
Mining Generalized Association Rules

Ramakrishnan Srikant* Rakesh Agrawal

IBM Almaden Research Center
San Jose, CA 95120

{srikant,ragrawal}@almaden.ibm.com

Abstract

We introduce the problem of mining general-
ized association rules. Given a large database
of transactions, where each transaction con-
sists of a set of items, and a taxonomy (is-a
hierarchy) on the items, we find associations
between items at any level of the taxonomy.
For example, given a taxonomy that says that
jackets is-a outerwear is-e clothes, we may
infer a rule that “people who buy outerwear
tend to buy shoes”. This rule may hold even
if rules that “people who buy jackets tend to
buy shoes”, and “people who buy clothes tend
to buy shoes” do not hold. An obvious solu-
tion to the problem is to add all ancestors of
each item in a transaction to the transaction,
and then run any of the algorithms for min-
ing association rules on these “extended trans-
actions” . However, this “Basic” algorithm
is not very fast; we present two algorithms,
Cumulate and EstMerge, which run 2 to 5
times faster than Basic (and more than 100
times faster on one real-life dataset). We also
present a new interest-measure for rules which
uses the information in the taxonomy. Given a
user-specified “minimum-interest-level”, this
measure prunes a large number of redundant
rules; 40% to 60% of all the rules were pruned
on two real-life datasets.

*Also, Department of Computer Science, University of Wis-
consin, Madison.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distrib&ed for

direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying ia by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special pcTmiasion from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Swizerland, 1995

1 Introduction

Data mining, also known as knowledge discovery in
databases, has been recognized as a new area for
database research. The area can be defined as effi-
ciently discovering interesting rules from large collec-
tions of data.

The problem of mining association rules was intro-
duced in [l]. Given a set of transactions, where each
transaction is a set of items, an association rule is
an expression X + Y, where X and Y are sets of
items. The intuitive meaning of such a rule is that
transactions in the database which contain the items
in X tend to also contain the items in Y. An example
of such a rule might be that 98% of customers who
purchase tires and auto accessories also buy some au-
tomotive services; here 98% is called the confidence
of the rule. The suppoti of the rule X j Y is the
percentage of transactions that contain both X and
Y. The problem of mining association rules is to
find all rules that satisfy a user-specified minimum
support and minimum confidence. Applications in-
clude cross-marketing, attached mailing, catalog de-
sign, loss-leader analysis, store layout, and customer
segmentation based on buying patterns.

In most cases, taxonomies (is-a hierarchies) over
the items are available. An example of a taxonomy
is shown in Figure 1: this taxonomy says that Jacket
is-a Outerwear, Ski Pants is-a Outerwear, Outerwear
is-a Clothes, etc. Users are interested in generating
rules that span different levels of the taxonomy. For
example, we may infer a rule that people who buy Out-
erwear tend to buy Hiking Boots from the fact that
people bought Jackets with Hiking Boots and and Ski
Pants with Hiking Boots. However, the support for
the rule “Outerwear =+- Hiking Boots” may not be the
sum of the supports for the rules “Jackets j Hiking
Boots” and “Ski Pants + Hiking Boots” since some
people may have bought Jackets, Ski Pants and Hik-
ing Boots in the same transaction. Also, “Outerwear
+ Hiking Boots” may be a valid rule, while “Jackets
+- Hiking Boots” and “Clothes j Hiking Boots” may

407

Clothes Footwear

A\, /\
Outerwear Shirts Shoes Hiking Boots

J\
Jackets ski Pants

Figure 1: Example of a Taxonomy

not. The former may not have minimum support, and
the latter may not have minimum confidence.

Earlier work on association rules [l] [2] [5] [6] [7] did
not consider the presence of taxonomies and restricted
the items in association rules to the leaf-level items in
the taxonomy. However, finding rules across different
levels of the taxonomy is valuable since:

l Rules at lower levels may not have minimum sup-
port. Few people may buy Jackets with Hiking
Boots, but many people may buy Outerwear with
Hiking Boots. Thus many significant associations
may not be discovered if we restrict rules to items
at the leaves of the taxonomy. Since department
stores or supermarkets typically have hundreds of
thousands of items, the support for rules involv-
ing only leaf items (typically UPC or SKU codes)
tends to be extremely small.

l Taxonomies can be used to prune uninteresting
or redundant rules. We will discuss this further
in Section 2.1.

Multiple taxonomies may be present. For exam-
ple, there could be a taxonomy for the price of items
(cheap, expensive, etc.), and another for the category.
Multiple taxonomies may be modeled as a single tax-
onomy which is a DAG (directed acyclic graph). A
common application that uses multiple taxonomies is
loss-leader analysis. In addition to the usual taxonomy
which classifies items into brands, categories, product
groups, etc., there is a second taxonomy where items
which are on sale are considered to be children of a
“items-on-sale” category, and users look for rules con-
taining the “items-on-sale” item.

In this paper, we introduce the problem of mining
generalized association rules. Informally, given a set of
transactions and a taxonomy, we want to find associ-
ation rules where the items may be from any level of
the taxonomy. We give a formal problem description
in Section 2. One drawback users experience in apply-
ing association rules to real problems is that they tend
to get a lot of uninteresting or redundant rules along
with the interesting rules. We introduce an interest-
measure that uses the taxonomy to prune redundant
rules.

An obvious solution to the problem is to replace
each transaction T with an “extended transaction” T’,
where T’ contains all the items in T as well as all the
ancestors of each items in T. For example, if the trans-
action contained Jackets, we would add Outerwear and
Clothes to get’the extended-transaction. We can then
run any of the algorithms for mining association rules
PI PI [51 PI [71 on the extended transactions to get
generalized association rules. However, this “Basic”
algorithm is not very fast; two more sophisticated al-
gorithms that we propose run 2 to 5 times faster than
Basic (and more than 100 times faster on one real-life
dataset).

We describe the Basic algorithm and our two algo-
rithms in Section 3, and evaluate their performance on
both synthetic and real-life data in Section 4. Finally,
we summarize our work and conclude in Section 5. For
an expanded version of this paper, see [9].

