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Abstract 

The paper presents (i) two similarity based 
methods for retrieval of pictures using in- 
dices on spatial relationships; (ii) efficient al- 
gorithms for the deduction and reduction of 
spatial relationships, which are used for com- 
putation of similarity values; (iii) identifica- 
tion of a desirable property for spatial simi- 
larity functions and the construction of such 
a function. 

1 Introduction 

We are currently witnessing an explosion of interest in 
multimedia technology. Consequently, pictorial and 
video databases will become central components of 
many future applications. Access to such da,tabases 
will be facilitated by a query processing mechanism 
that retrieves pictures based on user queries. Ex- 
isting pictorial database management systems have 
been mostly application dependent (for example see 
[Amd93, LeeW93, RP92, Ch92]). Some preliminary 
work towards a unified framework for content, based 
retrieval of images can be found in [GWJSl, CK81, 
Car93]. Our motivation is to construct a set of basic 
tools that would be applicable in pictorial databases 
for a broad class of applications. These tools consist 
of components to reason about spatial relationships, 
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to handle user interfaces, and to compute degrees of 
similarity between queries and pictures etc. In this 
paper, we concentrate on methods for similarity based 
retrieval of pictures using indices on spatial relation- 
ships. 

We assume that there is a database containing the 
pictures. We also assume that each picture is asso- 
ciated with some meta-data describing the contents 
of the picture. This meta-data contains information 
about the objects in the picture, their properties and 
the relationships among them. For example, consider 
a picture containing a tall man shaking hands with 
a slender woman and is to the left of the woman. 
The meta-da.ta about this picture identifies two ob- 
jects,a man a.nd a woman with attribute values “tall” 
and “slender” respectively, and the spatial relationship 
left-of and the non-spatial relationship hand-shaking. 
We assume that this meta-data is generated a priori 
(possibly, by image analysis algorithms, or manually, 
or by a combination of both), and is stored in a sep- 
arate database. This meta-data will be used by the 
query processing mechanism in determining the pic- 
tures that need to be retrieved in response to a query. 
The meta-data facilitates efficient query processing, 
i.e. it avoids the invocation of the expensive image 
analysis algorithms each time a query is processed. 

Similarity based retrieval of pictures consists of 
computing a similarity value with each picture that 
denotes how closely the picture matches the query, 
and retrieving those pictures with the highest simi- 
larity values. Such retrievals are needed when the user 
cannot provide a precise specification of what he/she 
wants. Even if the user can precisely specify his/her 
requirements, there may not be any pictures in the 
database that exactly match with the user’s query, and 
in this ca.se the user may want the closest matches. 
It is to be noted that, when we use similarity based 
retrieval, any picture that matches exactly with the 
query will be assigned the maximum similarity value, 
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and will automatically be retrieved first. 
In this paper, we consider similarity based pic- 

ture retrieval using various spatial relationships that 
are of general interest. Specifically, the following 
relationships- left-of, right-of, in-front-of, behind, 
above, below, inside, outside and overlaps - are used. 

When computing the similarity value of a picture, 
in general, we need to check if the picture satisfies 
any of the spatial relationships which are implied by 
the user’s query, in addition to the explicitly stated 
relationships. For this reason, it becomes important 
to compute all the implied spatial relationships of the 
query. On the other hand, some of the spatial rela- 
tionships of the user’s query which are satisfied by the 
picture may be redundant, i.e. they may be implied 
by other satisfied relationships; such redundant rela- 
tionships should be given lower weights or they should 
not be considered in the computation of the similarit,y 
value of the picture. For this reason, it becomes es- 
sential to compute the reduction of a set F of spatial 
relationships which is the smallest subset of F that 
implies all the relationships in F. 

In this paper, we present efficient algorithms for 
the deduction problem, i.e. the problem of deducing 
all the implied relationships of a given set of relation- 
ships, and the reduction problem, i.e. the problem 
of computing the reduction of a given set of relation- 
ships. The deduction algorithm is based on a com- 
plete set of rules for deducing spatial relationships; 
such rules were presented in our earlier paper [SYH94]; 
one way of deducing the implied relationships is to ap- 
ply a general purpose deductive database system such 
as LDL to such rules; however, such a method may 
be less efficient than a direct algorithm. For this rea- 
son, we develop a direct algorithm for the deduction 
problem. The deduction problem is more general than 
the transitive closure problem. However, our deduc- 
tion algorithm has the same complexity as that of t,he 
most efficient known algorithm for the transitive clo- 
sure problem. Both of our deduction and the reduction 
algorithms employ an automata based approach and 
have the same time complexity. Both these algorithms 
are used in computations of similarities for retrieval of 
pictures. 

Given a picture and a query, the problem of com- 
puting the similarity value of the picture can be shown 
to be NP-hard, when this value is given by any sound 
similarity function; a similarity function is sound if it 
assigns strictly highest value to pictures having an ex- 
act match, i.e. they satisfy al! the conditions of the 
query. The high complexity of computing a similar- 
ity value given by a sound similarity function is due 
to the fact that, each object in the ‘query may mat.ch 
with multiple objects in the picture, and if there are 
many objects in the query t#hen the number of com- 

binations of matchings of different objects may grow 
exponentially. 

