
Incremental Maintenance of
Externally Materialized Views

Martin Staudt Matthias Jarke

RWTH Aachen, Informatik V, Ahornstr. 55, D-52056 Aachen, Germany
{staudtjarke}@informatik.rwth-aachen.de

Abstract

With the advent of the Internet, access to
database servers from autonomous clients will
become more and more popular. In this paper,
we propose a monitoring service that could be
offered by such database servers, and present
algorithms for its implementation. In contrast
to published view maintenance algorithms, we
do not assume that the server has access to
the original materialization when computing
differential view changes to be notified. We
also do not assume any database capabilities
on the client side and therefore compute pre-
cisely the required differentials rather than
just an approximation, as is done by cache
coherence techniques in homogeneous client-
server databases. The method has been im-
plemented in ConceptBase, a meta data man-
agement system supporting an Internet-based
client-server architecture, and tried out in
some cooperative design applications.

1 Introduction

Facilitated by the Internet, wide-area access to
database servers by autonomous clients (which may
or may not have local databases) is becoming more
and more popular (figure 1). To reduce application
programming effort, such clients demand more sophis-
ticated services than the simple read and write trans-
actions offered by current standards such as RDA.

Permission to copy without fee all of part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

An obvious candidate is a monitoring service. The
client does not only request the initial answer to a
certain query but also notifications about changes in
this answer over an extended period of time, with a
specified quality of service in terms of precision and
actuality.

Database monitoring is not a new problem. Even in
central databases, it is needed for notifying application
programs or end-users about integrity violations [l] , or
to assist users in supervising complex processes (stock
trading, power plants, . ..). A more recent example is
group awareness in cooperative engineering: design-
ers working on a certain aspect of a product should
be made aware of concurrent changes in requirements
or by other designers. Yet another step towards the
open electronic Internet market is change propagation
in data warehousing [23, lo].

Traditional database systems leave the responsibil-
ity of keeping informed about updates largely to the
client. Since the client cannot know what changes have
happened, it must repeat queries in a polling mode.
Even worse, although the server must re-compute the
whole query each time, the client usually must in addi-
tion compute the differentials to highlight themto the
end-user, thus duplicating a lot of DBMS functionali-
ties.

Active database technology offers a partial solu-
tion by triggers that can produce effects outside the
database. Distributed programming languages such
as Java moreover allow the server to add certain func-
tionalities to client programs, e.g. ensuring that they
can accept change notifications and relate them to the
original query. Recently, our group has also developed
a ‘coherency index’ and corresponding extensions to
distributed transaction management by which timeli-
ness of service can be tailored to customer wishes [3].

However, the question how to compute the neces-
sary changes is not answered by these base technolo-
gies if the view definition is reasonably complex or if
views are defined on top of each other (possibly with
recursion). The corresponding trigger programs be-
come so complex that it is not conceivable they could

75

Clients

ram

hta Model

Server
DBMS

derived data

Figure 1: Client-server architecture for database applications

be written by client developers.
The published view maintenance algorithms [5] do

not fully solve the monitoring problem since they as-
sume that views are materialized logically within the
database, either within the server or by endowing the
client with DBMS capabilities plus a local database
cache (AP3 in figure 1). Such a cache gives the sys-
tem a lot of flexibility when to propagate changes, and
with what precision [15, 81, but is easily possible only
within a homogeneous environment. Moreover, it just
shifts the problem from the client-server communica-
tion to the database-interface communication within
the client.

In this paper, we present two related algorithms
for a monitoring service. The first one, reported in
section 3, assumes that the server maintains a local
view materialization in addition to the external one. ,
It achieves the precision of state-of-the-art incremen-
tal view maintenance techniques by a purely declara-
tive rule program, rather than resorting to procedural
components [6] or meta predicates [9].

This declarative approach is important because it
is a prerequisite for the second algorithm in which the
server only remembers the view definition to be moni-
tored (section 4); we have not found a solution for this
problem in the literature. The algorithm neither main-
tains a server-side materialization nor has it access to
the external client-side materialization. It also elimi-
nates the need for client-side computing of view differ-
entials as these are precisely computed and sent by the
server. The basic idea is to further rewrite the mainte-
nance rules into trigger rules that selectively re-derive

the pieces of an externally materialized view needed for
computing the client-view differentials, using a stan-
dard DBMS query evaluator. As a consequence, the
approach advocated here could also be used by a medi-
ator that operates on top of a collection of distributed
source databases [22].

The embedding of the algorithm in a full monitoring
service is illustrated in section 5, by briefly describing
its implementation and initial application experiences
in ConceptBase, a meta database management system
supporting a deductive object data model and oper-
ating in an Internet-based client-server architecture
Section 6 discusses related work and open issues.

2 Notations and Example

2.1 Notation and Prerequisites

The algorithms in this paper are presented in a Data-
log formalism [21] although they apply equally to other
extended relational database languages’. A deductive
database consists of a set of base relations EDB and a
set of rules defining intensional relations IDB: These
rules are of the form

p(T+h(&) ,‘..) L(.c)
where p is a predicate symbol corresponding to a

relation in IDB, the Zi are literals of the form ri or 7 ri
for relations pi and 2, Zi are non disjunct sequences
of constants and variables. For readability, we omit
variables in the following. We assume that all rules
are safe: variables occuring in the rule head occur in

‘For example, our implementation uses the deductive object
language Telos [121.

76

ielete

to be insertet

to be deleted

Figure 2: (a) Changes in the database (b) Changes in the view
the rule body, too, and variables appearing in negated
predicates are bound through some additional positive
literals in the rule body.

Intensional relations may represent views of appli-
cations; in this case, we call the derivation rules viev
definitions. Query optimization algorithms such as the
magic set transformation [21] convert these view defi-
nitions into sets of query rules which are more suited
for an efficient bottom-up query evaluation procedure.
An intensional relation is materialized if its derived
extension is stored in the database.