2 Problem Statement

LetZ={ii,iz,. . . , im} be a set of literals, called items.
Let I be a directed acyclic graph on the literals. An
edge in I represents an is-a relationship, and ? rep-
resents a set of taxanomies. If there is an edge in ‘T
from p to c, we call p a parent of c and c a child of
p. (p represents a generalization of c.) We model the
taxonomy as .a DAG rather than a forest to allow for
multiple taxonomies.

We use lower case letters to denote items and upper
case letters for sets of items (itemsets). We call 3 an
ancestor of 2 (and x a descendant of 5) if there is an
edge from P to x in the transitive-closure of ?. Note
that a node is not an ancestor of itself, since the graph
is acyclic.

Let ‘0 be .a set of transactions, where each trans-
action T is a set of items such that T 5 Z. (While
we expect the items in T to be leaves in I, we do not
require this.) We say that a transaction T supports an
item z E Z if t is in T or z is an ancestor of some item
in T. We say that a transaction T supports X C Z if
T supports every item in X.

A generalized association rule is an implication of
the form X j Y, where X c Z, Y C Z, X rl Y = 8,
and no item in Y is an ancestor of any item in X.
The rule X +- Y holds in the transaction set 2, with
confidence c if c% of transactions in 2) that support
X also support Y. The rule X + Y has support s
in the transaction set 2, if s% of transactions in ‘D
support X U Y. The reason for the condition that no
item in Y should be an ancestor of any item in X is
that a rule of the form “x j ancestor(x)” .is trivially
true with 100% confidence, and hence redundant. We
call these rules generalized association rules because
both X and Y can contain items from any level of

408

the taxonomy T, a possibility not entertained by the
formalism introduced in [l].

Problem Statement (Tentative) Given a set of
transactions 2) and a set of taxonomies 7, the problem
of mining generalized association rules is to discover
all rules that have support and confidence greater
than the user-specified minimum support (called min-
sup) and minimum confidence (called minconf) re-
spectively.

This definition has the problem that many “redun-
dant” rules may be found. We will formalize the no-
tion of redundancy and modify the problem statement
accordingly in Section 2.1. (We introduce the tenta-
tive problem statement here in order to explain redun-
dancy.)

Example Let Z = {Footwear, Shoes, Hiking Boots,
Clothes, Outerwear, Jackets, Ski Pants, Shirts} and
7 the taxonomy shown in Figure 1. Consider the
database shown in Figure 2. Let minsup be 30% (that
is, 2 transactions) and minconf 60%. Then the sets
of items with minimum support (frequent itemsets),
and the rules corresponding to the these itemsets are
shown in Figure 2. Note that the rules “Ski Pants +
Hiking Boots” and “Jackets j Hiking Boots” do not
have minimum support, but the rule “Outerwear *
Hiking Boots” does.

Observation Let Pr(X) denote the probability that
all the items in X are contained in a transaction. Then
support(X j Y) = Pr(XUY) and confidence(X + Y)
= Pr(Y 1 X). (Note that Pr(X U Y) is the probability
that all the items in X U Y are present in the transac-
tion.)

If a set {z,y} has minimum support, so do {z,s},
(2,~) and {Z,?}. (Z eno e an ancestor of z). However d t
if the rule x j y has minimumsupport and confidence,
only the rule 2 =+ 2 is guaranteed to have both mini-
mum support and confidence. While the rules 3 + y
and Z =+ c will have minimum support, they may not
have minimum confidence.

The support for an item in the taxonomy is not
equal to the sum of the supports of its children, since
several of the children could be present in a single
transaction. Hence we cannot directly infer rules
about items at higher levels of the taxonomy from rules
about the leaves.

2.1 Interesting Rules

Previous work on quantifying the “usefulness” or “in-
terest” of a rule focussed on how much the support
of a rule was more than the expected support based
on the support of the antecedent and consequent. In

Database ‘D
Transaction Items Bought

100 Shirt
200 Jacket, Hiking Boots
300 Ski Pants, Hiking Boots
400 Shoes
500 Shoes
600 Jacket

Frequent Itemsets
I

{ Jacket }
Support

2
Itemset

{ Outerwear }
{ Clothes }
{ Shoes }
{ Hiking Boots }
{ Footwear }
{ Outerwear, Hiking Boots j
{ Clothes, Hiking Boots }
{ Outerwear, Footwear 1
{ Clothes, Footwear } ’

3
4
2
2
4
2
2
2
>2

Rules
Rule 1 Support 1 Conf.

Outerwear j Hiking Boots (33%] 66.6%
1 Outerwear j Footwear I 33% 1 66.6% 1
I Hiking Boots =+ Outerwear I 33% I 100% 1

Hiking Boots j Clothes) 33% 1 100% 1

Figure 2: Example

[8], Piatetsky-Shapiro argues that a rule X =+- Y is
not interesting if support(X * Y) W support(X) X
support(Y). We implemented this idea, and used
the chi-square value to check if the rule was statisti-
cally significant. However, this measure did not prune
many rules; on two real-life datasets (described in Set;
tion 4.5), less than 1% of the rules were found to be
redundant (not statistically significant). In this sec-
tion, we use the information in taxonomies to derive a
new interest measure that prunes out 40% to 60% of
the rules as “redundant” rules.

To motivate our approach, consider the rule

Milk j Cereal (8% support, 70% confidence)

If “Milk” is a parent of “Skim Milk”, and about a
quarter of sales of “Milk” are “Skim Milk”, we would
expect the rule

Skim Milk =+ Cereal

to have 2% support and 70% confidence. If the ac-
tual support and confidence for “Skim Milk + Cereal”
are around 2% and 70% respectively, the rule can be

409

considered redundant since it does not convey any ad-
ditional information and is less general than the first
rule. We capture this notion of “interest” by saying
that we only want to find rules whose support is more
than R times the expected value or whose confidence
is more than R times the expected value, for some
user-specified constant R.’ We formalize the above
intuition below.

