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Abstract 
We present novel algorithms for the problem of using material- 
ized views to compute answers to SQL queries with grouping and 
aggregation, in the presence of multiset tables. ln addition to its 
obvious potential in query optimization, this problem is important 
in many applications, such as data warehousing, very large trans- 
action recording systems, global information systems and mobile 
computing, where access to local or cached materialized views 
may be cheaper than access to the underlying database. Our con- 
tributions are the following: First, we show that in the case where 
the query has grouping and aggregation but the views do not, a 
view is usable in answering a query only if there is an isomor- 
phism between the view and a portion of the query. Second, when 
the views also have grouping and aggregation we identify condi- 
tions under which the aggregation information present in a view 
is sufficient to perform the aggregation computations requited in 
the query. The algorithms we describe for rewriting a query also 
consider the case in which the rewritten query may be a union 
of single-block queries. Our approach is a semantic one, in that 
it detects when the information existing in a view is sufficient to 
answer a query. In contrast, previous work performed syntactic 
transformations on the query such that the definition of the view 
would be a sub-part of the definition of the query. Consequently, 
these methods can only detect usages of views in limited cases. 

1 Introduction 
We present novel algorithms for the problem of using ma- 
terialized views to compute answers to SQL queries with 
grouping and aggregation. This problem has the poten- 
tial of improving the performance of SQL query evalu- 
ation in general. It has an even greater impact on the 
optimization of aggregation queries in applications such 
as data warehousing [GJM96, ZGMHW95], very large 

Answering Queries with Aggregation Using Views 

H. K Jagadish 
AT&T Research 

jag@tesearch.att.com 

Alon Y. Levy 
AT&T Research 

levy@research.att.com 

transaction recording systems [JMS95], global information 
systems [LSK95, LRO96] and mobile computing [BI94], 
where access to (local or cached) materialized views may 
be cheaper than access to the underlying database. 

In data warehousing applications and very large trans- 
action recording systems, the size of the database and the 
volume of incoming data may be very large. Queries against 
such data typically involve aggregation. Such queries may 
be answered more efficiently by materializing and main- 
taming appropriately defined aggregation views (summary 
tables), which are much smaller then the underlying data 
and can be cached in faster memory. 

In globally distributed information systems, the rela- 
tions may be distributed or replicated, and locating as well 
as accessing them may be expensive and sometimes not 
even possible. In mobile computing applications, the rela- 
tions may be stored on a server and be accessible only via 
low bandwidth wireless communication, which may addi- 
tionally become unavailable. Locally cached materialized 
views of the data, such as results of previous queries, may 
considerably improve the performance of such applications. 

We formalize the problem of using materialized SQL 
views to answer SQL queries as finding a rewriting of a 
query & where the views occur in the FROM clause, and the 
rewritten query is multiset-equivalent to Q. The technical 
challenges arise from the multiset semantics of SQL, in 
conjunction with the use of grouping and aggregation. 

*The work of this author was performed when he was at AT&T Bell 
Laboratories, Murray Hill, NJ, USA. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributedfor direct commercial 
advantage, the VLDB copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Very Large Data Base Endowment. To copy otherwise, or to republish, 
requires a fee ana’lor special permission from the Endowment. 

Proceedings of tbe 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

We focus on queries and views of the form “SELECT- 
FROM-WHERE-GROUPBY-HAVING”, i.e., single-block 
queries, where the SELECT and HAVING clauses may 
contain the SQL aggregate functions MIN, MAX, SUM and 
COUNT.’ We do not assume the availability of any meta- 
information about the schema, such as keys or functional 
dependencies. The contributions of this paper are developed 
in a step-wise fashion, as follows. 

First, in Section 3, we study the case where the query has 
grouping and aggregation but the views do not. We consider 
rewritings that result in single-block queries, as well as 
rewritings that result in the UNION ALL (i.e., additive 

l?he SQL aggregate functions SUM, COUNT and AVG are related 
in that, given values for two of them over some column, the third can 
be computed. Dealing with AVG is consequently stratghtforward, but 
complicates the presentation. Hence, we do not consider AVG. 
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multiset union) of single-block queries. We show that, for 
both types of rewritings, usability of a view in evaluating a 
query essentially requires an isomorphism between the view 
and a portion of the query: the view should not project out 
any column needed by the query, and it should retain all 
the tuples needed to compute information for some (all, 
if a single-block rewriting is desired) of the groups in the 
query. The rewriting algorithms can be iteratively applied to 
incorporate multiple views, and we identify the conditions 
under which all possible rewritings are generated. 

