
The X-tree:
An Index Structure for High-Dimensional Data

Stefan Berchtold
Daniel A. Keim

Hans-Peter Kriegei

Institute for Computer Science, University of Munich, Oettingenstr. 67, D-80538 Munich, Germany
{ berchtol, keim, kriegel} @informatik.uni-muenchende

Abstract
In this paper, we propose a new method for index-
ing large amounts of point and spatial data in high-
dimensional space. An analysis shows that index
structures such as the R*-tree are not adequate for
indexing high-dimensional data sets. The major
problem of R-tree-based index structures is the
overlap of the bounding boxes in the directory,
which increases with growing dimension. To avoid
this problem, we introduce a new organization of
the directory which uses a split algorithm minimiz-
ing overlap and additionally utilizes the concept of
supemodes. The basic idea of overlap-minimizing
split and supernodes is to keep the directory as hi-
erarchical as possible, and at the same time to avoid
splits in the directory that would result in high over-
lap. Our experiments show that for high-dimen-
sional data, the X-tree outperforms the well-known
R*-tree and the TV-tree by up to two orders of
magnitude.

1. Introduction

In many applications, indexing of high-dimensional
data has become increasingly important. In multimedia da-
tabases, for example, the multimedia objects are usually
mapped to feature vectors in some high-dimensional space
and queries are processed against a database of those feature
vectors [Fal94]. Similar approaches are taken in many other
areas including CAD [MG 931, molecular biology (for the
docking of molecules) [SBK 921, string matching and se-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and.notice is given that copying is
by Permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special Permission
from the Endowment.

Proceedings ot the 22nd VLDB Conference
Mumbai (Bombay), India, 1996

quence alignment [AGMM 901, etc. Examples of feature
vectors are color histograms [SH 941, shape descriptors
[Jag 9 1, MG 951, Fourier vectors [WW 801, text descriptors
[Kuk 921, etc. In some applications, the mapping process
does not yield point objects, but extended spatial objects in
high-dimensional space [MN 951. In many of the mentioned
applications, the databases are very large and consist of mil-
lions of data objects with several tens to a few hundreds of
dimensions. For querying these databases, it is essential to
use appropriate indexing techniques which provide an effi-
cient access to high-dimensional data. The goal of this paper
is to demonstrate the limits of currently available index
structures, and present a new index structure which consid-
erably improves the performance in indexing high-
dimensional data.

Our approach is motivated by an examination of R-tree-
based index structures. One major reason for using R-tree-
based index structures is that we have to index not only point
data but also extended spatial data, and R-tree-based index
structures are well suited for both types of data. In contrast to
most other index structures (such as kdB-trees [Rob 811,
grid files [NHS 841, and their variants [see e.g. SK 90]),
R-tree-based index structures do not need point transforma-
tions to store spatial data and therefore provide a better
spatial clustering.

Some previous work on indexing high-dimensional
data has been done, mainly focussing on two different ap-
proaches. The first approach is based on the observation that
real data in high-dimensional space are highly correlated
and clustered, and therefore the data occupy only some sub-
space of the high-dimensional space. Algorithms such as
Fastmap [FL 951, multidimensional scaling [KW 781, prin-
cipal component analysis [DE 821, and factor analysis
[Har 671 take advantage of this fact and transform data ob-
jects into some lower dimensional space which can be efti-
ciently indexed using traditional multidimensional index
structures. A similar approach is proposed in the SS-tree
[WJ 961 which is an R-tree-based index structure. The SS-
tree uses ellipsoid bounding regions in a lower dimensional
space applying a different transformationin each of the di-
rectory nodes. The second approach is based on the observa-
tion that in most high-dimensional data sets, a small number

28

of the dimensions bears most of the information. The
TV-tree [LJF 941, for example, organizes the directory in a
way that only the information needed to distinguish between
data objects is stored in the directory. This leads to a higher
fanout and a smaller directory, resulting in a better query
performance.

For high-dimensional data sets, reducing the dimen-
sionality is an obvious and important possibility for dimin-
ishing the dimensionality problem and should be performed
whenever possible. In many cases, the data sets resulting
from reducing the dimensionality will still have a quite large
dimensionality. The remaining dimensions are allrelatively
important which means that any efficient indexing method
must guarantee a good selectivity on all those dimensions.
Unfortunately, as we will see in section 2, currently avail-
able index structures for spatial data such as the R*-treet do
not adequately support an effective indexing of more than
five dimensions. Our experiments show that the perfor-
mance of the R*-tree is rapidly deteriorating when going to
higher dimensions. To understand the reason for the perfor-
mance problems, we carry out a detailed evaluation of the
overlap of the bounding boxes in the directory of the
R*-tree. Our experiments show that the overlap of the
bounding boxes in the directory is rapidly increasing to
about 90% when increasing the dimensionality to 5. In sub-
section 3.3, we provide a detailed explanation of the increas-
ing overlap and show that the high overlap is not an R-tree
specific problem, but a general problem in indexing high-di-
mensional data.

Based on our observations, we then develop an im-
proved index structure for high-dimensional data, the X-tree
(cf. section 3). The main idea of the X-tree is to avoid over-
lap of bounding boxes in the directory by using a new orga-
nization of the directory which is optimized for high-
dimensional space. The X-tree avoids splits which would re-
sult in a high degree of overlap in the directory. Instead of
allowing splits that introduce high overlaps, directory nodes
are extended over the usual block size, resulting in so-called
supemodes. The supernodes may become large and the lin-
ear scan of the large supemodes might seem to be a problem.
The alternative, however, would be to introduce high over-
lap in the directory which leads to a fast degeneration of the
filtering selectivity and also makes a sequential search of all
subnodes necessary with the additional penalty of many ran-
dom page accesses instead of a much faster sequential read.
The concept of supernodes has some similarity to the idea of
oversize shelves [GN 911. In contrast to supernodes, over-
size shelves are data nodes which are attached to internal
nodes in order to avoid excessive clipping of large objects.
Additionally, oversize shelves are organized as chains of
disk pages which cannot be read sequentially.