Update transactions on base relations have to be
propagated through the rules towards the view rela-
tions in order to provide notifications to the affected
client applications. The base data updates for a re-
lation r are assumed to be available as relations rins
and rde’. They are applied to r after the process of
computing their consequences on derived views. In
general, the set of views that has to be checked for
changes is based only on a restricted subset of the IDB
rules that can be determined easily, e.g. by a rule/goal
graph [21].

2.2 Incremental View Maintenance: An Ex-
ample

The following simple scenario illustrates the problem
of maintaining views on the database managed by ex-
ternal client tools. An extensional database relation
edge represents a directed graph, and a view main-
tained by a graph display tool contains the transitive
closure of this graph. The view definition defines an
intensional relation closure by two Datalog rules:

RI : closuTe(z, y) : - edge(z, y).
R2 : closwe(z, y) : - edge(z, z), closure(t, y).

A sample extension of edge is shown in figure 2 (a).
It has a subgraph G’ where g is the only node that is
connected with nodes occuring in G’. G’ is interpreted

as the rest of relation edge which is not touched by up-
date operations. G’ may be a very large graph and the
computation of its transitive closure G’* is expensive.

When starting up, the graph display tool asks the
database to compute the extension of closure(z, y). It
loads the result into its memory, transforms it into its
local data structure and displays it on the screen as in
figure 2 (b).

Now consider the following updates on the base
relation edge: a delete operation for the tuple
{edge(b,c)}; and an insert operation with the tuple
{edgeh 4).

The recent literature on incremental view mainte-
nance seems to converge on a three-step consensus pro-
cedure [9,6] that computes view differentials for a wide
range of view definitions, including negation and ag-
gregate functions:

l estimate the consequences of deletions
The deletion cuts off the relationship between
nodes b and c which results in an elimination of
the links {(a,c>,(a,g>,(b,c>,(b,g)).

l prune those derived deletions for which al-
ternative derivations exist
Despite of the cut link (b, c) e and f are still con-
nected with c and g since there are additional cor-
responding paths in the graph via node d.

l add the consequences of insertions
The insertion yields three new links
Wv%h4>hd~.

Some special cases allow for faster counting algo-
rithms, some complex cases (e.g. duplicates) require
additional treatment. While most formal results have.
been developed in a Datalog context, results have
also been transfered to active relational databases [2],
multi-databases and data warehouses [23, lo].

77

3 Incremental Maintenance of Materi-
alized Views: A Declarative Solution

In this section, we present the first group of algorithms
which assumes that views are in fact materialized not
only in the external client but also in the server.

Our algorithm (section 3.1) follows the three-step
approach just shown. However, it rewrites the origi-
nal view definitions to a purely declarative program of
maintenance rules rather than one that is mixed with
procedural steps [S]. We also need less assumptions
than [9] who uses meta predicates for control and ad-
ditionally requires not only the old state but also the
new state of all extensional and intensional relations
to be completely available.

3.1 Generating Maintenance Rules

Generating view maintenance rules requires rewriting
the original view definitions in order to incorporate
differentials in the rule bodies and heads. A given
view definition

(0) :p:-rl,...,m.
is rewritten to a set of maintenance rules whose eval-

uation will compute the set of implicit insertions and
deletions to be propagated. The rules are formulated
in a way that mimicks the rough algorithm mentioned
in the previous section.

The first subset of maintenance rules consists of the
following rules (1 <_ i 1. n):

(0;) :pdel:- Tl,..., Ti-l,Tp’,Ti+l,..., Tn.
(A$) : pnew : - p, 1pd=l.

The (Di) 1 d ru es erive all possible deletions of tuples
in relation p caused by deleted tuples in body relations.
If ri is a base predicate, rpL contains the explicitly
deleted facts in ri otherwise it contains a superset of
the tuples to be deleted in ri due to deletions caused
by other rules. The rule (Ni) computes those tuples
that definitely remain for p in the new database state.
For all base predicates among the ri a rule (N,!) does
exactly the same’:

@vi) : ry=w :-r;, +.
Rule R checks which tuples in pde’ have alterna-

tive derivations on the “minimal” new database state
gained so far. Those tuples are put back into pflew by
rule (Ns).

(R) : p=d: - pd=l,r;ew,. . . ,?-new.
(Nz) : pn=w : - p=d,

The next rules propagate insertions of base relation
tuples towards the intensional relations. This is done
by ordinary semi-naive rewriting, i.e. by constructing
rules (1;) that join new tuples inserted into one body
relation with full extensions of all others. The newly
derived insertions in addition have to be put by (iVs)

2A corresponding rule for intensional predicates is generated
when compiling one of their defining rules.

into the .new state of p The same must also be done
for all base predicates among the ri by rules (N,!‘).

(Ii) : pins : - TTew,. . ,Tr:r,Tfns,T$;U,. ,T,new.
(I%) : p”‘W : - pins.
(N:‘) : ryW : - p,

Finally, the net insertions and deletions have to be
computed by relations pPluJ and pminus. Those tu-
ples with only additional derivation paths are no real
(but idle) insertions. Tuples loosing a derivation path
but still being supported by others or even newly in-
troduced ones are no real (but phantom) deletions.
Note, that the other two types of update abnormali-
ties, namely idle deletions and phantom insertions are
already prevented by rule (Ni) resp. may arise in case
of negated body predicates only. The latter case is
discussed below and can be overcome by stratification
and a suited initialization of the ins and de1 predicates
on each evaluation layer.

(El) : pplua : - pi**, 1p.

Example 1 (Generating view maintenance rules)
We continue the example from section 2.2 by rewrit-

ing rule RI as follows:

(01) : doswede (x, y) : - edgede’(x, y).
(Nl) : closureneW (2, y) : - closure(x, y), ~closuredel(x, y).
(IV:) : edgeneW(x, y) : - edge(x, y), Tedgede’(x, y).
(R) : closurered (x,y):-closurede’(x,y),edgeneW(x,y).
(N2) : clo~u~~~~~(x, y) : - cloyered(x, y).

(II) : closwe’*‘(x, y) : - edgefns(x, y).

(N3) : closufenew(x, y) : - closurein*(x, y).
(IV;) : edge”““ (x,y):-edgeinS(x,y).