Second, in Section 4, we study the case where both the 
query and the views have grouping and aggregation. Addi- 
tional subtleties arise because an aggregated column can be 
regarded as being partially projected out, and a groupby in 
the view results in the multiplicities of the tuples being lost. 
We extend the conditions for usability in a natural fashion 
to recognize when the aggregation information present in 
a view is sufficient to perform the aggregate computations 
required in the query, and provide a rewriting algorithm for 
the query. 

Finally, in Section 5, we show that when the views have 
grouping and aggregation but the query does not, it is not 
possible to use the views to evaluate the query. Intuitively, 
the loss of tuple multiplicities because of a groupby in the 
view prevents any multiset-equivalent rewriting. 

There has been previous work on using views to an- 
swer queries (e.g., [YL87, SJGP90, TS194, CR94, CKPS95, 
LMSS95]), but the problem of finding the equivalent rewrit- 
ings for SQL queries with multiset semantics, grouping 
and aggregation, has received little attention. Several re- 
searchers have considered performing syntactic transfor- 
mations on queries with grouping and aggregation that pre- 
serve equivalence of the query (e.g., [YL94, LMS94, CS94, 
RSSS95, GHQ95, CS%, LM96]). Gupta et al. [GHQ95] 
have shown how these transformations can be used for find- 
ing rewritings of queries by transforming the query in a 
way that the definition of the view would be identical to 
a sub-part of the definition of the query. In addition to 
being more restrictive than our semantic approach, the ap- 
proach of Gupta et al. does not consider rewritings that are 
UNION ALLs of single-block queries. Hence, their ap- 
proach can detect usages of views in only limited cases. 
A detailed compariin with related work is presented in 
Section 6. 

1.1 Illustrative Example 

We present an example from data warehousing in telephony 
to illustrate the potential performance gains when using 
materialized aggregation views to answer queries. 

Example 1.1 Consider a data warehouse that holds infor- 
mation useful to a telephone company. The database main- 
tains the following tables: 

l Customer(Phone-Number, Custflame), which 
maintains information about individual customers of 
the telephone company, 

l CallingPlans( Plan-Id, PlanName), which 
maintains information about the different calling plans 
of the telephone company, and 

l Calls(From, To, Time, Day, Month, Year, 
Duration, Plan-Id, Charge), which maintains in- 
formation about each individual call. 

Assume that the telephone company is interested in de- 
termining calling plans that have earned more than a million 
dollars in one of the years between 1990 and 1995. The 
following SQL query &i may be.used for this purpose: 

&I: SELECT Year, Plan-Name, SUM(Charge) 
FROM Calls, CallingPlans 
WHERE Calls.PlanJd = Calling-Plans.PlanJd 

AND Year 2 1990 AND Year 5 1995 
GROUPBY Year, Plan-Name 
HAVING SUM(Chavge) > l,OOO,OOO 

The telephone company also maintains materialized views 
that summarize the performance of each of their call- 
ing plans on a periodical basis. In particular as- 
sume that the following materialized view Vl(PlanJd, 
Month, Year, Earnings) is available: 

K: SELECT Plan-Id, Month, Year, SUM(Charge) 
FROM Calls 
GROUPBY Plan-Id, Month, Year 

View VI can be used to evaluate the query Qi by joining VI 
with the table CallingPlans, collapsing multiple groups 
corresponding to the monthly plan earnings into annual plan 
earnings, and enforcing the additional conditions to get the 
summaries of plans earning more than a million dollars in 
one of the years between 1990 and 1995. The rewritten 
query Q{ that uses VI is: 

Q:: SELECT Year, Plan-Name, SUM(Eamings) 

FROM VI, Calling-Plans 
WHERE Vl.Plan-ld = Calling_Plans.Plan_ld 

AND Year 2 1990AND Year 5 1995 
GROUPBY Year, Plan-Name 
HAVING SUM(Earnings) > 1,000,000 

The Calls table may be huge, and the materialized view 
VI is likely to be orders of magnitude smaller than the 
Calls table. Hence, evaluating Q{ will be much faster than 
evaluating Qr , emphasizing the importance of recognizing 
that Qi can be rewritten to use the materialized view VI. 