We implemented the X-tree index structure and per-
formed a detailed performance evaluation using very large

1. According to [BKSS 901, the R*-tree providss a consistently better
performance than the R-tree [Gut 841 and R -tree [SRF 871 over a
wide range of data sets and query types. In the rest of this paper, we
therefore restrict ourselves to the R*-tree.

Figure 1: Performance of the R-tree
Depending on the Dimension (Real Data)

amounts (up to 100 MBytes) of randomly generated as well
as real data (point data and extended spatial data). Our ex-
periments show that on high-dimensional data, the X-tree
outperforms the TV-tree and the R*-tree by orders of mag-
nitude (cf. section 4). For dimensionality larger than 2, the
X-tree is up to 450 times faster than the R*-tree and between
4 and 12 times faster than the TV-tree. The X-tree also pro-
vides much faster insertion times(about 8 times faster than
the R*-tree and about 30 times faster than the TV-tree).

2. Problems of (R-tree-based) Index
Structures in High-Dimensional Space

In our performance evaluation of the R*-tree, we
found that the performance deteriorates rapidly when going
to higher dimensions (cf. Figure 1). Effects such as a lower
fanout in higher dimensions do not explain this fact. In try-
ing to understand the effects that lead to the performance
problems, we performed a detailed evaluation of important
characteristics of the R*-tree and found that the overlap in
the directory is increasing very rapidly with growing di-
mensionality of the data. Overlap in the directory directly
corresponds to the query performance since even for simple
point queries multiple paths have to be followed. Overlap
in the directory is a relatively imprecise term and there is
no generally accepted definition especially for the high-di-
mensional case. In the following, we therefore provide def-
initions of overlap.

2.1 Definition of Overlap

Intuitively, overlap is the percentage of the volume that
is covered by more than one directory hyperrectangle. This
intuitive definition of overlap,.is directly correlated to the
query performance since in processing queries, overlap of
directory nodes results in the necessity to follow multiple
paths, even for point queries.

29

2 4 s 8 10 12 14 1s

dimension

a. Overlap (Uniformly Distributed Data)

7,1,1,1,1,1
I ’

2 4 s s 10 12 14 1s

dimension

b. Weighted Overlap (Real Data)

Figure 2: Overlap of R*-tree Directory Nodes depending on the Dimensionality

D&nition Ia (Overlap)
The overlap of an R-tree node is the percentage of space
covered by more than one hyperrectangle. If the R-tree
node contains n hyperrectangles (R 1, . . , Rn} , the overlap
may formally be defined as

II U
Overlap = i,jr {l...n},i+j

tRinRj) 1
II

II
URi *

ie {l...n} II

The amount of overlap measured in definition la is re-
lated to the expected query performance only if the query
objects (points, hyperrectangles) are distributed uniformly.
A more accurate definition of overlap needs to take the actu-
al distribution of queries into account. Since it is impossible
to determine the distribution of queries in advance, in the
following we will use the distribution of the data as an esti-
mation for the query distribution. This seems to be reason-
able for high-dimensional data since data and queries are
often clustered in some areas, whereas other areas are virtu-
ally empty. Overlap in highly populated areas is much more
critical than overlap in areas with a low population. In our
second definition of overlap, the overlapping areas are
therefore weighted with the number of data objects that are
located in the area.

De@ai@on lb (Weighted Overlap)
The weighted overlap of an R-tree node is the percentage of
data objects that fall in the overlapping portion of the space.
More formally,

I(PIPE u
i, ja 11 . ..n}. i# j

(Ri n Rj)

WeightedOverlap = 2
II II *

PIP E U Ri
is {l...n}

1. IAll denotes the volume covered by A.
2. I Al denotes the number of data elements contained in A

In definition la, overlap occurring at any point of space
equally contributes to the overall overlap even if only few
data objects fall within the overlapping area. If the query
points are expected to be uniformly distributed over the data
space, definition la is an appropriate measure which deter-
mines the expected query performance. If the distribution of
queries corresponds to the distribution of the data and is non-
uniform, definition lb corresponds to the expected query
performance and is therefore more appropriate. Depending
on the query distribution, we have to choose the appropriate
definition.

So far, we have only considered overlap to be any por-
tion of space that is covered by more than one hyperrectan-
gle. In practice however, it is very important how many
hyperrectangles overlap at a certain portion of the space.
The so-called multi-overlap of an R-tree node is defined as
the sum of overlapping volumes multiplied by the number of
overlapping hyperrectangles relative to the overall volume
of the considered space.

In Figure 3, we show a two-dimensional example of the
overlap according to definition la and the corresponding
multi-overlap. The weighted overlap and weighted multi-
overlap (not shown in the figure) would correspond to the ar-
eas weighted by the number of data objects that fall within
the areas.

~~
II I-

Figure 3: Overlap and Multi-Overlap of
2dimensional data

30

2.2 Experimental Evaluation of Overlap in
R*-tree Directories

In this subsection, we empirically evaluate the develop-
ment of the overlap in the R*-tree depending on the dimen-
sionality. For the experiments, we use the implementation of
the R*-tree according to [BKSS 901. The data used for the
experiments are constant size databases of uniformly dis-
tributed and real data. The real data are. Fourier vectors
which are used in searching for similarly shaped polygons.
The overlap curves presented in Figure 2 show the average
overlap of directory nodes according to definition 1. In aver-
aging the node overlaps, we used all directory levels except
the root level since the root page may only contain a few hy-
perrectangles, which causes a high variance of the overlap in
the root node.

