GA,, FAA] 

(L#‘uz[FA&], CNrr,], Fda[Fdz[FA&], CNTz]) GA,+ as eager grouping columns. We call such columns 
promising columns. Since adding new columns is of- nA[GA,j, GA,, FAA,, FAAd, CNTI, CNTz] 

8[GAd, G&l+‘o, cu]((((Fdl[AAd], COUNT[) 

r.dN’=d, GA:, AA&[NG&]u[‘%]Rd) 

x ((Ful[AAwl, COUNTU) 

AA[NG&, GA:, AAMNGA&[G]~u)) 

are eqUiVaknt if (I) aggregation function3 Fd contain 
only decomposable aggregation functions that can be 
decomposed into Fdl and Fd2; (2) aggregation fwac- 
tions F,, contain only decomposable aggregation junc- 
tions that can be decomposed into Ful and F,,z; (3) 
F, and Fd contain class C OT D aggregation func- 
tions; (4) NG&+ GA, + holds in 6[Cd]Rd; (5) 
NGA,+ GA: holds in u[C&] R, . 

The proof of this corollary is also straightforward. It 
can be done by first performing an eager/lazy groupby- 
count on Rd, and then an eager/lazy groupby-count on 
&a. 

10 Algorithms and Implementation 

10.1 Algorithm for Eager Aggregation 

In this section, we present a practical algorithm for 
recognizing all valid eager transformations for a given 
query. We assume that & tables contain aggregation 
columns and R, tables do not. That is, all queries 
belong to the class of queries specified in Section 3. 

10.1.1 Finding the Eager Grouping Columns 
for Eager Aggregation 

Given two sets of tables, Rd and R,, with Rd ta 
bles containing aggregation columns and R, tables 
not, let’s first consider eager group-by. We can 
start with NC& using GA: as the eager grouping 

ten not beneficial, a good heuristic might be not to 
add grouping columns beyond GA$. 

When performing eager aggregation, our objective 
is to achieve data reduction before the join, so we want 
each partial group to contain as many rows as possible. 
Therefore, if NC& contains a unique key of a[Cd]&, 
we should immediately abandon using this set for eager 
group-by. 

10.1.2 Table Partitioning 

When the query contains more than two tables, there 
may be several ways of performing eager aggregation. 
The question is how to partition the tables in the FROM 
clause into Rd tables and R, tables. Section 10.3 dis- 
cusses the way to partition tables to obtain all pos- 
sible transformations. We assume that table parti- 
tioning has been done before calling the algorithm in 
Section 10.1.3. 

10.1.3 The Algorithm 

Assuming table partitioning is done, we have the fol- 
lowing algorithm for finding valid eager aggregation. 
In this algorithm, we choose not to add new columns 
to either NC& or NGA,. In the following algorithm, 
& tables must contain aggregation COhnUS. 

Algorithm 1 Eager Aggregation 

Inputs: input query, &, R,, AA 
Output: all possible rewritten queries 

1 NG& := GA,+ and NGA, := GA: 
2 eagerd = false, eageru = false 
3 if NC& is not a unique key of U[Cd]Rd 

4 eUgeTd = true 

5 end if 

354 



6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

if NGA, is not a unique key of (r[C,,]R, 
eager, = true 

end if 
if eager, and eageTd 

if no aggregation cohmns in R, 
Apply double eager on & end R, 
Output the reuritten query 

else 

Apply eager split on both .& and R, 
Output the rearitten query 
Apply eager groupby-count on Rd 
Output the reuritten query 

end if 
else if eageTd and not eager, 

if no aggregation columns in R, 
Apply eager group-by on & 

else 
Apply eager groupby-count on Rd 

end if 
Output the reuritten query 

else if not eagerd and eager, 
if no aggregation cohmns in R, 

Apply eager count on &, 
else 

Apply eager groupby-count on & 
end if 
Output the rearitten query 

else 
Output “No transformation” 

end if 

END Algorithm 1 

10.2 Algorithm for Lazy Aggregation 

Now consider lazy aggregation. Whenever a query 
matches the form in any one of our theorems and sat- 
isfies their conditions, we can perform a lazy aggre- 
gation to eliminate one GROUP BY(or DISTINCT), and 
delay grouping until after the join. Lazy aggregation is 
especially useful when the join is highly selective. The 
algorithm to find all valid lazy aggregation transforma- 
tion for a given query is to iterate through each avail- 
able transformation and output the rewritten forms. 
Please refer to [Yan95] for a detailed description for 
the algorithm. 

