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Abstract 

The focus of this paper is on the charac- 
terization of the skewness of an attribute- 
value distribution and on the extrapolations 
for interesting parameters. More specifically, 
given a vector with the highest h multiplicities 
ci = (rnl,rn2, . . . . mh), and some frequency 
moments Fp = Crnj, (e.g., q = 0,2), we pro- 
vide effective schemes for obtaining estimates 
about either its statistics or subsets/supersets 
of the relation. 

We assume an 80120 law, and specifically, a 
p/(1 - p) law. This law gives a distribution 
which is commonly known in the fractals lit- 
erature as ‘multifractal’. We show how to 
estimate p from the given information (first 
few multiplicities, and a few moments), and 
present the results of our experimentations 
on real data. Our results demonstrate that 
schemes based on our multifractal assumption 
consistently outperform those schemes based 
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on the uniformity assumption, which are com- 
monly used in current DBMSs. Moreover, our 
schemes can be used to provide estimates for 
supersets of a relation, which the uniformity 
assumption based schemes can not not provide 
at all. 

1 Introduction 

The goal of this paper is to estimate several mea- 
sures for a distribution of attribute values, given the 
‘standard’ information that commercial RDBMSs keep 
about the distributions. Typically [16] the RDBMSs 
maintain several statistics regarding the attribute val- 
ues. These include the total number of records N for 
a relation and the total number of distinct values Fo 
for a’ given attribute. Other statistics considered re- 
cently [lo] are the high-biased histogram (that is, the 
first few most common values, along with their mul- 
tiplicity = occurrence frequency), and the size of the 
self-join, also denoted as the second frequency moment 
Fz. Very recent works [6,2, l] have suggested efficient, 
on-line probabilistic methods to keep track of the high- 
end histograms, as well as the self-join size and other 
frequency moments F, of the distribution. 

This is typically the information that we keep track 
of, in order to estimate selectivities for query opti- 
mization. For the attribute values that we have no 
information about, the typical assumption is the uni- 
formity assumption [9]. .In this work, we propose an 
alternative, more realistic assumption, and we show 
that it can help us model multiplicity distributions in 
a more accurate way, and therefore to provide better 
estimates, as well as to allow extrapolations for subsets 
or supersets of the relation. 

Sample scenarios and applications are listed next. 
For concreteness, consider a relation of sales(product- 



name, customer-id, amount-spent). Also assume that 
we keep the high-end histograms for product-name, 
and, of course the total number of distinct products 
Fc and the total number of sales records N. Then, we 
have the following classes of queries of interest: 

Estimates for subsets: Given the above infor- 
mation, focus on sales of $100 and above, and es- 
timate the number of distinct products involved 
in such sales 

Median and percentiles: How many (distinct) 
products account for 50% of the sales? or 90% of 
the sales? 

Extrapolations for supersets: Suppose that 
the above relation concerns the domestic sales 
only; what is our best estimate for the number 
of distinct products for the international sales, 
when we only know the total number of sales 
International ? What is our best estimate for the 
total amount of the international sales? 

Self-joins selectivity estimation: What is our 
best estimate for the moments Fp of the distribu- 
tion? Recall that the q-th moment corresponds to 
the cardinality of q successive. joins of the relation 
with itself. 

Spatial databases: Consider a geographic 
database, with the schema: cities( lattitude, 
longti&de, name); consider a multi-dimensional 
histogram, which stores the count of cities in each 
grid-cell; the goal is to estimate the selectivity of 
spatial queries, given the above histogram. For 
example, a spatial-join query would be ‘estimate 
the number of pairs of cities that are closer than 
10 miles to each other’ [3]. 

For all the above scenarios, we propose to assume 
that the unknown multiplicities were derived from a 
multifractal distribution, which is a more general case 
than the familiar ‘80-20 law’. Based on this assump- 
tion, we can estimate the parameters of the multifrac- 
tal distribution, and subsequently extrapolate, to try 
to answer the above classes of questions. 

We illustrate the reasons why a multifractal distri- 
bution should appear often in real datasets, how it in- 
cludes the uniform distribution as a special case, and 
how its predictions compare with the predictions of 
the uniformity assumption. 

Section 2 gives the survey and background informa- 
tion. Section 3 defines the problem and the proposed 
solution. Section 4 shows experimental results on real 
data. Section 5 lists the conclusions and future re- 
search directions. 