In Figure 2a, we present the overlap curves of R*-trees
generated from 6 MBytes of uniformly distributed point da-
ta. As expected, for a uniform distribution overlap and
weighted overlap (definition la and lb) provide the same re-
sults. For dimensionality larger than two, the overlap (cf.
Figure 2a) increases rapidly to approach 100% for dimen-
sionality larger than ten. This means that even for point que-
ries on ten or higher dimensional data in almost every
directory node at least two subnodes have to be accessed.
For real data (cf. Figure 2b), the increase of the overlap is
even more remarkable. The weighted overlap increases to
about 80% for dimensionality 4 and approaches 100% for
dimensionality larger than 6.

3. The X-tree

The X-tree (extended node tree) is a new index struc-
ture supporting efficient query processing of high-dimen-
sional data. The goal is to support not only point data but also
extended spatial data and therefore, the X-tree uses the con-
cept of overlapping regions. From the insight obtained in the
previous section, it is clear that we have to avoid overlap in
the directory in order to improve the indexing of high-di-
mensional data. The X-tree therefore avoids overlap when-
ever it is possible without allowing the tree to degenerate;
otherwise, the X-tree uses extended variable size directory
nodes, so-called supernodes. In addition to providing a di-
rectory organization which is suitable for high-dimensional
data, the X-tree uses the available main memory more effi-
ciently (in comparison to using a cache).

The X-tree may be seen as a hybrid of a linear array-like
and a hierarchical R-tree-like directory. It is well established
that in low dimensions the most efficient organization of the
directory is a hierarchical organization. The reason is that
the selectivity in the directory is very high which means that,
e.g. for point queries, the number of required page accesses
directly corresponds to the height of the tree. This, however,

Figure 4: Structure of a Directory Node

0 Normal Directory Nodes m Supemodes 0 Data Nodes

Figure 5: Structure of the X-tree

is only true if there is no overlap between directory rectan-
gles which is the case for a low dimensionality. It is also rea-
sonable, that for very high dimensionality a linear
organization of the directory is more efficient. The reason is
that due to the high overlap, most of the directory if not the
whole directory has to be searched anyway. If the whole di-
rectory has to be searched, a linearly organized directory
needs less space’ and may be read much faster from disk
than a block-wise reading of the directory. For medium di-
mensionality, an efficient organization of the directory
would probably be partially hierarchical and partially linear.
The problem is to dynamically organize the tree such that
portions of the data which would produce high overlap are
organized linearly and those which can be organized hierar-
chically without too much overlap are dynamically orga-
nized in a hierarchical form. The algorithms used in the
X-tree are designed to automatically organize the directory
as hierarchical as possible, resulting in a very efficient
hybrid organization of the directory.

3.1 Structure of the X-tree *
The overall structure of the X-tree is presented in Figure

5. The data nodes of the X-tree contain rectilinear minimum
bounding rectangles (MBRs) together with pointers to the
actual data objects, and the directory nodes contain MBRs
together with pointers to sub-MBRs (cf. Figure 5). The
X-tree consists of three different types of nodes: data nodes,
normal directory nodes, and supemodes. Supemodes are
large directory nodes of variable size (a multiple of the usual
block size). The basic goal of supernodes is to avoid splits in
the directory that would result in an inefficient directory
structure. The alternative to using larger node sizes are high-
ly overlapping directory nodes which would require to ac-
cess most of the son nodes during the search process. This,
however, is more inefficient than linearly scanning the larg-
er supemode. Note that the X-tree is completely different
from an R-tree with a larger block size since the X-tree only
consists of larger nodes where actually necessary. As a re-
sult, the structure of the X-tree may be rather heterogeneous
as indicated in Figure 5. Due to the fact that the overlap is in-

1. In comparison to a hierarchically organized directory, a linearly
organized directory only consists of the concatenation of the nodes
on the lowest level of the corresponding hierarchical directory and
is therefore much smaller.

31

creasing with the dimension, the internal structure of the
X-tree is also changing with increasing dimension. In Figure
5, three examples of X-trees containing data of different di-
mensionality are shown. As expected, the number and size
of supernodes increases with the dimension. For generating
the examples, the block size has been artificially reduced to
obtain a drawable fanout. Due to the increasing number and
size of supernodes, the height of the X-tree which corre-
sponds to the number of page accesses necessary for point
queries is decreasing with increasing dimension.

Supernodes are created during insertion only if there is
no other possibility to avoid overlap. In many cases, the cre-
ation or extension of supernodes may be avoided by choos-
ing an overlap-minimal split axis (cf. subsection 3.3). For a
fast determination of the overlap-minimal split, additional
information is necessary which is stored in each of the direc-
tory nodes (cf. Figure 4). If enough main memory is avail-
able, supernodes are kept in main memory. Otherwise, the
nodes which have to be replaced are determined by a priority
function which depends on level, type (normal node or su-
pemode), and size of the nodes. According to our experi-
ence, the priority function ct . type + cl’. level + c, . size with

c, >> c, w c, is a good choice for practical purposes. Note that
the storage utilization of supernodes is higher than the stor-
age utilization of normal directory nodes. For normal direc-
tory nodes, the expected storage utilization for uniformly
distributed data is about 66%. For supemodes of size
m . BlockSize, the expected storage utilization can be deter-
mined as the average of the following two extreme cases:
Assuming a certain amount of data occupies X . m blocks
for a maximally filled node. Then the same amount of data

2

requires X .s blocks when using a minimally filled

node. On the average, a supernode storing the same amount

of data requires X.m+X.&),2 = x(“:2m”_z’))

blocks. From that, we obtain a storage utilization of

d(“:2m”_2’)) = x . which for large m is consider-

ably higher than 66%. For m=5, for example, the storage uti-
lization is about 88%.