We call z^ an ancestor of 2 (where 2, ,? are sets of
items such that 2, z^ C Z) if we can get z^ from Z by
replacing ace or more items in Z with their ancestors
and Z and Z have the same number of items. (The rea-
son for the latter condition is that it is not me_aningful
to compute the expected support of Z from Z unless
they have the same number of items. For instance, the
support for {Clothes} does give any clue about the ex-
pected support for {Outerwear, Shirts}.) We call the
rules j? + Y, X j p or X =$ p ancestors of the rule
X + Y. Given a set of rules, we call .? + ? a close
ancestor of X 3 Y if there is no rule Xl * Y’ such
that X’ 3 Y’ is an ancestor of X j Y and X j ? is
an ancestor of X’ 3 Y’. (Similar definitions apply for
X j ? and X + Y .)

Consider a rule X j Y, and let Z = X U Y. The
support of Z will be the same as the support of the rule
X j Y. Let E,-[Pr(Z)] denote the “expected” value of

Pr(Z) given Pr(z^), where z^ is an ancestor of Z. Let
z = {%I ,..., z,} and z^ = {?I ,..., $,zj+r ,..., zn},
1 5 j s n, where z is an ancestor of zi. Then we
define

Pr(zj > Ez[Pr(Z)] = # x . . . x -
Pr(%)

x Pr(@.

to be the expected value of Pr(Z) given the itemset
it2

‘We can easily enhance this definition to say that we want
to Ford rules with minimum support whose support (or confi-
dence) is either more or less than the expected value. However,
many rules whose support is less than expected will not have
minimum support. In fact, the more the deviation from the
expected value, the less the support for the rule. So the most
interesting rules may not have minimum support. (The same
applies for confidence.) Suppose we wanted to Ford all rules
whose support is less than expected, irrespective of minimum
support. Consider a “typical” database with 50,000 items, an
average of 5 items per transaction and ten million transactions.
The average probability that an item is present in a transaction
is l/10,000; that any two items are present in the same transac-
tion 1/100,000,000. Hence, on average, the expected number of
transactions where two specific items are bought together is just
0.1. There may be millions of rules which say that two items
are never bought together, and these rules would not even be
significant.

2Alternate definitions are possible. For example, we could
define:

X P,(Z).

Similarly, let Ez,p [Pr(Y 1 X)] denote the “ex-
pectec confi>ence of the rule X j Y given_ the
rule X + Y. Let Y = {yr,...,y,} and Y =
{y^l, . . . 1 9Yj)Yj+l,*.., y,}, 1 5 j 2 n, where c is an
ancestor of yi. Then we define

E- Pr(Yj 1
X-.+y^[Pr(Y I X)] = a x . . . x -

PrG 1
xPr(p]Ji)

Note that Exqy [Pr(Y I X)] = Pr(Y I ji)].
We $1 a_rule X j Y R-interesting w.r,t an an-

cestor X + Y if the support of the ru@ X 2 Y is R
times the expected support based on X + Y , or the
confi_dencE is R times the expected confidence baaed
on X *Y.

Definition of Interesting Rules Given a set of
rules S and a minimum interest R, a rule X + Y
is interesting (in S) if it has no ancestors or it is R-
interesting with respect to its close ancestors among
its interesting ancestors. We say that an rule X + Y
is partially interesting (in S) if it has no ancestors or is
R-interesting with respect to at least one close ancestor
among its interesting ancestors.

We motivate the reason for only considering close
ancestors among all interesting ancestors with an ex-
ample. Consider the rules shown in Figure 3. The
support for the items in the antecedent are shown
alongside. Assume we have the same taxonomy as in
the previous example. Rule 1 has no ancestors and is
hence interesting. The support for rule 2 is twice the
expected support based on rule 1, and is thus inter-
esting. The support for rule 3 is exactly the expected
support based on rule 2, but twice the support based.
on rule 1. We do not want consider rule 3 to be in-
teresting since its support can be predicted based on
rule 2, even though its support is more than expected
if we ignore rule 2 and look at rule 1.

2.2 Problem Statement

Given a set of transactions V and a user-specified
minimum interest (called min-interest), the problem
of mining association rules with taxonomies is to
find all interesting association rules that have support
and confidence greater than the user-specified min-
imum support (called minsup) and minimum confi-
dence (called minconf) respectively.

For some applications, we may want to find partially
interesting rules rather than just interesting rules.
Note that if min-interest = 0, all rules are found, re-
gardless of interest.

3 Algorithms

The problem of discovering generalized association
rules can be decomposed into three parts:

410

1.

2.

3.

Rule # Rule support
1 “Clothes + Footwear”
2 “Outerwear =$ Footwear”
3 “Jackets + Footwear”

; j!jzgpy

Figure 3: Example - Interest

Find all sets of items (ifemsets) whose support
is greater than the user-specified minimum sup-
port. Itemsets with minimum support are called
frequent itemsets.

Use the frequent itemsets to generate the desired
rules. The general idea is that if, say, ABCD
and AB are frequent itemsets, then we can deter-
mine if the rule AB +- CD holds by computing
the ratio conf = support(ABCD)/support(AB).
If conf >_ minconf, then the rule holds. (The rule
will have minimumsupport because ABCD is fre-
quent .)

Prune all uninteresting rules from this set.

In the rest of this section, we look at algorithms for
finding all frequent itemsets where the items can be
from any level of the taxonomy. Given the frequent
itemsets, the algorithm in [l] [2] can be used to gener-
ate rules. We first describe the obvious approach for
finding frequent itemsets, and then present our two
algorithms.

3.1 Algorithm Basic

Consider the problem of deciding whether a transac-
tion T supports an itemset X. If we take the raw
transaction, this involves checking for each item z E X
whether z or some descendant of z is present in the
transaction. The task become much simpler if we first
add all the ancestors of each item in T to T; let us call
this extended transaction T’. Now T supports X if and
only if T’ is a superset of X. Hence a straight-forward
way to find generalized association rules would be to
run any of the algorithms for finding association rules

from PI PI 151 [61 [71 on the extended transactions.
We discuss below the generalization of the Apriori al-
gorithm given in [2]. Figure 5 gives an overview of the
algorithm, using the notation in Figure 4.