(El) : closu7-eP*~b(x, y) : - closurein”(x, y), 72losure(x, y).
(Ez) : closure”“““* (x, y) : - closure de’b,Y),

-closwe~~~, “yi,
Tclosure 2, .

Transformation of rule R2 yields the following ad-
ditional rules3

(Dl) : clo.9wede’(x, y) : - edgede’(x, z), closvre(e, y).
(D2) : doswede* (2, y) : - edge(x, z), closurede’(z, y).
(R) : closurered(x, y) : - clo.w-ede’(x, y), edgenew(x, z),

closweneW(z, y).
(II) : closweins(x, y) : - edge’““(x, t), closwenew(z, y).
(12) : closweina(x, y) : - edgenew(x, z), closureins(~, y).

0

Algorithm 1 summarizes the transformations dis-
cussed so far.

Algorithm 1 (Generating maintenance rules)
Input: Aruleoftheform (0) :p:-TI,...,T,.

Output: A set M of maintenance rules for (0).

3The rules (N;),(Ni),(N,!I) and (Ei) are the same for both
RI and R2.

78

begin
M := 0;
for i:= 1 to n do

generate rules (0;) and (Ii);
M := MU {(oi), (A)} od;

for j:= 1 to n
if rj is base relation then do

generate rules (N,!) and (NJ!‘);
:= Mu{(iV!) (I’?‘)} od

generate rulZ (I%), (Nz), (kj, $31, (El), (Ez);

M := M U {WI), Vz), (RI, W3), (Ed, (~72));
return M
end Cl

The following theorem shows that evaluating the
rewritten rules generated by algorithm 1 is a sound
and complete procedure for computing the differen-
tials between the database states before and after an
extensional update operation takes place.

Theorem 1 Let Sold and 27”“” be the old resp. new
database state concerning a given set of base data up-
dates. Moreover, assume SpOld and Siew to be the
tuples belonging to a relation p, where Ssld is mate-
rialized for each p as its extension. Then for each
p the evaluation of the rules generated by algorithm
1 yields the exact positive and negative differentials
splus and sminus as extension of pPlus and pminUs
&, that ,,:W = sold \ ShWS " SPlUS and pinus c

Sold A Sold n SPluS = 0 where SPluS .- .- UpStus and
sminus := Up cginw.

Proof. The proof is given in [17]. cl

3.2 Evaluation with Access to View Caches

The maintenance rules in example 1 make obvious that
it is necessary to access the old contents of closure
before the base data update operations took place.
Bottom-up evaluation approaches like [6] therefore re-
quire that the intensional relations involved are com-
pletely materialized. The view maintenance process
then consists of an evaluation of the generated mainte-
nance rules, without using the initial view definitions.

Some of the generated rules contain negated predi-
cates in the body even though the original rules were
pure Datalog rules. For evaluating these rules the
predicates have to be partitioned into strata such that
no two predicates in one stratum depend negatively on
each other and predicates may only called negatively
by predicates of a higher stratum. Note, that algo-
rithm 1 guarantees stratifiability because the transfor-
mation itself keeps this property and the newly intro-
duced predicates may not cause side effects with other
rules. The evaluation proceeds stratum-by-stratum
starting with the extensional predicates.

Example 2 (Evaluating view maintenance rules)
For our example the following strata can be ob-

tained:
SO = {edge, closure, edgedel, edgeins}
SI = {doswede’, edgenew}
Sz = {closureneW, Closurered, closureinS, dosuTepl”s}
S3 = {cZosu~eminus}

Let edge = ((f,e),(e,d),(e,a),(a,b),(d,c),(b,c),
(c, g)} U edge’ as in subsection 2.2 where edge’ (with
closure edge’*) represents the independent subgraph
G’ (G’*, resp.). The transitive closure of edge is the
relation closure as displayed in figure 2. The exten-
sional update relations are given by edgede’ = {(b, c)}
and edgeins = {(h, d)}.

s1:
It. 1:

It. 2:
It. 3:
It. 4:
s2:
It. 1:

It. 2:

It. 3:

s3:

cZosuredel := {(b, c), (b, g)}
edgenew := {if,~ij(e,d),(e,a),(a,b),(d,c),

C,
dosuredel *- dosuredel U {(a, c), (a, g)} .-
cZosuredel := dosuredel U {(e, c), (e, g)}
doswede := doswede U {(f, c), (f, g)}

~oSu~enew = ((c,g),(d,g),(d,c),(erd),(e,a),
(e,bL(f,e),(f,4
(f,b),(f,d))uedge’*

closureins := {(h 4, (h 4 (h 9))
closurered =
(gosurenew ,&!~;g$l

U Ue,c>, (e~g>~
dosureP1us := {(h, d), (h, c), (h, g)}
closurered := closurered U {(f,c), (f,g)}
closurenew := closure”ew U {(f, c), (f, g)}

closureminus by> := {jba~;~lb~d> (b>c),
>

Hence, the result is the same ‘r&in fig. 2(b). 0

4 Incremental View Maintenance with
Rederivation on Demand: The ROD
Algorithm

We now turn to the case where the view is material-
ized only externally. Change propagation in this case
requires partial re-derivation of the externally materi-
alized views on demand. To achieve this, we further
rewrite the maintenance rules from section 3 into a set
of triggers. While section 4.1 describes these steps for
standard Datalog section 4.2 shows that adding nega-
tion is not a major problem. Since view maintenance
and deductive query processing can both handle ag-
gregate functions like negation [6, 111, our approach
covers a fairly large class of view definition languages.
An evaluation algorithm that jointly exploits the main-
tenance and the query rules for view maintenance at
runtime is presented in section 4.3.

79

4.1 Rederivation on Demand: ROD

For evaluating rules (Oi), (R), (Ii), (El), it is necessary
to access both the extensional and the intensional rela-

tions of the old database state (either directly or indi-
rectly). If the view caches are not accessible, we need a
further transformation of the maintenance rules which
rederives the relevant parts of the intensional relations
on demand.