To overcome the above problem, we restrict the 
matchings so that each object in the query is matched 
with the most similar object in the picture based on 
the attribute values of the corresponding objects (if 
there are multiple most similar objects then one of 
them is chosen based on other criteria), and define 
our similarity function with respect to this maximal 
matching; we call the resulting similarity values as re- 
stricted similarity values. Earlier experimental results 
of [ATY95], where deduction and reductions have not 
been employed, confirm this to be a good strategy. 
The restricted similarity functions, that we use, can 
be computed efficiently; clearly, they are not sound 
in the genera.l case. However, they can be shown to 
be sound when the picture has exactly one maximal 
matching with respect to the query. Using the maxi- 
mal matching, a restricted similarity value is computed 
as the sum of three other similarity values; the first two 
are based on matching of the objects and non-spatial 
relationships respectively; the last one is ba&d on the 
spatial relationships and is given by a spatial similarity 
function. 

We identify an important desirable property of 
spatial similarity functions called monotonicity; intu- 
itively, monotonicity requires that a picture satisfy- 
ing more spatial relationships of the query than an- 
other picture should be given a higher spatial similar- 
ity value. We construct a similarity function having 
such a property. 

When the number of pictures in the database is 
very large, it becomes impractical to explicitly exam- 
ine each picture to compute its spatial similarity value. 
We avoid this problem by employing indices on the 
spatial relationships. We present two efficient methods 
for computing the similarity values of those pictures 
that satisfy at least one of the spatial relationships in 
the query. Furthermore, these methods employ the 
deduction and reduction algorithms in the computa- 
tion of the similarity values. We suppose that the user 
specifies an integer u and would like to retrieve the 1~ 
pictures having the highest similarity values. The first 
method computes the exact spatial similarity values 
and retrieves the u pictures having the highest spatial 
similarity values; it is very efficient when the number 
of spatial relationships given in the query is small. 

The second method estimates the spatial similarity 
values, and retrieves the meta data of the cu pictures 
having the highest estimated spatial similarity values 
for some constant c > 1; it then computes the actual 
spatial similarity values of these and retrieves the u 
pictures, among these cu pictures, having the highest 
spatial similarity values; this method is efficient if the 
number of relatibnships is large. Experimental results 
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for the second method show t#hat for a value of c = 3, 
in all practical cases, the u pictures with the highest 
spatial similarity values among all the pictures in the 
database are contained in the cu pictures having the 
highest estimated spatial similarity values, and will 
therefore be retrieved. 

Although the above methods presented in this pa- 
per compute the similarity values using the maximal 
matching, they can be modified,easily to consider all 
possible matchings. However, this will cause an in- 
crease in complexity of the resulting methods due to 
the NP-hardness result. 

In summary, the following are the ma.jor contribu- 
tions of this paper. 

An efficient algorithm for the deduction problem; 

An efficient algorithm for the reduction problem; 

Identification of the monotonicity property for 
spatial similarity functions and the construction 
of such a function. 

Two efficient methods for computation of spatial 
similarity values that employ indices on spatial 
relationships and that employ the deduction and 
reduction algorithms. 

There has been some earlier work [CSY84, CCT94, 
GR94, RM89] on handling spatial relationships. These 
works consider exact match for picture retrieval, as op- 
posed to our similarity based approach. Also, they 
use a different set of spatial operators, and do not 
employ indices. More recent works [GZCS94, Ni93, 
HOP91, LSY89] consider similarity based retrieval of 
pictures using indices. However, their retrieval is pri- 
marily baaed on color variations, shapes of objects a.nd 
texture. They use low level meta-data whereas our 
meta-data is at a higher level. They employ neither 
deduction nor reduction for handling the spatial rela- 
tionships. There has also been much work on handling 
spatial relationships in GIS (for example, see [Eg89]). 
None of these works uses similarity baaed retrieval us- 
ing indices and employing deduction/reduction. Sur- 
veys of pictorial database systems can be found in 
[TaY84, GrM92, ChH92]. 

This paper is organized as follows. Section 2 
presents the notation and va.rious definitions used in 
the remainder of the paper. Section 3 gives the algo- 
rithm for the deduction problem. Section 4 preserns 
the algorithm for computing the minimal reduction. 
Section 5 presents some desirable properties of spatial 
similarity functions and presents a method for obtain- 
ing such similarity functions. Section 6 presents two 
methods for computing similarity values using indices 
and gives some preliminary experimental results. Sec- 
tion 7 contains conclusions and discusses future work. 

2 Notation and Definitions 

We assume that each object has a unique name associ- 
ated with it belonging to a finite set of names N. Each 
3-dimensional picture specifies a set of points occupied 
by each object present in the picture. Formally, a pic- 
ture p is a mapping that maps each object A to a set 
of points p(A) in the 3-dimensional space. 

We consider the following set of spatial relationship 
symbols- left-of, behind, ‘above, below, inside, outside, 
and overlaps, 

Let p be a picture in which objects A and B are 
present. Now, we formally define when p satisfies 
the above relationships. p satisfies the relationship A 
left-of B iff the x-coordinate of every point in p(A) 
is less than the x-coordinate of every point in p(B). 
Similarly, semantics of the above and behind relation- 
ships are defined using the y and z-coordinates, re- 
spectively. p satisfies A inside B iff p(A) z p(B). p 
satisfies A outside B iff p(A) O p(B) = 0. p satisfies 
A overlaps B iff p(A) n p(B) # 0. 

Let F be a finite set of relationships. We say that 
F is consistent if there exists a picture that satisfies 
all the relationships in F. We say that a relation- 
ship Y is im.plied ‘by F, if every picture that satis- 
fies all the relat,ionships in F, also satisfies the re- 
lationship T. For example, the set of relationships 
{A left-of B , B left-of C} implies A left-of C. 

