
Divesh Srivastava Shaul Dar*
AT&T Research Data Technologies Ltd.

divesh@research.att.com da@dtl.co.il

Abstract
We present novel algorithms for the problem of using material-
ized views to compute answers to SQL queries with grouping and
aggregation, in the presence of multiset tables. ln addition to its
obvious potential in query optimization, this problem is important
in many applications, such as data warehousing, very large trans-
action recording systems, global information systems and mobile
computing, where access to local or cached materialized views
may be cheaper than access to the underlying database. Our con-
tributions are the following: First, we show that in the case where
the query has grouping and aggregation but the views do not, a
view is usable in answering a query only if there is an isomor-
phism between the view and a portion of the query. Second, when
the views also have grouping and aggregation we identify condi-
tions under which the aggregation information present in a view
is sufficient to perform the aggregation computations requited in
the query. The algorithms we describe for rewriting a query also
consider the case in which the rewritten query may be a union
of single-block queries. Our approach is a semantic one, in that
it detects when the information existing in a view is sufficient to
answer a query. In contrast, previous work performed syntactic
transformations on the query such that the definition of the view
would be a sub-part of the definition of the query. Consequently,
these methods can only detect usages of views in limited cases.

1 Introduction
We present novel algorithms for the problem of using ma-
terialized views to compute answers to SQL queries with
grouping and aggregation. This problem has the poten-
tial of improving the performance of SQL query evalu-
ation in general. It has an even greater impact on the
optimization of aggregation queries in applications such
as data warehousing [GJM96, ZGMHW95], very large

Answering Queries with Aggregation Using Views

H. K Jagadish
AT&T Research

jag@tesearch.att.com

Alon Y. Levy
AT&T Research

levy@research.att.com

transaction recording systems [JMS95], global information
systems [LSK95, LRO96] and mobile computing [BI94],
where access to (local or cached) materialized views may
be cheaper than access to the underlying database.

In data warehousing applications and very large trans-
action recording systems, the size of the database and the
volume of incoming data may be very large. Queries against
such data typically involve aggregation. Such queries may
be answered more efficiently by materializing and main-
taming appropriately defined aggregation views (summary
tables), which are much smaller then the underlying data
and can be cached in faster memory.

In globally distributed information systems, the rela-
tions may be distributed or replicated, and locating as well
as accessing them may be expensive and sometimes not
even possible. In mobile computing applications, the rela-
tions may be stored on a server and be accessible only via
low bandwidth wireless communication, which may addi-
tionally become unavailable. Locally cached materialized
views of the data, such as results of previous queries, may
considerably improve the performance of such applications.

We formalize the problem of using materialized SQL
views to answer SQL queries as finding a rewriting of a
query & where the views occur in the FROM clause, and the
rewritten query is multiset-equivalent to Q. The technical
challenges arise from the multiset semantics of SQL, in
conjunction with the use of grouping and aggregation.

*The work of this author was performed when he was at AT&T Bell
Laboratories, Murray Hill, NJ, USA.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributedfor direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee ana’lor special permission from the Endowment.

Proceedings of tbe 22nd VLDB Conference
Mumbai(Bombay), India, 1996

We focus on queries and views of the form “SELECT-
FROM-WHERE-GROUPBY-HAVING”, i.e., single-block
queries, where the SELECT and HAVING clauses may
contain the SQL aggregate functions MIN, MAX, SUM and
COUNT.’ We do not assume the availability of any meta-
information about the schema, such as keys or functional
dependencies. The contributions of this paper are developed
in a step-wise fashion, as follows.

First, in Section 3, we study the case where the query has
grouping and aggregation but the views do not. We consider
rewritings that result in single-block queries, as well as
rewritings that result in the UNION ALL (i.e., additive

l?he SQL aggregate functions SUM, COUNT and AVG are related
in that, given values for two of them over some column, the third can
be computed. Dealing with AVG is consequently stratghtforward, but
complicates the presentation. Hence, we do not consider AVG.

318

multiset union) of single-block queries. We show that, for
both types of rewritings, usability of a view in evaluating a
query essentially requires an isomorphism between the view
and a portion of the query: the view should not project out
any column needed by the query, and it should retain all
the tuples needed to compute information for some (all,
if a single-block rewriting is desired) of the groups in the
query. The rewriting algorithms can be iteratively applied to
incorporate multiple views, and we identify the conditions
under which all possible rewritings are generated.

Second, in Section 4, we study the case where both the
query and the views have grouping and aggregation. Addi-
tional subtleties arise because an aggregated column can be
regarded as being partially projected out, and a groupby in
the view results in the multiplicities of the tuples being lost.
We extend the conditions for usability in a natural fashion
to recognize when the aggregation information present in
a view is sufficient to perform the aggregate computations
required in the query, and provide a rewriting algorithm for
the query.

Finally, in Section 5, we show that when the views have
grouping and aggregation but the query does not, it is not
possible to use the views to evaluate the query. Intuitively,
the loss of tuple multiplicities because of a groupby in the
view prevents any multiset-equivalent rewriting.

There has been previous work on using views to an-
swer queries (e.g., [YL87, SJGP90, TS194, CR94, CKPS95,
LMSS95]), but the problem of finding the equivalent rewrit-
ings for SQL queries with multiset semantics, grouping
and aggregation, has received little attention. Several re-
searchers have considered performing syntactic transfor-
mations on queries with grouping and aggregation that pre-
serve equivalence of the query (e.g., [YL94, LMS94, CS94,
RSSS95, GHQ95, CS%, LM96]). Gupta et al. [GHQ95]
have shown how these transformations can be used for find-
ing rewritings of queries by transforming the query in a
way that the definition of the view would be identical to
a sub-part of the definition of the query. In addition to
being more restrictive than our semantic approach, the ap-
proach of Gupta et al. does not consider rewritings that are
UNION ALLs of single-block queries. Hence, their ap-
proach can detect usages of views in only limited cases.
A detailed compariin with related work is presented in
Section 6.

1.1 Illustrative Example

We present an example from data warehousing in telephony
to illustrate the potential performance gains when using
materialized aggregation views to answer queries.

Example 1.1 Consider a data warehouse that holds infor-
mation useful to a telephone company. The database main-
tains the following tables:

l Customer(Phone-Number, Custflame), which
maintains information about individual customers of
the telephone company,

l CallingPlans(Plan-Id, PlanName), which
maintains information about the different calling plans
of the telephone company, and

l Calls(From, To, Time, Day, Month, Year,
Duration, Plan-Id, Charge), which maintains in-
formation about each individual call.