Consider now the case where, instead of VI, 
the telephone company maintains the materialized 
view V,‘(PlanJd, Month, Year, Earnings), summariz- 
ing the performance of their calling plans only since 199 1: 
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V[: SELECT Plan-Id, MOW%, Yeat, SUM(Charge) 
FROM Calls 
WHERE Year 2 1991 
GROUF’BY Plan-Id, Month, Year 

View V,l can still be used to evaluate query &r . However, 
not all the tuples in Qt can be computed using If{; the 
summary information computation for 1990 would have to 
access the Calls table, and the rewritten query Qy involves 
a UNION ALL. 

Q;‘: SELECT Year, Plan-Name, SUM(Earnings) 
‘FROM V,‘, Callwag-Plans 
WHERE V{.Planld = Calling_Plans.PlanJd 

AND Year 5 1995 
GROUPBY Year, Plan-Name 
HAVING SUM(Earnings) > 1,000,000 

UNION ALL 
SELECT Year, Plan-Name, SUM(Charge) 
FROM Calls, Calling-Plans 
WHERE Calls.PlanJd = Calling-Plans.Plan-Id 

AND Year = 1990 
GROUPBY Year, Plan-Name 
HAVING SUM(Charge) > 1,000,000 

Evaluating Qy will still be faster than evaluating & 1, even 
though it involves accessing the Calls table. 0 

2 Notation and Definitions 
We consider SQL queries and views with grouping and 
aggregation. Queries can be either single-block queries 
(described below), or union multi-blockqueries that are the 
UNION ALL (i.e., additive multiset union) of single-block 
queries. A view is defined by a query, and the name of the 
view is associated with the result of the query; in this paper, 
we consider only views defined by single-block queries. We 
give the form as well as a simple example of a single-block 
query in Figure 1. 

For notational convenience, we modify the naming con- 
vention of standard SQL to guarantee unique column names 
for each of the columns in a single-block query. For ex- 
ample, let Rt and R2 be two tables each with a single 
column named A. If a single-block query Q has both RI 
and R2 in its FROM clause, our notation would replace 
them by Rl(Al) and Rz(Az). Every reference to R1.A in 
Q is replaced by Al, and every reference to R2.A in Q is 
replaced by AZ. Similarly, if a single-block query Q has 
two range variables RI and RZ ranging over table R in its 
FROM clause, our notation would replace them by R(Al) 
and R(A2). Every reference to R1.A in Q is replaced by 
Al, and every reference to R2.A in Q is replaced by AZ. 

We use Tables(Q) to denote the set of tables (along 
with their columns) {Rl(Al), . . . , R”(&)} in the FROM 
clause of a single-block query Q, and Cols(Q) to de- 
note&U... U A,, i.e., the set of columns of tables in 
Tables(Q). In the example of query Qc, Tables(Q,) is 
{R(A,B),S(C,D,E)}andCols(Q,)is{A,B,C,D,E}. 
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The set of columns in the SELECT clause of Q , denoted 
by Sel(Q), consists of (a) non-aggregation columns: this 
is a subset of the columns in Cols(Q), and is denoted 
by ColSel(Q); and (b) aggregation columns: these are 
of the form AGG(Y), where Y is in Cols(Q) and AGG 
is one of the aggregate functions MIN, MAX, SUM and 
COUNT. The set of columns that are aggregated upon, 
such as Y above, is a subset of Cols(Q), and is de- 
noted by AggSel(Q). In the example of query Qe, 
Sel(Q,) is {A, MAX(D), SUM(E)), ColSel(Q,) is {A} 
and AggSel(Q,) is {D, E}. 

The grouping columns of query Q, denoted by 
Groups(Q), consists of a subset of the columns in 
Cols(Q). SQL requires that if Groups(Q) is not empty, 
then ColSel(Q) must be a subset of Groups(Q). In 
the example of query Qe, Groups(Q,) is {A,B} and 
ColSel(Q,) is a proper subset of Groups(Q,). 

We consider built-inpredicates that are arithmetic pred- 
icates of the form cr op ,& where op is one of the compari- 
son predicates {<, 5, =, #,>,>},andcrand/3areterms 
formed from columns of tables, aggregation columns and 
constants using the arithmetic operations + and *. 