) 

3 Deductioq,Algorithm 

Appendix A presents a set of rules (taken from 
[SYH94]) f or e d d ucing new relationships from a given 
set F of relationships. Rule I captures the transitiv- 
ity of the relationships left-of above, behind and in- 
side. Rule II denotes the interaction between left-of, 
above, behind relationships with the overlaps relation- 
ship. Rule III captures the, interaction of the rela- 
tionships left-of, above, behind, outside with the inside 
relationship. 

For the set F, let ded(F) denote the set of all rela- 
tionships deducible from F using the rules of [SYH94]. 
By the soundness and completeness result given ,in 
[SYH94], ded(F) is identical to the set of relationships 
implied by F. In this section, we present an efficient 
algorithm, based on the rules, for directly computing 
ded(F). .Let. n and m be the number of objects and 
the number of relationships in F. All the inside re- 
lationships in ded(F) are computed by simply taking 
the transitive closure of the inside relationships in F. 
All the overlaps and outside relationships in ded(F) 
are easily computed. 

The algorithms for the relationships left-of above 
and behind are more complicated. We will consider the 
above relationship here. The other two relationships 
can be similarly handled. In this algorithm, we use 
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a derived relationship contains; which is the dual of 
inside, defined as follows. A contains B is true iff B 
inside A is true. Intuitively, A con&&s B is satisfied 
if object B is inside A. 

Our algorithm for deducing the above relationships 
is based on )using a simple finite state automaton 
A which is shown in figure 1 given below. 

inside, 
overlaps 

w 

above 

0 

Sl 

above, contains 

Figure 1: Automaton used for deduction 

The automaton A has two states sc and si. The 
states so and si are the init,ial and final, states respec- 
tively. In order to explain the sign&a& of the au- 
tomaton, we need the following definition. A chain of 
relationships is a sequence of relationships in which the 
first object of each succeeding relationship is the same 
as the second object of its preceding relationship. For 
example, Al inside As, As inside As, As above Ad is 
a chain. Intuitively, the automaton captures a chai.n 
of relationships that can be used to deduce an above 
relationship. For example, an above relationship can 
be deduced by a chain of inside relationships followed 
by one or more above relationships. More precisely, A 
above B can be deduced from the chain A inside Bl, 
B1 iwide B2, B2 about B. In this deduation, we first 
use transitivity of inside (rule I) to deduce A inside 
B2 and use rule IIIa.to deduce A above B. Note that 
the transitivity of inside is captured by the self loop in 
state so. Rule IIIa is captured by the self loop in state 
SO and by the transition from SO to 61. Rule IIIb is cap- 
tured by the transition from SO to 81 and the self loops 
in state 81 (Note that B contains C is the same as C 
inside B). The transitivity of above is captured by the 
transition from so to sr and the self loop in state 81. 
Similarly, A, above B can be deduced by a chain con- 
sisting of a sequence one or more above relationships 
followed by a single overlaps relationship, followed by 
one or more above relationships. This interaction be 

tween overlaps and above, given by rule II, is captured 
by the self loops in state si, by the transition from si 
to so labeled with overlaps, and the transitions from 
SO to si labeled with above. 

Now, we define a labeled graph B which captures all 
the inside, contains, above and overlaps relationships 
in F. These are the only relationship symbols relevant 
in the deduction of above relationships. The nodes 
of the graph are objects. The edges of B are labeled 
with relationship symbols. For distinct objects A and 
B, there exists an edge from A to B labeled with the 
relationship symbol z E {inside, above, overlaps} if 
A x B is a relationship in F. Also, there exists an edge 
from A to B labeled with contains if B inside A is a 
relationship in F. Note that any path in Q represents 
a chain of relationships. The number of nodes in B is 
n and the number of edges is O(m). 

From the automaton A and the labeled graph Q , we 
define another labeled graph C as follows. Intuitively, 
C denotes the simulation of the automaton A on all 
paths contained in Q . For each object A and state si 
of the automaton A X. there exists a single node (A, si) 
in C , and these are the only nodes in C . There exists 
an edge in C from (A, si) to (B, sj) labeled with the 
relationship symbol z, if there exists an edge in 0 from 
A to B that is labeled with x, and there is a transition 
of the automaton A from state si to sj on input z. 
These are the only edges in C . 

THOEREM 3.1: There exists a path in C from the 
node (A, SO) to the node (B, 81) iff the relationship 
A above B is in ded(F). 

Figure 2 given below shows the graphs 0 and C for 
the case when F is the set of relationships { A above 
B, A above C, C inside B, C above D }. There is a 
path from (A, SO) to (D, si) in C . By theorem 3.1, it 
follows that A above D is deducible from F. 

We use the graph C in the algorithms for comput- 
ing the set of all above relationships deducible from 
F. Note that the number of nodes in C is 2n and the 
number of edges is O(m). To compute the set of all 
above relationships deducible from F, we compute the 
transitive closure,of C , and output the relationship A 
above B for each edge from a node of the form (A, SO) 
to a node of the form (B, si) in the transitive closure. 
$‘rom standard graph algorithms, the transitive clo- 
sure of C can be computed in time O(nm). Hence the 
complexity of this algorithm is O(nm). 