Assume that the telephone company is interested in de-
termining calling plans that have earned more than a million
dollars in one of the years between 1990 and 1995. The
following SQL query &i may be.used for this purpose:

&I: SELECT Year, Plan-Name, SUM(Charge)
FROM Calls, CallingPlans
WHERE Calls.PlanJd = Calling-Plans.PlanJd

AND Year 2 1990 AND Year 5 1995
GROUPBY Year, Plan-Name
HAVING SUM(Chavge) > l,OOO,OOO

The telephone company also maintains materialized views
that summarize the performance of each of their call-
ing plans on a periodical basis. In particular as-
sume that the following materialized view Vl(PlanJd,
Month, Year, Earnings) is available:

K: SELECT Plan-Id, Month, Year, SUM(Charge)
FROM Calls
GROUPBY Plan-Id, Month, Year

View VI can be used to evaluate the query Qi by joining VI
with the table CallingPlans, collapsing multiple groups
corresponding to the monthly plan earnings into annual plan
earnings, and enforcing the additional conditions to get the
summaries of plans earning more than a million dollars in
one of the years between 1990 and 1995. The rewritten
query Q{ that uses VI is:

Q:: SELECT Year, Plan-Name, SUM(Eamings)

FROM VI, Calling-Plans
WHERE Vl.Plan-ld = Calling_Plans.Plan_ld

AND Year 2 1990AND Year 5 1995
GROUPBY Year, Plan-Name
HAVING SUM(Earnings) > 1,000,000

The Calls table may be huge, and the materialized view
VI is likely to be orders of magnitude smaller than the
Calls table. Hence, evaluating Q{ will be much faster than
evaluating Qr , emphasizing the importance of recognizing
that Qi can be rewritten to use the materialized view VI.

Consider now the case where, instead of VI,
the telephone company maintains the materialized
view V,‘(PlanJd, Month, Year, Earnings), summariz-
ing the performance of their calling plans only since 199 1:

319

V[: SELECT Plan-Id, MOW%, Yeat, SUM(Charge)
FROM Calls
WHERE Year 2 1991
GROUF’BY Plan-Id, Month, Year

View V,l can still be used to evaluate query &r . However,
not all the tuples in Qt can be computed using If{; the
summary information computation for 1990 would have to
access the Calls table, and the rewritten query Qy involves
a UNION ALL.

Q;‘: SELECT Year, Plan-Name, SUM(Earnings)
‘FROM V,‘, Callwag-Plans
WHERE V{.Planld = Calling_Plans.PlanJd

AND Year 5 1995
GROUPBY Year, Plan-Name
HAVING SUM(Earnings) > 1,000,000

UNION ALL
SELECT Year, Plan-Name, SUM(Charge)
FROM Calls, Calling-Plans
WHERE Calls.PlanJd = Calling-Plans.Plan-Id

AND Year = 1990
GROUPBY Year, Plan-Name
HAVING SUM(Charge) > 1,000,000

Evaluating Qy will still be faster than evaluating & 1, even
though it involves accessing the Calls table. 0

2 Notation and Definitions
We consider SQL queries and views with grouping and
aggregation. Queries can be either single-block queries
(described below), or union multi-blockqueries that are the
UNION ALL (i.e., additive multiset union) of single-block
queries. A view is defined by a query, and the name of the
view is associated with the result of the query; in this paper,
we consider only views defined by single-block queries. We
give the form as well as a simple example of a single-block
query in Figure 1.

For notational convenience, we modify the naming con-
vention of standard SQL to guarantee unique column names
for each of the columns in a single-block query. For ex-
ample, let Rt and R2 be two tables each with a single
column named A. If a single-block query Q has both RI
and R2 in its FROM clause, our notation would replace
them by Rl(Al) and Rz(Az). Every reference to R1.A in
Q is replaced by Al, and every reference to R2.A in Q is
replaced by AZ. Similarly, if a single-block query Q has
two range variables RI and RZ ranging over table R in its
FROM clause, our notation would replace them by R(Al)
and R(A2). Every reference to R1.A in Q is replaced by
Al, and every reference to R2.A in Q is replaced by AZ.

We use Tables(Q) to denote the set of tables (along
with their columns) {Rl(Al), . . . , R”(&)} in the FROM
clause of a single-block query Q, and Cols(Q) to de-
note&U... U A,, i.e., the set of columns of tables in
Tables(Q). In the example of query Qc, Tables(Q,) is
{R(A,B),S(C,D,E)}andCols(Q,)is{A,B,C,D,E}.

320

The set of columns in the SELECT clause of Q , denoted
by Sel(Q), consists of (a) non-aggregation columns: this
is a subset of the columns in Cols(Q), and is denoted
by ColSel(Q); and (b) aggregation columns: these are
of the form AGG(Y), where Y is in Cols(Q) and AGG
is one of the aggregate functions MIN, MAX, SUM and
COUNT. The set of columns that are aggregated upon,
such as Y above, is a subset of Cols(Q), and is de-
noted by AggSel(Q). In the example of query Qe,
Sel(Q,) is {A, MAX(D), SUM(E)), ColSel(Q,) is {A}
and AggSel(Q,) is {D, E}.

The grouping columns of query Q, denoted by
Groups(Q), consists of a subset of the columns in
Cols(Q). SQL requires that if Groups(Q) is not empty,
then ColSel(Q) must be a subset of Groups(Q). In
the example of query Qe, Groups(Q,) is {A,B} and
ColSel(Q,) is a proper subset of Groups(Q,).

We consider built-inpredicates that are arithmetic pred-
icates of the form cr op ,& where op is one of the compari-
son predicates {<, 5, =, #,>,>},andcrand/3areterms
formed from columns of tables, aggregation columns and
constants using the arithmetic operations + and *.

The conditions in the WHERE clause of query Q, de-
noted by Co&s(Q), consists of a boolean combination
of built-in predicates, formed using columns in Cols(Q)
and constants. The conditions in the HAVING clause of
query Q, denoted by GConds(Q), consists of a boolean
combination of built-in predicates formed using columns
in Groups(Q) , aggregation columns of the form AGG(Y)
where Y is in Cols(Q), and constants. In the example
of query Qe, Conds(Q,) is B = C, and GConds(Q,) is
SUM(D) > looo.

Given a single-block query Q, if Grozlps(Q),
AggSel(Q) and GConds(Q) are empty2, then Q is re-
ferred to as a conjunctive query. Otherwise, Q is referred
to as an aggregation query.

Determining that a single-block view V is usable in eval-
uating a single-block query Q requires (as we show later in
the paper) that we consider mappings from V to Q. These
are specified by column mappings, defined below.

Definition 2.1 (Column Mapping) A column mapping
from a single-block query Q. to a single-block query Qb
is a mapping 4 from Cols(Qo) to Cols(Qb) such that if
R(&, . . . , An) is a table in Tables(Q,), then: (1) there
exists a table R(BI , . . . , B”) in Tables(Qa), and (2) Bi =
4(Ai), 1 5 i 5 n.

A I-l column mapping 4 is a column mapping from Qa
to &a such that distinct columns in Cols(Qn) are mapped
to distinct columns in Cols(Qb). Otherwise, the column
mapping is a many-to-l column mupphag. 0

As a shorthand, if R is a table in ‘I;ables(Qo), we use
d(R(Al, . . . , An)) to denote R(d(Al), . . . , b(A,)), where

2Note that each of Groups(Q), AggSel(Q) and GConda(Q) can
he empty without the other two being empty.