The basic idea is similar to the supplementary
magic set algorithm [21]: we need ,a triggering fact in
each rule that enables firing and propagates constants.
The magic set algorithms employ magic predicates for
this p&pose. For maintenance rules, this role can be
played by the newly introduced update predicates pdel
and pins

4.1.1 Rewriting deletion rules

Starting with a rule
(D;):pd”‘:-Tl,... de1

,ri-l,Ti ,Ti+l,...,Tn.

the insertion of tuples into rpl means instantiat-
ing the arguments of rpl and of all predicates rj that
share variables with r?l. Hence, their bindings have
to be propagated from right to left towards ri, as well
as from left to right towards rn. This propagation cor-
responds to a computation of joins in a given order4.
The join results for each (Oi) are expressed as supple-
mentary derived relations:

de1 (q-l) : sup;eI :-r&l,?-; .
(Dy-2) : sup~~z:-ri-2,sup~-p
. . .
(@) : sup::- n,s’1Lp:.

p& : SU$+l : - P;Ti+1.

I : su *+2:- supi+1, Ti+s.

. . .

(0;) : sup~:-sup;-l,rn.

Finally, the two “streams” from rte’ to ri and to r,
have to be joined:

(0;) : pdel : - sup:, sup;‘. (if j 6 (1, nl)
P

de1 .--sup:. (if j = 1)

P
de1 :-sup:. (if j = n)

Informally, the head arguments of each of (j #
i) are those variables that do not occur further left
(j < i) or right (j > i) with respect to ri and are not
needed for performing the final join. More precisely
the arguments A of sup: are given as follows:
if j < i - 1 A contains all variables Y of rj and

st~p~+~ with $<k<,, v appears in rk
or &<k<j 21 appe&s in rk or v ap-
pears-in pde’

80

4As the example at the end of this section shows, almost no
rewriting is necessary when n = 1 or n = 2. The adaption of
rewriting is obvious and not discussed in detail for space reasons.

if j > i + 1 A contains all variables v of SUP&
and r-j with &<k<i v appears in rk
or 3j<k<n w appears in rk or v ap-
pears in pdel

if j = i - 1 A contains’all variables v of rj and
rF1 with 3i<k<n v appears in rk -
or &<k<i-l v appears in rk or V ap-
pearsin pdel

if j = i + 1 A contains all variables v of rpl and
rj with 3 l<k<i v appears in rk
or 3i+l<k<n w appears in rk or V ap-
pears in pxel

The magic-set transformation of a rule

introduces so-called magic predicates m-gi for each in-
tensional body predicate gi that a) propagate variable
bindings from other body literals and b) initiate the
derivation of all relevant tuples of gi satisfying these
bindings. This is done by inserting the magic predi-
cates m-gi as a kind of guard in.each rule defining gi,
and by generating additional magic rules (with m-gi as
conclusion) that fire whenever a subset of gi is needed
for some join computation.

We assume that the original-view definitions have
already been transformed to query rules with the sup-
plementary magic-set algorithm. In order to have the
relevant tuples in Tj of the old database state avail-
able for the maintenance rules (@), we have to gener-
ate further magic rules (it4&) that trigger the defining
query rules for each rj. The query rules can then de-
rive exactly the needed set of tuples, using a standard
DBMS query processor to compute the joins5.

The right hand side of each magic rule consists
of the join result gained from the preceding subgoals
which is intended to be joined with rj. The magic
predicate mrj at the left hand side takes over only
those arguments from rj that are either constants or
variables appearing and bound by the right hand side.
As usual the mrj are adorned, i.e. marked with a
pattern consisting.of a sequence of b’s and f’s for each
position in rj depending on whether the argument is
left out, (f) or not (b).

(iv;;‘) : ?7Lri+1: -T-p
(Ik?~~‘) :77&-T;-1 Z-T?’
(i@f2) : 7723i-2 I-SUpi-1

. . .
(M&) : m-r1 : - sup2
(MAj2) : m-T;+2 : - SzLpi+l

ii&)) : m-Tn : - supn-l
These magic rules ensure that only those parts of

the (old) extensions srf rj are derived that are relevant

5Note, that for the extensional relations among the rj magic
rules are of course not required since they are directly accessible.

de1 for the join with ri . As a consequence evaluating the
rules

(ivl) : pnew : -p, 7pdel.
(Nl) : T-p-J : - rj, 7p.

yields only a partial extension of p and ri in the new
database state pne”’ and ry”’ respectively.

4.1.2 RewFiting rederivation rules

The rederivation step (using rule R) for tuples that
have an alternative derivation path starts with the ex-
isting new partial extensions pne” and T-Y”“.

join between tu-
ples of the overestimate pde’ requires materialization
of additional tuples from the old states of p and the
ri. Therefore, we need a triggering mechanism which
propagates bindings from pdel to the rre”’ predicates.
This can be reached by rewriting (R) as follows:

(Rl) : sup:1 : -pdei;;;e;?&
(R2) : sup:’ : - supl ,7-z .

(Rn) : pr=d:-s?Lpfrl_l,Ty.
Again we have to ensure that all tuples needed to

join szlpif-i and r3ew are available in rye”‘. This can be
done by rederiving the candidate tuples from the old
database &ate, i.e. in rj. This derivation is initiated
by corresponding magic rules (MA):

(MA) : m-?-1 : -pd=*.
(Mi) : m-T2 : - sup:l.
. . .
(+I;) : m-Tn : - sup;:1

Rules (iVi) and (Nil) then copy all tuples from rj
that definitely remain in the new database state into
ryW. The overestimate of deletions ry’ used by these
rules which leads to, potentially missing tuples6 for
ryw is corrected by rule (Nz) generated for the rules
defining Tj .

4.1.3 Rewriting insertion rules

The next step of rewriting the maintenance rules con-
cerns the rule set (Ii) which incrementally propagates
the insertions. As already mentioned the rewriting
from the view definition (0) to the set (Ii) is ex-
actly standard semi-naive rewriting and has now to
be supplemented by corresponding magic-set transfor-
mations that are essentially the same as the transfor-
mations for the rule set (Di) with the difference that
the body literals now access the new database state.