*
D=4:

-Em
IIIll --- IO m: 00000000000000000000

D=8:
ohllm
000000000000000000

D=32:
-- 000000000000000000

Figure 6: Various Shapes of the X-tree
in different dimensions

There are two interesting special cases of the X-tree: (1)
none of the directory nodes is a supemode and (2) the direc-
tory consists of only one large supernode (root). In the first
case, the X-tree has a completely hierarchical organization
of the directory and is therefore similar to an R-tree. This
case may occur for low dimensional and non-overlapping
data. In the second case, the directory of the X-tree is basi-
cally one root-supemode which contains the lowest directo-
ry level of the corresponding R-tree. The performance
therefore corresponds to the performance of a linear directo-
ry scan. This case will only occur for high-dimensional or
highly overlapping data where the directory would have to
be completely searched anyway. The two cases also corre-
spond to the two extremes for the height of the tree and the
directory size. In case of a completely hierarchical organiza-
tion, the height and size of the directory basically corre-
spond to that of an R-tree. In the root-supemode case, the
size of the directory linearly depends on the dimension

DirSize(D) = DatabaseSize
BlockSize ’ StorageUtil.

.2 ’ BytesFloat ’ D

For 1 GBytes of 16-dimensional data, a block size of
4 KBytes, a storage utilization of 66% for data nodes, and 4
bytes per float, the size of the directory is about 44 MBytes
for the root-supernode in contrast to about 72 MBytes for
the completely hierarchical directory.

3.2 Algorithms

The most important algorithm of the X-tree is the inser-
tion algorithm. The insertion algorithm determines the
structure of the X-tree which is a suitable combination of a
hierarchical and a linear structure. The main objective of the
algorithm is to avoid splits which would produce overlap.
The algorithm (cf. Figure 7) first determines the MBR in
which to insert the data object and recursively calls the inser-
tion algorithm to actually insert the data object into the cor-
responding node. If no split occurs in the recursive insert,
only the size of the corresponding MBRs has to be updated.
In case of a split of the subnode, however, an additional
MBR has to be added to the current node which might cause
an overflow of the node. In this case, the current node calls
the split algorithm (cf. Figure 8) which first tries to find a
split of the node based on the topological and geometric
properties of the MBRs. Topological and geometric proper-
ties of the MBRs are for example dead-space partitioning,
extension of MBRs, etc. The heuristics of the R*-tree
[BKSS 901 split algorithm are an example for a topological
split to be used in this step. If the topological split however
results in high overlap, the split algorithm tries next to find
an overlap-minimal split which can be determined based on
the split history (cf. subsection 3.3). In subsection 3.3, we
show that for point data there always exists an overlap-free
split. The partitioning of the MBRs resulting from the over-
lap-minimal split, however, may result in under-filled nodes
which is unacceptable since it leads to a degeneration of the
tree and also deteriorates the space utilization. If the number
of MBRs in one of the partitions is below a given threshold,
the split algorithm terminates without providing a split. In

32

int X-DirectoryNode:: insert(DataObject obj, X-Node **new-node)
1

SET-OF-MBR *sl, *s2;
X-Node *follow, *new-son;
int return-value;

follow = choose-subtree(obj); /I choose a son node to insert obj into
return-value = follow->insert(obj, &new-son); // insert obj into subtree
update-mbr(follow->calc-mbr()); // update MRR of old son node
if (return-value == SPLIT)(

add-mbr(new-son-xalc-mbr()); // insert mbr of new son node into current nods

if (num_ofxnbrsO > CAPACITY){ // overflow occurs
if tsplit(mbrs, sl, s2) == TRUE){

// topological or overlap-minimal split was successful1
setxnbrs(sl);
*new-node = new XpirectoryNode(s2);
return SPLIT;

I
else // there is no good split
t

*new-node = new X-SuperNode();
(*new-node)->s.et-mbrs(mbrs);
return SUPERNODE;

1)
) else if (return-value == SUPERNODE){ // node 'follow' becomes a supernode
. remove~son(follow);

insert-son(new-son);
1
return NO-SPLIT;

I

Figure 7: X-tree Insertion Algorithm for Directory Nodes

this case, the current node is extended to become a super-
node of twice the standard block size. If the same case occurs
for an already existing supemode, the supernode is extended
by one additional block. Obviously, supernodes are only
created or extended if there is no possibility to find a suitable
hierarchical structure of the directory. If a supemode is cre-
ated or extended, there may be not enough contiguous space
on disk to sequentially store the supernode. In this case, the
disk manager has to perform a local reorganization. Since
supemodes are created or extended in main memory, the lo-
cal reorganization is only necessary when writing back the
supemodes on secondary storage which does not occur fre-
quently.

For point data, overlap in the X-tree directory may only
occur if the overlap induced by the topological split is below
a threshold overlap value (MAX_ovERLAp). In that case,
the overlap-minimal split and the possible creationof a su-
pemode do not make sense. The maximum overlap value
which is acceptable is basically a system constant and de-
pends on the page access time (T&, the time to transfer a
block from disk into main memory (TT&, and the CPU time
necessary to process a block (7’~~~). The maximum overlap
value (MurO’) may be determined approximately by the
balance between reading a supemode of size 2*BlockSize

1. Max0 is the probability that we have to access both son nodes
because of overlap during the search.

and reading 2 blocks with a probability of Max0 and one
block with a probability of (I-MaxO). This estimation is
only correct for the most simple case of initially creating a
supernode. It does not take the effect of further splits into ac-
count. Nevertheless, for practical purposes the following
equation provides a good estimation:

Max0 .2. (Tro + Tlr + TCPV) + (I- MUXO) . (Tro + TTr + TCPU)
= T,o+2~U’Tr+7’CPU)

a Max0 = TTr + TCPU

TIO + TTr + *CPU

For realistic system values measured in our experi-
ments (T,c = 20 ms, TT,. = 4 ms, Tcp” = 1 ms), the resulting
Max0 value is 20%. Note that in the above formula, the fact
that the probability of a node being in main memory is
increasing due to the decreasing directory size in case of us-
ing the supemode has not yet been considered. The-other
constant of our algorithm (MIN_FANOUT) is the usual
minimum fanout value of a node which is similar to the cor-
responding value used in other index structures. An appro-
priate value of MIN-FANOUT is between 35% and 45%.

