Query Processing in Tertiary Memory Databases*

Sunita Sarawagi

Computer Science Division, 396 Soda Hall
University of California, Berkeley, CA 94720, USA
sunita@cs.berkeley.edu

Abstract

With rapid increase in the number of applica-
tions that require access to large amounts of
data, it is becoming increasingly important for
database systems to handle tertiary storage
devices. The characteristics of tertiary mem-
ory devices are very different from secondary
storage devices that conventional database
systems are designed for. This requires new
approaches o managing data location and
movement, together with guery execution in
a unified framework. In this paper we present
methods of scheduling queries, caching and
controlling the order of data retrieval for effi-
cient. operation in a tertiary memory environ-
ment. We show how carcful interspersing of
queries and informed cache management can
achieve remarkable reductions in access time
compared to conventional methods. Our al-
gorithms use a few model parameters for cach
tertiary memory device and are thus designed
to be portable across a wide variety of tertiary
memory devices and database types. We are
extending the POSTGRES database system to
implement the new query processing strate-
gics. Initial measurements on the prolotype
yield impressive results.

*This research was sponsored by NSF' Grant IRI-9107455,
ARO Grant DAAL03-91-G-0183, and DARPA Contract
DABT63-92-(-0007. Additional support was provided by the
University of California and Digital Equipment Corporation un-
der Sequoia 2000 research grant #1243.

Permission to copy without fee all or part of this material is
granted provided that the copies are nol made or disiribuied for
direct commercial advaniage, the VLDB copyright notice and
the title of the publication and #s daie appear, and notice is
given that copying is by permassion of the Very Large Data Base
Eundowment. To copy otherwise, or to republish, requires a fec
and/or special permission from the Endowment.

Proceedings of the 21st VLDDB Conference
Zurich, Swizerland, 1995

585

1 Introduction

Applications manipulating large volumes of data are
growing in number: earth observation systems, his-
torical data base systems, statistical data collections
and image and video storage systems are a few exam-
ples. There is increasing consensus amongst database
researchers [Sto91] [CHL93] [Sel93] [Moh93] regarding
the need of a database controlled tertiary memory for
storing massive amounts of data.

A major limitation of traditional DBMSs is the as-
sumption that all data resides on magnetic disk or
main memory. Therefore all optimization decisions
are oriented towards this technology. Tertiary mem-
ory, if used at all, functions only as an archival stor-
age system to be written once and rarely read. Some
database systems [[sa93] allow data to be stored on
tertiary memory, but they do so by using a file system
to get transparent access to data and store only meta-
data information in the database system. This means
that the tertiary memory is not under direct control
of the database system. One important exception is
POSTGRES [Ols92]. POSTGRES includes a Sony opti-
cal jukebox [Son89] as an additional level of the stor-
age hierarchy. The POSTGRES storage manager can
move data transparently between a disk cache and the
jukebox using a LRU replacement strategy. While this
prototype implements the storage manager for tertiary
memory, a lot of issues related to tertiary memory spe-
cific performance optimization still remain unexplored.

Tertiary memory devices pose a challenge to
database designers because their performance charac-
teristics are very different from those of magnetic disks.
A typical device consists of a large number of storage
units, a few read-write drives and even fewer robot
arms to switch the storage units between the shelves
and the drives. A storage unit, which we generically
call a platter, is either a tape cartridge or an optical
disk. In Table 1 we compare several tertiary mem-
ory devices with a magnetic disk. The characteristics
shown are exchange time (time to unload one stor-
age unit from the drive and then load a new unit and

Storage Exchaunge Full seek | Data transfer | Transfer time | Worst/best
device time (sec) | time (sec) | rate (KB/sec) | for 128 KB | access (sec)
Optical disk 8 0.3 500 0.256 32.4
Helical scan tape 6 135 4000 0.032 4406
Optical tape >60 90 3000 0.043 3488
Magnetic disk - .06 4250 0.03 3

Table 1: Comparative study of the characteristics of different storage devices.

[}

get it ready for reading), maximum seek time, data
transfer rate, transfer time for 128 KB of data and the
ratio between the worst case and best case times to
access and read 128 KB of data from tertiary memory.
From the last column we note that magnetic disks are
a relatively uniform storage mediuin, compared with
tertiary memory. Worst case access times are only
a factor of three larger than best case times whereas
some lape oriented devices have three orders of mag-
nitude more variation making it crucial to carefully
optimize the order in which data bhlocks are accessed
on these devices.

Rescarch issues

[n this paper we address the issues raised by this wide
performance gap between secondary and tertiary de-
vices. Iirst, it becomes very important to avoid small
random I/Os. Unclustered index scans and joins in
limited buffer space can lead to disastrous performance
if processed in the traditional way on tertiary mem-
ory. Consider a two-way join qucry hetween relation
R stored on platters 1 and 2 and relation S divided
between platters 2, 3 and 4 such that each relation
is much larger than the cache. Any join processing
method that is oblivious of such a layout cannot do
efficient batching of accesses to one platter and may
access data randowly across the four platters, leading
to many platter switches.

Second, careful query scheduling can be em-
ployed to optimize accesses to tertiary memory. For
instance, consider the case where we have two select
queries on relations I and S respectively both of which
are spread over three platters and there is only onc
read-wrile drive. If we intersperse the execution of
these select queries so that every time we load a plat-
ter we schedule the two select queries on the fragment
of the relations stored on that platter, then each plat-
ter will be loaded only once.