The conditions in the WHERE clause of query Q, de- 
noted by Co&s(Q), consists of a boolean combination 
of built-in predicates, formed using columns in Cols(Q) 
and constants. The conditions in the HAVING clause of 
query Q, denoted by GConds(Q), consists of a boolean 
combination of built-in predicates formed using columns 
in Groups(Q) , aggregation columns of the form AGG(Y) 
where Y is in Cols(Q), and constants. In the example 
of query Qe, Conds(Q,) is B = C, and GConds(Q,) is 
SUM(D) > looo. 

Given a single-block query Q, if Grozlps(Q), 
AggSel(Q) and GConds(Q) are empty2, then Q is re- 
ferred to as a conjunctive query. Otherwise, Q is referred 
to as an aggregation query. 

Determining that a single-block view V is usable in eval- 
uating a single-block query Q requires (as we show later in 
the paper) that we consider mappings from V to Q. These 
are specified by column mappings, defined below. 

Definition 2.1 (Column Mapping) A column mapping 
from a single-block query Q. to a single-block query Qb 
is a mapping 4 from Cols(Qo) to Cols(Qb) such that if 
R(&, . . . , An) is a table in Tables(Q,), then: (1) there 
exists a table R( BI , . . . , B”) in Tables(Qa), and (2) Bi = 
4(Ai), 1 5 i 5 n. 

A I-l column mapping 4 is a column mapping from Qa 
to &a such that distinct columns in Cols(Qn) are mapped 
to distinct columns in Cols(Qb). Otherwise, the column 
mapping is a many-to-l column mupphag. 0 

As a shorthand, if R is a table in ‘I;ables(Qo), we use 
d(R(Al, . . . , An)) to denote R(d(Al), . . . , b(A,)), where 

2Note that each of Groups(Q), AggSel(Q) and GConda(Q) can 
he empty without the other two being empty. 



Q: SELECT Sel(Q) Qe : SELECT A, MAX(D), SUM(E) 
FROM Rl(Al), . . -1 R&in) FROM 6% B), S(C, D, E) 
WHERE Cods(Q) WHERE B=C 
GROUPBY Groups(Q) GROUPBY A, B 
HAVING GConds(Q) HAVING SUM(D) > 1000 

Figure 1: Form and example of a single-block query 

A,. . . , A,, are columns in Cols(Qa). We use similar 
shorthand notation for mapping query results, sets and lists 
of columns, sets of tables, and conditions. 

We formalize the intuitive notion of “‘usability” of view 
V in evaluating query Q as finding a rewtiting of Q, de- 
fined below. In this paper, we consider only rewritings 
that are either single-block queries, or multi,-block queries 
that are UNION ALLs of single-j&k queries. For exam- 
ple, rewriting Q{ in Example 1.1 is a single-block query, 
whereas rewriting 9: in the same example is a multi-block 
query that is a UNION ALL of single-block queries. 

Definition 2.2 (Rewriting of a query) A query Q’ is a 
rewriting of query Q that uses view V if: (1) Q and Q’ are 
multiset-equivalent, i.e., they compute the same multiset of 
answers for any given database, and (2) Q’ contains one or 
more occurrences of V in the FROM clause of one of its 
blocks. 0 

In the sequel, we say that view V is usable in evaluating 
query Q, if there exists a single-block or a union multi-block 
query Q’ such that Q’ is a rewriting of Q that uses V. 

When the rewritten query can be a multi-block query, 
there is a certain trivial sense in which any view V is usable 
in evaluating a given query Q - the rewritten query can 
be.the UNION ALL of Q itself and a single-block query 
in which V occurs in the FROM clause and which has 
an unsatisfiable conjunction of built-in predicates in the 
WHERE clause. However, when Q is unsatisfiable, any 
‘rewriting of Q would also have to be unsatisfiable. Dealing 
with these and other such possibilities would complicate 
our presentation without aiding our understanding of the 
problem. Hence, we consider satisfiable queries and views, 
and do not permit .multi-block rewritings where any block 
is unsatisfiable. 