The algorithms to query the X-tree (point, range, and
nearest neighbor queries) are similar to the algorithms used
in the R*-tree since only minor changes are necessary in ac-
cessing supemodes. The delete and update operations are
also simple modifications of the corresponding R*-tree al-
gorithms. The only difference occurs in case of an under-

33

boo1 X-DirectoryNode::split(SET-OF-MBR *in, SET-OF-MBR *outl, SET-OF-MBR *out2)
(

SET-OF-MBR tl, t2;
MBR rl, r2; ,'

// first try topological split, resulting in two sets of MBRs tl and t2
topological~split(in, tl, t2);
rl = tl->calc-mbr(); r2 = t2-kcalc-mbr();
// test for overlap
if (overlap(r1, r2) > biAX_OVERLAP)
1

// topological split fails -> try overlap minimal split
overlap-minimal-split(in, tl, t2);

// test for unbalanced nodes
if (tl->num-of-mbrs() -z MIN-FANOUT 11 t2->num-of-mbrs() < MIN-FANOUT)

// overlap-minimal split also fails (-> caller has to create supernode)
return FALSE;

/) ;~~~;n;,~~h;‘“ut2 = t2;

Figure 8: X-tree Split Algorithm for Directory Nodes

flow of a supemode. If the supemode consists of two blocks,
it is converted to a normal directory node. Otherwise, that is
if the supemode consists of more than two blocks, we reduce
the size of the supemode by one block. The update operation
can be seen as a combination of a delete and an insert opera-
tion and is therefore straightforward.

3.3 Determining the Overlap-Minimal Split

For determining an overlap-minimal split of a directory
node, we have to find a partitioning of the MBRs in the node
into two subsets such that the overlap of the minimum
bounding hyperrectangles of the two sets is minimal. In case
of point data, it is always possible to find an overlap-free
split, but in general it is not possible to guarantee that the two
sets are balanced, i.e. have about the same cardinality.

Definition 2 (Split)
ThesplitofanodeS =

1

{mbrl,...,mbr,} intotwosubnodes

s, =
1

mbr. , mbr. and

(S,#0 aLSZ#Oj’sdefinedas

S, =
i
mbri,, mbri

52 1

Split(S) = {(SI, ST)1 S = S, u S, A S, n S, = 0 } .

The split is called
(1) overlap-minimal iff]IMBR(S,) n MBR(S2)11 is minimal

(2) overlap-free iff jMBR(SI) n MBR(S,)I(= 0

(3) balanced iff -&IISt(-(&(l&.

For obtaining a suitable directory structure, we are in-
terested in overlap-minimal (overlap-free) splits which are
balanced. For simplification, in the following we focus on
overlapfree splits and assume to have high-dimensional

‘uniformly distributed point dam1 It is an interesting obser-

vation that an overlap-free split is only possible if there is a
dimension according to which all MBRs have been split
since otherwise at least one of the MBRs will span the full
range of values in that dimension, resulting in some overlap.

Lemma 1
For uniformly distributed point data, an overlapfree split is
only possible iff there is a dimension according to which all
MBRs in the node have been previously split. More
formally,

Split(S) is overlap-free ti
3 de {I, D} VmbrE S:

mbr has been split according to d

Proof (by contradiction):
7) j 9’ : Assume that for all dimensions there is at least

one MBR which has not been split in that dimension. This
means for uniformly distributed data that the MBRs span the
full range of values of the corresponding dimensions. With-
out loss of generality, we assume that the mbr which spans
the full range of values of dimension d is assigned to S1. As
a consequence, MBR(S,) spans the full range for dimension
d. Since the extension of MBR(S,) cannot be zero in
dimension d, a split using dimension d as split axis cannot be
overlap-free (i.e., MBR(S,) n MBR($) f 0). Since for all
dimensions there is at least one MBR which has not been
split in that dimension, we cannot find an overlap-free split.

99 e 9) : Assume that an overlap-free split of the node is
not possible. This means that there is no dimension which
can be used to partition the MBRs into two subsets S, and S2.
This however is in contradiction to the fact that there is a di-
mension d for which all MBRs have been split. For uniform-

1. According to our experiments, the results generalize to real data
and even to spatial data(cf. section4).

34

split tree

Node S

Figure 9: Example for the Split History

ly distributed point data, the split may be assumed to be in
the middle of the range of dimension d and therefore, an
overlap-free split is possible using dimension d.’ H

According to Lemma 1, for finding an overlap-free split
we have to determine a dimension according to which all
MBRs of S have been split previously. The split history pro-
vides the necessary information, in particular the dimen-
sions according to which an MBR has been split and which
new MBRs have been created by this split. Since a split cre-
ates two new MBRs from one, the split history may be rep-
resented as a binary tree, called the split tree. Each leaf node
of the split tree corresponds to an MBR in S. The internal
nodes of the split tree correspond to MBRs which do not ex-
ist any more since they have been split into new MBRs pre-
viously. Internal nodes of the split tree are labeled by the
split axis that has been used; leaf nodes are labeled by the
MBR they are related to. All MBRs related to leaves in the
left subtree of an internal node have lower values in the split
dimension of the node than the MBRs related to those in the
right subtree.

Figure 9 shows an example for the split history of a
node S and the respective split tree. The process starts with a
single MBR A corresponding to a split tree which consists of
only one leaf node labeled by A. For uniformly distributed
data, A spans the full range of values in all dimensions. The
split of A using dimension 2 as split axis produces new
MBRs A’ and B. Note that A’ and B are disjoint because any
point in MBR A’ has a lower coordinate value in dimension
2 than all points in MBR B. The split tree now has one inter-
nal node (marked with dimension 2) and two leaf nodes (A
and B). Splitting MBR B using dimension 5 as split axis cre-
ates the nodes B’ and C. After splitting B’ and A’ again, we
finally reach the situation depicted in the right most tree of
Figure 9 where S is completely filled with the MI&s A”, B”,
C,DandE.