2 Survey - Background 

Here we present the state of the art in histogram meth- 
ods, a discussion on previous models for skewed dis- 
tributions (‘Zipf’ and ‘generalized Zipf’ [17] etc.) and 
some related methods for estimation using sampling; 
we also give an introduction to multifractals. 

2.1 Histograms 

Dewitt and Muralikrishna [12] studied multi- 
dimensional histograms. Ioannidis and Poosala [lo] 
suggest keeping the frequencies of a few frequent at- 
tributes, and making the uniformity assumption for 
the rest. These are called ‘high-biased’ histograms, 
and seem to be the state of the art in current commer- 
cial systems. Ioannidis and Christodoulakis [9] showed 
that they have the smallest error among several classes 
of histograms for self-joins. 

Recent works [6, 2, l] have proposed efficient on- 
line algorithms to maintain probabilistically the first 
few largest multiplicities, as well as a few frequency 
moments Fp = C ml, where the summation is over 
all the attribute values i, and rni is the multiplicity of 
i. These algorithms make no assumptions about the 
distribution of the data. 

There are two main ideas that distinguish the 
present work from the current state-of-the-art: The 
first is the proposal to use the multifractal assumption, 
as opposed to the uniformity assumption. The second 
idea is to also use information about the frequency 
moments, to help us better estimate the parameters of 
the multifractal distribution. 

To make the discussion more concrete, we need the 
following definitions: 

Definition 2.1 The q-th frequency moment Fp of a 
frequency distribution 5 is defined as 

F,Gxrn: (1) 
ix1 

Example 2.1 For the frequency (G multiplicity) vec- 
tor 

we have 

rsi=(5,3,2,2,1,1,1,1) (2) 

Fo = 5O + 3O + 2O + 2O + lo + lo + lo + lo = 8 

Fl = 5l + 3l + 2l+ 2l+ 1’ + 1’ + l1 + l1 = 16 

F2 = 5’+ 32 + 22 + 22 + l2 + l2 + l2 + l2 = 46 

0 

Obviously, Fc gives the number of distinct val- 
ues (or ‘vocabulary’, borrowing terminology from text 
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databases), Fl E N (the total number of records), and 
F2 is the size of the self-join of the relation on this at- 
tribute. It is computationally more efficient to group 
identical multiplicities together: 

Definition 2.2 Let c,,, denote the count of distinct 
attribute values that have multiplicity m. 

Then, the frequency moments can also be computed 
as follows: 

Fq = c c,mq (3) 
m=l 

Example 2.2 For the multiplicity vector of Exam- 
ple 2.1, we have cs = 1, cs = 1, cz = 2, ci = 4 and we 
can compute the moments as follows, using Eq. 3: 

FO = 1~5°+1~30+2~20+4~10=8 

Fl = 1.51+1.31+2.21+4.11=16 

F2 = 1.52+1.32+2.22+4.12=46 

cl 

The above definitions of the frequency moments can 
be extended for non-integer values of q, and keeping 
track of such frequency moments can also be handled 
by the probabilistic algorithms of [2, I]. The frequency 
moments are useful to characterize the skewness of the 
distribution. Note that the q-th frequency moment 
gives the size of joining the table q times with itself on 
the attribute under discussion. 

A typical tool for the study of skewed distributions 
is the so-called rank-frequency plot: 

Definition 2.3 The rank-frequency plot of a set of 
multiplicities sorted in descending order is the plot of 
m, versus the rank r, with both axes logatithmic. 

As an example, Figure 1 shows the rank- 
frequency plot for the first names from a telephone 
book (‘VFN’ dataset, as described in section 4). It is 
interesting to report some specific numbers, to high- 
light the skewness of this distribution: there are 11,657 
records in total, while the number of distinct first 
names is surprisingly small: Fo=3,269. The most com- 
mon name appears ml=288 times, while the vast .ma- 
jority of names (2,345 out of the 3,629 distinct ones) 
appear only once! As we show in the experiments sec- 
tion, such skewed distributions are the rule, as opposed 
to the exception! 