. . .
III. (II’) : supl III . - Tyw , sup2 .

60f course only if a rule for rj exists.

.
(I%?) : sup;” : - sup;!!l, 7$ew.
(Ii) : p’nS : - SzLPl III, supf&I1.

Since some necessary tuples may be not available in
the partially new states rlew, we have again to rederive
additional parts of the old state through suited magic
rules (Mii):

(M;;‘) : m-?-j+1 : - $s
(My) : m-?-j-1 : - Tp
(Mj,Y2) : m-?-;-2 : - sup,!f:

(M:;) : mm : - sup:”
(M;,?‘) : m-r;+2 : - sup;::
. .
(MI”;) : m-Tn : - .s~lp~L!~

The rules (Ni) and (Nz) for each ri then ensure
that only those tuples from the rederived set go into
T?~'" that were not deleted or at least were rederived. z

4.1.4 Rewriting idle checks

The last rule to be looked at in order to provide on-
demand access to the old database state is (El) which
computes the net insertions as difference between pins
and p. This rule checks whether a tuple derived as
to be inserted into pnew in fact was not already in
p before, i.e. is not an idle insertion. The check can
simply be realized by adding the following magic rule:

(M~Q) : m-p:-pins.
This rule guarantees that all idle insertions are

caught by trying to rederive them in the old database
state.

Based on these transformation steps, the complete
transformation procedure of a rule into a set of main-
tenance rules is given by algorithm 2.

Algorithm 2 (The ROD algorithm)
Input: Aruleoftheform (0) :p:-TI,...,T,.
Output: A set M’ of maintenance rules for (0).

begin
generate from (0) a rule set M by algorithm 1;
M’:=M;
for i:= 1 to n do

for j:= 1 to n do
generate from (0;) E M’ rules (Di) and (ML;)

generate from (1;) E M’ rules (I{) and (Mii);

M’ := M’ U {(Dj), (M&J, (I;), (M$} od;
M’ := M’ \ {(Di),(Ii)} od;

for i.:= 1 to n do
generate from (R) E M rules (Ri) and (Ma);
M’ := M’ u {(R’), (Mi)} od;

M’ := M’ \ {(R)};
generate from (El) E M’ (MET);
M’ := M’ U {(MET)};
return M’
end 0

81

maintenance rules generated from RI:

(DI) * cio.urcde’(., v) :- edgedC’(., y).

CR) * sloaureced(r, y) : - cloauredet(r, I).

(11) r+ clo.urei”‘(+, 8) :- edgei”‘(., y).

(El) * slosureP’~“(.. 8) : - clos”re~“‘(z. y), -closure(r. 8).

meelom-ebb(=, 8) : - ciosureins(z, y).

maintenance rules generated from Rz:

(Dl) * ciosured=‘(, 8) : - edgede’(z. z), ciosure(z. v).

m-cw-ebf;r):- edgedei(., x).

(Dz) =+ clo.urcd=‘(,, 8) : - edge(m) z), cloaurede’(., ~1.

CR) * closure-d (=. y) : - sup;’ (e, y, z). clas”re”=~(.. 8).

rup;‘(=, y, z) : - elosurede’(r, g), edge”=‘“(., z).

mmctorurebb(z. y) :- .u~,;~(., 8, z).

(11) * cloour~~“~(., y) : - edge’“‘(z. z), closure”ew(., u).

mecioaurebf(z) : - edgei”‘(z. z).

(12) * clo.urc’“‘(r, v) : - edge”=“‘(=, z), clo.~e~“~(.. v).

relevant query rules for RI:
cfosure(z, ,,) : - mmcloaurcbf(r), cdge(., v).

c,osure(r. u) : --mmclosurebb(r, y). l dge(z. v).

relevant query rules for Rz:
clo.ure(., ") :- "P1(I, z), cloaure(*, 8).

’ ~uPl(=, z) : - mectosurebf(r), edge(s, z).

m-clo~“rebf(r):- S”Pl(“, z).
clo.ure(r. “) : - suP;(z, y, z), cloouce(r. LJ).

sup;(.. y, z): - mectosurebb(., 8). edge(.. z).

m-closurcbb(r. 8) : - .up;(., Y, z).

Figure 3: ROD applied to the graph example
The following theorem states that evaluating the

rewritten rules leads to an exact computation of the
difference between two subsequent database states.

Theorem 2 Let Sold, S”““, Spl“*,Sminus be defined
as in Theorem 1, but now assume that only the ex-
tensions of base data relations are available. Then for
each relation p the evaluation of the rules generated by
algorithm 2 in combination with the magic-set rewrit-
ten original (query) rules yields the exact positive and
negative diferentials S$us and SFinUs as extension of

P lUS and p772i7W~ During the evaluation only those tu-
ples from SiLd resp. Spew are {re)derived in p and pnew
that are indispensable for determaning the differentials.

Proof. The proof is given in [17].

Example 3 (Applying ROD)

0

Figure 3 shows the resulting rule set of applying ROD
to rules Ri and Ra, and relevant query rules. Since
both original rules have only one or two subgoals, the
transformation of (Di) ,(R) and (Ii) generates only a
few additional magic rules. The other rules remain
unchanged. As mentioned above, the magic predicates
are adorned with variable bindings. cl

4.2 ROD with Negation

The algorithm ROD needs only to be changed slightly
to allow negation in view definitions. In addition,
the evaluation has to be performed with a slightly
changed control structure that respects stratification
of the original rule set. The first change to ROD con-
cerns the effect of updates for predicates ri that occur
negatively in a rule (0):

(0) : p : - r1, . . . , lri, . . . , r,.

Insertions into ri lead to possible deletions of the rule
head p. Deletions from ri may allow now tuples for
p to be derivable that were prevented before by the
existence of certain tuples in ri.