According to Lemma 1, we may find an overlap-free
split if there is a dimension according to which all MBRs of
S have been split. To obtain the information according to
which dimensions an MBR X in S has been split, we only
have to traverse the split tree from the root node to the leaf
that corresponds to X. For example, MBR C has been split

according to dimension 2 and 5, since the path from the root
node to the leaf C is labeled with 2 and 5. Obviously, all
MBRs of the split tree in Figure 9 have been split according
to dimension 2, the split axis used in the root of the split tree.
In general, all MBRs in any split tree have one split dimen-
sion in common, namely the split axis used in the root node
of the split tree.

Lemma 2 (Existence of an Overlap-free Split)
For point data, an overlap-free split always exists.

Proof (using the split history).

From the description of the split tree it is clear that all
MBRs of a directory node S have one split dimension in
common, namely the dimension used as split axis in the root
node of the split tree. Let SD be this dimension. We are able
to partition S such that all MBRs related to leaves in the left
subtree of the root node arecontained in St and all other
MBRs contained in S2. Since any point belonging to St has
a lower value in dimension SD than all points belonging to
S2, the split is overlap-free*. H

One may argue that there may exist more than one over-
lap-free split dimension which is part of the split history of
all data pages. This is true in most cases for low dimension-
ality, but the probability that a second split dimension exists
which is part of the split history of all MBRs is decreasing
rapidly with increasing dimensionality (cf. Figure 10). If
there is no dimension which is in the split history of all
MBRs, the resulting overlap of the newly created directory
entries is on the average about 50%. This can be explained as
follows: Since at least one MBR has not been split in the split
dimension d, one of the partitions (without loss of generali-
ty: S l) spans the full range of values in that dimension. The

0.80

0.70

0.60

0.60

0.40

0.30

0.20

0.10

0.00

2.00 6.00 14.00 20.00 26.00 32.00

dimension

Figure 10: Probability of the Existence of a Second
Overlap-free Split Dimension

1. If the splits have not been performed exactly in the middle of the 2. Note that the resulting split is not necessarily balanced since sorted
data space, at least an overlap-minimal split is obtained. input data, for example, will result in an unbalanced split tree.

35

2 4 6 8 10 12 14 16

dimension

a. Point query b. 10 Nearest-Neighbor Query
Figure 11: Speed-Up of X-tree over R*-tree on Real Point Data (70 MBytes)

other partition S2 spans at least half the range of values of the
split dimension d. Since the MBRs are only partitioned with
respect to dimension d, Sl and S2 span the full range of val-
ues of all other dimensions, resulting in a total overlap of
about 50%.

The probability that a split algorithm which arbitrarily
chooses the split axis coincidentally selects the right split
axis for an overlap-free split is very low in highdimensional
space. As our analysis of the R*-tree shows, the behavior of
the topological R*-tree split algorithm in high-dimensional
space is similar to a random choice of the split axis since it
optimizes different criteria. If the topological split fails, our
split algorithm tries to perform an overlap-free split. This is
done by determining the dimension for the overlap-free split
as described above, determining the split value, and parti-
tioning the MBRs with respect to the split value. If the result-
ing split is unbalanced, the insert algorithm of the X-tree
initiates the creation/extension of a supernode (cf. subsec-
tion 3.2). Note that for the overlap-minimal split, informa-
tion about the split history has to be stored in the directory
nodes. The space needed for this purpose, however, is very
small since the split history may be coded by a few bits.

4. Performance Evaluation

To show the practical relevance of our method, we per-
formed an extensive experimental evaluation of the X-tree
and compared it to the TV-tree as well to as the R*-tree. All
experimental results presented in this sections are computed
on an HP735 workstation with 64 MBytes of main memory
and several GBytes of secondary storage. All programs have
been implemented in C++ as templates to support different
types of data objects. The X-tree and R*-tree support differ-
ent types of queries such as point queries and nearest neigh-
bor queries; the implementation of the TV-tree’ only
supports point queries. We use the original implementation

1 We use the original implementation of the TV-tree by K. Lin, H. V.
Jagadish, and C. Faloutsos [LJF 941.

of the TV-tree by K. Lin, H. V. Jagadish, and C. Faloutsos
[LJF 941.

The test data used for the experiments are real point data
consisting of Fourier points in high-dimensional space
(D = 2,4,8, 16), spatial data (D = 2,4,8, 16) consisting of
manifolds in high-dimensional space describing regions of
real CAD-objects, and synthetic data consisting of uniform-
ly distributed points in high-dimensional space (D = 2, 3,
4,6,8, 10, 12, 14, 16). The block size used for our experi-
ments is 4 KByte, and all index structures were allowed to
use the same amount of cache. For a realistic evaluation, we
used very large amounts of data in our experiments. The to-
tal amount of disk space occupied by the created index struc-
tures of TV-trees, R*-trees, and X-trees is about 10 GByte
and the CPU time for inserting the data adds up to about four
weeks of CPU time. As one expects, the insertion times in-
crease with increasing dimension. For all experiments, the
insertion into the X-tree was much faster than the insertion
into the TV-tree and the R*-tree (up to a factor of 10.45 fast-
er than the R*-tree). The X-tree reached a rate of about 170
insertions per second for a 150 MBytes index containing 16-
dimensional point data.