The first pass of the algorithm simply counts
item occurrences to determine the frequent 1-itemsets.
Note that items in the itemsets can come from the
leaves of the taxonomy or from interior nodes. A sub-
sequent pass, say pass h, consists of two phases. First,

31n earlier papers [l] [2], itemsets with minimum support
were called large itemsets. However, some readers associated
“large” with the number of items in the itemset, rather than
its support. So we are switching the terminology to frequent
itemsets.

An itemset having k items.

Figure 4: Notation

151 := {frequent 1-itemsets};
k := 2; // k represents the pass number
while (Lk-I # 8) do
begin

ck := New candidates of size k generated from Lk-1.
forall transactions t E P do
begin

Add all ancestors of each item in t to t, removing
any duplicates.

Increment the count of all candidates in ck that
are contained in t.

end
Lk := All candidates in ck with minimum support.
k := k + 1;

end
Answer := U, Lk;

Figure 5: Algorithm Basic

the frequent itemsets Lk-1 found in the (k-1)th pass
are used to generate the candidate itemsets Ck, using
the apriori candidate generation function described in
the next paragraph. Next, the database is scanned and
the support of candidates in ck is counted. For fast
counting, we need to efficiently determine the candi-
dates in Ck that are contained in a given transaction
t. We reuse the hash-tree data structure described in
[2] for this purpose.

Candidate Generation Given Lk-1, the set of all
frequent (k-1)-itemsets, we want to generate a super-
set of the set of all frequent Ic-itemsets. Candidates
may include leaf-level items as well as interior nodes
in the taxonomy. The intuition behind this procedure
is that if an itemset X has minimum support, so do all
subsets of X. For simplicity, assume the items in each
itemset are kept sorted in lexicographic order. First,
in the join step, we join Lk-i with Lk-1:

insert into ck
select p.itemr, p.itemz, pitemk-1, q.itemk-1

411

from Lk-1 P7 Lk-1 9

where p.iteml = q.iteml, . . ., p.itemk-Z =
qhmk-2, p.itemk-1 < q.itemk-1;

Next, in the prune step, we delete all itemsets c E Ck
such that some (]c- 1)-subset of c is not in Lk-l.

3.2 Algorithm Cumulate

We add several optimizations to the Basic algorithm
to develop the algorithm “Cumulate”. The name in-
dicates that all itemsets of a certain size are counted
in one pass, unlike the “Stratify” algorithm in Sec-
tion 3.3.

1. Filtering the ancestors added to transac-
tions. We do not have to add all ancestors of
the items in a transaction t to t. Instead, we just
need to add ancestors that are in one (or more) of
the candidate itemsets being counted in the cur-
rent pass. In fact, if the original item is not in
any of the itemsets, it can be dropped from the
transaction.

For example, assume the parent of “Jacket” is
“Outerwear”, and the parent of “Outerwear” is
“Clothes”. Let (Clothes, Shoes} be the only
itemset being counted. Then, in any transaction
containing Jacket, we simply replace Jacket by
Clothes. We do not need to keep Jacket in the
transaction, nor do we need to add Outerwear to
the transaction.

2. Pre-computing ancestors. Rather than find-
ing ancestors for each item by traversing the tax-
onomy graph, we can pre-compute the ancestors
for each item. We can drop ancestors that are not
present in any of the candidates at the same time.

3. Pruning itemsets containing an item and its
ancestor. We first present two lemmas to justify
this optimization.

Lemma 1 The supporZ for an itemset X that
contains both an item x and its ancestor 3 will
be the same as the suppoti for the itemset X-2.

Lemma 2 If L k, the sel of frequent k-itemsets,
does nol include any itemset that contains both an
item and it.9 ancestor, ihe se2 of candidates ck+l
generated by the candidate generation procedure
in Sedion 3.1 will not include any itemset that
contains bolh an item and ias ancestor.

Proofs of these lemmas are given in [9]. Lemma 1
shows that we need not count any itemset which
contains both an item and its ancestor. We add

Compute T*, the set of ancestors of each item,
from 7. // Optimization 2

LI := {frequent 1-itemsets};
k := 2; // k represents the pass number
while (L+1 # 0) do
begin

Ck := New candidates of size k generated from Lk-1.
if (k = 2) then

Delete any candidate in Cz that consists of an
item and its ancestor. // Optimization 3

Delete any ancestors in 7’ that are not present in
any of the candidates in Ck. // Optimization 1

forall transactions t E D do
begin

foreach item z E t do
Add all ancestors of x in I’ to t.

Remove any duplicates from t.
Increment the count of all candidates in Ck

that are contained in t.
end
Lk := All candidates in ck with minimum support.
k := k+l;

end
Answer := U, Lk;

Figure 6: Algorithm Cumulate

this optimization by pruning the candidate item-
sets of size two which consist of an item and its
ancestor. Lemma 2 shows that pruning these can-
didates is sufficient to ensure that we never gener-
ate candidates in subsequent passes which contain
both an item and its ancestor.

Figure 6 gives an overview of the Cumulate alge
rithm.

3.3 Stratification

We motivate this algorithm with an example. Let
{Clothes, Shoes}, {Outerwear, Shoes) and {Jacket,
Shoes} be candidate itemsets to be counted, with
“Jacket” being the child of “Outerwear”, and “Outer-
wear” the child of “Clothes”. If {Clothes, Shoes} does
not have minimum support, we do not have to count
either {Outerwear, Shoes} or {Jacket, Shoes}. Thus,
rather than counting all candidates of a given size in
the same pass as in Cumulate, it may be faster to
first count the support of {Clothes, Shoes}, then count
{Outerwear, Shoes} if {Clothes, Shoes} turns out to
have minimum support, and finally count {Jacket,
Shoes} if (Outerwear, Shoes) also has minimum sup-
port. Of course, the extra cost in making multiple
passes over the database may be more than the ben-
efit of counting fewer itemsets. We will discuss this
tradeoff in more detail shortly.