3 Aggregation Query and Conjunctive Views 
In this section we consider the problem of using single- 
block conjunctive views to evaluate a single-block query 
with grouping and aggregation. Using a single-block view 
to evaluate a multi-block query can be achieved by inde- 
pendently testing usability of the view in evaluating each 
block of the multi-block query separately. 

Intuitively, if a view V is usable in evaluating a query 
Q, then V must “replace” some of the tables and conditions 
enforced in Q; other tables and conditions from Q must 
remain in the rewritten query Q!. The rewritten query Q’ 

can be a single-block query, or a multi-block query that is 
a UNION ALL of single-block queries. For view V to be 
usable in answering query Q, such that Q’ is a single-block 
query, it must be the case that: 

V does not project out any columns needed by Q. 

Intuitively, a column A is needed by Q if it appears 
in the result of Q or if Q needs to enforce a condition 
involving A that has not been enforced in the compu- 
tation of V. 

V does not discard any tuples needed by Q. 

Intuitively, a tuple is needed by Q if it satisfies the 
conditions enforced in Q. 

When Q’ can be a multi-block query, the second require- 
ment can be somewhat relaxed to require that V not discard 
any tuples needed for some of the groups in Q. 

We formalize these intuitionsbelow, show that they yield 
both necessary and sufficient conditions for certain kinds 
of queries, and present an algorithm to rewrite Q using 
V. We first examine the case when the query does not 
have a HAVING clause, and then describe the effect of 
the HAVING clause on the conditions for usability and the 
rewriting algorithm. 

3.1 Aggregation Query Without a HAVING Clause 

3.1.1 Single-Block Rewritten Query 

The conditions for usability of a single-block view V in 
evaluating a single-block query Q, such that the rewritten 
query Q’ is a single-block query, are presented formally 
in Figure 2 in terms of column mappings. Note that the 
conditions apply also to the restricted case when both the 
view and the query am conjunctive [CKPS95]. 

Condition Ci and the first part of condition C, essen- 
tially guarantee that the view is multiset equivalent to its 
image under 4; these are a reformulation of the conditions 
presented in [CV93] for testing equivalence of conjunctive 
queries under the multiset semantics. Note that the l-l 
mapping is necessary because of the multiset semantics, 
whereas a many-to- 1 mapping would suffice in the case of 
sets [LMSS95]. Condition C4 ensures that constraints not 
enforced in the view can still be enforced in the query when 
the view is used, since they do not refer to columns that are 
projected out in the view and hence are no longer available. 
Conditions Cz and C’s ensure that the view does not project 
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Condition Cl : There is a 1-l column mapping 4 from V 
bQ. 

Condition C2 : IfacolumnA in CplSel(Q) uGroups(Q) 
is a column in 4(CoZs(V)), then Sel(V) must have 
a column BA such that Co&s(Q) implies (A = 
~BA))- 
Note that this condition is satisfied if BA is 4-‘(A). 

Condition C3 : Suppose AGG(A) is in SeI(Q). If column 
A is in d(Cols(V)), then: 

1. If AGG is MIN. MAX or SUM, then Sel(V) 
must have a column BA such that Conds(Q) 
implies (A = d( BA)). 

2. If AGG is COUNT, then Sel(V) must not be 
empty. 

Condition C4 : Them exists a boolean combination of built- 
in predicates, Conds’, such that: 

1. Conds(Q) - 
d(Conds(V)) & Ands’. 

equivalent to 

2. Conds’ involves only the columns in 
d(SeV)) U (Col.49) - d(CoW))). 

Figure 2: Usability conditions for a single-block aggrega- 
tion query without a HAVING clause, a single-block con- 
junctive view, with a single-block rewritten query 

out any column that is nquircd in the SELECT clause of 
the query. Condition C’s is the one needed in order to deal 
with the aggregation in the query. 

If conditions Ci - 174 are satisfied, the rewritten query Q’ 
is obtained from Q by replacing the tables in #(Tables( V)) 
by 4(V) in the FROM clause, where 4(V) denotes 
V(4(Sel(V))). The SELECT and WHERE clauses of the 
query are then modified to reflect the use of view V in the 
rewritten query. Formally, the single-block rewritten query 
Q’ is obtained from Q by applying algorithm ConjVlewS- 
ingleBlock, presented in Figure 3. 

Theorem 3.1 Let Q be a single-block aggregation query 
without a HAVING clause, and let V be a single-block 
conjunctive view. 