4 Reduction Algorithm 

In this section, we consider the problem of computing 
a minimal dudion G of a set of relationships F,i.e. a 
minimal set of relationships G contained in F such that 
every relationship deducible from F is also deducible 
from G. In general, minimal reductions’of F may not 
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Figure 2: 
be unique due to the following reason. Suppose the 
relationship A overlaps B is in a minimal reduction. 
We can get another minimal reduction by replacing, A 
overlaps B by its dual relationship B overlaps A (due 
to the symmetry of overlaps). We avoid this problem 
by considering the overlaps relationship as unordered 
pair, not as an ordered pair. Similarly, we identify 
dual outside relationships. Furthermore, we also make 
the assumption (*) 
(*) for any two distinct objects A and B it is not pos- 
sible to deduce both the relationships A inside B and 
B inside A. 

Under the above assumptions, the minimal reduc- 
tion of F is unique as indicated by theorem 4.1. We 
let red(F) denote this minimal reduction. 

THEOREM 4.1: The minimal reduction of F is 
unique. 

Now, we show that the set of above relationships 
in a minimal reduction of F is unique, and, show how 
these relationships can be efficiently computed. We 
will use the graph C defined in the previous subsection 
for this purpose. It can be shown that the graph C is 
acyclic. 

Now, we define a simple relation, called uses, among 
the above relationships in F. We say that an above 
relationship r E F uses another alcove relationship 
r’ E F, if there exists a deduction of r from the re- 
lationships in F - (r} such that one of the steps in 

the deduction employs r’. Intuitively, the uses tells 
us that, if all the relationships that r uses are present 
in the reduction of F, then r need not be present in 
the reduction. We say that an above relationship r is 
required if there is no other above relationship r’ such 
that T uses P’. The following lemma shows that the 
“uses” relation is acyclic. It relates the the required 
relationships with the minimal reduction of F. 

LEMMA 4.2: The relation uses is acyclic. Further 
more, the set of above relationships in a minimalreduc- 
tion of F is exactly the set of required relationships. 

Let A above B, denoted by r, be any above relation- 
ship on F. Using theorem 3.1, it is easy to see that r 
is deducible from the other relationships in F iff there 
is a path in C of,length greater than one from the node 
(A, se) to the node (B, ~1). Hence, T is a required re- 
lationship, iff the only path from the node (A,so) to 
(B,sl) is the above edge joining these two nodes, iff 
the length of the longest path from the node (A, so) 
to the node (B, ~1) is one. Now, to compute the set 
of required relationships in F, we simply compute the 
length of the longest paths from every pair of nodes 
in C , and identify edges satisfying the previous prop- 
erty. The lengths of the longest paths between every 
pair of vertices in an acyclic graph can be computed in 
time O(ve) where v, e are the number of vertices and 
edges in the graph respectively. In our case, v = O(n) 
and e = O(m). Hence, by lemma4.2, the set of above 
relationships in the minimal reduction of F can be 
computed in time O(nm). 

Thus, we see that the minimal reduction of F is 
unique and can be computed in time O(nm). 

For the example given by figure 2, we see that the 
relationships A above B, C above D are in the minimal 
reduction since the lengths of the longest paths from 
(A, se) to (B, si) and from (C, se) to (D, 81) are both 
equal to 1. It is also to be noted that A above Cis not 
in the reduction since the length of the longest path 
from (A, so) to (C, ~1) is 2. 

5 Similarity Based Retrieval 

In this section, we consider similarity based retrieval 
systems. A similarity function is a function that as- 
sociates a real number with every pair of a query and 
a picture; intuitively, the value given by the function 
denotes how closely the picture satisfies the query, the 
higher the value the closer the picture is to the query. 

Let & be a query and P be a picture. A matching 
p is a partial function that maps each object in Q to 
a distinct object in P. We say that a picture P is 
an exact match of a query Q if there exists a total 
matching p so that each object in Q is mapped to an 
object of the same type and having the same attribute 
values, and such that all relationships among objects 
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in Q are satisfied by the corresponding object,s in P 
(specified by p). W e say that a similarity funct,ion f is 
sound if for each query Q, and for every two pictures 
PI and P2 such that Pi is an exact match of Q and P2 
is not, it is the case that f(Q, PI) > f(Q, P2). 

Using the results of [TCCS’I], it can be shown that 
for any sound similarity function f; the problem of 
computing f(Q, P), for a given Q and a given P, is 
NP-hard. 

The reason for the high complexity given by the 
above lemma, is that’ in the worst case, one needs to 
examine all possible matchings between the objects in 
the query Q and the objects in the picture P; there are 
exponential number of such mappings as each object 
in the query can be mapped into multiple objects in 
the picture. 

Maximal Matchings and Restricted Similar- 
ity Functions 

In order to avoid the exponential complexity, we 
introduce another class of similarity functions, called 
restricted similarity functions. A restricted similarity 
function only considers a single maxirrial matching for 
computing the similarity value.. A maximal matching 
is a matching that maps each object in, the”query to 
the closest object in the picture. The closest object in 
the picture to an object A in the query is defined to be 
the object whose “degree of closeness” with respect t,o 
A is maximum. Appendix B presents the definit,ion of 
degree of closeness. Due to the characteristics of the 
inverse document frequency method of [Salt891 and the 
linear attributes that are employed in calcula.ting the 
degree of closeness,’ it is highly unlikely that t&here are 
two or more closest objects in a picture corresponding 
to an object in the query. Thus, we assume that for 
any picture the maximal matching of the picture with 
respect to the given query is unique. 1 

Formally, we define g to be a restricted similarity 
function if ,for any query Q and picture P, ‘y(Q, P) = 
a(&, P) + gz(Q, P) + g3(&, P), where gl is a mnber 
denoting how closely the objects in the query mat,ch 
with the objects in the picture, gz and gs, respectively 
denote how closely the non-spatial and spatial relation- 
ships are satisfied ; all these numbers are computed 
with respect to the maximal matching. A detailed de- 
scription on the computation of the numbers, given by 
gi and g2, can be found in [ATJ!95]. We call gs to 
be the spatial similarity funct.ion and its value as the 
spatial similarity value. 