A consequence of this observation is a modified gen-
eration of the basic maintenance rules (Di) and (Ii) in
algorithm 1 for those ri that occur negatively in (0):

(Di):pde’:- Tl,..., ri-l,Tfne,Ti+l ,... ,rn.
(I;) : pins : - ryew,. . , rtn_e;U, rt”, rF$y,. . , rEeW

In the generated rules (Dj) , (1j) with j # i as well
as in (R) the predicate r resp. mew keeps its negative
sign. All other rules handle negated predicates without
respecting their signs.

From an evaluation point of view, the magic set
rewriting with supplementary relations fixes the exe-
cution order of joins, in a manner determined by the
formulation of the original rules. Due to the commu-
tativity of the AND operator, the ordering of literals
and thus the execution order is in principle free and
could be re-organized according to some cost-based op-
timization. This freedom becomes restricted in the
presence of negation, as negation leads to a combina-
tion of joins and set differences in the implementation.

Safeness of rules restricts variables occuring in
negated literals to be bound in a positive predicate.
Only then, there always exists some order for join com-
putation such that joins with relations refered to by
negated predicates can be performed straightforward
by standard set difference. Hence, r(d,?) W 1 s(p)
is evaluated by (nq r(d, ?)\s(?)) W r(d, ?), i.e. r
is projected onto the columns of s, the difference be-
tween the result and s is computed and joined with r.
Of course, the arguments of s must be a subset from
those of r.

In our approach, the ordering is determined for the
transformation of (Di) and (Ii) by the position of the
body predicate ri respectively its delta variant rpl and
Tins. From there the join sequence is built up to the
left and right. As in the general case, negated predi-
cates have to be moved such that the transformation
doesn’t destroy the applicability of joins. In our case,
we could simply move all negated predicates to the
right. After processing the positive literals7 and join-
ing both sequences together (rules (0:) and (Ii)), the
negative literals are processed from left to right by cor-
responding joins with ordinary set difference*.

The third specific aspect for handling negation is
evaluation control. The solution is straightforward:

‘Note, that we don’t have to deal with negated delta
predicates.

sAnother solution would be to give up the idea of propagating
bindings starting from the delta literal to both sides and to move
the delta literal to the beginning of the body literal sequence as
it is already when transforming rule R. Then we have the same
situation as with standard magic-set.

82

the original rule set is partitioned into strata with re-
spect to their head predicates: if a rule calls a predi-
cate negatively then the defining rules for that predi-
cate belong to a lower stratum. The view maintenance
process then starts with the lowest stratum and com-
putes the net insertions pPlus and net deletions pminua
of its defined predicates p. At the next layer, these
predicates are handled like extensional predicates and
their update relations pins and pde’ are initialized with
the just derived net updates. One effect of this initial-
ization is the prevention of phantom insertions. Each
layer only has to deal with the maintenance rules gen-
erated for its own rules. One accompanying additional
step for ROD is therefore to generate rules (N,!) and
(N,“) not only for extensional body predicates but also
for predicates belonging to lower strata.

4.3 Evaluation without Access to View
Caches

The layered view maintenance process and its inter-
play with query evaluation for rederiving the relevant
parts of the old database state are summarized by al-
gorithm 3. This algorithm employs the notion of an
environment ENV as a mapping from predicate sym-
bols to sets of tuples that represent a partial database
state. This state is the subset of the overall EDB and
IDB contents which needs to be looked. at for main-
taining the views of interest. The rule sets M and Q
denote the rewritten rules used for view maintenance
and query evaluation, respectively. Recall that we as-
sume Q to be derived from the original rules by stan-
dard supplementary magic-set rewriting (with respect
to all possible binding patterns) such that the link be-
tween both rule sets is provided by the magic rules
generated by ROD. Whereas EDB and IDB denote the
extensional and intensional predicates as before, SUP
contains all delta, supplementary and magic predicates
introduced for M and Q. Each p E EDB U I DB has
a unique stratum number S(p) between 0 and some
constant m. In addition we define MC*) as the set of
rules T E M such that T is based on an original rule
defining a predicate p E EDB U IDB with S(p) = n.

The algorithm assumes EVAL to be a fixpoint eval-
uator that works on a stratified set of rules and an evi-
ronment with initializations for the relations involved.
EVAL respects the changes of the environment pro-
duced during the preceding evaluation in a semi-naive
manner and returns its with additional tuples inserted
for certain relations. When called for evaluating the
maintenance rules EVAL only has to process the sub-
set M(“) for a given stratum i of the original rule set.
The second call with Q, however, is exactly as for eval-
uating an arbitrary query but now on a partially ma-
terialized intensional database state. The new tuples

for the magic predicates generated in the first call of
EVA L denote queries that have to be answered in order
to continue the maintenance process. These queries
may have to rederive tuples for predicates from lower
strata that were not rederived before since they were
not needed. Therefore, EVAL is called with the com-
plete set of query rules Q.

Algorithm 3 (View maintenance procedure)
Input: 1. A set of query rules Q

2. A set of maintenance rules M
3. A set of view names V = (~1,. . . , w,}
4. A set of base data changes

Output: changes to the views in V
begin
for’ r E IDB u SUP do

initialize ENV[r] := 6 od;
for T E EDB do

initialize ENV[rd”‘] and ENV[?‘“] with the
base data changes;

initialize ENV[r] with the old extension
of r od;

for i := 1 tomdo
repeat

OLD := ENV;
ENV := EVAL(ENV M(‘)).
ENV := EVAL(ENV; Q) ’

until ENV = OLD;
for T E IDB with S(T) = i do

ENl’[r”‘“] : = ENV[#““] ;
ENV[rd”‘] := ENV[T”‘“~“‘] od od;

MOD := [(ENV[@“], ENV[vi”‘“““]), . . . ,
(ENV[@‘“], ENV(v~inus])];

return(MOD)
end 0

Example 4 (View maintenance for the graph exam-
ple)