Third, we need unconventional caching strate-
gies for managing the magnetic disk cache. A relation
can be cached when its platter is just about fo be un-
loaded even if we do not intend to execute queries on
it immediately. For instance, if we have a join query
hetween relation R on platter 1 and S on platter 2 and

another join query between T on platter 1 and U on
platter 2, it might help to cache both R and T" when
platter 1 is loaded even if we are scheduling the join
between R and S first. Contrast this with the caching
on demand strategies.

There are two additional challenges to solving the
above problems. First, tertiary memory devices differ
widely not only from typical secondary memory de-
vices, but also among themselves. For some devices
the platter switch cost is high making it important to
reduce the number of I/O requests and for others the
data transfer bandwidth is low making it important
to reduce the amount of data transferred. Tape de-
vices have significant seek overhead whereas disk de-
vices allow random access. Second, we expect a lot
of variation in the applications that use tertiary stor-
age devices. Some involve a large number of relatively
small objects whereas others require a small number of
very large objects. It is essential for query processing
methods to be aware of these differences and optimize
accordingly.

Design approach

We present a two-phase query execution model. The
first part is a query optimizer and the second part is a
scheduler that controls the execution order of queries,
the movement of data from the disk cache to tertiary
memory and the combining of different queries that
share data access or computation. We use the notion
of a fragment for exposing the layout of a relation
on tertiary memory to the query optimizer. A frag-
ment is the part of a relation that lies contiguously
on one platter (a fragment lying contiguously on one
platter can be broken into smaller fragments as ex-
plained later). By executing queries and moving data
in units of fragments we first eliminate small random
[/Os. We then design policies for fetching and evict-
ing fragments to further reduce the number of platter
switches and seeks on tertiary memory. By identifying
a few crucial device and workload parameters that are
used to drive our optimization process, we make our
system robust. For the initial version, we restrict to
single relatiohal queries and two-way joins. We plan to
extend our design to handle multi-way joins in future.

586

Processof

drives

asynchronous

Optical disk or tape
'_tertiary memory

data movement

Pigure 1: The Physical Configuration.

Paper organization

In Section 2 we present our query processing architec-
ture and describe in detail the working of the query
optimizer and the scheduler. The proposed framework
raises issues regarding query reordering and fragment
access. Since exact optimization is intractable, we de-
velop heuristics. In the paper, we present only the final
policies selected by experimental evaluation (Section
3). In Section 4 we present implementation details of
the query processing architecture and present results
of running the Sequoia henchmark queries on an initial
version of the system. Section 5 contains related work
and Section 6 gives concluding remarks.

2 The query processing architecture

We assume an extended relational architecture with
a three level memory hierarchy: tertiary memory at-
tached to a disk cache attached to main memory as
shown in Figure 1. We do not impose any restrictions
on the layout of a relation on tertiary memory. A re-
lation can be larger than the disk cache, can lie over
more than one platter, and can be spread arbitrarily
across a platter.

To identify the part of the relation that lies con-
tiguously on one platter we divide a relation into frag-
ments of appropriate size. A fragment can be fetched
as a whole without incurring platter switches and seeks
during its transfer. The proper choice of fragment size
is crucial to performance. The best fragment size is
a function of the request size distribution, the platter
switch cost, the transfer cost and the seek cost. If the
fragment size is small, we make more I/O requests and
the latency of first access is incurred too many times.
If the fragment size is large, the transfer overhead is
higher because we might be transferring extrancous
data. In Section 3.3.1 we show how we can capture
this tradeoff in an analytical formula that can yield
reasonable values for the fragment size in a particular

587

setup.

We will next describe our two-phase query process-
ing engine. In the first phase (§2.1) queries are decom-
posed into basic executable units. In the second phase
(§2.2) these are scheduled.

2.1 Optimizing queries

During the query optimization phase, each query is
broken down into a number of subqueries on the frag-
ments. E.g., a join query between relation R consisting
of m fragments and relation S consisting of n frag-
ments is broken down into mn join queries between
the individual fragments. Each subquery is then op-
timized separately. We fix the maximum size of a
fragment such that all data required by a subquery
can be held totally in the cache. This means that the
optimizer can view the subquery like a regular query
on secondary memory and optimize accordingly. Al-
though such fragmentation may give rise to a large
number of subqueries to be optimized, it is often pos-
sible to generate one optimized template and reuse it
for each subquery. Our preliminary model has some
simplifications. We discuss extensions in §2.3.

2.2 Scheduling queries

The subqueries generated above are submitted to the
scheduler. The scheduler fetches the fragments that
are required by the subquery from the tertiary mem-
ory, puts them in the disk cache, and then sched-
ules the subquery for execution. The scheduler knows
about the state of the tertiary memory (the storage
media currently loaded, the current head position etc),
has knowledge of the semantic contents of the cache
(not just physical page addresses) and knows about
the data requirements of each subquery. It uses this
global knowledge to decide on the order in which frag-
ments are moved from the tertiary memory to the disk
cache and the order in which subqueries are scheduled.
The responsibilities of the scheduler can be listed as
follows:

o which fragment to fetch next from the tertiary
memory when the I/O unit becomes free,

o which fragment(s) to evict from the cache to make
space for the fragment chosen above and

o which subquery on the cached fragments to be
processed next.

We will describe how the scheduler handles its respon-
sibilities of fetching and evicting fragments in §3.1 and
§3.2. In the current version of the system, the sched-
uler submits a subquery for processing as soon as all
its fragments are cached. We plan to optimize this

part of the scheduler to do multiple query optimiza-
tion between the subqueries.