5.1 Spatial Similtirity.hmctions 

In this subsection we discuss some of the properties 
that need to be satisfied by spaGal similarity functions. 
It is to be noted that spatial similarity fun&ons are 
computed with respect to the maximal matching. 

For any set C of spatial relationships in a picture 
or a query, let ded(C) d enote the set of relationships 
deducible from C. Similarly, let red(C) denote the 
reduction of C. For a query Q and picture P, we 
let sat(Q, P) denote the set of spatial relationships 
in cled(Q) that are satisfied by P with respect to the 
maximal matching. We say that a spatial similarity 
function h satisfies the monotonicity property if for 
any query Q and any two pictures PI and P2 the fol- 
lowing condition holds- if sat(Q, PI) C sat(Q, P2) 
then h(Q, PI) L: h(Q, P2). The following similar- 
ity function satisfies the monotonicity property. It as- 
signs a weight to each spatial relationship specified in 
the query or iis deducible from the query, and com- 
putes the similarity..value of a picture to be the sum 
of weights of the spatial relationships satisfied by it. 

Now, consider the query Q specified in the follow- 
ing example ( called example 1). The query Q specifies 
that object A,is to the left of B, B is to the left of C , 
A is to the left of C, and D is above E. Suppose that 
there are two ipictures, say PI and P2. In 9, the first 
three left-of relationships are satisfied, but the above 
relationship is not satisfied. In P2, the first and the 
third left-of rela.tionships, and the above relationship 
are satisfied but not the second left-of relationship. 
Both pictures satisfy 3 out of the 4 user specified rela- 
tionships. If we use the above similarity function and 
assign equal weights to all the spatial ‘relationships, 
then both the pictures in this example will have equal 
similiarity values. However, it can be argued that the 
Pi should‘have higher similarity’value. This anomaly 
occurs because, when computing the similarity value of 
each picture, we did not distinguish those relationships 
that are fundamental, i.e. those in the reduction of the 
set of relationships satisfied by that picture, from those 
which are, outside the reduction. Par picture PI, the 
first and the second left-of relationships are the only 
relationships in the reduction of the set of rklation- 
ships satisfied by it. Where as for P2, the reduction of 
the set of relationships satisfied ‘by it consists of three 
relationships which are the first and the third left-of 
relationships and the about relationship. ‘Suppose, for 
each picture; if we only consider those relationships in 
the reduction for computing similarity values, then P2 
will have higher’ similarity value than PI. 

We now construct a’ class of similarity functions, 
called discriininating similarity functions, that avoid 
the above anomaly and also satisfy the monotonicity 
property. The class of discriminating similarity func- 
tions work as follows. They first assign weights to the 
relationships in ded(Q); recall that Q is the user query. 
For any picture P, they compute its similarity value 
to be the sum of the weights of all relationships in the 
set re$(sat(Q,P)). N o t ice that these similarity func- 
tions ignore all the relationships satisfied by P that are 
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outside the reduction, because such relationships are 
directly implied by those in the reduction. It is easy to 
SW that in example 1, if we give equal positive weights 
to all’ the relationships and use the above method, then 
the second picture will have & higher similarit,y value 
than the first picture. 

To ensure monotonicity, when using discriminating 
similarity functions, we need to choose the weights of 
the relationships carefully. Consider the user query Q 
described below. In this query, all the “A” objects 
(i.e. AI, . . . . An) are to the left of B, and all the “C” 
objects (i.e. Cl, . . . . Cm) are to the right of B. Now, 
consider,%wo pictures PI and P-J as given below- PI 
is identical to the query. P2 has all the A a.nd ,the 
C objects, but not B; all the A objects are to the 
left of all the C objects in P2. It’ should be easy to 
see that red(sat(Q, PI)) contains exactly m + n re- 
lationships which are of the form Ai left-of B or 
B left-of Cj, while red(sat(&. Pz)) contains y/m rela- 
tionships of the form Ai lefl-of Cj. Clearly, assign- 
ment of equal weights to all the relationships does not 
ensure monotonicity. 

We now define a discriminabing similarity function 
that satisfies the monotonicity property. Lt>t. & be the 
user query, We define a directed graph H = (I/H, Elr). 
The set of vertices VH is exact&y the.set of relationships 
in ded(Q) (here, for any: pair of overlaps relatio&ips 
of the form A overlaps B and B overlaps A, we have a 
single vertex in the graph). There exists an edge from 
the relationship ri to rj if there is a one step ded?lction 
of rj that employs ,ra. This graph denotes the general- 
ization of the “JEKS” relationship defined in sect,ion 4. 
It can be shown that the graph H is acyclic. All t,he 
source nodes in the graph (i.e. nodes with no incoming 
edges) denote elements in red(Q).. Each vertex is a+- 
signed a level number as follows. The l~vel,number of 
any vertex T is the-length of the longest path from any 
source node to v. The level number of. a source node is 
zero, and the level number of pny other node I‘ is 1+ 
max{level number of s : , (s, T) is an edge in II } . The 
level numbers cv be cqrnputed by a topological sort, of 
H. We can assign arbitrary. weights to, all the source 
vertices, i.e. all the,:relationships in red(Q). Fox all 
other vertices we assign weights inductively based on 
their level numbers. All thq vertices h&ng the same 
level number are assigned equal weights. Assume tha,t 
there are Ica vertices at level i. For each level i node, 
assign a weight which is less than or equal t#o (the min- 
imum weight of any vertex at level (i -, l))/( 1 + k;). 