If we apply algorithm 3 to the graph example in
order to maintain closure, the rules shown in figure 3
and the base data updates (edgedel(b, c),edgeina(h, d))
serve as input. Since no negation occurs in the origi-
nal rules, the evaluation enters the repeat/until loop
only once. Query rules can be evaluated without strat-
ification, too. In contrast to the evaluation trace for
the maintenance rules in example 2, closure now does
not belong to stratum Ss but to Si together with the
new predicates sup:’ and m-closurebf. m-closurebb
goes into 5’2 since it depends on dosureins. With-
out demonstrating the complete evaluation it can be
stated that exactly the relevant part of closure that
represents the complement of subgraph G’ in section
2.2 is rederived. Cl

5 View Monitoring in ConceptBase

ConceptBase [7] is a deductive object manager for
meta data management which supports the 0-Tt 13s

83

ASK NOTIFY TELL

I v

I
Query Update

lntetface Interface

la lAbductionl Iauev’Ru’el e-^....A.-d

I

Figure 4: The ConceptBase server architecture

object model [12]. Textual and graphical user interface
tools are linked to ConceptBase servers as clients over
the Internet. We therefore experienced the problems
addressed in this paper since the first uses of Concept-
Base as an Internet-based cooperative modeling tool
in the late 1980’s.

An 0-Telos object base is semantically equivalent to
a deductive database (Datalog with negation) which
includes a predefined set of rules and integrity con-
straints coding the object structure. The surface lan-
guage syntax is frame-based or uses semantic net-
works. Rules and integrity constraints are included
as first-order formulas defined over a basic set of pred-
icates describing the abstraction principles of instan-
tiation, specialization and attribution.

The ConceptBase server architecture [7] is shown
in figure 4. The ROD algorithm 2 is part of the Con-
ceptBase Query/Rule-Compiler component while al-
gorithm 3 constitutes the ViewMonitor.

Figure 5 demonstrates the incremental view main-
tenance process for an example database of soft-
ware modules, with three classes Module,Procedure
and OperatingSystem. Procedures are def inedin
modules and modules import procedures; they may
depend-on particular operating systems.

Views and queries in ConceptBase are specified as
classes of derived data (keywords QueryClass, View)
with necessary and sufficient membership constraints
[19]. A view Mo&leDependency links (based-on),
modules with those other modules from which they di-
rectly or indirectly (via transitive closure) import pro-
cedures. A second view IllegalOS maintains viola-
tions of an integrity constraint. It describes incompat-
ible based-on relationships which contain procedures
that have a depend-on link to different operating sys-
tems.

The Query/Rule-Compiler of ConceptBase maps
both view definitions to intensional relations mod-dep
and ilLos defined by deductive rules as follows:

moddepb, d : - module(z), module(y),procedure(p)
import(z,p), definedin(p, y).

moddep(z, y) : - moddep(z, z), moddep(z, y).

ilLos(z, y, z) : - moddep(z, y), moddep(z, z),
oplrys(o~),opsys(o2),proce~~~e(pl),

procedure&), unequal(ol, 02),

definedin(pl,y),
defined-k&z, I),
dependan(dependon(

The ViewMonitor works on such an internal rep-
resentation of views, queries and rules and provides
notification messages to those applications affected in-
directly by updates of others. Integrity views like
IUegalOS do not necessarily lead to rejections of up-
dates if their extension becomes non-empty.

In figure 5, the left graph browser application dis-
plays the contents of the view ModuleDependency
based on the current extensional database state (dis-
played by the browser at the top). The right graph-
browser window shows the extension of IllegalOS.

A check-in of some source module had the effect
of introducing a new import link between module A
and procedure time which leads to an operating sys:
tern conflict with directory defined in module C on
which A is based, too. This update also induced a
based-on link between A and E in ModuleDependency.
Both changes have already been notified to the graph-
ical displays (number tag 2).

A second update is caused by a new module D which
imports a procedure dif f from A (number tag 3). Both
externally materialized views have to be updated by
inserting based-on links between D and the other mod-
ules into ModuleDependency, and by inserting D to-
gether with A and E into IllegalOS.

To get a feeling-for the performance impact of the
approach, the following table compares response times
for complete recomputation of views and incremen-
tal maintenance with ROD with respect to a database
that contained descriptions of 283 modules with 1630
exported procedures. The update operation was an
newly inserted import link from a module to a proce-
dure. The results indicate significant advantages for
ROD in complex, recursive view definitions and almost
no difference for simple ones.

View recomp. incr.
All modules M is based on

1 together with all directly or 25 set 4.5 set
indirectly imported procedures

2 All procedures with a given 0.3 set 0.25 set
name preiix imported by M

3 All procedures imported by M 4.5 set 0.3 set
with less than 10 lines of code

4 All procedures with a given
name imported by M directly 4.4 set 0.5 set

or indirectly

84

Another case where ROD proved very beneficial is
the parallel maintenance of many views or integrity
constraints, e.g. in design applications. As already
suggested a decade ago [16], presenting violations in
integrity views [19] is preferable to just rejecting up-
dates not only because of better explanation but also
because it enables multiple levels of integrity enforce-
ment. For example, in a commercial application of
ConceptBase [14], a business process analysis is mon-
itored by more than 80 integrity views. While all
of them need to be monitored continuously, they are
reacted to at different periods in the analysis pro-
cess. Corrections in one view may indirectly correct
other violations, or cause new ones. In such a set-
ting, non-incremental view maintenance may become
prohibitively expensive.

6 Discussion and Outlook

Since the early papers [20, 1, 13, 151, the incremental
maintenance of views has received a lot of attention
in database research. The recent survey [5] is orga-
nized mostly according to the amount of information
available to the maintenance tool. In the case of bII
information which we discussed in section 3, the base
data, the materialized view, and the derivation rule
can all be used.

Among the many conceivable cases of partial infor-
mation, interest has focused on maintenance at the
client side. In &maintainable views, the view defi-
nition is so simple that all the consequences of a bsse-

Figure 5: View monitoring in ConceptBase: an example
data change can be locally computed by the client,
without accessing the base data [4].

Driven by our goal of offering a standard monitoring
service for non-database clients, we mainly focused on
a solution for the opposite case : The maintenance
tool has access to the base data and the view definition
but not to the materialized view. Though this may at
first sound contradictory to the idea of materialization
and has therefore hardly been studied, we argued that
there will be many uses of such a service, including
quite traditional ones such as integrity checking or user
interface management.