We develop this algorithm by first presenting the
straight-forward version, “Stratify”, and then describ-

412

ing the use of sampling to increase its effectiveness (the
“Estimate” and “EstMerge” versions). The optimiza-
tions we introduced for the Cumulate algorithm apply
to this algorithm as well.

3.3.1 Stratify

Consider the partial ordering induced by the taxon-
omy DAG on a set of itemsets. Itemsets with no
parents are considered to be at depth 0. For other
itemsets, the d_epth_of an itemset X is defined to be
(m=({depWW I X is a parent of X}) + 1).

We first count all itemsets Cc at depth 0. After
deleting candidates that are descendants of those item-
sets in Cc that did not have minimum support, we
count the remaining itemsets at depth 1 (Cl). After
deleting candidates that are descendants of the item-
sets in Cr without minimum support, we count the
itemsets at depth 2, etc. If there are only a few candi-
dates at depth n, we can count candidates at different
depths (n, n+l, . ..) together to reduce the overhead
of making multiple passes.

There is a tradeoff between the number of itemsets
counted (CPU time) and the number of passes over
the database (IO+CPU time). One extreme would be
to make a pass over the database for the candidates
at each depth. This would result in a minimal number
of itemsets being counted, but we may waste a lot of
time in scanning the database multiple times. The
other extreme would be to make just one pass for all
the candidates, which is what Cumulate does. This
would result in counting many itemsets that do not
have minimum support and whose parents do not have
minimum support. In our implementation, we used
the heuristic (empirically determined) that we should
count at least 20% of the candidates in each pass.

3.3.2 Estimate

Rather than hoping that candidates which include
items at higher levels of the taxonomy will not have
minimum support, resulting in our not having to count
candidates which include items at lower levels, we can
use sampling to estimate the support of candidates.
We then count candidates that are expected to have
minimum support as well as candidates that are not
expected to have minimum support but all of whose
parents have minimum support. (We call this set CL,
for candidates of size k.) We expect that the latter
candidates will not have minimum support, and hence
we will not have to count any of the descendants of
those candidates. If some of those candidates turn out
to have minimum support support, we make an extra
pass to count their descendants. (We call this set of
candidates CL.) If we only count candidates that are
expected to have minimum support, we will have to

make another pass to count their children, since we
can only be sure that their children do not have mini-
mum support if we actually count them.

In our implementation, we included candidates
whose support in the sample was 0.9 times the mini-
mum support, and candidates all of whose parents had
0.9 times the minimum support, in CL in order to re-
duce the effect of sampling error. We will discuss the
effect of changing this sampling error margin shortly,
when we also discuss how the sample size can the cho-
sen.

Example For example, consider the three candi-
dates shown in Figure 7. Let “Jacket” be a child of
“Outerwear” and “Outerwear” a child of “Clothes”.
Let minimum support be 5%) and let the support
for the candidates in a sample of the database be as
shown in Figure 7. Hence, based on the sample, we ex-
pect only {Clothes, Shoes} to have minimum support
over the database. We now find the support of both
{Clothes, Shoes} and {Outerwear, Shoes} over the
entire database. We count {Outerwear, Shoes} even
though we do not expect it to have minimum support
since we will not know for sure whether it has mini-
mum support unless {Clothes, Shoes} does not have
minimum support, and we expect {Clothes, Shoes} to
have minimum support. Now, in scenario A, we do
not have to find the support for {Jacket, Shoes} since
{Outerwear, Shoes} does not have minimum support
(over the entire database). However, in scenario B, we
have to make an extra pass to count {Jacket, Shoes}.

3.3.3 EstMerge

Since the estimate (based on the sample) of which can-
didates have minimum support has some error, Esti-
mate usually makes a second pass where it counts the
support for the candidates in Ct (the descendants of
candidates in ck that were wrongly expected to not
have minimum support.) The number of candidates
counted in this pass is usually small. Rather than
making a separate pass to count these candidates, we
can count them when we count candidates in ck+r.
However, since we do not know if the candidates in
CF will have minimum support or not, we assume all
these candidates to be frequent when generating Ck+r .
That is, we will consider Lk to be those candidates in
CL with minimum support, as well as all candidates
in C[, when generating Ck+r . This can generate more
candidates in ck+r than, would be generated by Es-
timate, but does not affect correctness. The tradeoff
is between the extra candidates counted by EstMerge
against the extra pass made by Estimate. An overview
of the algorithm is given in Figure 8. (All the opti-
mizations introduced for the Cumulate algorithm ap-

413

Candidate Support in Support in Database
Itemsets Sample Scenario A Scenario B

{Clothes, Shoes} 8% 7% I 9%
{Outerwear, Shoes}

I
4%

I
4%

{Jacket. Shoes) 2% I
6%

I

Figure 7: Example for Estimate

L1 := {frequent I-itemsets};
Generate Ds, a sample of the database, in the first pass;
k := 2; // k represents the pass number
C;’ := 0; // C[represents candidates of size k to

// be counted with candidates of size k + 1
while (Lk-1 # 0 or C[-I # 0) do
begin

Ck := New candidates of size k generated
from Lk-1 u cz-,.

Estimate the support of the candidates in ck by
making a pass over I)s.

G := Candidates in Ck that are expected to have
minimum support and candidates all of whose
parents are expected to have minimum support.

Find the support of the candidates in CL U C[-,
by making a pass over D.

Delete all candidates in Ck whose ancestors (in Ci)
do not have minimum support.

Cz := Remaining candidates in Ck that are not in CA.
Lk := All candidates in CL with minimum support.
Add all candidates in Ct-, with minimum support

to Lk-1.
k:= k+l;

end
Answer := Uk Lk;

Figure 8: Algorithm EstMerge

ply here, though we have omitted them in the figure.)