Q: SELECT Sel(Q) Qe : SELECT A, MAX(D), SUM(E)
FROM Rl(Al), . . -1 R&in) FROM 6% B), S(C, D, E)
WHERE Cods(Q) WHERE B=C
GROUPBY Groups(Q) GROUPBY A, B
HAVING GConds(Q) HAVING SUM(D) > 1000

Figure 1: Form and example of a single-block query

A,. . . , A,, are columns in Cols(Qa). We use similar
shorthand notation for mapping query results, sets and lists
of columns, sets of tables, and conditions.

We formalize the intuitive notion of “‘usability” of view
V in evaluating query Q as finding a rewtiting of Q, de-
fined below. In this paper, we consider only rewritings
that are either single-block queries, or multi,-block queries
that are UNION ALLs of single-j&k queries. For exam-
ple, rewriting Q{ in Example 1.1 is a single-block query,
whereas rewriting 9: in the same example is a multi-block
query that is a UNION ALL of single-block queries.

Definition 2.2 (Rewriting of a query) A query Q’ is a
rewriting of query Q that uses view V if: (1) Q and Q’ are
multiset-equivalent, i.e., they compute the same multiset of
answers for any given database, and (2) Q’ contains one or
more occurrences of V in the FROM clause of one of its
blocks. 0

In the sequel, we say that view V is usable in evaluating
query Q, if there exists a single-block or a union multi-block
query Q’ such that Q’ is a rewriting of Q that uses V.

When the rewritten query can be a multi-block query,
there is a certain trivial sense in which any view V is usable
in evaluating a given query Q - the rewritten query can
be.the UNION ALL of Q itself and a single-block query
in which V occurs in the FROM clause and which has
an unsatisfiable conjunction of built-in predicates in the
WHERE clause. However, when Q is unsatisfiable, any
‘rewriting of Q would also have to be unsatisfiable. Dealing
with these and other such possibilities would complicate
our presentation without aiding our understanding of the
problem. Hence, we consider satisfiable queries and views,
and do not permit .multi-block rewritings where any block
is unsatisfiable.

3 Aggregation Query and Conjunctive Views
In this section we consider the problem of using single-
block conjunctive views to evaluate a single-block query
with grouping and aggregation. Using a single-block view
to evaluate a multi-block query can be achieved by inde-
pendently testing usability of the view in evaluating each
block of the multi-block query separately.

Intuitively, if a view V is usable in evaluating a query
Q, then V must “replace” some of the tables and conditions
enforced in Q; other tables and conditions from Q must
remain in the rewritten query Q!. The rewritten query Q’

can be a single-block query, or a multi-block query that is
a UNION ALL of single-block queries. For view V to be
usable in answering query Q, such that Q’ is a single-block
query, it must be the case that:

V does not project out any columns needed by Q.

Intuitively, a column A is needed by Q if it appears
in the result of Q or if Q needs to enforce a condition
involving A that has not been enforced in the compu-
tation of V.

V does not discard any tuples needed by Q.

Intuitively, a tuple is needed by Q if it satisfies the
conditions enforced in Q.

When Q’ can be a multi-block query, the second require-
ment can be somewhat relaxed to require that V not discard
any tuples needed for some of the groups in Q.

We formalize these intuitionsbelow, show that they yield
both necessary and sufficient conditions for certain kinds
of queries, and present an algorithm to rewrite Q using
V. We first examine the case when the query does not
have a HAVING clause, and then describe the effect of
the HAVING clause on the conditions for usability and the
rewriting algorithm.

3.1 Aggregation Query Without a HAVING Clause

3.1.1 Single-Block Rewritten Query

The conditions for usability of a single-block view V in
evaluating a single-block query Q, such that the rewritten
query Q’ is a single-block query, are presented formally
in Figure 2 in terms of column mappings. Note that the
conditions apply also to the restricted case when both the
view and the query am conjunctive [CKPS95].

Condition Ci and the first part of condition C, essen-
tially guarantee that the view is multiset equivalent to its
image under 4; these are a reformulation of the conditions
presented in [CV93] for testing equivalence of conjunctive
queries under the multiset semantics. Note that the l-l
mapping is necessary because of the multiset semantics,
whereas a many-to- 1 mapping would suffice in the case of
sets [LMSS95]. Condition C4 ensures that constraints not
enforced in the view can still be enforced in the query when
the view is used, since they do not refer to columns that are
projected out in the view and hence are no longer available.
Conditions Cz and C’s ensure that the view does not project

321

Condition Cl : There is a 1-l column mapping 4 from V
bQ.

Condition C2 : IfacolumnA in CplSel(Q) uGroups(Q)
is a column in 4(CoZs(V)), then Sel(V) must have
a column BA such that Co&s(Q) implies (A =
~BA))-
Note that this condition is satisfied if BA is 4-‘(A).

Condition C3 : Suppose AGG(A) is in SeI(Q). If column
A is in d(Cols(V)), then:

1. If AGG is MIN. MAX or SUM, then Sel(V)
must have a column BA such that Conds(Q)
implies (A = d(BA)).

2. If AGG is COUNT, then Sel(V) must not be
empty.

Condition C4 : Them exists a boolean combination of built-
in predicates, Conds’, such that:

1. Conds(Q) -
d(Conds(V)) & Ands’.

equivalent to

2. Conds’ involves only the columns in
d(SeV)) U (Col.49) - d(CoW))).

Figure 2: Usability conditions for a single-block aggrega-
tion query without a HAVING clause, a single-block con-
junctive view, with a single-block rewritten query

out any column that is nquircd in the SELECT clause of
the query. Condition C’s is the one needed in order to deal
with the aggregation in the query.

If conditions Ci - 174 are satisfied, the rewritten query Q’
is obtained from Q by replacing the tables in #(Tables(V))
by 4(V) in the FROM clause, where 4(V) denotes
V(4(Sel(V))). The SELECT and WHERE clauses of the
query are then modified to reflect the use of view V in the
rewritten query. Formally, the single-block rewritten query
Q’ is obtained from Q by applying algorithm ConjVlewS-
ingleBlock, presented in Figure 3.

Theorem 3.1 Let Q be a single-block aggregation query
without a HAVING clause, and let V be a single-block
conjunctive view.

If conditions Cl - C4 are satisfied, V is usable in eval-
uating Q., In that case Q’, obtained by applying algo-
rithm ConjViewSingleBlock, is a rewriting of Q using V.

IfConds(Q) andConds(V) contain onlyequalitypred-
icates of the form A = B, where A and B are column
names or constants, and the rewritten query is required to
be a single-block query, V is usable in evaluating Q only if
conditions Ct - C4 are satis$ed. 0

The following example illustrates conditions Ci - C4 and
algorithm ConjViewSingleBlock for obtaining a single-
block rewritten query.

Example3.1 Consider the telephone company database
from Example 1.1. The following query 92 can be used to

Algorithm ConjViewSmgleBlock

Step St : Replaceall the tables in q5(%bles(V)) by 4(V).

steps2 : Replace each column A in Groups(Q) u
ColSel(Q) U AggSel(Q) by I, where BA satis-
fies conditions CZ and Cs, part 1.

steps3 : Determine a boolean combination of built-in
predicates Conds’ satisfying condition Cd. Replace
Conds(Q) in Q by Conds’.

steps4 : Consider an aggregation column COUNT(A)
in Ser(Q) such that A is in q5(Cols(V)), but not
in q5($el(V)). Replace COUNT(A) by COUNT(B),
where B is any column in q5 (V) .