2.2 Models for non-uniformity 

Probably the earliest model for non-uniform distribu- 
tions is the Zipf distribution [17]. According to this 

Figure 1: rank-frequency plot of first names from a 
telephone directory 

model, the r-th highest multiplicity m,. is given by the 
formula: 

m, m C/re (4) 

where r stands for the rank. 
For 0 = 1 we have the Zipf distribution; for B # 1 

we have a ‘generalized Zipf’ distribution with param- 
eter 0. Clearly, the rank-frequency plot of a general- 
ized Zipf distribution is a straight line with slope equal 
to -8. 

As Zipf showed experimentally [17]), the above dis- 
tribution gives a good approximation for the occur- 
rence frequencies of words in natural text, including 
English as well as several other languages. More specif- 
ically, for text, Schroeder [15] gives the following for- 
mula (adapted to our notation): 

N 
m, M 

rln(l.78Fs) 

However, there are two weaknesses of the Zipf (and 
generalized Zipf) distributions: 

l As even Zipf himself noted, real datssets typi- 
cally show the ‘top-concavity’, that neither the 
Zipf distribution nor any generalized Zipf distri- 
bution can match. Figures 4-6 show several rank- 
frequency plots of real distributions; notice that 
the top part of the curve typically tilts horizon- 
tally, giving a concave shape to the whole distri- 
bution. 

l There is no explanation for the Zipf distributions: 
there is no physical process that would generate a 
(plain or generalized) Zipf distribution. Moreover, 
these distributions can not help us predict the 
chances that a new record will introduce a biand- 
new attribute value (as opposed to match one of 
the already existing attribute values). Thus, the 
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Zipf distributions can not do extrapolations for 
supersets, when given a sample of a relation. 

For these reasons, we do not examine the Zipf distri- 
bution any further. 

(binary) decision tree of depth k; starting at the root, 
we choose the right sub-tree with probability p and (of 
course) the left sub-tree with probability (1 -p), until 
we reach a leaf (= bucket = an attribute value). 

2.3 Sampling 
Notice that the uniform distribution is a special 

case, by setting p = 0.5. 

One of the uses of a good model for a skewed distribu- Next we derive some formulas which are useful for 
tion is the ability to do extrapolations from a subset. the up-coming estimations. Let C,” denote the k- 

As we show later, we can estimate the number of dis- choose-u combinations. For a binomial multifractal 

tinct values Fs for a subset or a superset of a given distribution (N,p, k), there are C,” attribute values for 

relation. The state of the art in this area seems to be which the expected relative frequency is p(“-“I(1 -p)“. 

the work of Haas et al. [7] which uses two hifferent es- This is easy to observe by considering the probabilistic 

timators, and, depending on the perceived skewness, it decision tree. In our previous terminology (Def. 2.2), 

chooses the appropriate one each time. Previous work we expect to have 

includes [8], whose estimators are superseded by [7]. cl72 M c,” (6) 
As we show later, our proposed multifractal as- 

sumption leads to very good estimates, with estima- 
tion error about the same as the best available estima- 
tor. 

distinct attribute values, each of which occurring 

times. 

m = N . p(“-‘)(I - p)” (7) 

2.4 Introduction to Multi-fractals 

An excellent introduction to multifractals is in [14]. 
Their relationship with the ‘80-20 law’ is very close, 
and seem to appear often: Schroeder [15] claim that 
several real distributions follow a rule reminiscent of 
the 80-20 rule in databases. For example photon dis- 
tributions in physics, or commodities (water, gold, etc) 
distributions on earth etc., follow a rule like ‘ihe first 
half of the region contains a fraction p of the gold, 
and so on, recursively, for each sub-region.’ Similarly, 
financial data and salary distributions follow similar 
patterns (Pareto’s law of income distribution [ll]). 

3 Problem Definition and Proposed 
Solution 

The general problem is as follows: Given some par- 
tial information about the distribution (e.g., first few 
multiplicities, a few frequency moments, a small sam- 
ple, etc.), find a way to characterize its skewness and 
to enable predictions about measures of interest (e.g., 
median value number of distinct values in a superset 
or subset etc). We propose to use multifractals, or 
equivalently, a generalization of the 80-20 law. 

With the above rule, we assume that the address 
space (e.g., the unit interval) is recursively decom- 
posed at k levels; each decomposition halves the in- 
put interval in two. Thus, eventually we have 2’ sub- 
intervals (also called buckets, or slots) of length 2-k. 