6 Similarity Computations using In- 
dices 

Now, we describe .&wo methods for retrieving the 11 
most similar pictures using indices where u is given by 

the user. The key advantage of these indexed based 
methods is that they completely avoid examining those 
pictures tha,t do not have any spatial relationship in 
common with the query. In these methods, we first 
compute the maximal matchings of the pictures with 
respect to the query. These matchings are captured as 
triples of the form (A,pid, oid) where A is an object 
in the query, oid is the id of the closest object to A in 
the picture pid. 

After this we use indices on the spatial relation- 
ships. An index on a spatial relationship of the form 
U op V, where U and V are object types, contains 
the list of triples of the form (pid, oidl, oid2) such that 
the ‘objects with ids oidl and oid2 in the picture given 
by pid are of the types U and V ,respectively, and 
they satisfy the spatial relationship op. The second 
method requires an additional flag to be present with 
each triple indicating whether the corresponding rela- 
tionship is fundamental in the picture or not. 

Foi a spatial relationship A op B in ded(Q), we use 
the appropriate index to retrieve a list of triples of the 
form (pid, aoid, boid) such that aoid and boid are the 
ids of the objects in pid to which A and B are mapped 
according to the maximal matching, and these objects 
satisfy the spatial relationship ,?p in the picture pid. 
The pids used in the two methods to be described are 
those appearing in these ,lists. 

In the remainder of this section, we assume that the 
given user query Q specifies n objects and m spatial 
relationships. 

6.1 First Metha< 

The first method computes the similarity values for all 
pictures given by the relevant indices and picks those 
haviqg’ the highest 21 similarity values. 

‘$‘or ,a given query Q, we first compute all the rela- 
tionships in d+(Q). (Recall that’ded(Q) is the set of 
all relatiopqhips deducible from,&). ‘Let rl,rz, . . . , rk be 
all these relationqhips. Ne?t, we assign weights to each 
of these relationships as @en in the previous section. 
Let wi be the weight assigned to the relationship ri. 

For e&h ri (i = 1, . . . . lc), using the index on the 
spatial rela.tionship, we retrieve a list Li of all pids 
that satisfy ri. We assume that each Li is sorted in 
increasing values of the pids. We simply iterate the 
following steps for computing the similarity values for 
each picture present on one of the lists. 

1. Let c be the smallest, pid which is on top of all the 
lists. Now; it shduld be obvious that, the maximal 
matching in the picture z satisfies the relationship 
ri iff 2 .is on top of the list Li. Using this, we 
compute sat(Q, X) and delete x from all the lists 
in which it appears. For example, if x appears on 
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top of lists Li, L3 and L5, then z satisfies exactly 
rl,r3 and rg. 

2. Using the reduction algorithms given in the pre- 
vious sections, we compute red(sat(Q,z)), and 
compute the similarity value of z to be the sum of 
the weights of the relationships in red(sat(Q, z)). 

Let p be the total number of all distinct pids ap- 
pearing in any of the lists, and q be the sum of the 
lengths of all the lists. It should be easy to see that 
q 2 p. We can use a heap structure which contains the 
pids that appear on top of some list. The complexity 
of selecting the minimum and updating the heap is 
O(logk). The overall complexity of the above algo- 
rithm is O(q log k + pnk). 

Let p be the total number of all distinct pids ap- 
pearing in any of the lists, and q be the sum of the 
lengths of all the lists. It should be easy to see that 
q 2 p. We can use a heap structure which contains the 
pids that appear on top of some list. The complexity 
of selecting the minimum and updating the heap is 
O(logIc). Hence the complexity of step 1, over all it- 
erations, is O(q log k). To analyze the complexity we 
observe the following. To compute the reduction of 
a set containing at most k spatial relationships over 
n objects takes time O(nk). Thus the complexity of 
step 2, over all iterations, can be shown to be O(pnk). 
Hence, the overall complexity of the above algorithm 
is O(q log k + pnk). 

timated similarities for some multiplicative constant 
c > 1. The me&data of these cu pictures will be fur- 
ther examined by the algorithm and the u most similar 
pictures among these cu pictures will be retrieved and 
presented to the user. As shown in the experimental 
results in Section 6.3, for c = 3, all of the u most simi- 
lar pictures are retrieved for u 5 30. The advantage of 
this algorithm is its low time complexity. Specifically, 
the time complexity is O(q+cunk) where q and k are as 
given in subsection .6.1. Since cu is usually very small 
compared to q, (which is the total number of entries 
in all the inverted lists) , the first component domi- 
nates. Since all entries in the different inverted lists 
have to be examined by any algorithm, the proposed 
algorithm can be considered to be optimal within some 
multiplicative constant. 