3.3.4 Size of Sample

We now discuss how to select the sample size for esti-
mating the support of candidates. Let p be the sup-
port (as a fraction) of a given itemset X. Consider a
random sample with replacement of size n from the
database. Then the number of transactions in the
sample that contain X is a random variable s with
binomial distribution of n trials, each having success
probability p. We use the abbreviation s > k (“s is at
least as extreme as k”) defined by

skka
z>k ifkzpn
z<k ifk<pn

Using Chernoff bounds [4] [3], the probability that the
fractional support in the sample is at least as extreme
as a is bounded by

Pr[s>- 4 5 [(Z)’ (#-jn (1)

Table 1 presents probabilities that the support of
an itemset in the sample is less than a when its real
support is p, for various sample sizes n. For example,
given a sample size of 10,000 transactions, the prob-
ability that the estimate of a candidate’s support is
less than 0.8% when its real support is 1% is less than
0.11.

Equation 1 suggests that the sample size should in-
crease as the minimum support decreases. Also, the
probability that the estimate is off by more than a cer-
tain fraction of the real support depends only on the
sample size, not on the database size. Experiments
showing the effect of sample size on the running time
are given in Section 4.2.

4 Performance Evaluation

In this section, we evaluate the performance of
the three algorithms on both synthetic and real-life
datasets. First, we describe the synthetic data gerier-
ation program in Section 4.1. We present some pre-
liminary results comparing the three variants of the
stratification algorithm and the effect of changing the
sample size in Section 4.2. We then give the perfor-
mance evaluation of the three algorithms on syhthetic
data in Section 4.3. We do a reality check of our results
on synthetic data by running the algorithms against
two real-life data sets in Section 4.4. Finally, we look
at the effectiveness of the interest measure in pruning
redundant rules in Section 4.5.

We performed our experiments on an IBM RS/SOOO
250 workstation with 128 MB of main memory running
AIX 3.2.5. The data resided in the AIX file system and
was stored on a local 2GB SCSI 3.5” drive, with mea-
sured sequential throughput of about 2 MB/second.

4.1 Synthetic Data Generation

Our synthetic data generation program is a general-
ization of the algorithm in [2]; the addition being the
incorporation of taxonomies. The various parameters
and their default vales are shown in Table 2. We now
describe the extensions to the data generation algo-
rithm in more detail.

The essential idea behind the synthetic data gen-
eration program in [2] was to first generate a table
of potentially frequent itemsets 1, and then generate

414

Table 1: Pr[support in sample < a], given values for the sample size n, the real support p and Q

Parameter 1 Default Value
IDI Number of transactions I 1,000,000

1

ITI Average size of the Transactions 10
111 Average size of the maximal potentially frequent Itemsets 4
lZ1 Number of maximal potentially Frequent itemsets 10,000
N Number of items 100,000
R Number of Roots 250
L Number of Levels 4-5
F Fanout 5
D Depthmratio ~ probability that item in a rule comes from level i

probabiiity that item comes from level i+ 1 1

Table 2: Parameters for Synthetic Data Generation with default values

transactions by picking itemsets from Z and inserting
them in the transaction. Details can be found in [2].

To extend this algorithm, we first build a taxonomy
over the items.4 For simplicity, we modeled the taxon-
omy as a forest rather than a DAG. For any internal
node, the number of children is picked from a Pois-
son distribution with mean p equal to fanout F. We
first assign children to the roots, then to the nodes at
depth 2, and so on, till we run out of items. With this
algorithm, it is possible for the leaves of the taxonomy
to be at two different levels; this allows us to change
parameters like the fanout or the number of roots in
small increments.

Each item in the taxonomy tree (including non-leaf
items) has a weight associated with it, which corre-
sponds to the probability that the item will be picked
for a frequent itemset. The weights are distributed
such that the weight of an interior node x equals the
sum of the weights of all its children divided by the
depth-ratio. Thus with a high depth-ratio, items will
be picked from the leaves or lower levels of the tree,
while with a low depth-ratio, items will be picked from
higher up the tree.

Each itemset in Z has a weight associated with it,
which corresponds to the probability that this itemset
will be picked. This weight is picked from an exponen-
tial distribution with unit mean, and then multiplied
by the geometric mean of the probabilities of all the
items in the itemset. The weights are later normalized
so that the sum of the weights for all the itemsets in
Z is 1. The next itemset to be put in the transaction

*Out of the four parameters R, L, F and N, only three need
to be specified, since any three of these determine the fourth
parameter.

is chosen from Z by tossing an Ill-sided weighted coin,
where the weight for a side is the probability of picking
the associated itemset.

When an itemset X in Z is picked for adding to a
transaction, it is first “specialized”. For each item 2 in
X which is not a leaf in the taxonomy, we descend the
subtree rooted’at 3 till we reach a leaf t, and replace
Z with x. At each node, we decide what branch to
follow by tossing a k-sided weighted coin, where k is
the number of children, and the weights correspond to
the weights of the children.

See [9] for further details of the candidate genera-
tion program.

4.2 Preliminary Experiments

Stratification : Variants The results of comparing
the three variants of the stratification algorithm on the
default synthetic data are shown in Figure 9. At high
minimum support, when there are only a few rules and
most of the time is spent scanning the database, the
performance of the three variants is nearly identical.
At low minimum support, when there are more rules,
EstMerge does slightly better than Estimate and sig-
nificantly better than Stratify. The reason is that even
though EstMerge counts a few more candidates than
Estimate and Stratify, it makes fewer passes over the
database, resulting in better performance.

Although we do not show the performance of Strat-
ify and Estimate in the graphs in Section 4.3, the re-
sults were very similar to those in Figure 9. Both Es-
timate and Stratify always did somewhat worse than
EstMerge, with Estimate beating Stratify.

415

50 , , I

30

25

20

15

atify
?A rrr+a -*_

Str;

0’ I
1 0.75

Minimum SuppJfy%)
0.33

Figure 9: Variants of Stratify

50 I I I ,

-----------+----s--m___ .+ _________ ---+ ___________ + __-- mm-----

0' I
0.25 0.5 SamplsiSize c! 4 8

(% trans.)