We consider the following distribution of probabil- 
ities, as illustrated in Figure 2: At the first level, the 
left half is chosen with probability (1 - p), while the 
right one with p; the process continues recursively, for 
k levels. Thus, the left half of buckets will host 1 - p 
of the probability mass, the left-most quarter will host 
(1 - p)’ etc. We shall refer to the p and k parame- 
ters as the b&s and the & of the multifractal 
distribution, respectively. 

Definition 2.4 A distribution of N records is de- 
fined as a binomial multifractal distribution (or sim- 
ply multifractal distribution) with parameters (N, p, 
k), if it has 2k possible attribute values (buckets), 
each attracting records with the bias parameter p, as 
described above. In particular, the assignment of a 
record to a bucket can be viewed as a probabilistic 

Given a data set with unknown distribution of at- 
tribute values, we maintain the hypothesis that the 
distribution can be well approximated by some multi- 
fractal distribution, the parameters of which are ini- 
tially unknown. The problem is to identify the ‘bias’ p 
and the order k, that will lead to a good match of the 
given set of multiplicities and other available informa- 
tion about the distribution. 

As we mentioned, this problem is very realistic: 
many commercial systems keep some ‘high-end biased’ 
histograms [lo] for query optimization; probabilistic 
on-line algorithms for maintaining such histograms ef- 
ficiently have just recently been proposed [6]. 

There are two sets of results: The first set tries to 
express the p and k parameters as functions of the 
given data. More concretely, we have the following 
goal given the hypothesis: 

l Given 

- the first few of the multiplicities mi, i = 
1,2,...,hand 

- the number of distinct attribute values Fc, 
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Figure 2: Generation of a ‘mdtifracta~ - first three steps 

l Estimate the p and le parameters to yield a multi- 
fractal distribution that will match the given data. 

The second set of results tries to estimate other 
quantities of interest (e.g., median value etc), for a 
given multifractal distribution with parameters p and 
k. Table 1 contains the symbols and their definitions. 

3.1 Estimating the p and k parameters 

We use the following observations: 

Observation 3.1 The bias parameter p can be esti- 
mated as 

P = (mnaz/N>l’k (8) 

Indeed, the highest multiplicity mmor = ml will be on 
the average N x pk. 

Theorem 3.1 For a binomial multifractal distribu- 
tion with N records, bias p and order k, the expected 
number of distinct values kc is given by the following 
equation 

F. = Fo(N,p, k) = &:(I - (1 -~a>~) (9) 
a=0 

where 
p, = pk-a(l - p)” (10) 

Proof: The idea is to focus on one of the 2k buck- 
ets. We can estimate the probability that this specific 
bucket will be hit at least once by one of the N records, 
and then, average over all these buckets. QED 

Thus our estimation algorithm needs only mmclr, 
Fo and N. See Figure 3 for the pseudo-code. The 
Appendix A gives the code for Step 3 of the algorithm. 

3.2 Extrapolations 

If our distribution follows a multifractal distribution 
with (known) parameters p and k, we can use this fact 
to estimate several useful measures. 

Estimation of number of distinct values for sub- 
sets/supersets: 

We can use our ‘multifractal assumption’ to do extrap- 
olation from a sample of N’ (< N) records, out of the 
total N records. Given the sample, we compute its 
p and k parameters; if the full collection comes from 
a multifractal distribution, it will have the same pa- 
rameters p and k. Thus, we just substitute the values 
N, p and k in the formula for PC, (Eq. 9), to obtain 
an estimate for the number of distinct values of the 
collection. 

Thus, if the original distribution is approximated 
by a multifractal distribution with N records, bias p 
and order k, for a subset of N’ records we estimate its 
‘vocabulary’ & as follows: 

Median and percentiles: 

Salaries and incomes follow very skewed distributions 
[15, p. 351 [13], [ll]. 0 ur upcoming experiments (see 
section 4) show that sales patterns seem to do the 
same. Thus, given a relation with salaries, the question 
is to find the median salary, given little information 
(e.g., the first few top salaries). Assuming a multi- 
fractal distribution, we can compute p and k, and es- 
timate several statistics (median, percentiles etc). For 
concreteness, we repeat the standard definitions of me- 
dian and percentiles: 