We now provide details of the two phases of the al- 
gorithm. For each picture P, ded(P) is pm-computed 
and the spatial relationships of all the pictures are in- 
dexed. For each relationship r E ded(P), if r G red(P) 
then it is identified as fundamental (abbreviated as 
“f”), otherwise r is identified as a non-fundamental 
relationship (abbreviated as “nf”). This information 
is stored in the indices. Thus, if a relationship r is 
fundamental in picture Pl and. is non-fundamental in 
picture P2, the index for r will contain the entries 
(Pl, f) and (P2, rz,f). The following Lemma identifies 
two cases when a spatial relationship in sat(Q, P) is 
guaranteed to be in red(Sat(Q, P)). 

The above algorithm can be made more efficient, 
by first observing that if a set S of multiple pictures 
satisfy the same set of relationships then we can simply 
calculate the similarity value for the first picture in 
S and store it in a table, and retrieve this value for 
the subsequent pictures in S by a table Iook up. By 
organizing this table as a binary tree of depth L (each 
level of the tree corresponds to a spatial relationship), 
searching and insertion can be done in O(k) time. The 
overall complexity of this algorithm is O(kp + Ink), 
where I is the number of different values of sat(Q, P). 
Clearly, 1 is bounded by 2k, which is the total number 
of subsets of ded(&), and k = O(m2). This method is 
better than the previous method, and also the method 
presented in the next subsection, when m and hence k 
is small. 

LEMMA 6.1: For any r E Sat(Q,P), if r E 
red(Q) U red(P), then r E red(Siat(Q, P)). 

During the first phase, we examine and process each 
entry on t’he inverted list associated with each relation- 
ship r in ded(Q), as follows. If the entry corresponds 
to picture P, and either r is fundamental in Q or in 
P, then we simply add the weight(r) to the estimated 
similarity value of P (in this case r is in red(Sat(Q, P)) 
by lemma 6.1); If the above condition is not satisfied, 
i.e. r is not in red(Q) U red(P), then the probabil- 
ity p that r is in red(Sat(Q, P)) is estimated, and the 
similarity value of P is increased by p - weight(r). A 
particular heuristic for estimation of p is given in 6.3. 

6.2 Second Method 

In the second phase of the algorithm, the me&data 
associated with the cu pictures with the largest esti- 
mated similarities are retrieved. For each such picture 
P, the exact similarity value of P is computed by ob- 
taining red(Sat(Q, P)). 
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There are two phases in the second algorithm. Assume 
that the user is interested in retrieving the u most sim- 
ilar pictures, for some user-specified integer u. In the 
first phase, the algorithm estimates the ,spatial simi- 
larity value of each picture P’having some spatial re- 
lationship in common with Q., In the second phase, 
the algorithm selects cu pictures with the highest es- 

6.3 Experimental Results 

We now present some experimental results obtained 
using the second method. In the experimentation we 
have used a weight of one for each spatial relationship. 

The first phase of the implemented algorithm has 
two steps. In the first step the algorithm goes through 



all the inverted lists, and for each picture P appearing 
in at least one of these lists, it computes the following 
numbers- 
Np = the number of relationships in Sat(Q, P) which 
are fundamental relationships in P; 
4 = the number of,relationships in Sat(Q, P) that 
are fundamental in & and non-fundamental in P; 
N, = the number of relationships in Sat(Q, P) that 
are non-fundamental in both P and Q; 
M = the number of relationships in ded(P); 
Mj = the number of fundamental relationships in P. 

In the second step of the first phase, the sise of 
red(Sat(Q, P)), denoted by no, is estimated. Since 
the weight of each relationship is taken to be one, the 
similarity value for each picture P which is in at least 
one of the inverted lists is simply taken as no. Accord- 
ing to lemma 6.1, each relationship in Sat (Q, P) which 
is fundamental in either P or Q, is insred(Sat(Q, P)). 
Due to the above reason, we initialize no to be N,j +Nq . 
After this, no is updated as follows. Here the algorithm 
makes N, iterations. Each of these iterations corre- 
sponds to a relationship r in Sat(Q, P) which is non- 
fundamental in both P and Q. In each such iteration, 
a probability p that the relationship r in Sat(Q, P) is 
in red(Sat(Q, P)) is estimated. The following rule is 
used for computing p and updating no. 
If Np = MI then p := 0; 
else {p := maz{O, 1-N,/Mj-anolAf}; no := no+p;} 

In the above computation, (Y is taken’to be 0.1. The 
justification for using the above formula for estimation 
of p is the following. The first half of the rule says that, 
if all fundamental relationships in P are in Sat(Q, P)’ 
then any non-fundamental relationship in P that is 
in Sat(Q, P) must be outside red(Sat(Q, P)). The 
second half of the rule ensures that p decreases with 
increasing values of Np and no. 

We have carried out experiments to determine the 
maximum number of pictures that need to be retrieved 
using the estimated spatial similarity values so as to 
capture u most similar pictures. The experimentation 
was carried out on a randomly generated meta-data 
for 10,000 pictures. Objects in a picture were ran- 
domly chosen from a set of 50 objects. The number 
of objects in a picture is chosen to be between 5 and 
16. We only used ‘the relationships inside, overlaps 
and above in each picture (left-of and in-front-of are 
orthogonal to above and can be handled in the same 
way. outside relationships are of less significance and 
are not considered in the experiments.). The relation- 
ships in a picture were randomly generated and the 
number of relationships was varied from 3 to 144. Ten 
queries were randomly generated with the number of 
objects in each query being between 4 and 15, and the 

number of relationships varying from 3 to 90. 