Figure 3: Rewriting algorithm for a single-block aggrega-
tion query without a HAVING clause, a single-block con-
junctive view, with a single-block .mwritten query

determine the total earnings of each calling plan as well as
the total number of calls charged under each calling plan in
December 1995.

92: SELECT PNr, SUM(CJ), COUNT(C1)
FROM Calls(Ji,T~,TIl, Di, MI, Yl, DU,, A, Cl),

CallingPlans(PII, PN1)
WHERE Pt=PItANDK=1995ANDMt=12
GROUPBY PNI

Assume that the telephone company maintains call data for
December 1995 as the view V2 below:

V2: SELECT Fz, Tz, TIz, Dz, M2, Y2, DU2, P2, C2
FROM Calls(F2, T2,TI2, D2, Mz,Yz,DUz, A,C2)
wH.ERE &=1%‘5m&=12

View V2 can be used to evaluate query 42 since conditions
Cl - C4 are satisfied: (Cl) The l-l column mapping 4
fromV2toQ2is{F2jF1,Tz~Tl,TI2-+TIl,D2--,
D1,M2 -+ M1,Y2 + Yl,DU2 --f DUl,Pz + 4,Cz +
Cl}. (Cz) Trivially satisfied. (C’s) For column Ci, Bc,
is the column C2 in Sel(V2). (Cd) Conds’ is given by
PI = PIl.

The single-block rewriting of Q2 that uses VZ is:

Q;: SELECT PNl, SUM(CI), COUNT(CI)
FROM &(FI,Z,TII,DI,M~,Y~,DUI,PI,C~),

Calling-Plans(PIl, PNl)
WHERE A = PI1
GROUl’BY PNl

0

3.13 I Multi-Block Rewritten Query

When the rewritten query is not required to be a single-block
query, but can be a multi-block query that is a UNION ALL
of single-block queries, additional usages of views in eval-
uating queries are possible.

322

\
Condition C,m : Let Condsl be Conds(Q) 8c

c$(Conds(V)), and Condsz be Conds(Q) 8z
+(Conds(V)). Then,

1. Condsl must be satisfiable.

2. Them exists a boolean combination of built-in
predicates, Conds’, such that:

(a) Condsl equivalent
#(Conds(V)) : Conds’,

to

(b) Conds’ involves only the columns in
4(SeW)) u (CMQ) - (P(CWV))).

(C) ~Gr..wpr(Q)(Co~dsd &

*G,,p8(Q)(Conds2) is FALSE.

Figure 4: Modification of condition Cq, when multi-block
rewritten queries are permitted

The conditions for usability of a single-block view V
in evaluating a single-block query Q, when Q’ can be a
multi-block rewritten query, are similar to the conditions
for usability when Q’ has to be a single-block query. In
particular, conditions Ci - C’s are unchanged. Condition Cd
has to be modified to reflect the possibility that V can be
used to compute only some of the tuples of Q. The modified
condition, CT, is formally presented in Figure 4.

Intuitively, given a view V that satisfies condi-
tion Ci, query Q can always be reformulated as a
UNION ALL of 2 single-block queries Qa and &a,
that differ from Q (and from each other) only in their
WHERE clauses, such that: (1) Conds(Q,) is equiva-
lent to Con&(&) dz d(Conds(V)), and (2) COndS(Qa) is
equivalent to Cot&(Q) & +(Conds(V)).

View V can be potentially used to evaluate Q,, but
clearly not &a. Conditions Ci - C’s, and parts 1, 2(a)
and 2(b) of condition CF essentially check whether view
V can be used to evaluate QO. The reformulation of Q as the
UNION ALL of Q0 and Qt,, however, does not always pre-
serve the semantics of Q. To preserve the semantics, it must
be guaranteed that &a and Qb do not compute tuples for
the same group of Q - part 2(c) of condition Cy embodies
this requirement. If conditions Ci - C’s and CT are satis-
fied, the multi-block rewritten query Q’ is obtained, using
algorithm ConjViewMultiBlock, presented in Figure 5.

I i
Theorem 3.2 Let Q be a single-block aggregation query
without a HAVING clause, and let V be a single-block
conjunctive view.

If conditions Ct - C3 and CT are satisfied, V is usable
in evaluating Q, Zn that case Q’, obtained by applying
algorithm ConjViewMultiBlock, is a multi-block rewriting
of Q using V. 0

3.2 Multiple Uses of Views ;

Often a query can’make use of multiple views, or the same
view multiple times. The rewriting algorithms Co*ViewS-

Algorithm ConjViewMultiBlock
stepsy : Use 4(Conds(V)) to split & into Qa

and Qb, such that Conds(Q,) is equivalent to
Conds(Q) & b(Conds(Vj), and Conds(Qt,) is
equivalentto Conds(Q) 8z +(Conds(V)).

step s,m : Use algorithm ConjViewSingleBlock to rewrite
Q. to make use of view V. Let Qh denote the resultant
single-block query.

step sy : If Qb is satisfiable, the multi-block query Q' that
is the rewriting of Q using V is the UNION ALL of Qb
and Qb. Else, Q’ is the same as Qh.

Figure 5: Rewriting algorithm for a single-block aggrega-
tion query without a HAVING clause, a single-block con-
junctive view, with a multi-block rewritteu query

ingleBlock and ConjViewMultiBlock presented above can
be used to incorporate multiple uses of views. To obtain
rewritings with multiple views we create successive rewrit-
ings QL, . . . , Q:, where each rewriting is obtained from the
previous one by testing conditions Ci - Cs and either Cd
or CT (depending on the form of the rewriting desired),
and applying the corresponding rewriting algorithm. At
each successive rewriting, the views incorporated in pre-
vious rewritings are treated as database tables, rather than
being expanded using their view definitions.

Theorem 3.3 Let Q be a single-block aggregation query
without a HAVZNG clause, and let V,, . . . , V, be single-
block conjunctive views. Then the following hold:

1. An iterative application of algorithm ConjViewSin-
gleBlock is sound, i.e., each successive rewriting is
multiset-equivalent to Q.

2. An iterative application of algorithm CoqjViewMulti-
Block is sound, i.e., each successive rewriting is

> multiset-equivalent to Q.

3. The rewriting algorithm ConjViewSingleBlock is
order-independent. That is, if there is a single-block
rewriting of Q that uses each of V,, . . . , V,, then the
result of rewriting Q to incorporate views V, , . . . , V,
would be the same regardless of the order in which the
views are considered.

4. i’f Conds(Q), Conds(V,), . . . , Conds(V,) contain
only equality predicates of the form A = B, where A
and B are column names, or constants, and the rewrit-
ten query is required to be a single-block query, then
the iterative application of algorithm ConjViewSin-
gleBlock is complete. That is, any rewriting of Q that
uses one or more of V,, . . . , V’ can be obtained by it-
eratively applying algorithm ConjViewSingleBlock.