Definition 3.1 The median rank ~50% of a multi- 
plicity vector rJ1 (sorted in descending order) is the 
smallest rank, so that the elements up to and includ- 
ing that rank 7-50~ account for at least 50% of the 
occurrences: 

%0%-l ‘30% 

c m, < 0.5N 5 c m, (12) 
r=l r=l 
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Symbol Definition 
N total number of records 
P ‘bias’: fraction of ‘mass’ that goes to the right half, 

in each subdivision of the multifractal 
k 
mmor 
cm 

order of multifractal distr. (number of subdivisions) 
=mi : the highest multiplicity 
count for multiplicity m (number of distinct attr. values 

with multiplicity m) 

4 frequency moment of order q 
Fo = V number of distinct values = vocabulary 
h number of values kept in a high-biased histogram 

cr combinations m-choose-n 

Table 1: Symbols and definitions 

Input: N, mmaz and Fo 
Output: the p and k parameters 

1 let k = [log Fo] as a first estimate 

2 estimate p using Eq. 8. 

3 estimate $0 using Eq. 9. It will be an under-estimate of the real Fo. 

4 k + +, and repeat the steps 2-4, until kc matches Fo within a desired tolerance E. 

Figure 3: Algorithm to estimate the bias p and order k of a multifractal distribution 

Definition 3.2 Median frequency mrsO% is the fre- 
quency of the element with the median rank. 

Example 3.1 For the multiplicity vector of Exam- 
ple 2.1, the median rank rso%‘o=2 and the median fre- 
quency mrs0%=3. 0 

In a real setting, where we are given a high-end his- 
togram with the highest h multiplicities ml, . . . , mh, 
we estimate the median rank rso% as follows: we use 
the given first h multiplicities as well as the estimates 
for the rest of the multiplicities from Eqs. (6-7); we 
keep including more elements, until we reach or exceed 
50% of the number of records N. 

Estimating the frequency moments: 

If the given multiplicity vector was the result of a bi- 
nomial multifractal process, with a parameter p and 
k, then we would have 

Fq = C(cmmq) 
m 

= c (C; (Np”-(1 - P)“,q> 

Fq = ; (pq f (1 -P)~)~ (13) 

which allows a fast estimate of the moments, given the 
parameters N, p and k of the multifractal distribution. 

Recall that k is the order of the multifractal distribu- 
tion, that is, the number of recursive subdivisions of 
the address space, resulting in 2” possible distinct val- 
ues. 

This concludes the mathematical derivations that 
pertain to a multifractal distribution. The question 
now is to find out how accurate our predictions are, 
when we try to approximate a real distribution of fre- 
quencies with a multifractal distribution. This is ex- 
actly the topic of the next section. 

4 Experiments 

In this section we use real datasets, and we test the 
accuracy of the predictions using the multifractal as- 
sumption. We used several real datasets. Table 2 
shows the characteristics of each dataset, that is, the 
total number of records N, the highest multiplicity 
ml E mmor , and the total number of distinct attribute 
values (‘vocabulary’) Fo c V. The description of each 
dataset follows: 

l ‘VFN’ consists of the first names from an on- 
line telephone catalog [5]. Actually, we used the 
‘very first names’, keeping only the first one in the 
case of multiple first names: For example ‘Maria 
Teresa’ would be registered as ‘Maria’. 
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l ‘SALES’, which contains the dollar amounts of 
sales for customers, rounded to the nearest l-, lo- 
and lOO-dollar amount, for ‘SALESl’, ‘SALESlO’ 
and ‘SALESlOO’ respectively. 

l ‘BIBLE’: the words in the Bible (Old and New 
Testament), along with their occurrence fre- 
quency. We also used sub-sets of the BIBLE, 
namely ‘GENESIS’ (the book of Genesis), ‘RO- 
MANS’ (the letter to the Romans), ‘PSALMS’ 
(the Psalms), ‘JEREMIAH’ (the prophesies of 
Jeremiah), ‘PJ’ (the PSALMS and JEREMIAH 
datasets combined, to provide a ~10% sample of 
the BIBLE). 

l ‘WUTHERING’: the book ‘Wuthering Heights’. 