2.3 Extensions to the model

A number of extensions were made to this model of
query processing to handle relations with large objects,
to allow more efficient use of indexing and to avoid
redundant processing. The important ones arc listed
below:

¢ Databases often have images and video clips
which are stored as large objects. In our model,
we assume that each large object is stored as a
separate fragment and a select query on a rela-
tion with one of the attributes a large object is
executed in two phases. In the first stage, we do
a select on the base relation, get a list of large
objects to be fetched and fetch them in any order
in the second phase.

e We assume that each fragment has its own index.
Depending on the size of the index, the DBA can
choose to store it either on magnetic disk or ter-
tiary memory. When doing an index scan on a re-
lation, it might help to scan the index trees first,
find out which fragments contain qualifying tuples
and fetch only those fragments later. This will
help remove random I/Os which can be wasteful
on tertiary memory.

o Although breaking queries into independent sub-
queries is favorable for reducing I/O costs to ter-
tiary memory, we may pay higher processing cost
for some queries. For instance, in a hash join if
the probe relation is broken into n fragiments, then
the hash table for each fragient of the build re-
lation has to be constructed n times. To reduce
this overhead, we will modify our scheduler to or-
der the execution of subqueries so that whenever
possible the hash table can be shared across mul-
tiplc subqueries. This will be treated as a part
of the general multiple query optimization to be
handled by the scheduler.

e Tor some queries the order of the result tuples
is tmportaut and executing subqueries indepen-
dently is not possible. In our initial model, we
are ignoring queries that require sorted results.

3 Scheduling policies
3.1 Fragment fetch policies

The scheduler has a pool of tasks which are either
two-way joius or select queries on a single fragment or
feteh request for a list of large ohjects. For an index
scan on a fragment, with the index residing on tertiary

588

memory, we view the index tree as another fragment
and the index scan query as a join between the in-
dex and the base fragment. Implicitly, this collection
of plans forms a query graph where the nodes denote
the fragments and the edges denote the joins between
two fragments. In this graph, an edge between two
nodes implies that both the fragments represented by
these nodes must reside in the cache together for the
query to be processed. Fragments which do not join
with any other fragment will be represented as isolated
nodes. We are given a limited amount of disk cache,
typically, less than the sum of the sizes of the frag-
ments queried. The query graph keeps on changing as
quertes get completed and new queries arrive.

At any time, there is a pool of subqueries waiting
to be executed, each of these subqueries requires one
or more fragiments to be present in the cache for pro-
cessing. Of the fragments required, some fragments are
already in the disk cache and others need to be fetched
from tertiary storage. Of these fragments, some reside
on platters that are currently loaded and others reside
on unloaded platters. Our objective is to migrate these
fragments to and from tertiary memory and the disk
cache so as to minimize the total time spent doing 1/0
on tertiary memory.

The above on-line problem is NP-complete since an
off-line restriction of the formulation has been shown
to be NP-complete in [MKY®81]. Hence, an algorithm
that finds the optimal solution is likely to be too ex-
pensive to be useful. Consequently, we use a number
of heuristics for reducing the search space.

Design Methodology

The design of a good heuristic for fetching fragments is
made challenging by the large number of parameters,
e.g., cache size, number of users, size of fragments,
platter switch cost, data transfer cost and seek cost.
In order {o control the complexity, we designed the
algorithm in multiple stages. We first started with
an algorithm that minimizes transfer cost, then we
added the platter switch cost to the cost model and
refined the algorithm to minimize the sum of the plat-
ter switch and transfer cost. Finally, we incorporated
seek cost into the cost model by refining the algorithm.
For brevity we present the final resulting set of heuris-
tics. We used extensive simulation to aid us in the
search for good heuristics.

Optimizing for transfer cost

We first started with the case where the platter switch
and seck overhead is zero and minimizing I/0 time is
equivalent to minimizing the total bytes transferred.
Even this problem is NP-complete. Hence, we tried
out different heuristics for deciding on the order in

which fragments should be fetched from tertiary mem-
ory. Some of the important heuristics were: fetch frag-
ment with the largest number of queries next; fetch the
smallest fragment next; and fetch fragment that joins
with the maximum number of cached fragments next.
Amongst these and others that we tried, we found that
the policy which performed the best overall was:

poLIcY-1: Fetch fragment that joins with the
largest sum of sizes of cached fragments. Re-
solve ties by choosing fragment that has the.
greater number of queries.

Incorporating platter switch cost

To enable PoLICY-1 to optimize for both platter
switches and transfers we refined it as follows: As long
as there are fragments on the loaded platters that join
with the cached fragments we fetch fragments from the
loaded platters. When there are no more fragments of
that type, we could either fetch fragments from the
loaded platters or load a new platter that contains
fragments which join with the cached fragments using
the order given by poLIcY-1. This decision depends
on the amount of cache space available. If the cache
space is large so that we do not have to evict active
fragments [rom the cache, we can fetch fragments from
the loaded platters, or else, we need to switch platters.
The modified policy is given below:

PoLICY-2

Fetch next fragment that joins with the cached
fragments and resides on a loaded platter.

If no such fragment,
If (“no room in cache”)

Switch to an unloaded platter choosing
platter with fragments that join with
maximum cached fragments

Fetch fragment from the chosen platter

Else

Fetch fragment from the loaded platters

If no fragment on the loaded platters,
switch an unloaded platter choosing
platter with maximum queries

We need a method to estimate if there is “room
in cache” for fragments on the loaded platters that
do not join with the cached fragments. Clearly, just
using the total size of the cache for estimating this
predicate is not sufficient because the current set of
active fragments in the cache and the fragments that
they join with play an important part. Let a be the
total size of active fragments in the cache and b be the
total size of fragments that join with cached fragments.
Hence a+b is an estimate of the amount of cache space
that will be needed in the future.