Table 6.1 Performance of Method 2 

The results of the experiment are given in table 6.1. 
Each row corresponds to a particular value of u given 
in the first column. Each column, from the second 
‘column onwards, denotes a query Qi, with parameters 
a, b, c that denote the number of objects, the number of 
fundamental and non-fundamental relationships in the 
query. An entry under the column of Qi, denotes the 
maximum number of pictures that have to be retrieved 
for that query using the estimated similarity values, so 
as to capture all the u most similar pictures according 
to the actual similarity values. 

It can be seen that, for u = 10,20,30, method 2 
only needs to retrieve top 3u pictures based on the es- 
timated similarity values. For these 3u pictures the ac- 
tual similarity values are computed by retrieving their 
me&data. It should be noted that for most practical 
purposes, a user would like to see no more than 30 
most similar pictures, and therefore method 2 will be 
effective. 

7 Conclusions and Discussion 

In this paper, we have presented two methods for 
retrieving pictures using similarity baaed approaches 
that use indices on spatial relationships of objects. We 
have implemented the second method and analyzed its 
performance using a medium sizd randomly gener- 
ated experimental database ,of pictures. The prelimi- 
nary results of this experimentation are very encour- 
aging. 

We have presented efficient algorithms for the de- 
duction and the reduction problems. These algorithms 
are of independent interest for ,the following applica- 
tions. When meta-data need to be transmitted from 
one site to another, the cost of transmission can be 
minimized by simply transmitting the minimal reduc- 
tion. In this case, the implied relationships can be 
recovered from the minimal reduction by using the de- 
duction algorithm. The minimal reduction can also be 
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very useful for exuct match retrieval, i.e. for retriev- 
ing pictures that satisfy all the spa,tial relationships in 
the query. In this ca.se, it is enough to retrieve pic- 
tures that satisfy all the relationships in the minimal 
reduction of the query. This saves execution time. 

We have developed/are developing four prot,otype 
picture retrieval systems. These are used for retrieving 
photographs [ATY95], for skin cancer detection and 
for buying clothing and parts respectively. 
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8 Appendix A: Rules for Deducing 
Spatial Rqlationships 

I. (Transitivity of ‘leftmf ‘, ‘above’, ‘behind’, and ‘ins: 
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II. 

III. 

Iv. 

For each relation 
x in {left-of, above, behind, inside}, we have 
the following rule: 
AxC :: AxB, BzC 

This rule captures the interaction between the re- 
lationships involving left-of, above, behin.d, and 
the relationship involving overlaps. For each x in 
{left-of, above, behind}, we have the following 
rule. 
AxD :: A x B , B overlaps C, C x D 

This rule captures the interaction between the 
relationships involving left-of, above, behind, out- 
side, and the relationship involving inside. For 
each x in {left-of, above, behind, outside}, we 
have the following rules. 
(a) AxC :: A inside B, B x C 
(b) Ax C :: Ax B, C inside B 

(Symmetry of overlaps and outside) 
This rule captures the symmetry of overlaps and 
outside. Let x denote either of overlaps and 
outside. We have the following rule for each such 

:xB :: BxA 

V. This rule allows one to deduce that two objects 
are outside each other if one of them is to the 
left of, or above, or behind the other object. 
Let x denote any of the relationship symbols in 
{left-of, above, behind}. We have the following 
rule for each such x. 
A outside B :: A x B 

VI. This rule allows one to deduce that if an object is 
inside another object, then the two objects over- 
lap. 
A overlaps B :: A inside B 

VII. This rule allows one to deduce that A overlaps 
with B if B overlaps with an object inside A. 
A overlaps B :: C inside A, C overlaps B 

VIII. This rule says that every object is inside itself. 
Note that this rule has no body. 
A inside A :: 

9 APPENDIX B 

In this section we briefly describe how the degree of 
closeness , mentioned in section 5, of an object B in the 
picture with respect to A is defined and calculated. A 
detailed description for computing the degree of close- 
ness of two objects is given in [ATY95]. Let object A 
in the query have values ui, . . . . uk for the attributes 
Xl, *a*, Xk respectively, and let object B in the picture 

have values vi ,,..., Vk for the same attributes respec- 
tively. The degree of closeness of A and B is defined 
as (Cl<i<,,wi), where wi is a number denoting how 
closely-the attribute values ‘ILL and vi match and is 
computed as follows. 

If ui = vi then wi is given by the inverse document 
frequency method of [Salt89]; roughly speaking, in this 
method, the value of wi is higher if there are fewer 
pictures in the database that have an object whose 
value for the attribute Xi is vi. This method has been 
verified to yield better retrieval accuracy than that of 
assigning equal weights to all values of the attribute 
Xi [ATY95] + 

In the other cases, wi is determined as follows. If the 
values for the attribute Xi can be arranged in a linear 
order so that neighboring values can be semantically 
similar then we call Xi to be a linear attribute. For 
example, the attribute age takes values very young, 
young, middle aged, old and very old, and it is a linear 
attribute; here, for example, the neighboring values 
very young and young are semantically similar. If Xi 
is a linear attribute, and ui, vi are neighboring values 
then wi is given by a fraction of the weight obtained 
by the inverse document frequency method. If Xi is a 
linear attribute and ui, vi are not neighboring values 
then wi is -00; this implies that objects A and B 
cannot be matched. If Xi is not a linear attribute 
(ex. profession is one such attribute) and ui # vi then 
wi = 0. 
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