Figure 10: Changing Sample Size

Size of Sample We changed the size of the sample
from 0.25% to 8%. The running time was higher at
both low sample sizes and high sample sizes. In the
former case, the decrease in performance was due to
the greater error in estimating which itemsets would
have minimum support. In the latter case, it was due
to the sampling overhead. Notice that the curve is
quite flat around the minimum time at 2%; there is
no significant difference in performance if we sample a
little less or a little more than 2%.

4.3 Comparison of Basic, Cumulate and Est-
Merge

We performed 6 experiments on synthetic datasets,
‘changing a different parameter in each experiment.
The results are shown in Figure 11. All the parameters
except the one being varied were set to their default
values. The minimum support was 0.5% (except for
the first experiment, which varies minimum support).
We obtained similar results at other levels of support,
though the gap between the algorithms typically in-
creased as we lowered the support.

Minimum Support: We changed minimum sup-
port from 2% to 0.3%. Cumulate and EstMerge were
around 3 to 4 times faster than Basic, with the per-
formance gap increasing as the minimum support de-
creased. At high support, Cumulate and EstMerge
took about the same time since there were only a few
rules and most of the time was spent scanning the
database. At low support, EstMerge was about 20%
faster than Cumulate.

Number of Transactions: We varied the number
of transactions from 100,000 to 10 million. Rather
than showing the elapsed time, the graph shows the
elapsed time divided by the number of transactions,
normalized such that the time taken by Cumulate for
1 million transactions is 1 unit. Again, EstMerge and
Cumulate perform much better than Basic. The ra-
tio of the time taken by EstMerge to the time taken
by Cumulate decreases as the number of transactions
increases, because when the sample size is a constant
percentage, the accuracy of the estimates of the sup-
port of the candidates increases as the number of trans-
actions increases.

Fanout : We changed the fanout from 5 to 25.
This corresponded to decreasing the number of levels.
While EstMerge did about 25% better than Cumu-
late at fanout 5, the performance advantage deceased’
as the fanout increased, and the two algorithms did
about the same at high fanout. The reason is that at a
fanout of 25, the leaves of the taxonomy were either at
level 2 or level 3. Hence the percentage of candidates
that could be pruned by sampling became very small
and EstMerge was not able to count significantly fewer
candidates than Cumulate. The performance gap be-
tween Basic and the other algorithms decreases some-
what at high fanout since there were fewer rules ,and
a greater fraction of the time was spent just scanning
the database.

Number of Roots: We increased the number of
roots from 250 to 1000. As shown by the figure, in-
creasing the number of roots has an effect similar to
decreasing the minimum support. The reason is that
as the number of roots increases, the probability that
a specific root would be present in a transaction de-
creases.

Number of Items/Levels: We varied the number
of items from 10,000 to 100,000. The main effect is to
change the number of levels in the taxonomy tree, from
most of the leaves being at level 3 (with a few at level
4) at 10,000 items to most of the leaves being at level 5
(with a few at level 4) at 100,000 items. Changing the
number of items did not significantly affect the per-
formance of Cumulate and EstMerge, but increased

416

Minimum Support
160 , 0 I I I

140 -

120 -

100 -

60-

60 -

Basic t

0' I
2 1.5

MiniAm SY$rt (%)
0.5 0.33

Fanou t
I I

Basic -+- _
Cumulate -+--
EstMerge +-.. _

10 -

0'
5

I h t I
7.5 10 15 20 25

Fanout

Number of Items
901 1

10 25
Number5s items (‘OOO$

100 0.5 0.75

Number of Transactions

2.4 -
Cumulate -+---
EstMerge -+- -

2.2 -
2-

1.6 -
1.6 -
1.4 -
1.2 -

, “----~~~~~~‘___~~~~~ + --______ + ________ ~ --_____-..- ~ -------- _.

0.6 - “0.. q ___._...._ Q *___.... c, _.__...__ 1

0.6
0.1 0.25 0.5

Number of transhions~miIlions) 5
10

Number of Roots

Basic -+

250 500 750 1000
Number of roots

200
Depth-Ratio

I
Basic -+

1.5 2

Figure 11: Experiments on Synthetic Data

41 7,

Supermarket Data Department Store Data
1000

Basic -+
300

.
- @mulate -+---

tsttderge +--
250 -

IiT 100 :
2 - .E 200 2

!5
.-
5

E 150 - E /ii I
I= i=

..+- 10 -
./

,.*d _

&...--- /d

fr-
__/.__A --8---

0 I 1
3 2 1 0.75 2 1.5 0.25

Minimum Support (%) MlimuI7support~&

Figure 12: Comparison of algorithms on real data

the time taken by Basic. Since few of the items in
frequent itemsets come from the leaves of the taxon-
omy, the number of frequent itemsets did not change
a lot for any of the algorithms. However, Basic had to
do more work to find the candidates contained in the
transaction since the transaction size (after adding an-
cestors) increased proportionately with the number of
levels. Hence the time taken by Basic increased with
the number of items, while the time taken by the other
two algorithms remained roughly constant.

Depth-Ratio: We changed the depth-ratio from 0.5
to 2. With high depth-ratios, items in frequent item-
sets will tend to be picked from the leaves or lower
levels of the tree, while with low depth-ratios, items
will be picked from higher up the tree. As shown in
the figure, the performance gap between EstMerge and
the other two algorithms increased as the depth-ratio
increased. At a depth-ratio of 2, EstMerge did about
30% better than Cumulate, and about 5 times better
than Basic. The reason is that EstMerge was able to
prune a higher percentage of candidates at high depth-
ratios.