Dataset 
VFN 
SALES1 
SALES10 
SALES100 
BIBLE 
PSALMS 
JEREMIAH 
PJ 
GENESIS 
ROMANS 
WUTHERING 

N Fo mnar 
11657 3269 288 

213603 246 71565 
21507 246 7157 

2309 246 716 
791448 12561 63924 
42732 2884 2884 
42729 2592 3838 
85461 3944 6722 
38520 2448 3678 
9439 1317 597 

120951 10042 4747 

Table 2: Datasets and their characteristics 
Figures 4-6 show the rank-frequency plots for our 

datasets: ‘diamonds’ with solid lines correspond to the 
actual values,, ‘crosses’ with dashed lines correspond 
to our predictions using multifractals (Eq. 6-7). In 
some of the plots we show some straight dotted lines, 
which correspond to Zipf and generalized Zipf distri- 
butions. Notice that the actual curves can not be ap- 
proximated with a straight line of any slope, while the 
curves suggested by the m’ultifractal distribution are 
closer to the real curves, exhibiting the ‘top-concavity’ 
that we mentioned earlier. 

This concludes the first set of experiments, where 
we visually illustrate that several real distributions are 
matched well by a carefully selected multifractal dis- 
tribution. In the next two subsections we study the 
accuracy of the predictions of a multifractal distribu- 
tion (a) for the number of distinct vaIues in a subset 
or superset of a relation and (b) for the median rank 
and percentiles. 

4.1 Vocabulary estimation of a sample 

The problem is: given a high-biased histogram mi, i = 
1 > . . . . h of length h, the number records N and the num- 

ber of distinct values Fo, estimate the number of dis- 
tinct values for a subset of N’ records. 

As mentioned before, assuming a multifractal dis- 
tribution, we compute the N, p, k parameters, and 
then use Eq. 9 to estimate the vocabulary of the sub- 
set/super-set. 

Under the uniformity assumption, the best we can 
do is to consider a generalization of Cardenas’ for- 
mula [4]: we know that we have FO buckets and N’ 
records; we also know the frequency that the first h 
buckets are chosen; thus each bucket is chosen with 
probability pi, which is computed as follows: 

Pi = m;/N i<h (14) 

Pi = Pu = 
(N - Nh)/N/(Fo -h) h < i 5 FO (15) 

where hrh is the sum of the frequencies of the his- 
togram. 

Then, the expected number $,& of non-empty 
buckets (after N’ choices) is estimated by 

P’ unjf = c(l - (1 - Pi)N 

or 

h 

i=l 

~~,i,=C(l-(l-pi)N’)+(Fo-h)(l 
i=l 

1 

- (1 -P”y’) 

where the probabilities pi are given by Eq. 14-15. 
Table 3 gives the results of these estimators on the 

real datasets. Based on the BIBLE dataset, we es- 
timated the samples of it (ROMANS, PSALMS and 
JEREMIAH). Notice that the work of Haas et al. [7] 
is not directly applicable, because it assumes that we 
know all the multiplicities of the given dataset, as op- 
posed to only the h highest, that is our setting. No- 
tice that our estimates give low errors (45-62%), which 
are comparable to the errors of much more sophis- 
ticated estimation algorithms: Haas et al [7], using 
all the statistics about the dataset, report that, for a 
10% sample of ‘highly skewed’ distributions, the rel- 
ative error (G (Fe - Fol/Fo) was on the average 23% 
(maximum: 95%) for the so-called Shlosser estimator, 
which was the best performer for ‘high-skew distribu- 
tions’. Interestingly, among the methods they tried, 
the worst competitor had 158% average and 1235% 
maximum relative error. 

Table 4 shows the reverse: given a sub-set (e.g., the 
PJ set), we can estimate the vocabulary of the super- 
set (BIBLE). In this case, the uniformity assumption 
gives poor results, exactly because it does not have the 
ability to predict the appearance of new words in the 
larger set. Again, the 54% relative error compares well 
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Figure 4: The rank-frequency plots of the ‘VFN’ and ‘SALES1 datasets. Real (‘diamonds’) and estimated 
(‘crosses 7 values. 
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Figure 5: The rank-frequency plots for the ‘BIBLE’ and ‘GENESIS’ datasets; real (‘diamonds’) and estimated 
(‘crosses’) values. Dotted lines indicate Zipf and generalized Zipf distributions. 

with the errors of the more sophisticated algorithms by 
Haas et al (23% average, 95% maximum, as mentioned 
before). 