0

323

Condition (73” : Suppose AGG(A). is in. Se/(Q) or in
GConds(Q). If column A is in ti(Cols(V)), then:

1. If AGG is MIN, MAX or SUM, thtn SeZ(V)
must have a column BA such that Con&(Q)
implies (A = +(BA)).

2. If AGG is COUNT, then Sel(V) must not be
empty.

Figure 6: Modification of condition C’s, when query & has
a HAVING clause

It is important to note that, for the case of equality pred-
icates, the iterative application of ConjViewSingleBlock
guarantees that we find all ways of using the views to an-
swer a query, provided the rewritten query is required to
be a single-block query. In contrast, this property does
not hold under the set semantics considered in pMSS95],
where there may exist rewritings that cannot be found by
considering sequences of single view substitutions.

3.3 Aggregation Query With a HAVING Clause

We now describe how to extend the previous algorithms
to the case in which the queries may contain a HAVING
clause. We only consider the case when the rewritten query
is required to be a single-block query. The case when the
rewritten query can be a multi-block query is a straight-
forward extension, along the lines described for aggrega-
tion queries without HAVING clauses. We first describe
how to extend our usability conditions to accommodate the
HAVING clause, and then show how we can use various
transformations on the query that can cause the conditions
to be satisfied in a larger number of cases.

Intuitively, when the single-block query Q has a HAV-
ING clause, the conditions for usability of a conjunctive
view V in evaluating Q and the rewriting algorithm Con-
jViewSingleBlock need to be extended to account for:

l Conditions in GConds(Q) that must be satisfied by
the query, in addition to conditions in Con&(Q), and

l Aggregation columns, of the form AGG(Y), that occur
in GConds(Q), but not in Se/(Q).

To accommodate such conditions we modify C’s to also
consider arguments that appear in GConds(Q). The ex-
tended condition, Ct, is formally presented in Figure 6. If
Q and V satisfy conditions Cl, 12’2, Ct and Cd, the singie-
block rewritten query Q’ is obtained using algorithm Hav-
ingConjViewSingieBlock, presented in Figure 7.

Theorem 3.4 Let Q be a single-block aggregation query
with a HAVING clause, and let V be a single-block con-
junctive view.

If conditions Cl, C2, Ct and Cd are satisJied, V is usable
in evaluating Q. In that case Q’, obtained by applying

Algorithm HaviugConjViewSiugleBktck
Assume that the query Q has been pre-processed.

steps: : Apply steps 5’1, SZ and & using condition C$
instead of condition C3.

steps; : Replace each column A in GConds(Q) by
#(BA), whem A and BA satisfy conditions CZ and
ct. part 1.

steps; : Consider an aggregation column COUNT(A)
in Sel(Q) or in GConds(Q) such that A is in
4(Cols(V)), but not in ti(Sel(V)). Replace
COUNT(A) by COUNT(B), where B is any column in
4(V).

Figure 7: Rewriting algorithm for a single-block aggrega-
tion query wit&a HAVING clause, a single-block conjunc-
tive view, with a single-block rewritten query

algorithm HavingCo~ViewSingleBlock, is a rewriting of
Q using V. 0

Strengthening the Conditions in the Query

When query Q has a HAVING clause, the conditions in its
HAVING clause may enable us to strengthen the conditions
in its WHERE clause, without affecting the result of the
query. Strengthening the conditions in the WHERE clause
may allow us to detect usability of views that would oth-
erwise not be determined to be usable, because it makes it
more likely that condition C4 will be satisfied.

Several authors (e.g., [LMS94, RSSS95, GHQ95,
LM96]) have considered the problem of inferring condi-
tions that can be conjoined to Con&(Q) given the con-
ditions in GConds(Q), and removing redundant condi-
tions in GConds(Q). These techniques can be applied
to rewrite the query Q, as a pre-processing step, yielding
possibly modified conditions Conds(Q) and GConds(Q),
The modified Con&(Q) and GConds(Q) are then used in
checking conditions C2, C,h and C.+

Example3.2 Consider again the telephone company
database from Example 1.1. The following query 43 can be
used to determine, for each customer, the maximum charge
for a single call under the calling plan ‘TmeUniverse” in
December 1995, provided that the charge exceeds $10.

Q3: SELECT FI,MAX(CI)
FROM . Calls(F~,T~,TI~,D~,M~,Y~,DUI,Pr,Cl),

Calling-Plans(PII, PNI)
WHERE PI = PII AND PNl = “TrueUniveTse”

ANDK= 1995AND Ml = 12
GROUPBY FI
HAVING MAX(C1) > 10

Assume that the telephone company maintains detailed call
data for 1995, for calls whose charge exceeds $1, as the
view V3 below:

324

6: SELECT Fz,Tl,TIz,Dz, Mz,Yz,DUz, P2, C2

FROM CaWF2,Tz,TIz,D2, Mz, Y2, DU2, P2,Cz)
WHERE Yz=1995ANDCz> 1

Although the WHERE clause of Qs does not enforce any
conditions on the Charge column, while the WHERE
clause of V3 does, V3 can still be used to evaluate 93. This
is because the condition MAX(C1) > 10 in the HAVING
clause of Q3 is equivalent to having the condition Ci > 10
in the WHERE clause of Q3. Strengthening Conds(Q3)
by conjoining Cl > 10 (and subsequently removing the re-
dundant HAVING clause) allows the detection of usability
of V3 in evaluating 93. The rewriting of &3 that uses V3 is:

Q;: SELECT FI, MAx(Ci)
FROM V3(Fl,~,TIl,Dl,Ml,~,DUl, A,G),

Calling-Plans(PIi, PN,)
WHERE PI = PII AND PN1 = “TrueUniverse”

AND MI = !2ANDCr > 10
GROUPBY Fl

Note that view V3 cannot be used to answer query Q2 (from
Example 3.1), since conditions C4 and Cr are violated
- in particular, V3 enforces the condition Cz > 1, which
results in the discarding of Calls tuples needed by Q2, 0

4 Aggregation Query and Views

In this section we consider the problem of using single-
block views in evaluating single-block queries when both
the view and the query have grouping and aggregation. We
only consider the case when the rewritten query is required
to be a single-block query.

Recall that the two intuitive requirements for the usabil-
ity of a conjunctive view V in answering a single-block
aggregation query Q (described in the beginning of Sec-
tion 3) are that V not project out columns needed in Q, and
that V not discard tuples needed in Q. In the presence of
grouping and aggregation in the view, these requirements
become more subtle:

o An aggregation over a column in V can be thought of as
though that column was partially projected out, since
V contains just aggregate values over that column, not
the original column values themselves.

l Asgroupby in V results in the multiplicities of the
tuples being lost.

However, as the following examples illustrate, in some cases
it is possible to overcome the difficulties introduced by
grouping and aggregation in the view.

4.1 Illustrative Examples

The following example illustrates that the aggregate infor-
mation in a view may be sufficient to compute the aggregate
information needed in the query.

Example 4.1 (Coal+ng Subgroups)
Consider the telephone company database from Exam-
ple 1 .l . The following query Q4 can be used to determine
the total earnings of various calling plans as well as the
maximum charge under each calling plan in 1995.