589

This leads to the notion of pressure on the cache:

a+b
C b)

Cache pressure =

where C is the cache size. Thus the pressure expresses
potential demand for the cache as a fraction of the
cache size. We can use cache pressure to determine if
there is any room for unrelated fragments. The predi-
cate “no room in cache” then translates to “cache pres-
sure > threshold”. Next we need to choose a value of
the “threshold”. Using the same value of the threshold
for tertiary memory of widely varying characteristics is
not suitable. A low value of the threshold implies more
frequent platter switches, which is unsuitable for ter-
tiary memory devices with high switch cost. Similarly,
high value of the threshold implies more active evic-
tion of cached fragments, which is unsuitable when the
data bandwidth is low. To understand these tradeofis,
we tried the above algorithm for different values of the
threshold, over different tertiary memory devices and
workload parameters. From our experiments we ob-
served that one important parameter that affects the
threshold is the ratio of the platter switch time to the
average transfer time incurred in feiching e fragment.
When the value of the threshold was set to be this ra-
tio we obtained the best overall performance. Hence,
in our heuristics we set the value of the threshold to
this ratio.

Incorporating seek cost

The seek cost on tape devices consists of a fixed startup
cost and a variable search/rewind cost. The only way
we can reduce the startup cost is by making fewer I/O
requests. The variable search/rewind cost can be re-
duced by fetching fragments in the order in which they
are placed on tape. In our policies so far we have used
a ranking function based on join size for determining
the order in which fragments are fetched from a loaded
platter. While this order is good for reducing transfer
time, it is preferable to fetch fragments in their stor-
age order when the goal is to reduce seek cost. Thus,
we need to identify which cost is more important to
optimize at any time.

Suppose we have a tape of capacity T bytes, trans-
fer rate d bytes/second and seek rate s bytes/second.
Assuming that on an average the seek distance is a
fraction, f, of the tape, the average seek cost is Tf/s
seconds. This means that seek time dominates trans-
fer time only for fragments smaller than T'df /s bytes.
In most tapes, the seek rate is 10-100 times higher
than the transfer rate (refer Table 2), so the object
size has to be smaller than 150tk the tape capacity for
the seek cost to dominate the transfer cost (for f =
1/3). Hence, when choosing fragments from a-loaded

platter, if T'df/s exceeds the average fragment size,
we use proximily to the tape head as the criteria for
choosing the next fragment. This formulation assumes
that the seek cost is linearly proportional to the dis-
tance seck-ed. This assumption does not hold for DLT
tapes where the seek rate is higher for larger seek dis-
tances. For such tapes we need to put the average seek
cost in the formula instead of deriving the average seek
cost fron the seek rate.

3.2 Fragment eviction policies

Once a fragment is selccted for fetching, we choose
fragments to be evicted from the cache to make space
for this fragment. Like the fetch policy, our eviction
policy is also based on the careful combination of a
nwnber of simple heuristic policies.

The classical cache replacement policy is LRU when
all objects are of the same size and WEIGHTED-LRU
when the objects are of varying size. In our case, we
might also have to evict fragments which have pend-
ing queries on them. This makes policies like LRU and
WEIGHTED-LRU meaningless since we already know
that the fragment will be used in the future. Hence, to
choosc among fragments with pending queries we use a
policy we call LEAST-WORK, which evicts the fragment
with the fewest remaining queries.

Ties are resolved using a policy we call LEAST-
OVERLAP. Intuitively, while resolving ties, we want
to avoid evicting fragments that join with many over-
lapping fragments so that when the overlapping frag:
ment is fetched it can complete joins with many frag-
ments together. Thus, policy LEAST-OVERLAP chooses
the fragment with the least overlap between fragments
that join both with the given fragment and other
cached fragments. Our final eviction policy is given
below.

Choose fragment using LEAST-WORK
Resolve ties by using LEAST-OVERLAP
Resolve further ties using WEIGHTED-LRU.

3.3 Performance results

Evaluating the benefit from various policies is a diffi-
cult task, in part because it is unclear what the base-
line performance ought to be. In particular, if is not
feasible to pick the optimal schedule as the baseline be-
cause the search space is absurdly large, even for prob-
leins of reasonable size. Qur approach was to estimate
bounds on the optimal performance and compare the
performance of our policy against these bounds. The
baseline policy merely provides a scale for comparison;
absolute performance numbers are less significant.
Another practical issue that arises is the choice be-
tween real vs. simulated tertiary devices. Loading data

590

(of sizes up to a terabyte) and running queries is an
inconveniently slow process. Besides, a small set of
tertiary devices gives us but a few data points regard-
ing performance parameters, whereas much of our in-
tuition in heuristic design originated from a deeper
understanding of the parameter space. Therefore, we
used an event driven simulator where workload, de-
vice, and heuristics were all flexible. Details of the
simulation setup are presented next.