10.3 Implementation 

We need to find a way to efficiently integrate ea- 
ger/lazy aggregation and group-by push down/pull 
up into existing optimizers. The standard technique 
for determinating join order in a cost-based opti- 
mizer is dynamic programming in a bottom up (e.g., 
Starburst[LohM]) fashion. During the dynamic pro- 
gramming process, plans for table accesses, two-table 
joins, three-table joins and joins involving more tables 
are constructed and kept until the final query plan is 
obtained. To integrate the transformations into such 

an optimizer, we can first perform group-by pull up 
and lazy aggregation to obtain a canonical form in 
which all group-bys are delayed as late as possible. 
Then, during dynamic programming process, when- 
ever a table access plan or join plan is constructed, we 
can consider adding a group-by on top of the plan. All 
tables in the query are then partitioned into two sets, 
the set containing all tables in the current join plan, 
and the set containing the remaining tables. We can 
then apply Algorithm Eager Aggregation to find all 
possible eager aggregations. There can be several pos- 
sible ways for adding an aggregation on top of a plan. 
The optimizer may want to choose the cheapest way 
for each plan to reduce optimization cost. Then, for 
each original join plan, there is at most one additional 
plan that performs a group-by at the top. On the 
other hand, when considering join plan for two input 
streams, the optimizer can consider the alternatives of 
taking the streams with or without aggregation. If the 
optimizer employs an exhaust search and considers all 
possible join plans in the dynamic programming pro- 
cess(e.g., Starburst), all possible transformations can 
be found in this process. This approach is also suitable 
for dynamic programming process that generates only 
left deep trees or right deep trees. However, it might 
overlook some possible rewrites. 

11 Queries Including HAVING 

A query with a HAVING clause can always be trans- 
formed into one without. This technique is well known 
and is used in existing database systems. For exam- 
ple, the Starburst optimizer always transforms a query 
with a HAVING into one without at the beginning of 
the query rewrite phase[PHH92]. After the HAVING is 
eliminated, we can perform eager aggregation trans- 
formation on the view created. 

Now consider lazy aggregation. When a HAVING is 
eliminated in a subquery block with an aggregation 
(either groupby or distinct), and the HAVING clause 
contains no aggregations, then the predicate in the 
HAVING clause can be moved to the WHERE clause and 
we can then try to apply one of our lazy aggregation 
theorems. If the HAVING clause contains aggregations, 
we usually give up performing lazy aggregations be 
cause the HAVING predicates have to be evaluated be 
fore the join. However, it is possible to perform lazy 
aggregation when the HAVING clause of a query con- 
tains aggregation. 

We formally proved our theorem for the conditions 
of groupby push down transformation for queries con- 
taining a HAVING clause in [yL95]. The process to 
prove conditions of eager aggregation for queries with 
a HAVING clause is completely analog to our previous 
effort. Due to space limitation we shall not present the 

355 



conditions and proof here. 

12 TPC-D Queries 

We can apply group-by push down/pull up and ea- 
ger/lazy aggregation to twelve of the seventeen queries 
in the TPC-D benchmark and significantly reduce the 
elapsed time of six queries on DB2 V2 Beta 3, as shown 
in Table 1. For example, it improves the elapsed time 
of Query 5 by a factor of ten. Table 2 shows the ratio 
between best and worst elapsed time for all TPC-D 
official queries that can be transformed3. The perfor- 
mance difference between a badly formed query and a 
better formed query can be very significant. Partic- 
ularly, in applications where queries are generated by 
tools or inexperienced users, automatic transformation 
of queries is indeed very important. 

In both Table 1 and 2, each table is represented by 
the first letter of its name, except that table PART- 
SUPP is represented by PS. Also, we use PD, PU, EG, 
EC and DC to represent group-by push down, group 
by pull up, eager group-by, eager count and query de- 
correlation transformations respectively. 

Table 1: TPC-D Queries With Reduced Elapsed Time 
(Compared With Original Formulation) 

13 Related Work 

We proposed the idea of eager aggregation and lazy 
aggregation in [Yan94]. Chaudhuri and Shim[CS94] 
also independently discovered eager group-by and ea- 
ger count. Their simple coalescing grouping and gen- 
eralized coalescing grouping correspond to our eager 
group-by and eager count transformation, respectively. 
They also proposed an algorithm to integrate group- 
by push down, eager groupby and eager count into a 
greedy join enumeration algorithm which produces left 
deep trees in a cost based optimizer. However, they 
did not discuss lazy aggregation transformation in the 
paper. 

Gupta, Harinarayan and Quass[GHQ95] general- 
ized group-by push down in another fashion. They 
showed that it is possible to perform early duplicate re- 
moval before a join when there is no aggregation in the 

3The ratio marked as ‘infinity’ means that the query with the 
worst formulation ran out of system space and did not finish. 

Table 2: Ratio Between Best And Worst Elapsed Time 
For All TPC-D Queries That Can Be Transformed 
1 Q ) # of I Worst 1 Best 1 W/B t 

3 
5 

rewrites Formulation Formulation Ratio 

3 PD on L/O Oligbl 3.93 
7 EG on EG on 43.71 

w/w L/O/C 
7 7 Origilld EGonL 2.58 

8 14 EG on L/S EG on 501.02 

I I 1 for both 1 I I 

12 2 

13 2 

14 2 
15 2 

aggregations 
EConL Otigilld 1.02 

EGonL Olighl 16.59 

Origin&l EGonL 1.07 
PU Ori& 2.51 

original query. The access plan must maintain a count 
of the number of duplicates being removed. Then, af- 
ter or during the join, the access plan must restore the 
duplicates. Chaudhuri and Shim[CS95] also general- 
ized group-by pull up to handle the case when the join 
is a many to many join. 