Q4: SELECT PI, P NI , SUhf(Cl), MAX(C1)
PROM Calls(F~,T~,TI1,D1,MI,~,DU1,A,G1),

Calling-Plans(PI1, PN1)
WHERE PI= PII ANDYi = 1995
GROUPBY PI, PNl

Assume that the telephone company also maintains infor-
mation giving the total earnings as well as the maximum
charge of each calling plan in each month in the form of
view V4 below:

V4: SELECT P2, M2, Y2, SUM(&), MAX(C2)
FROM Calls(F2, T2, TI2, D2, Mz, Y2, DU2, P2, C2)

GROUPBY P2, M2, Y2

View V4 groups the table Calls by the Plan-Id, Month
and Year columns, and computes aggregate information on
each such group. Query 94, on the other hand, groups the
table Calls only on the Plan-Id column, resulting in more
coarse groups than those computed in VS. However, the
aggregate information of the Plan-fd groups in Q4 can be
computed by further aggregating the aggregate information
computed for the (Plan-Id, Month, Year) groups in V4,
as illustrated in the following rewritten query.

Q;: SELECT PI, PNI, SUM(MEI), MAX(MCi)
FROM Vi(P1, MI,%, MW, MC&

Calling-Plans(PI1, PNI)
WHERE R=PI1ANDY1=1995
GROUPBY PI, P NI

0

The following example illustrates that the existence of
other columns in the view may enable us to recover the
tuple multiplicities lost because of grouping in the view.

Example 4.2 (Recovery of Lost Multiplicities)
Consider again the telephone company database from Ex-
ample 1.1. The following query QS can be used to determine
the total number of calls under each calling plan in 1995:

&5: SELECT PI, COUNT(CNI)
FROM Calls(Fl,Tl,TI1, D1, Ml,Yl, DU1, Pl,Cl),

Customer(PN1, CN1)
WHERE F1 = PNl AND Yl = 1995
GROUPBY PI

View V& below maintains the total annual revenue for each
customer, plan, and year:

Vsa: SELECT F2, Pz, Y2, SUM(Cz)
FROM Calls(F2, T2, TI2, D2, M2, Y2, DU2, P2, (72)

GROUPBY F2, P2, Y2

325

Although Vs, does not project out any column that is needed
in Qs, Vso cannot be used to evaluate Qs. This is because
the multiplicity of the From column of Culls is needed
in order to compute COUNT(CNi), but that multiplicity is
lost in the view Vs,. However, consider view Vsb below:

fib: SELECT &, Pz, &, Sm(c2), COUNT(C2)
FROM Calls(F2, Tz,TI2, Dz, Mz, Yz, bU2, Pz, C2)
GROUPBY F2, Pz, Y2

Although the multiplicities of the From column are not
explicit in Vsb, they can be computed using the available
information. Vsb can be used to evaluate Qs as follows:

Q;: SELECT PI, SUM(CG,)
FROM &b(Fl, PI, x, YEl,CG&

Customer(PN1, CN,)
WHERE PI = PNI AND K = 1995
GROUPBY PI

0

As the examples illustrate, to use views that involve
aggregations, we need to verify that (a) the aggregate infor-
mation in the view is sufficient to compute the aggregates
needed in the query, and that (b) the correct multiplicities
exist or can be computed. We formalize these intuitions
below, present conditions for usability, and provide an al-
gorithm to rewrite Q using V.

4.2 Without HAVING Clauses

To specify conditions for usability for single-block aggre-
gation views, we need to slightly modify conditions CZ and
Cd, and to substantially modify condition C’s to deal with
the different cases of aggregates appearing in the SELECT
clause of the query. (Condition Ci is unchanged.) The
modified conditions are formally presented in Figure 8.

Since ColSel(&) must be a subset of Groups(Q), con-
dition Cz is a generalization of condition C2. Intuitively,
condition C; guarantees that the columns in the view con-
tain enough information to compute the aggregates required
in the query. In particular, conditions C$‘, parts l(b), l(c)
and 2 guarantee that we can recover the multiplicities in the
view in order to perform an aggregation that depends on
such multiplicities (i.e., either SUM or COUNT). The two
parts of the condition cover the cases when the aggregation
is on a column mapped by the view, and not mapped by the
view, respectively. Note that the second part of condition
15’: does not allow Con&’ to constrain any of the columns
in 4(AggSel(V)). Intuitively, this is because the columns
in AggSel(V) are aggregated upon in view V, and hence
are not “available” for imposition of additional constraints
in the rewritten query Q’.

If conditions Cp - C$ are satisfied, the rewritten query
Q’ is obtained from Q by applying algorithm AggViewS-
ingleBlock, presented in Figure 9. Steps Sp , S’ and S$ are

similar to steps Si , Sz and Ss of algorithm ConjViewSin-
gleBlock. Steps St and S; deal with the various kinds of
aggregation that may occur in the view and the query.

Theorem 4.1 Let Q and V be single-block aggregation
queries without HAVING clauses.

Zf conditions Cf - C$ are satisfied, V is usable in eval-
uating.9. In that case Q’, obtained by applying algo-
rithm AggViewSingleBlock, is a rewriting of Q using V.
0

Example 4.3 Consider again the query Q4 and view V4
from Example 4.1. View V4 can be used to evaluate Q4
since conditions Cp - Ci are satisfied.

Condition Cf : The l- 1 column mapping f$ from V4 to
Q4 is {Fz - Fl,Tz + Tl,TIz + TI1, D2 -+
D1,M2 - M1,Y2 + Yt,DU2 -+ DUl,Pz -
4, c2 - Cl).

Condition Ci : For column PI in GTOUPS(QJ), BP, is the
column P2 in ColSel(V4).

Condition C$: For column SUM(Ci) in Sel(Qd),
Sel(V4) contains column SUM(C3, and for col-
umn MAX(Ci) in Sel(Q4), Sel(V4) contains column
MAWC2).

Condition 15’; : Conds’ is the same as Conds(Q& i.e.,
PI = PI1 &VI = 1995 since no conditions are en-
forced in V4.

The rewritten query Q: resulting from applying steps Sp -
S; is given in Example 4.1. 0

Example 4.4 (Constraining 4(AggSel(V)))
Consider again the telephone company database from Ex-
ample 1.1. The following query &a can be used to deter-
mine the total earnings of various calling plans in 1995,
considering only calls whose charge exceeds $1.

&a: SELECT A, SuM(cl)
FROM Calls(Fl, Tl,TZl, D1, Ml, l’i, DUI, A, Cl)
WHERE K= 1995 AND C, > 1
GROUPBY PI

Let the view v6 be the same as view v4 (from Example 4.1):

v6: SELECT Pz, M2, k5, SUM(C2). MAX(c2)

FROM Calls(F2, T2, TI2, D2, M2, Y2, DU2,9, C2)

GROUPBY 9, Mz, Y2

View v6 cannot be used to evaluate &a above, although
in the absence of the condition “Cl > 1” in the WHERE
clause in Q6, v6 could be used to evaluate &a. Intuitively,
this is because the built-in predicates in the query constrain
the possible values of Ci , and CZ is aggregated upon in the
view v6; no condition on the result of the SUM or the MAX
in v6 can capture the effect of the condition on Ci in Q6. 0

326

Condition Cp : Same as condition Cr.