3.3.1 Simulation details

Our simulator consists of a centralized database sys-
tem serving requests from diflerent query streams. We
model a closed queuning system consisting of multiple
users who submit a query, wait for the result, and then
think for an exponentially distributed time before sub-
mitting the next query. Table 2 lists the performance
specifications of the four tertiary. memory types we
used in our study: (1) the Sony WORM optical juke-
box, (2) the Exabyte 8500 tape library, (3) the Metrum
RS6000 tape jukebox and (4) Sony’s DMS tape library.
These devices were chosen so as to cover adequate rep-
resentatives from the diverse tertiary memory hard-
ware in existence today. Table 3 lists the three datasets
that we used as the underlying database. Each dataset
is characterized by the range of sizes of the relations
and the number of relations. The size of a relation is
assumed to be uniformly distributed within the range
specified by the dataset. The default size of the cache
and the number of users is given in Table 4. Further
details about the simulator are given below:

Relation layouf

For laying out the relations on tertiary memory we use
the following approach: We divide a relation into par-
titions of size no more than p. The value of p is always
< to the platter capacity. These partitions are laid out
contiguously on the platters. A partition is stored with
equal probability in one of the partially filled platters
that has space for it or a new platter if one is available.
We will denote the total number of platters over which
data is spread as P. For disk-based platters, the lay-
out of data partitions within a platter is not modeled.
For tapes, the space between two adjacent partitions
is uniformly distributed between 0 and the total free
space left on tape over the number of relations that
are assigned to the tape.

Workload

Table 4 summarizes the relevant workload parameters
and their default values. We simulate a stream of sin-
gle relation queries and two-way joins. Base relations
for queries are chosen using the 80-20 rule i.e, 80% of
the accesses refer to 20% of the relations. The scan

DAT antochanger 1200C | Sony Exabyte Metrum DMS
classification tape small optical | small tape | large tape | large tape

stacker jukebox library library library
switch time (sec) 101 8 171 58.1 39
transfer rate (MB/sec) | 0.17 0.8 0.47 1.2 32
seck rate (MB/sec) 23.1 - 36.2 115 530
seek start (sec) 1 0.5 16 20 5.0
number of drives 1 2 4 5 2
platter size (GB) 2.0 3.27 5 14.5 41
number of platters 12 100 116 600 320
total capacity (GB) 24 327 580 8700 13120

‘Table 2: Tertiary Memory Parameters: The switch time is a summation of the average time needed to rewind
any existing platter, eject it from the drive, move it from the drive to the shelf, move a new platter from shelf
to drive, load the drive and make it ready for reading. The seek startup cost is the average of the search and
rewind startup cost and the seek rate is the average of the search and rewind rate.

Dataset # relations | range of sizes total size
SMALL-DATASET | 2000 5 MB to 50 MB 50 GB
MEDIUM-DATASET | 400 250 MB to 2.5 GB | 500 GB
LARGE-DATASET 80 12.5 GB to 125 GB | 5 TB

Table 3: Datasets: sizes of the rclations are uniformly distributed across the given range

on the base relation can be either a sequential scan,
a clustered index scan or an unclustered index scan.
In our setup 20% of the scans are assumed to be se-
guential and the rest are clustered or unclustered with
cqual probability. The selectivity of an index scan can
he anywhere between 0.1 and 0.2. We assume in these
experiments that all indices reside on magnetic disks
and the index tree is pre-scanned to get a list of frag-
ments that contain gualifying tuples.

Execution model

The processing time of a query after the component
fragments are fetched from tertiary memory is eom-
puted as the sum of the time necded to read/write data
hetween disk and the main memory and the CPU pro-
cessing time, In Table 4, we list the number of instruc-
tions required for various query types. The time to
process a join is derived assuming a hash join method.
The time to read a page from disk is modeled as a
sum of the average seek time and the time to transfer
a page of data. Qur model of the execution unil is not
very detailed, but this hardly impacts the accuracy
of our results because we are taking measurements of
only tertiary memory §/Q in this paper.

Fragment Size

I'or a given database and tertiary memory, we deter-
mine a maximwmnm fragment size, F. Any partition
larger than size F' is divided into fragments of size

591

Description Default
Workload

Mean think time 100 sec
Number of queries per run 800

Number of users 80

Join fraction 0.8
Sequential scan fraction 0.2
Selectivity 0.1-0.2
Execution Model

MIPS 50

100 per tuple
200 per tuple
300 per tuple

Instructions for seq scan
Instructions for index scan
Instructions for hash join

Instructions for starting a scan | 20,000
Tuple size 400 bytes
Disk Characteristics

Average seek time 20ms
Data transfer rate 5 MB/sec

Cache size 3% of database size

Table 4: Simulation Parameters and their default val-
ues.

Tertiary | SMALL MEDIUM | LARGE
Memory | DATASET | DATASET | DATASET
Sony 4 - -
Exabyte | 20 300 -
Metrum | 20 250 5000
DMS 50 1500 20000

Table 5: Maximum fragment size (in MB) for each
tertiary memory and dataset pair

at most. F. ‘The optimal fragment size depends on the
transfer time, access latency, the request size distri-
bution and the kind and degree of sharing between
queries. In general, it is hard to find the optimal frag-
ment size since it is difficult to get exact specification
of the request size distribution and the degree of shar-
ing between queries. However, one can use approxi-
mate ideas about the expected pattern of reference for
determining reasonable values of fragment size analyt-
ically. We present below one such method.

Let f be the average access latency, d be the data
transfer rate and R be the maximum size of a relation.
For a fragment of size F', the average time required to
read n bytes of data is:

T(n, F) = [%] (f + Fd)

I p(n) denotes the probability that a request is of size
n, then the average access cost for a request is:

n=R
A(F) =" T(n, F)p(n)
n=1

For a given value of d, f and R we can calculate the
value of F for which A(F) is minimum by plotting a
graph of A(F) versus F.

Using the workload parameters in Table 4 to get
estimates of the request size distribution, we plotted
A(F) versus F for different relation sizes and tertiary
memory devices. It was observed that there was not
much variation in the optimal fragment size for rela-
tions in the same dataset. Hence, for each tertiary
memory and dataset pair we chose a fragment size. In
Table 5 we show the fragment size we obtained for each
tertiary memory and dataset pair using this method.
Estimates like these could be used by the database
designer to choose the fragment size for a particular
setup.