If conditions Cl - C4 are satisfied, V is usable in eval- 
uating Q., In that case Q’, obtained by applying algo- 
rithm ConjViewSingleBlock, is a rewriting of Q using V. 

IfConds(Q) andConds( V) contain onlyequalitypred- 
icates of the form A = B, where A and B are column 
names or constants, and the rewritten query is required to 
be a single-block query, V is usable in evaluating Q only if 
conditions Ct - C4 are satis$ed. 0 

The following example illustrates conditions Ci - C4 and 
algorithm ConjViewSingleBlock for obtaining a single- 
block rewritten query. 

Example3.1 Consider the telephone company database 
from Example 1.1. The following query 92 can be used to 

Algorithm ConjViewSmgleBlock 

Step St : Replaceall the tables in q5(%bles(V)) by 4(V). 

steps2 : Replace each column A in Groups(Q) u 
ColSel(Q) U AggSel(Q) by I, where BA satis- 
fies conditions CZ and Cs, part 1. 

steps3 : Determine a boolean combination of built-in 
predicates Conds’ satisfying condition Cd. Replace 
Conds(Q) in Q by Conds’. 

steps4 : Consider an aggregation column COUNT(A) 
in Ser(Q) such that A is in q5(Cols(V)), but not 
in q5($el(V)). Replace COUNT(A) by COUNT(B), 
where B is any column in q5 (V) . 

Figure 3: Rewriting algorithm for a single-block aggrega- 
tion query without a HAVING clause, a single-block con- 
junctive view, with a single-block .mwritten query 

determine the total earnings of each calling plan as well as 
the total number of calls charged under each calling plan in 
December 1995. 

92: SELECT PNr, SUM(CJ), COUNT(C1) 
FROM Calls(Ji,T~,TIl, Di, MI, Yl, DU,, A, Cl), 

CallingPlans( PII, PN1) 
WHERE Pt=PItANDK=1995ANDMt=12 
GROUPBY PNI 

Assume that the telephone company maintains call data for 
December 1995 as the view V2 below: 

V2: SELECT Fz, Tz, TIz, Dz, M2, Y2, DU2, P2, C2 
FROM Calls(F2, T2,TI2, D2, Mz,Yz,DUz, A,C2) 
wH.ERE &=1%‘5m&=12 

View V2 can be used to evaluate query 42 since conditions 
Cl - C4 are satisfied: (Cl) The l-l column mapping 4 
fromV2toQ2is{F2jF1,Tz~Tl,TI2-+TIl,D2--, 
D1,M2 -+ M1,Y2 + Yl,DU2 --f DUl,Pz + 4,Cz + 
Cl}. (Cz) Trivially satisfied. (C’s) For column Ci, Bc, 
is the column C2 in Sel(V2). (Cd) Conds’ is given by 
PI = PIl. 

The single-block rewriting of Q2 that uses VZ is: 

Q;: SELECT PNl, SUM(CI), COUNT(CI) 
FROM &(FI,Z,TII,DI,M~,Y~,DUI,PI,C~), 

Calling-Plans(PIl, PNl) 
WHERE A = PI1 
GROUl’BY PNl 

0 

3.13 I Multi-Block Rewritten Query 

When the rewritten query is not required to be a single-block 
query, but can be a multi-block query that is a UNION ALL 
of single-block queries, additional usages of views in eval- 
uating queries are possible. 
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\ 
Condition C,m : Let Condsl be Conds(Q) 8c 

c$(Conds(V)), and Condsz be Conds(Q) 8z 
+(Conds(V)). Then, 

1. Condsl must be satisfiable. 

2. Them exists a boolean combination of built-in 
predicates, Conds’, such that: 

(a) Condsl equivalent 
#(Conds(V)) : Conds’, 

to 

(b) Conds’ involves only the columns in 
4(SeW)) u (CMQ) - (P(CWV))). 

(C) ~Gr..wpr(Q)(Co~dsd & 

*G,,p8(Q)(Conds2) is FALSE. 