Our solution extends known algorithms for the case
of full information by a magic-set like rewriting of
the generated maintenance rules such that the rele-
vant parts of the externally materialized views can be
rederived in the database on demand. As a prereq-
uisite to the magic set transformation, the known al-
gorithms had to be changed slightly such that they
generate a pure stratified Datalog program of main-
tenance rules. We showed that during the evaluation
phase the magic maintenance predicates created by
our approach interoperate nicely with the magic query
evaluation rules created when initially computing the
external view materialization.

Finally, we summarized the implementation of our
approach in ConceptBase, a deductive object manager
for meta data management. Based on this implemen-
tation, some practical experience has been gained with
flexible integrity maintenance in design applications.

85

Developing the view maintenance algorithms and
linking them to existing base technology for databases
and distributed systems is only one step on the way
towards the effective monitoring service we envision. It
is obvious that there is a space-time trade-off between
the solutions presented in sections 3 and 4 which needs
to be investigated quantitatively, including different
options how to materialize: fully, by view indexes, with
or without intermediate results, etc.

Secondly, the additional transformations required
for complex-object views such as required for repre-
senting a whole graph as a view need to be integrated;
for this purpose, a two-way transformation between
Telos and a subset of C++ has been developed [18].

Finally, as mentioned earlier, we plan to com-
bine the logical view maintenance approach discussed
here to the work on relaxed coherency in replicated
databases by which we can tailor quality of service.

Acknowledgements
The work described in this paper was partly supported
by the Commission of the European Communities un-
der ESPRIT BRA 6810 (Compulog 2). The authors
would like to thank Christoph Quix and RenC Soiron
for implementing the algorithms in ConceptBase.

References

111

PI

[31

VI

[51

PI

[71

PI

PI

0. P. Buneman and E. K. Clemons. Efficiently mon-
itoring relational databases. TODS, 4(3):368-382,
September 1979.

S. Ceri and J. Widom. Deriving production rules for
incremental view maintenance. In Proc. 17th Zntl.
Conf. on Very Large Data Bases, pages 577-589, 1991.

R. Gallersdiirfer and Nicola M. Improving perfor-
mance of replicated databases through relaxed co-
herency. In Proc. Znt. Conf. on VLDB 1995, 1995.

A. Gupta, H.V. Jagadish, and IS. Mumick. Data
integration using self-maintainable views. Technical
Report 113880-941101-32, +T&T Bell Laboratories,
November 1994.

A. Gupta and IS. Mumick. Maintenance of materi-
alized views: Problems, techniques, and applications.
Data Engineering, 18(2), June 1995.

A. Gupta, I.S. Mumick, and V.S. Subrahmanian.
Maintaining views incrementally. In ACM SZGMOD
Conference on Management of Data, 1993.

M. Jarke, R. GallersdGrfer, M. Jeusfeld, M. Staudt,
and S Eherer. ConceptBase: A deductive object base
for meta data management. Journal of Intelligent Zn-
formation Systems, 4(2):167 -192, March 1995.

A.M. Keller and J. Basu. A predicate-based caching
scheme for client-server database architectures. VLDB
Journal, 5~35-47, January 1996.

V. Kuechenhoff. On the efficient computation of
the difference between consecutive database states.

PO1

WI

PI

1131

PI

I151

WI

[I71

WI

WI

PO1

WI

P21

[231

In Zntl. Conf. on Deductive and Object-Oriented
Databases, 1991.

J.J. Lu, Moerkotte G., J. Schue, and VS. Subrahma-
nian. Efficient maintenance of materialized mediated
views. In ACM SZGMOD Zntl. Conf. on Management
of Data, pages 340-351, 1995.

I. Mumick, H. Pirahesh, and R. Ramakrishnan. Du-
plicates and aggregates in deductive databases. In
Proceedings of the 16th Conference on Very Large
Databases, Morgan Kaufman pubs. (Los Altos CA),
Brisbane, August 1990.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Kou-
barakis. Telos: Representing knowledge about infor-
mation systems. ACM Fransactdons on Information
Systems, 8(4):325-362, Oktober 1990.

J. M. Nicolas and K. Yazdanian. An outline of BD-
GEN: A deductive DBMS. In Proceedings of the tri-
annual ZFZP Conf 83, Mason(N-H, 1983.

H.W. Nissen, M.A. Jeusfeld, M. Jarke, G.V. Zemanek,
and H. Huber. Managing multiple requirements per-
spectives with metamodels. IEEE Software, March
1996.

N. Roussopoulos and H. Kang. Principles and tech-
niques in the design of ADMS. IEEE Computer,
19(12), December 1986.

E. Simon. Conception et Realisation d’un sous Sys-
teme d’zntgerite dans un SGBD Relationnel. PhD the-
sis, Universite de Paris VI, 1986.

M. Staudt and M. Jarke. Incremental maintenance of
externally materialized views. Technical Report AIB-
95-13, RWTH Aachen, 1995.

M. Staudt, M. Jarke, and C. Quix. Change notifica-
tion for externally materialized application program
views. Technical report, RWTH Aachen, March 1996.
submitted for publication.

M. Staudt, H.W. Nissen, and M.A. Jeusfeld. Query by
class, rule and concept. Applied Intelligence, 4(2):133-
156, 1994.

M. Stonebraker. Implementation of integrity con-
straints and views by query modification. In Proceed-
ings of the ACM SZGMOD conference, San Jose, CA,
June 1975.

J.D. Ullman. Principles of Database and Knowledge-
Base Systems, Volume l/2. Computer Science Press,
Rockville, MD, 1989.

G. Wiederhold and M. Genesereth. The basis for me-
diation. In Proceedings of the 3rd Znt. conf. on Co-
operative Information Systems, pages 140-157, May
1995.
Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance in a warehousing envi-
ronment. In 1995 ACM SZGMOD International Con-
ference on Management of Data, 1995.

86