3.3.2 Estimating performance bounds

We define our baseline policy to be first come first serve
(rcrFs) for fetching fragments with LRU for evicting
fragments. We first used this policy to estimate the
fraction of time that is spent in doing tertiary memory

592

data transfers, seeks and platter switches. We then
estimated bounds on maximum achievable reduction
in /O time based on the number of queries per relation
and the number of queries per platter. If a relation has
¢ queries on it, then the maximum possible reduction
in transfer time is (¢ — 1)/q. Similarly, if a platter
has r queries on it, the maximum possible reduction
in number of platter switches is (r — 1)/r. In reality,
these improvements might be unachievable because of
further limitations imposed by the amount of cache.
In Table 6 we list the percentage of time spent in
transfers (column 2), platter switches (column 3) and
seeks (column 4) using the baseline policy. We give
our calculation of the values of ¢ and r in columns
5 and 6 respectively. We show the maximum possi-
ble reduction in total I/O time by reducing the trans-
fer time and the switch time in columns 7 and 8 re-
spectwely The maximum improvement achievable by
reducmg seeks is more difficult to analyze. By sum-
ming columns 4, 7 and 8 we can get an upper bound
to the maximum 1mpr0vement that can be achieved

" by any pollcy (column 9). For instance, for SMALL-

DATASET on the Sony although 75% of the tertiary
memory I/O time is spent in data transfers, we can-
not reduce the transfer time any further because there
is only one query per fragment on an average. The
only saving we can get is by reducing the number of
platter switches. 'There are about ¢ = 20 queries per
platter, hence there is a possibility of getting a 95% (=
(20-1)/20%) reduction in switch time and, a 24% (=
25% x 95%) reduction’ in total I/O time by reducing
the switch time.

The last ¢olumn in Table 6 lists the improvement
we achieved over the baseline policy using our fetch
and eviction policy. These numbers are very close to
the maximum estimated improvement in column 9.
Some deviations can be explained by the seek over-
head which we could not quantify exactly and others
by the mherent limits placed by the limited amount of
cache.

4 Implementation

We are extending the POSTGRES relational database
system to support the proposed query processing ar-
chitecture. The original storage manager used an LRU
managed disk cache. It was modified to take hints
from the scheduler in deciding which data blocks to
evict from this cache and which to fetch next. The
scheduler was thus able to control the movement of
fragments from the disk cache to the tertiary memory.
In the old architecture all user-sessions run indepen-
dently as separate POSTGRES process — as a result
there is no synchronization between 1/O requests to
the tertiary device. In the new architecture, each user

1 2 [3 T 4 5 [6 7 8 9 | 10
Tertiary | % total TM I/O spent in # of queries per max. % reduction by improvement
memory | transfer l switch | seek | relation (q)] platter (r) | transfers [switches | projected I achieved
Sony 71.6 25.0 3.4 1 20.2 0 24 27.4 27
FExabyte 23.2 42.1 34.7 1 6.8 0 36 70.7 66
Metrum 16.7 31.9 51.4 1 14.4 0 30 81.4 63
DMS 1.9 58.6 39.4 1 14.4 0 55 94.4 83
SMALL-DATASET
Exabyte 83.8 8.6 7.6 1.35 1.7 22 3.7 33.3 31
Metram 75.5 6.9 17.6 1.35 5.18 20 5.6 43.2 37
DMS 30.0 22.3 47.7 1.35 7.2 8 19 74.7 42
MEDIUM-DATASET
Metrum 97.0 1.1 1.9 5.96 5.96 81 1 83.9 46
DMS 81.5 5.8 12.7 5.96 5.96 67 5 84.7 59

LARGE-DATASET

Table 6: Percentage distribution of the time spent at various stages: Columns 7 and 8 represent the maximum
reduction in transfer and platter switch cost possible. Column 9 is an upper bound on the maximum total
improvement in total I/O time possible. Column 10 is the best improvement we could obtain by our policies.
(Some dataset-tertiary memory pairs aie missing because the dataset was too large to fit on that tertiary memory)

process first compiles and fragments the query and
then submits the fragmented queries to a centralized
scheduler process. The scheduler maintains a number
of slave backend processes. These processes are used
for transferring data from the tertiary memory to the
disk cache. The number of processes of such type is
equal to the number of drives in the tertiary mem-
ory device. This way it is possible to emplqy all the
drives of the tertiary memory in parallel for transfer-
ring data. Submitting multiple requests to multiple
drives also helps hide some of the latency of platter
load /unload operation - when one drive is trarisfler-
ring data, the robot arm is free and can be employed
for switching platters on some other drive. When all
the data required by a particular subquery have been
put in the disk cache the corresponding user process is
notified. The user process can then cxecute the sub-
query whenever it is free. After finishing execution of
the subquery it notifies the scheduler which can evict
the fragments used by this subquery when desired.

Two tertiary memory storage devices —a Sony opti-
cal jukebox and an HP magneto-optical jukebox have
already been interfaced with the POSTGRES’s storage
manager switch as described in [01s92]. In addition, to
facilitate measurements on robots for which the actual
device was unavailable to us, we interfaced a tertiary
memory device simulator to POSTGREs. The simu-
lated storage manager used a magnetic disk for data
storage but serviced 1/0 requests with the same delay
as would an actual tertiary device which received the
same request sequence.