First, we evaluated the X-tree on synthetic databases
with varying dimensionality. Using the same number of data
items over the different dimensions implies that the size of
the database is linearly increasing with the dimension. This
however has an important drawback, namely that in low
dimensions, we would obtain only very small databases,
whereas in high dimensions the databases would become
very large. It is more realistic to assume that the amount of
data which is stored in the database is constant. This means,
however, that the number of data items needs to be varied ac-
cordingly. For the experiment presented in Figure 13, we
used 100 MByte databases containing uniformly distributed
point data. The number of data items varied between.8.3 mil-
lion for D=2 and 1.5 million for D=16. Figure 13, shows the
speed-up of the search time for point queries of the X-tree

36

a. Page Accesses

2 4 6 6 10 12 14 16

dimension

b. CPU-Time

Figure 12: Number of Page Accesses versus CPU-Time on Real Point Data (70 MBytes)

over the R*-tree. As expected, the speed-up increases with
growing dimension, reaching values of about 270 for D=16.
For lower dimensions, the speed-up is still higher than one
order of magnitude (e.g., for D=8 the speed-up is about 30).
The high speed-up factors are caused by the fact that, due to
the high overlap in high dimensions, the R*-tree needs to ac-
cess most of the directory pages. The total query time turned
out to be clearly dominated by the I/O-time, i.e. the number
of page accesses (see also Figure 12).

Since one may argue that synthetic databases with uni-
formly distributed data are not realistic in high-dimensional
space, we also used real data in our experiments. We had
access to large Fourier databases of variable dimensionality
containing about 70 Mbyte of Fourier data representing
shapes of polygons. The results of our experiments (cf. Fig-
ure 11) show that the speed-up of the total search time for
point queries is even higher (about 90 for D=4 and about

300.00

260.00

200.00

160.00

100.00

60.00

0.00

2 4 6 6 10 12 14 16

dimension

Figure 13: Speed-Up of X-tree over R*-tree on Point
Queries (100 MBytes of Synthetic Point Data)

320 for D=8) than the speed-up of uniformly distributed
data. This result was surprising but corresponds to the high-
er overlap of real data found in the overlap curves (cf.
Figure 2). Additionally to point queries, in applications
with high-dimensional data nearest neighbor queries are
also important. We therefore also compared the perfor-
mance of nearest neighbor queries searching for the 10
nearest neighbors. The nearest neighbor algorithm support-
ed in the X-tree and R*-tree is the algorithm presented in
[RKV 951. The results of our comparisons show that the
speed-up for nearest neighbor queries is still between about
10 for D=6 and about 20 for D=16. Since the nearest neigh-
bor algorithm requires sorting the nodes according to the
min-max distance, the CPU-time needed for nearest neigh-
bor queries is much higher. In Figure 12, we therefore
present the number of page accesses and the CPU-time of
the X-tree and the R*-tree for nearest-neighbor queries.
The figure shows that the X-tree provides a consistently
better performance than the R*-tree. Note that, in counting
page accesses, accesses to supemodes of size s are counted
as s page accesses. In most practical cases, however, the su-
pernodes will be cached due to the better main memory
utilization of the X-tree. For practically relevant buffer siz-
es (1 MByte to 10 MBytes) there is no significant change of
page accesses. For extreme buffer sizes of more than 10
MBytes or less than 1 MByte, the speed-up may decrease.
The better CPU-times of the X-tree may be explained by
the fact that due to the overlap the R*-tree has to search a
large portion of the directory which in addition is larger
than the X-tree directory.

Figure 14 shows the total search time of point queries
depending on the size of the database (D=16). Note that in
this figure we use a logarithmic scale of the y-axis, since oth-
erwise the development of the times for the X-tree would not
be visible (identical with the x-axis). Figure 14 shows that
the search times of the X-tree are consistently about two or-
ders of magnitude faster than those of the R*-tree

37

Figure 14: Total Search Time of Point Queries for Figure 16: Comparison of X-tree, TV-tree, and
Varying Database Size (Synthetic Point Data) R*-tree on Synthetic Data

(for D=16). The speed-up slightly increases with the data-
base size from about 100 for 20 MBytes to about 270 for 100
MBytes. Also, as expected, the total search time of the
X-tree grows logarithmically with the database size which
means that the X-tree scales well to very large database siz-
es.

We also performed a comparison of the X-tree with the
TV-tree and the R*-tree. With the implementation of the
TV-tree made available to us by the authors of the TV-tree,
we only managed to insert up to 25.000 data items which is
slightly higher than the number of data items used in the
original paper [LJF94]. For the comparisons, we were
therefore not able to use our large databases. The results of
our comparisons are presented in Figure 16. The speed-up of
the X-tree over the TV-tree ranges between 4 and 12, even
for the rather small databases. It is interesting to note that the

6.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

2 4 6 6 10 12 14 16

dimension

Figure 15: Speed-Up of X-tree over R*-tree on
Real Extended Spatial Data

performance of the R*-tree is better than the performance of
the TV-tree for D smaller than 16.

In addition to using point data, we also examined the
performance of the X-tree for extended data objects in high-
dimensional space. The results of our experiments are
shown in Figure 15. Since the extended spatial data objects
induce some overlap in the X-tree as well, the speed-up of
the X-tree over the R*-tree is lower than for point data. Still,
we achieve a speed-up factor of about 8 for D=16.

5. Conclusions

In this paper, we propose a new indexing method for
high-dimensional data. We investigate the effects that occur
in high dimensions and show that R-tree-based index struc-
tures do not behave well for indexing high-dimensional
spaces. We introduce formal definitions of overlap and
show the correlation between overlap in the directory and
poor query performance. We then propose a new index
structure, the X-tree, which uses - in addition to the concept
of supernodes - a new split algorithm minimizing overlap.
Supernodes are directory nodes which are extended over the
usual block size in order to avoid a degeneration of the index.
We carry out an extensive performance evaluation of the
X-tree and compare the X-tree with the TV-tree and the
R*-tree using up to 100 MBytes of point and spatial data.
The experiments show that the X-tree outperforms the
TV-tree and R*-tree up to orders of magnitude for point que-
ries and nearest neighbor queries on both synthetic and real
data.

Since for very high dimensionality the supemodes may
become rather large, we currently work on a parallel version
of the X-tree which is expected to provide a good perfor-
mance even for larger data sets and the more time consum-
ing nearest neighbor queries. We also develop a novel
nearest neighbor algorithm for high-dimensional data which
is adapted to the X-tree.