Figure 4: Modification of condition Cq, when multi-block 
rewritten queries are permitted 

The conditions for usability of a single-block view V 
in evaluating a single-block query Q, when Q’ can be a 
multi-block rewritten query, are similar to the conditions 
for usability when Q’ has to be a single-block query. In 
particular, conditions Ci - C’s are unchanged. Condition Cd 
has to be modified to reflect the possibility that V can be 
used to compute only some of the tuples of Q. The modified 
condition, CT, is formally presented in Figure 4. 

Intuitively, given a view V that satisfies condi- 
tion Ci, query Q can always be reformulated as a 
UNION ALL of 2 single-block queries Qa and &a, 
that differ from Q (and from each other) only in their 
WHERE clauses, such that: (1) Conds(Q,) is equiva- 
lent to Con&(&) dz d(Conds(V)), and (2) COndS(Qa) is 
equivalent to Cot&(Q) & +(Conds(V)). 

View V can be potentially used to evaluate Q,, but 
clearly not &a. Conditions Ci - C’s, and parts 1, 2(a) 
and 2(b) of condition CF essentially check whether view 
V can be used to evaluate QO. The reformulation of Q as the 
UNION ALL of Q0 and Qt,, however, does not always pre- 
serve the semantics of Q. To preserve the semantics, it must 
be guaranteed that &a and Qb do not compute tuples for 
the same group of Q - part 2(c) of condition Cy embodies 
this requirement. If conditions Ci - C’s and CT are satis- 
fied, the multi-block rewritten query Q’ is obtained, using 
algorithm ConjViewMultiBlock, presented in Figure 5. 

I i 
Theorem 3.2 Let Q be a single-block aggregation query 
without a HAVING clause, and let V be a single-block 
conjunctive view. 

If conditions Ct - C3 and CT are satisfied, V is usable 
in evaluating Q, Zn that case Q’, obtained by applying 
algorithm ConjViewMultiBlock, is a multi-block rewriting 
of Q using V. 0 

3.2 Multiple Uses of Views ; 

Often a query can’make use of multiple views, or the same 
view multiple times. The rewriting algorithms Co*ViewS- 

Algorithm ConjViewMultiBlock 
stepsy : Use 4(Conds(V)) to split & into Qa 

and Qb, such that Conds(Q,) is equivalent to 
Conds(Q) & b(Conds(Vj), and Conds(Qt,) is 
equivalentto Conds(Q) 8z +(Conds(V)). 

step s,m : Use algorithm ConjViewSingleBlock to rewrite 
Q. to make use of view V. Let Qh denote the resultant 
single-block query. 

step sy : If Qb is satisfiable, the multi-block query Q' that 
is the rewriting of Q using V is the UNION ALL of Qb 
and Qb. Else, Q’ is the same as Qh. 

Figure 5: Rewriting algorithm for a single-block aggrega- 
tion query without a HAVING clause, a single-block con- 
junctive view, with a multi-block rewritteu query 

ingleBlock and ConjViewMultiBlock presented above can 
be used to incorporate multiple uses of views. To obtain 
rewritings with multiple views we create successive rewrit- 
ings QL, . . . , Q:, where each rewriting is obtained from the 
previous one by testing conditions Ci - Cs and either Cd 
or CT (depending on the form of the rewriting desired), 
and applying the corresponding rewriting algorithm. At 
each successive rewriting, the views incorporated in pre- 
vious rewritings are treated as database tables, rather than 
being expanded using their view definitions. 

Theorem 3.3 Let Q be a single-block aggregation query 
without a HAVZNG clause, and let V,, . . . , V, be single- 
block conjunctive views. Then the following hold: 

1. An iterative application of algorithm ConjViewSin- 
gleBlock is sound, i.e., each successive rewriting is 
multiset-equivalent to Q. 

2. An iterative application of algorithm CoqjViewMulti- 
Block is sound, i.e., each successive rewriting is 

> multiset-equivalent to Q. 

3. The rewriting algorithm ConjViewSingleBlock is 
order-independent. That is, if there is a single-block 
rewriting of Q that uses each of V,, . . . , V,, then the 
result of rewriting Q to incorporate views V, , . . . , V, 
would be the same regardless of the order in which the 
views are considered. 

4. i’f Conds(Q), Conds(V,), . . . , Conds(V,) contain 
only equality predicates of the form A = B, where A 
and B are column names, or constants, and the rewrit- 
ten query is required to be a single-block query, then 
the iterative application of algorithm ConjViewSin- 
gleBlock is complete. That is, any rewriting of Q that 
uses one or more of V,, . . . , V’ can be obtained by it- 
eratively applying algorithm ConjViewSingleBlock. 