4.2 Estimation of median & percentiles 

Table 5 shows the estimates for the median rank for 
several datasets, given a high-biased histogram with 
h entries. We used the multifractal and the unifor- 
mity assumption; in either method, we exploited the 
fact that the first h multiplicities are known, and we 
estimated the unknown multiplicities mh+i , . . ., and 
summed them, until we reached 50% of the count. No- 
tice that the estimates of the uniformity assumption 
are often 1 or 2 orders of magnitude away. 

5 Conclusions 

We have shown that the multifractal theory formal- 
izes and generalizes the 80-20 ‘law’; that it includes 
the uniform case as a special case (p=O.5) and that it 
matches reality better than the Zipf distribution. Us- 
ing the multifractal assumption, we provided a simple, 
but accurate way to estimate the multiplicity vector, 
given on1.y easy-to-maintain values: the highest multi- 
plicity mmar , the number of records N and the number 
of distinct values V. A good estimate of the multiplic- 
ity vector helps in doing extrapolations for several use- 
ful statistical quantities, both of the original relation, 
as well as of super-sets and sub-sets of it. For exam- 
ple, it can help compute percentiles and median ranks 
(‘how many of our customers account for 90% of our 
sales’, or ‘how many distinct products would the female 
portion of our customer base be interested in?‘). Such 
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Figure 6: The rank-frequency plots for the ‘ROMANS’ and ‘WUTHERING’ datasets; real (‘diamonds’) and 
estimated (‘crosses’) values. Dotted lines indicate Zipf distributions. 

Dataset Size N Vocabulary size 
(in words) uniformity multifractal actual 

estimate rel.’ error Fo 
ROMANS 9,439 4686 1963 49% 1,317 
PSALMS 42,732 11036 4,208 45% 2,884 
JEREMIAH 42,729 11035 4,208 62% 2,592 

Table 3: Estimates for the vocabulary of a sample from the BIBLE (N=‘/91,448 pd.84557 k=15). For the 
‘uniform’, the h=20 highest multiplicities are kept. 
estimates are useful in numerous applications, such 
as (a) traditional query optimization, supplementing 
the high-biased histogram methods that are currently 
the state of the art [lo], (b) decision support systems, 
where extrapolations for subsets and supersets are im- 
portant. 

Experiments on several real datasets showed that 
the multifractal assumption gives significantly better 
estimates than the ‘uniformity’ assumption, for several 
useful statistical quantities. 

Future work could examine the application of mul- 
tifractals to several other settings, such as join size 
estimation and spatial-join selectivity estimation in ge- 
ographic information systems. 
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A Appendix: AWK code for the esti- 
mation of Fo 

Here we give the code to estimate the number of dis- 
tinct values Fo, for a multifractal distribution with N 
samples, bias p and order k. The file is ready to exe- 
cute under UNIX(TM). 

#!/bin/sh -f 
# echo "$0 working on $1” >& 

echo $1 $2 $3 I nawk ' 
# reads I, p, k of a binomial multifractal 
# and estimates the number 
# of distinct values FO 
# 

function power( x, y > { 
res = exp( y * log(x) 1; 
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return( res ); 
3 # end function power 
function comb( PH, HH)< 

cres = 1; 
for( ii=i; ii<=MI4; ii++ )( 

cres = cres * (191 - ii + 1) / ii; 
3 
return ( cres 1; 

3 It end function comb 

# estimates FO, the expected number 
# of distinct values 
function estFO( 18, pp, kk)( 

rres = 0; 
for(aa=O; aa<=kk; aa++)< 

pa = pover(pp, kk-aa) * power( I-pp, aa) 
if( pa*I!i > SO 1 < tmp = 0.0 3 

# guard against underflow of power0 
else ( tmp = poaer( l-pa, alo); 3 
rres = rres t comb(kk,aa) * ( I - tmp 1; 

3 
return (rres) 

3 # end function estF0 
c 

I = $1 # number of records 
p = $2 # bias factor 

# (= split probability) 
k = $3 # number of divisions 

3 
ElfD( 

print "number of records II=", 19 
print "bias p=", D 
print "number of splits k=", k 
FOhat = estFO(l,p,k) 
print "est. number of distinct values F[O]=", FOhat 

3 
, 
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