To compare the performance of the new architec-
ture with the old one and: also to evaluate the payoffs
of the policies in a real system, we measured the per-
formance of the Sequoia benchmark [SFGM93] queries.
We chose the national version of the benchmark which
is of total size 18 GB. Since the data for the national
benchmark was not available, we constructed the na-
tional benchmark by replicating the regional bench-
mark. The data was stored on a (simulated) tape
stacker whose performance characteristics are summa-
rized in Table 2 (Autochanger 1200C with DAT tapes).
The database-consists of four different kinds of rela-
tions: RASTER, POINT, POLYGON and GRAPH as sum-
marized in Table 7. For the RASTER data, each tuple
contains a 2-dimensional array of size 129 MB which
is stored as a separate large object. The base table
for the raster data is stored on magnetic disk whereas
the two-dimensional raster images are stored on ter-
tiary memary over 12 different. DAT tapes. The POINT,
POLYGON and GRAPH data are stored on one tape each.
All indices reside on magnetic disk. The benchmark
consists of 10 data retrieval queries which consist of
two-way joins and select queries on various relations.
The last query involves a “*” operator on the GRAPH
table which we could not run on POSTGRES, instead
we run a select query on the table. Since, the Sequoia
benchmark does not have any information about the
frequencies of posing individual queries — we let each
user choose one of the 10 queries uniformly randomly.
The default number of users was 5 and the total num-
ber of queries ran per user was 10. The size of the

593

Table name | # of tuples | tuple size | total size
RASTER 130 129 MB 16,744 MB
POINT 1,148,760 24 bytes | 27.5 MB
POLYGON 1400, 000 204 bytes | 286 MB
GRAPH 6500,000 175 bytes | 1110 MB

Table T: Sequoia Benchmiark relations (national).

magnelic disk cache was varied as shown in Figurce 2.
The total time required to run the benchmark for the

new architecture as compared against the old architec-

ture is shown in Figure 2 for cache size of 32 MB and
64 MB. On moving from the old to the new architec-
ture the total time reduces by a factor of 4 with a 32
MB cache and by a lactor of 6.4 with a 64 MB cache.
The ain reason for this change is the reduction in
the number of platter switches. The time to switch a
tape i1s almost 1.6 minutes. Hence, when we reduced
the number of switches from 2333 to 533 (for 32 MB

cache size) the T/O time reduced by 50 hours.

5 Related work

Although tertiary memory devices are not common in
databases they have long been used in mass storage
systems like the NCAR’s MSS [N*87], Lawrence Liv-
ermore Laboratory’s LSS [Hog90] and the Los Alamos
National Laboratory’s CFS [Ct82]. 'These are typ-
ically centralized supercomputing systems with mul-
tiple clients and use huge tape libraries for storing
data. Disk caches are used for staging data in and
oul of tapes in units of a file. Files are brought from
the tape library on user request and when space needs
to he freed from disk, techniques like WEIGHTED-LRU
[Smi81] are used to sclect files Lo be evicted next. Our
cnvironment, is different from the conventional mass
storage systems because we are working in a relational
framework where it is possible to get more information
about the nature of data accesses from the query se-
mantics. Other areas where nse of tertiary memory is
gaining popularity recently is image archiving systems
[SBT93] and multimedia dalabases [RFJ*93]. How-
ever, there is little reported work on the efficient use
of the tertiary storage devices in this context.

Many device scheduling algorithms developed in a
disk to main memory environment are relevant in our
context. [SLM93] discusses the problem of reading a
set of pages from disk to main memory so as to min-
imize the sum of the seek and transfer time. [BK79]
and [Wie87] discuss scheduling policies for magnetic
disk arms to minimize seeks. [MKY81] and [MR93] ad-
dress the problemn of minimizing the number of pages
fetched from disk to a limited amount of main memory
while processing a two-way join represented as a graph

594

on the pages of the relation. This problem is a spe-
cial case of our formulation for fetching and evicting
fragments from the tertiary memory to the disk cache.
[MSD93] discusses the problem of scheduling parallel
hash joins in a batched environment. Query schedul-
ing with the aim of reducing seek cost or platter switch
cost in tertiary memory has been addressed in a few
places: [KMP90] addresses the question of finding the
optimum execution order of queries on a file stored on
a tape and [Won80] addresses the problem of placing
records with known access probability on tape to min-
imize expected head movement. [MIL95] studies the
benefit of doing hybrid hash join and nested loop join
with the data still resident on tape instead of caching
all of it on to disks before executing the query.

6 Conclusion

We presented the design of a query processing and
cache management strategy that is optimized for ac-
cesses to a tertiary memory database. Our main con-
tributions can be summarized as follows:

o We take a more unified and aggressive approach
to reducing /O on tertiary memory. Our sys-
tem consists of a centralized scheduler that knows
about the state of the tertiary memory, the disk
cache and the queries present in the system. In-
stead of processing queries from separate users in-
dependently, the scheduler uses global considera-
tion to decide on the order in which data required
by the query will be fetched from tertiary mem-
ory and batches the I/O and computations of this
query with other queries in the system.

o We employed the notion of a fragment to reveal
the layout of the relation on tertiary memory to
the query optimization and the cache manage-
ment modules. Data is moved to and from the
disk cache and the tertiary memory in units of
fragments. This avoids small random I/Os, com-
mon in many conventional query execution meth-
ods thereby dramatically improving the perfor-
mance of tertiary memory.

o We showed how we can further optimize tertiary
memory I1/O costs by carefully scheduling the or-
der in which these fragments are fetched from ter-
tiary memory and evicted from the disk cache. We
developed a fragment fetch policy that performs
well under a wide range of tertiary memory char-
acteristics, workload types, cache sizes and system
load and adapts dynamically to changes in these
parameters.

e We are exiending POSTGRES to implement this
architecture. Initial measurements of the Sequoia

Total time in hours

cache =32 MB cache =64 MB

Original architecture

. New architecture

2400-

2000-

1600-

1200-

800-

400-

Total number of platter switchtes

1040

cache =32 MB cache = 64 MB

Iigure 2: Result of running Sequoia benchmark on the original and new architecture in POSTGRES.

benchmark on the new architecture yield signifi-
cant improvement over the old architecture used
in POSTGRES.