Summary of Results with Synthetic Data. Cu-
mulate and EstMerge were 2 to 5 times faster than
Basic on all the synthetic datasets. EstMerge was 25%
to 30% faster than Cumulate on many of the datasets.
The advantage decreased at high fanout, since most of
the items in the rules came from the top levels of the

* taxonomy and EstMerge was not able to prune many
candidates. There was an increase in the performance
gap between Cumulate and EstMerge as the number
of transactions increased, since for a constant percent-
age sample size, the accuracy of the estimates of the
support of the candidates increases as the number of
transactions increases. Both EstMerge and Cumulate
exhibits linear scale-up with the number of transac-

tions.

4.4 Reality Check

To see if our results on synthetic data held in “real
world”, we ran the algorithms on two real-life datasets.

Supermarket Data This is data about grocery pur-
chases of customers. There are a total of 548,000 items.
The taxonomy has 4 levels, with 118 roots. There are
around 1.5 million transactions, with an average of 9.6
items per transaction. Figure 12 shows the time taken
by the three algorithms as the minimum support is de-
creased from 3% to 0.75%. These results are similar
to those obtained on synthetic data, with EstMerge
being a little faster than Cumulate, and both being
about 3 times as fast as Basic.

Department Store Data This is data from a de-
partment store. There are a total of 228,000 items.
The taxonomy has 7 levels, with 89 roots. There are
around 570,000 transactions, with an average of 4.4
items per transaction. Figure 12 shows the time taken
by the three algorithms as the minimum support is de-
creased from 2% to 0.25%. The y-axis uses a log scale.
Surprisingly, the Basic algorithm was more than 100
times slower than the other two algorithms. Since the
taxonomy was very deep, the ratio of the number fre-
quent itemsets that contained both an item and its
ancestor to the number of frequent itemsets that did
not was very high. In fact, Basic counted around 300
times as many frequent itemsets as the other two al-
gorithms, resulting in very poor performance.

4.5 Effectiveness of Interest Measure

We looked at the effectiveness of the interest measure
in pruning rules for the two real-life datasets, at con-
fidence levels of 25% and 50%. For the supermarket
data, about 40% of the rules were pruned at a interest

418

level of 1.1, while about 50% to 55% were pruned for
the department store data at the same interest level.
In contrast, the interest measure based on statistical
significance did not prune any rules at 50% confidence
and pruned less than 1% of the rules at 25% confi-
dence (for both datasets). More details about these
experiments can be found in [9].

For example, the rule “[Carbonated beverages] and
[Crackers] ti [Dairy-milk-refrigerated]” was pruned
because because its support and confidence were less
than 1.1 times the expected support and confidence
(respectively) of ancestor “[Carbonated beverages] and
[Crackers] + [Milk]“, where [Milk] was an ancestor of
[Dairy-milk-refrigerated].

5 Summary

We introduced the problem of mining generalized as-
sociation rules. Given a large database of customer
transactions, where each transaction consists of a set
of items, and a taxonomy (is-a hierarchy) on the items,
we find associations between items at any level of the
taxonomy. Earlier work on association rules did not
consider the presence of taxonomies, and restricted the
items in the association rules to the leaf-level items in
the taxonomy.

An obvious solution to the problem is to replace
each transaction with an “extended transaction” that
contains all the items in the original transaction as well
as all the ancestors of each item in the original transac-
tion. We could then run any of the earlier algorithms
for mining association rules on these extended trans-
actions to get generalized association rules. However,
this “Basic” approach is not very fast.

We presented two new algorithms, Cumulate and
EstMerge. Empirical evaluation showed that these two
algorithms run 2 to 5 times faster than Basic; for one
real-life dataset, the performance gap was more than
100 times. Between the two algorithms, EstMerge per-
forms somewhat better than Cumulate, with the per-
formance gap increasing as the size of the database
increases. Both E&Merge and Cumulate exhibit lin-
ear scale-up with the number of transactions.

A problem users experience in applying association
rules to real problems is that many uninteresting or re-
dundant rules are generated along with the interesting
rules. We developed a new interest measure that uses
the taxonomy information to prune redundant rules.
The intuition behind this measure is that if the sup-
port and confidence of a rule are close to their expected
values based on an ancestor of the rule, the rule can be
considered redundant. This measure was able to prune
40% to 60% of the rules on two real-life datasets. In
contrast, an interest measure based on statistical sig-
nificance that did not use taxonomies was not able to

prune even 1% of the rules.

Acknowledgment We wish to thank Jeff Naughton
for his insightful comments and suggestions.

References

[l] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in large
databases. In Proc. of the ACM SIGMOD Con-
ference on Management of Data, pages 207-216,
Washington, D.C., May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proc. of the VLDB
Conference, Santiago, Chile, September 1994. Ex-
panded version available as IBM Research Report
RJ9839, June 1994.

[3] N. Alon and J. H. Spencer. The Probabilislic
Method. John Wiley Inc., New York, 1992.

[4] T. Hagerup and C. Riib. A guided tour of Chernoff
bounds. Information Processing Letters, 33:305-
308, 1989/90.

[53 M. Houtsma and A. Swami. Set-oriented mining
of association rules. In Id’/ Conference on Dais
Engineering, Taipei, Taiwan, March 1995.

[6] H. Mannila, H. Toivonen, and A. I. Verkamo. Ef-
ficient algorithms for discovering association rules.
In KDD-94: AAAI Workshop on Knowledge Dis-
covery in Databases, pages 181-192, Seattle, Wash-
ington, July 1994.

[7] J. S. Park, M.-S. Chen, and P. S. Yu. An effec-
tive hash based algorithm for mining association
rules. In Proc. of the ACM-SIGMOD Conference
on Management of Data, San Jose, California, May
1995.

[S] G. Piatetsky-Shapiro. Discovery, analysis, and
presentation of strong rules. In G. Piatetsky-
Shapiro and W. Frawley, editors, Knowledge Dis-
covery in Databases, pages 229-248. AAAI/MIT
Press, Menlo Park, CA, 1991.

[9] R. Srikant and R. Agrawal. Mining generalized as-
sociation rules. Research Report RJ 9963, IBM Al-
maden Research Center, San Jose, California, June
1995.

419