Condition C,O : of a cohmm A in ~~~~~~~~~ is a column in (b(CoJs(V)), then CoJSeJ(V) must have a column BA such that

Conds(Q) implies (A = d(BA)).

Condition C,o : Suppose AGG(A) is in Se/(9).

1. If column A is in qi(CoJs(V)), then:

(a) If AGG is MM or MAX, then them must exist a column BA in CoJs(V) such that Con&(Q) implies (A =
I), and SeJ(V) contains either the non-aggregation column BA, or an aggregation column of the form
AMWA).

(b) If AGG is COUNT, then SeJ(V) must include a column of the form COUNT(Ao), where Ao is a column in
CoJs(V).

(c) If AGG is SUM, then there must exist a column BA in CoJs(V) such that Con&(Q) implies (A = I),
and SeJ(V) contains either BA and a column of the form COUNT(Ao), or an aggregation column of the form
AGG(BA).

2. If column A is not in $(CoJs(V)), and AGG is either SUM or COUNT, then SeJ(V) must include a column of the
form COUNT(AO), where AO is a column in CoJs(V).

Condition C,” : There exists Con&‘, such that:

1. Conds(Q) is equivalentto 4(Conds(V)) & Conds’.

2. Conds’ involves only the columns in $(CoJSeJ(V)) and the columns in CoJs(Q) that are not in h(CoJs(V)).

Figure 8: Usability conditions for a single-block aggregation query without a HAVING clause, a single-block aggregation
view without a HAVING clause, with a single-block rewritten query

Algorithm AggViewShgleBlock

Step S,O : Replace all the tables in q5(TabJes(V)) by I$(V), where q%(V) is defined as follows: for each non-aggregation column A
in SeJ(V), 4(V) contains the column 4(A); for each aggregation column A in SeJ(V), d(V) contains a new column name.

Step S,O : Replace eachcolumn A in Croups(Q) U CoJSeJ(Q) U AggSeJ(Q) by I, where BA satisfies conditions C,O and
G, part I(a).
In the remaining steps of this algorithm, Grotq~s(Q), CoJSeJ(Q) and AggSeJ(Q) refer to these new column names.

Step S; : Determine a boolean combination of built-in predicates Conds’ satisfying condition C,O as above. Replace Conds(Q)
in Q by Conds’.

Step ST : ConsideranaggregationcolumnAGG(A) in SeJ(Q) suchthat Ah intj(CoJs(V)).

1, Let AGG be MIN. MAX or SUM. By condition Cf. pan 1, there are two cases to consider.

(a) Suppose Se J(V) contains the aggregation column AGG(BA). Let S denote the corresponding column in q3(V) .
Replace AGG(A) in SeJ(Q) by AGG(S).

(b) Suppose SeJ(V) contains the non-aggregation column BA.
If Ac;G is either MIN or MAX, leave AGG(A) in SeJ(Q) unchanged.
If AGG is SUM, then by condition C,O, part l(c), SeJ(V) must include a column of the form COUNT(Ao). Let N
denote the corresponding column in 4(V). Replace SUM(A) in SeJ(Q) by SUM(A * N).

2. Let AGG be COUNT. By condition C,O, part l(b), SeJ(V) must include a column of the form COyAo). Let N
denote the corresponding column in I+(V). Replace COUNT(A) in SeJ(Q) by SUM(N). . ’

Step S,O : Consider an aggregation column AGG(A) in SeJ(Q) such that column A is not in ti(CoJs(V)).
If AGG is MIN or MAX, leave AGG(A) unchanged. .
If AGG is SUM or COUNT, do the following. By condition Ct, part 2, SeJ(V) must include a column of the’form
COUNT(Ao). Let N denote the column in d(V) corresponding to that COUNT(Ao) column.

1. If AGG is C&NT, replace COUNT(A) in SeJ(Q) by SUM(N).

2. If AGG is SUM, replace SUM(A) in SeJ(Q) by SUM(A * N).

Figure 9: Rewriting algorithm for a single-block aggregation query without a HAVING clause, a single-block aggregation
view without a HAVING clause, with a single-block rewritten query

327

4.3 With HAVING Clauses

Essentially, the additional subtleties that must be considered
involve the relationships between the GROUPBY and HAV-
ING clauses in the view V and the query Q. Intuitively,
the HAVING clause in V may eliminate certain groups in
V (i.e., those that do not satisfy GConds(V)). If any of
these eliminated groups in V is “needed” to compute an ag-
gregate function over a group in Q, by coalescing multiple
groups in I/, then V cannot be used to evaluate Q. Hence,
condition C’i must be extended to test whether there exists
GConds’ such that GConds(Q) is equivalent to the combi-
nation of GConds(V) and GConds’, taking the grouping
columns Groups(V) and Groups(Q) into account.

Before checking any of the conditions for usability, the
query Q and view V can be independently pre-processed
to “move” maximal sets of conditions from the HAVING
clause to the WHERE clause, as discussed in Section 3.3;
the resulting normal form allows independent comparison
of Conds(Q) and Conds(V), on the one hand, and of
GConds(Q) and GConds(V), on the other.

The rewriting algorithm takes these additional refine-
ments of the conditions of usability into account. Specifi-
cally, step 5’: determines a GConds’ in addition to Conds’,
using GConds(V) and GConds(Q) (resulting from the
pre-processing step). Steps 5’: and St are augmented to
compute aggregation columns appearing in GConds(Q),
in addition to those appearing in Se/(Q).

5 Conjunctive Query and Aggregation Views

Consider the case when the query Q is a conjunctive query
(i.e., no groupin; and aggregation), but the view V has
grouping and aggregation. In this case, the GROUPBY
clause in the view results in losing information about the
multiplicities of tuples, and view V cannot be used to eval-
uate Q if the multiset semantics is desired.

Theorem 5.1 Let Q be a conjunctive query, and V be a
single-block aggregation view. Then, there is no single-
block rewriting of Q using V. 0

The following example illustrates the problem with con-
junctive queries and aggregation views:

Example 5.1 Consider the telephone company database
from Example 1.1. The query Q7 below is used to obtain
information about calls exceeding an hour in duration:

Q7: SELECT Ft, DI, Ml, Yi
FROM C~~~~(F~,T~,TI~,D~,MI,YI,DU~,P~,CI)
WHERE DU, > 3600

The view VT below counts the number of calls exceeding an
hour in duration made by each caller on a daily basis:

&: SELECT F2, D2, M2, y2, COUNT(Z)
FROM Call4.h T2, TI2, Dz, M2. y2, DUZ, P2, C2)
WHERE DlJ2 > 3600
GROUPBY F2, D2, M2, Y2

There is a l-l column mapping from l$ to Q7, Se/(V,)
contains all the columns required in Sel(QT), and the con-
ditions enforced by the WHERE clauses are identical. Even
though COUNT(T2) has the required multiplicity informa-
tion, this information cannot be used in an SQL query to
“replicate” the tuples in V+ the appropriate number of times.
Thus, there is no rewriting of Q7 that uses view V7.3 D

6 Related Work
There has been previous work on using views to answer
queries (e.g., [YL87, SJGP90, TS194, CR94, CKPS95,
LMSS95]), but the problem of finding the equivalent rewrit-
ings for SQL queries with multiset semantics, grouping and
aggregation, have received little attention.