38

Acknowledgment

We are thankful to K. Lin, C. Faloutsos, and H. V. Jag-
adish for making the implementation of the TV-tree avail-
able to us.

References
[AFS 931

[AGMM 901

[BKSS 901

[DE 821

[Fal94]

[FL 951

[Gut 841

[GN 911

[Har 671

[Jag 911

[Kuk 921

[KW 781

[LJF 941

Agrawal R., Faloutsos C., Swami A.: ‘Eficient
Similarity Search in Sequence Databases’, Proc.
4th Int. Conf. on Foundations of Data Organization
and Algorithms, Evanston, ILL, 1993, in: Lecture
Notes in Computer Science, Vol. 730, Springer,
1993, pp. 69-84.

Altschul S. F., Gish W., Miller W., Myers E. W.,
Lipman D. J.: ‘A Basic Local Alignment Search
Tool’, Journal of Molecular Biology, Vol. 215,
No. 3.1990, pp. 403-410.

Beckmann N., Kriegel H.-P, Schneider R., Seeger
B.: ‘The R*-tree: An Efiient and Robust Access
Method for Points and Rectangles’, Proc. ACM
SIGMOD Int. Conf. on Management of Data,
Atlantic City, NJ, 1990, pp. 322-331.

Dunn G., Everitt B.: ‘An Introduction to Mathe-
matical Taxonomy’, Cambridge University Press,
Cambridge, MA, 1982.

Faloutsos C., Barber R., Flickner M., Hafner J., et
.al.: ‘Emient and Efective Querying by Image
Content’, Journal of Intelligent Information Sys-
tems, 1994, Vol. 3, pp. 23 l-262.
Faloutsos C., Lin K.: ‘F~tmap: A fast Algorithm
for Indexing, Data-Mining and Wsualization of
Traditional and Multimedia Da&sets’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, San
Jose, CA, 1995, pp. 163- 174.

Guttman A.: ‘R-trees: A Dynamic Index Structure
for Spatial Searching’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Boston, MA, 1984,
pp. 47-57.
Gunther O., Noltemeier H.: ‘Spatial Durabase
Indices For Large Extended Objects’, Proc. 7 th Int.
Conf. on Data Engineering, 1991, pp. 520527.

Harman’H. H.: ‘Modern Factor Analysis’, Univer-
sity of Chicago Press, 1967.

Jagadish H. V.: ‘A Retrieval Technique for Similar
Shapes’, Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 1991, pp. 208-217.

Kukich K.: ‘Techniques for Automatically Cor-
reqing Words in Text’, ACM Computing Surveys,
Vol. 24, No. 4,1992, pp. 377-440.
Kruskal J. B., Wish M.: ‘Multidimensional Scal-
ing’, SAGE publications, Beverly Hills, 1978.
Lin K., Jagadlsh H. V., Faloutsos C.: ‘The TV-tree:
An Index Structure for High-Dimensional Data’,
VLDB Journal, Vol. 3,1995, pp. 517-542.

[MG 931

[MG 951

[MN 951

[NHS 841

[RKV 951

[Rob 811

[SBK 921

[SH 941

[SK 901

[SRF 871

[WJ 961

M’+’ 801

Mehrotra R., Gary J. E.: ‘Feature-Based Retrieval
of Similar Shapes‘, Proc. 9th Int. Conf. on Data
Engineering, Vienna, Austria, 1993, pp. 108- 115.
Mehrotra R., Gary J. E.: ‘Feature-Index-Based
Similar Shape retrieval’, Proc. of the 3rd Working
Conf. on Visual Database Systems, 1995,
pp. 46-65.
Murase H., Nayar S. K: ‘Three-Dimensionul
Object Recognition from Appearance-Parametric
Eigenspace Method’, Systems and Computers in
Japan, Vol. 26, No. 8, 1995, pp. 45-54.
Nievergelt J., Hinterberger H., Sevcik K. C.: ‘The
Grid File: An Adaptable, Symmetric Multikey File
Structure’, ACM Trans. on Database Systems,
Vol. 9. No. 1, 1984, pp. 38-71.
Roussopoulos N., Kelley S., Vincent F.: ‘Nearest
Neighbor Queries’, Proc. ACM SIGMOD Int.
Conf. on Management of Dam, San Jose, CA,
1995, pp. 71-79.
Robinson J. T.: ‘The K-D-B-tree: A Search Struc-
ture for large Multidimensional Dynamic
Indexes’, Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 1981, pp. 10-18.
Shoichet B. K., Bodian D. L., Kuntz I. D.: ‘Molec-
ular Docking Using Shape Descriptors’. Journal of
Computational Chemistry, Vol. 13, No. 3, 1992,
pp. 380-397.
Shawney H., Hafner J.: ‘E@ient Color Histogram
Indexing’, Proc. Int. Conf. on Image Processing,
1994, pp. 66-70.
Seeger B., Kriegel H.-P.: ‘The Buddy Tree: An Efi-
cient and Robust Access Methodfor Spatial Data
Base Systems’, Proc. 16th Int. Conf. on Very Large
Data Bases, Brisbane, Australia, 1990,
pp. 590601.
Sellis T., Roussopoulos N., Faloutsos C.: ‘The
R+-Tree: A Dynamic Indexfor Multi-Dimensional
‘Objects’, Proc. 13th Int. Conf. on Very Large Data-
bases, Brighton, England, 1987, pp 507-518.
White, D., Jain R.: ‘Similarity Indexing with the
SS-tree’, Proc. 12th Int. Conf. on Data Engineer-
ing, New Orleans, LA, 1996.
Wallace T., Wintz P.: ‘An Eficient Three-Dimen-
sional Aircraft Recognition Algorithm Using Nor-
malized Fourier Descriptors ‘, Computer Graphics
and Image Processing, Vol. 13,1980, pp. 99-126.

39