Our next project is to extend the model so as to
handle multi-way joins and sort-merge joins. We want
to design the multiple query optimizer to reduce the
time spent in processing queries. Finally, we would
like to measure the payoffs we can get on more real-
life workloads.

Acknowledgements

1 would like to thank my advisor Mike Stonebraker for
suggesting this topic and reviewing initial design of the
system. 1 would like to thank my group-mate Andrew
Yu for helping with the implementation of the system.
Soumen Chakrabarti and Jolly Chen deserve special
thanks for editing drafts of the paper. Finally, I would
like to thank the reviewers for their useful feedbacks.

References

[BK79] F.W. Burton and J. Kollias. Optimizing
disk head movements in secondary key re-
trievals. Computer Journal, 22(3):206-8,
Aug 1979.

[C*82] B. Collins et al. A network file storage sys-
tem. In Digest of Papers, Fifth IEEE Sym-
posium. on Mass Slorage Sysiems, pages
99-102, Oct 1982.

[CHL93] M.)J. Carey, L.M. Haas, and M. Livny.
Tapes hold data, too: challenges of tu-
ples on tertiary store. SIGMOD Record,
22(2):413-417, 1993.

[Mog90] C. Hogan. The Livermore distributed stor-
age system: requirements and overview. In
Digest of Papers, Tenth IEEE Sympostum

595

[Isa93].

[KMP90]

[MKY81]

(ML95]

[Moh93]

[MR93]

[MSD93)]

on Mass Storage Systems, pages 6-17, May
1990.

D. Isaac. Hierarchical storage management
for relational databases. In Proceedings
Twelfth IEEE Symposium on Mass Storage
Systems., pages 139-44, Apr 1993.

J.G. Kollias, Y. Manolopoulos, and C.H.
Papadimitriou. The optimum execution or-

der of queries in linear storage. Information
Processing Letters, 36(3):141-5, Nov 1990.

T. Merrett, Y. Kambayashi, and H. Ya-
suura. Scheduling page-fetches in join op-
erations. In Proceedings of the Seventh In-
ternational Conference on Very Large Data
Bases, pages 488-98, Sep 1981.

J. Myllymaki and M. Livny. Disk tape
joins: Synchronizing disk and tape access.
In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling
on Computer Systems, May 1995.

C. Mohan. A survey of DBMS research
issues in supporting very large tables. In
4th International Conference on Founda-
tions of Data Organization and Algorithms,
pages 279-300. Springer-Verlag, October
1993. ,

M.C. Murphy and D. Rotem. Multipro-
cessor join scheduling. IEEE Transac-
tions on Knowledge and Data Engineering,
5(2):322--38, Apr 1993.

M. Mehta, V. Soloviev, and D.J. Dewitt.
Batch scheduling in parallel database sys-
tems. In Proceedings of ‘the Ninth Inter-
nalional Conference on Data Engineering,
pages 400-410, 1993.

[N+87]

[01s92]

[RFI*93]

[SB+93]

[Sel93]

[SFGM93]

[SLM93)

[Smi8l]

[Son89]

[Sto91]

[Wie87]

M. Nelson et al. The National Cen-
ter for Atmospheric Research Mass Stor-
age System. In Digest of Papers, Eighth
IEEE Sympositum on Mass Storage Sys-
tems, pages 12-20, May 1987.

Michael Allen Olson. Extending the
POSTGRES database system to manage
tertiary storage. Master’s thesis, Univer-

sity of California, Berkeley, 1992.

M.F. Riley, J.J. Feenan Jr., et al. The de-
sign of multimedia object support in DEC
Rdb. Digital Technical Journel, 5(2):50-
64, 1993.

T. Stephenson, R. Braudes, et al. Mass
storage systems for image management and
distribution. In Digest of Papers, Twelfth
IEEE Symposium on Mass Storage Sys-
tems, pages 233-240, Apr 1993.

P. Selinger. Predictions and challenges for
database systems in the year 2000. In
Proceedings of the Nineteenth International
Conference on Very Large Data Bases,
pages 667-675, 1993.

M. Stonebraker, J. Frew, K. Gardels, and
J. Meredith. The sequoia 2000 storage
benchmark. SIGMOD Record, 22(2):2-11,
1993.

B. Seeger, P. Larson, and R. McFadyen.
Reading a set of disk pages. In Proceedings
of the Nineteenth Inlernational Conference
on Very Large Dala Bases, pages 592-603,

-1993.

A.J. Smith. Long term file migration: de-
velopment and evaluation of algorithms.
Commaunications of the ACM, 24(8):521-
32, Aug 1981.

Sony Corporation, Japan. Writable Disk
Drive WDD-600 and Writable Disk WDM-
6DL0 Operating Instructions, 1989. 3-751-
047-21(1).

M. Stonebraker. Managing persistent ob-
jects in a multi-level store. SIGMOD
Record, 20(2):2-11, 1991.

G. Wiederhold. File organization for
database design. McGraw-Hill, New York,
1987.

596

[Won80]

C.K. Wong. Minimizing expected head
movement in two dimensional and one di-
mensional mass storage systems. ACM
Computing Surveys, 12(2):167-78, Jun
1980.