Caching of previous query results was explored
in [Sel88, SJGP90] as a means of supporting stored proce-
dures. This corresponds to using materialized views when
they match syntactically a sub-expression of the query. In
the ADMS optimizer [CR94], subquery expressions corre-
sponding to nodes in the query execution (operator) tree
were also cached. A cached result was matched against a
new query by using common expression analysis [Fin82].
Grouping and aggregation issues were not addressed.

View usability has been studied for conjunctive queries
with set semantics and without grouping and aggregation
in, e.g., [YL87, LMSS95]. Levy et al. [LMSS95] showed
a close connection between the problem of usability of
a view in evaluating a query and the problem of query
containment. However, this connection does not carry over
to the multiset case. [LMSS95] also presented a simple
technique for generating a rewriting of a query Q using
view V, under the set semantics. Essentially, the technique
consists of first conjoining V to the FROM clause of Q,
and then (independently) minimizing the resulting query to
eliminate redundant tables. In the case of SQL queries,
however, because of the multiset semantics, the query will
not be equivalent after conjoining V to the FROM clause,
even if it may be equivalent after removing other tables.
Therefore, we need to find a priori which tables in the
FROM clause will be replaced by V.

Optimization of conjunctive SQL queries using conjunc-
tive views has been studied in [CKPS95]. In addition to
considering when such views are usable in evaluating a
query, they suggest how to perform this optimization in a
cost-based fashion. However, they did not consider group-
ing and aggregation, nor did they consider the possibility of
rewritings that are UNION ALLs of single-block queries.

3Gupta et al. [GHQ95] have suggested an “expand” operator to replicate
htples in a given table.

328

Recently, Gupta et al, [GHQ95] considered the prob-
lem of using materialized aggregation views to answer
aggregation queries using a purely transformational .ap-
preach. They perform syntactic transformations on the
operator tree representation of the query such that the
definition of the view would be identical to a sub-part
of the definition of the query. Additional transforma-
tions on queries involving aggregation have been proposed
by [YL94, LMS94, CS94, RSSS95, GHQ95, CS96, LM96].
The transformational approach is more restrictive than our
semantic approach - in particular, the algorithm of Gupta
et al. does not take the conditions in the WHERE and HAV-
ING clauses into account when comparing Se/(&) with
Se/(V) and Groups(Q) with Groups(V) (see, e.g., condi-
tions Ci and Ci). Further, their approach does not consider
rewritings that are UNION ALLs of single-block queries.
For example, their techniques would neither determme the
usability of view VI in evaluating query Q 1 in Example 1.1,
nor the usability of view V{ in evaluating Qi in the same
example. Also, Gupta et al. do not provide any formal
guarantees of completeness.

A related problem is studied in Gupta et al. [GMR95].
They assume that a materialized view may be redefined,
and investigate how to adapt the materialization of the view
to reflect the redefinition. This problem is clearly a special
case of the one we study, with the additional assumptions
that the system knows the type of modification that took
place, that the new view definition is “close” to the old def-
inition, and that the view materialization may be modified.

7 Conclusions

The exploitation of materialized views is likely to be an
important technique for performance enhancement, partic-
ularly for applications such as data warehousing where ac-
cess to the base data is more expensive than access to the
views. In this paper we presented general techniques to
rewrite a given SQL query so that it uses materialized views,
if possible.

We have focused on single-block SQL queries and views.
Often, multi-block SQL queries that have view tables in the
FROM clause can be transformed to single-block queries,
e.g., using techniques described in [YL94, CS94, GHQ95,
CS961. In such cases, our techniques can also be applied.

We are currently extending our work in several ways,
including considering the view usage problem for arbitrary
nested queries, integrating our techniques with cost-based
optimizers along the lines described in [CKPS95], and de-
veloping strategies for determining which views to cache.

References
[BI94] D. Barbara andT. Imielirlski. Sleepers and workaholics:

Caching strategies in mobile environments. In 1Droc. ACM
SIGMOD, 1994.

[CKPS95] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In Proc.
ICDE, 1995.

[CR941 C. M. Chen and N. Roussopoulos. The implementation
and performance evaluation of the ADMS query optimizer:
Integrating query result caching and matching. In Proc. EDBT,
1994.

[CS94] S. Chaudhuri and K .Shim. Including group-by in query
optimization. In Proc. VLDB, 1994.

[CS96] S. Chaudhuri and K .Shim. Optimizing queries with ag-
gregate views. In Proc. EDBT, 1996.

[CV93] S. Chaudhuri and M. Y. Van%. Optimization of real
conjunctive queries. In Proc. ACM PODS, 1993.

IFin S. Fmkelstein. Common expression analysis in database
applications. In Proc. ACM SIGMOD, 1982.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-
query processing in data warehousing environments. In Proc.
VLDB, 1995.

[GJM96] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data
warehousing using self-maintainable views. In Proc. EDBT,
1996.

[GMR95] A. Gupta, I. S. Mumick, and K. A. Ross. Adapting
materialized views after redefinitions. In Proc. ACM SIGMOD,
199s.

[JMS95] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View
maintenance issues for the Chronicle data model. In Proc. ACM
PODS, 1995.

PM961 A. Y. Levy and I. S. Mumick. Reasoning with aggrega-
tion constraints. In Proc. EDBT, 1996.

LMS94] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query op-
timization by predicate move-around. In Proc. VLDB, 1994.

[LMSS95] A. Y. Levy, A. 0. Mendelzon, Y. Sagiv, and D. Sri-
vastava. Answering queries using views. In Proc. ACM PODS,
1995.

[LRO96] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source descriptions.
In Proc. VLDB, 1996.

lLSK951 A. Y. Levy, D. Srivastava, and T. Kirk. Data model
and query evaluation in global information systems. Journal
of Intelligent Information Systems, .5:121-143, 1995. Special
Issue on Networked Information Discovery and Retrieval.

[RSSS95] K. A. Ross, D. Srivastava, P. Stuckey, and S. Sudar-
shan. Foundations of aggregation constraints. An early version
appeared in Proc. of the 2nd Intl. Workshop on Principles and
Practice of Constraint Programming, 1994. LNCS 874,1995.

[Se1881 T. Sellis. Intelligent caching and indexing techniques
for relational database systems. Information Systems, pages
175-185,1988.

[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, and S. Potami-
anos. On rules, procedures, caching and views in database
systems. In Proc. ACM SIGMOD, 1990.

[TSI94] 0. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The
GMAP: A versatile tool for physical data independence. In
Proc. VLDB, 1994.

ryL87] H. Z. Yang and P.-A. Larson. Query transformation for
PSJqueries. In Proc. VLDB, 1987.

[YL94] W. P. Yan and P.-A. Larson. Performing group-by before
join. In Proc. ICDE, 1994.

[ZGMI-IWgS] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J.
Widom. View maintenance in a warehousing environment. In
Proc. ACM SIGMOD, 1995.

329