14 Conclusion 

Group-by push down and group-by pull up interchange 
the order of join and group-by. The number of group 
by’s is unchanged. Eager aggregation introduces an 
additional group-by before a join, and lazy aggregation 
eliminates a group-by before a join. Groupby push 
down and eager aggregation reduces the number of 
rows participating in a join, groupby pull up and lazy 
aggregation reduces the number of input rows to the 
groupby. Both directions of transformation should be 
considered during query optimization. 

We classify eager aggregation into five different 
types: eager group-by, eager count, double eager, ea- 
ger groupby-count and eager split. Eager groupby 
partially pushs down a groupby on the tables that 
contain all aggregation columns; eager count partially 
pushs down a groupby on the tables that do not con- 
tain any aggregation columns; double eager partially 
pushs down a groupby on both types of tables; eager 
groupby-count partially pushs a groupby into a sub- 
set of tables containing the aggregation columns; eager 
split splits a group-by into two group-bys and partially 
pushs the groupbys down the two input streams of the 
join. As a special case of double eager, we can com- 
pletely push down group-by into two input streams, 

356 



CUSTOMERS(C_) PARTSUPP(PSJ SUPPLIERS ORDERS(O-) LINEITEM (L_) 
15K 1K 1K 160K 6ooK 

Legend: 

l Scale factor 1 

l The highlighted column names in each table form its primary key 

l The number below a table name shows the number of rows of the table. 

tTAX 

1 COMMENT 

Figure 4: Subset of the TPC-D Database 
which is call double groupby push down. Similarly, 
we classify lazy aggregation into lazy groupby, lazy 
count, double lazy, lazy groupby-count and lazy split, 
which perform the reverse transformations of their ea- 
ger counterparts. We also provide practical algorithms 
for identifying all possible transformations. The algo- 
rithms do not restrict the join order of the query. 

Future work includes: (1) finding the conditions of 
lazy transformation for subqueries containing an ag- 
gregating HAVING clause; (2) finding necessary and suf- 
ficient conditions for all the transformations in the pa 
per and (3) finding eager/lazy aggregation transforma- 
tions involving other binary relational operations (e.g., 
UNION, INTERSECT, EXCEPT and OUTER JOIN). 

Acknowledgements 

We thank the referees for their many useful comments. 
We also would like to thank Guy M. Lohman for sug- 
gesting the word eager and K. Bernhard Schiefer for 
his help with the TPC-D experiments. We also want 
to extend our appreciation to Surajit Chaudhuri and 
Kyuseok Shim for their valuable comments. 

A The TPC-D Database 

TPC-D is a decision support benchmark proposed by 
the the Transaction Processing Performance Coun- 
cil(TPC). It is a suite of business oriented queries to 
be executed against a database that allows continuous 
access as well as concurrent updates[Raa95]. The size 
of the database is scalable adjusted by a scale factor. 
The scale factor for a 1OOMB database is 0.1. The 
size of the database we used through out this paper 
is 100MB. Figure 4 shows the subset of the TPC-D 
database we used in this paper. 

References 

[CS94] S. Chaudhuri and K. Shim. Including group-by 
in query optimization. In Proc. VLDB Conf., 
pages 354-366, Santiago, Chile, Sep. 1994. 

[CS95] S. Chaudhuri and K. Shim. Optimizing com- 
plex queries: A unifying approach. Tech. Re- 
port HPL-DTD-95-20, HP Lab, Mar. 1995. 

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. 
Aggregate-query processing in data warehous- 
ing environments. In Proc. VLDB Conf., 1995. 

[IS0921 1.30. Information Technology - Database lan- 
guages - SQL. Reference number ISO/IEC 
9075:1992(E), Nov. 1992. 

[Loh88] G. M. Lohman. Grammar-like functional rules 
for representing query optimization altern* 
tives. In Proc. ACM SIGMOD Conf., pages 18- 
27, Chicago, Illinois, June 1988. 

[PHH92] H. Pirahesh, J. M. Heiierstein, and W. Hasan. 
Extensible/rule based query rewrite optimiza- 
tion in STARBURST. In Proc. SIGMOD Conf., 
pages 39-48, San Diego, California, June 1992. 

[Raa95] F. Raab, editor. TPC Benchmark D (Deci- 
sion Support), Working Draft 9.1. Transaction 
Processing Performance Council, San Jose CA, 
95112-6311, USA, February 1995. 

[yan94] w. P. Y an. Query optimization techniques for 
aggregation queries. Research Proposal, Univer- 
sity of Waterloo, April 1994. 

pan951 W. P. Yan. Rewrite optimization of SQL queries 
containing GROUP-BY. PhD thesis, Depart- 
ment of Comp. Sci., University of Waterloo, 
Sep. 1995. 

w 941 W. P. Yan and Per-Ake Larson. Performing 
group-by before join. In Proc. IEEE ICDE, 
pages 89-100, Houston, Texas, Feb. 1994. 

IF951 W. P. Yan and Per-&ce Larson. Interchanging 
the order of grouping and join. Technical Report 
CS 95-09, University of Waterloo, Feb. 1995. 

357 