0 
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Condition (73” : Suppose AGG(A). is in. Se/(Q) or in 
GConds(Q). If column A is in ti(Cols(V)), then: 

1. If AGG is MIN, MAX or SUM, thtn SeZ(V) 
must have a column BA such that Con&(Q) 
implies (A = +(BA)). 

2. If AGG is COUNT, then Sel(V) must not be 
empty. 

Figure 6: Modification of condition C’s, when query & has 
a HAVING clause 

It is important to note that, for the case of equality pred- 
icates, the iterative application of ConjViewSingleBlock 
guarantees that we find all ways of using the views to an- 
swer a query, provided the rewritten query is required to 
be a single-block query. In contrast, this property does 
not hold under the set semantics considered in pMSS95], 
where there may exist rewritings that cannot be found by 
considering sequences of single view substitutions. 

3.3 Aggregation Query With a HAVING Clause 

We now describe how to extend the previous algorithms 
to the case in which the queries may contain a HAVING 
clause. We only consider the case when the rewritten query 
is required to be a single-block query. The case when the 
rewritten query can be a multi-block query is a straight- 
forward extension, along the lines described for aggrega- 
tion queries without HAVING clauses. We first describe 
how to extend our usability conditions to accommodate the 
HAVING clause, and then show how we can use various 
transformations on the query that can cause the conditions 
to be satisfied in a larger number of cases. 

Intuitively, when the single-block query Q has a HAV- 
ING clause, the conditions for usability of a conjunctive 
view V in evaluating Q and the rewriting algorithm Con- 
jViewSingleBlock need to be extended to account for: 

l Conditions in GConds(Q) that must be satisfied by 
the query, in addition to conditions in Con&(Q), and 

l Aggregation columns, of the form AGG(Y), that occur 
in GConds(Q), but not in Se/(Q). 

To accommodate such conditions we modify C’s to also 
consider arguments that appear in GConds(Q). The ex- 
tended condition, Ct, is formally presented in Figure 6. If 
Q and V satisfy conditions Cl, 12’2, Ct and Cd, the singie- 
block rewritten query Q’ is obtained using algorithm Hav- 
ingConjViewSingieBlock, presented in Figure 7. 

Theorem 3.4 Let Q be a single-block aggregation query 
with a HAVING clause, and let V be a single-block con- 
junctive view. 

If conditions Cl, C2, Ct and Cd are satisJied, V is usable 
in evaluating Q. In that case Q’, obtained by applying 

Algorithm HaviugConjViewSiugleBktck 
Assume that the query Q has been pre-processed. 

steps: : Apply steps 5’1, SZ and & using condition C$ 
instead of condition C3. 

steps; : Replace each column A in GConds(Q) by 
#(BA), whem A and BA satisfy conditions CZ and 
ct. part 1. 

steps; : Consider an aggregation column COUNT(A) 
in Sel(Q) or in GConds(Q) such that A is in 
4(Cols(V)), but not in ti(Sel(V)). Replace 
COUNT(A) by COUNT(B), where B is any column in 
4(V). 

Figure 7: Rewriting algorithm for a single-block aggrega- 
tion query wit&a HAVING clause, a single-block conjunc- 
tive view, with a single-block rewritten query 

algorithm HavingCo~ViewSingleBlock, is a rewriting of 
Q using V. 0 

Strengthening the Conditions in the Query 

When query Q has a HAVING clause, the conditions in its 
HAVING clause may enable us to strengthen the conditions 
in its WHERE clause, without affecting the result of the 
query. Strengthening the conditions in the WHERE clause 
may allow us to detect usability of views that would oth- 
erwise not be determined to be usable, because it makes it 
more likely that condition C4 will be satisfied. 

Several authors (e.g., [LMS94, RSSS95, GHQ95, 
LM96]) have considered the problem of inferring condi- 
tions that can be conjoined to Con&(Q) given the con- 
ditions in GConds(Q), and removing redundant condi- 
tions in GConds(Q). These techniques can be applied 
to rewrite the query Q, as a pre-processing step, yielding 
possibly modified conditions Conds(Q) and GConds(Q), 
The modified Con&(Q) and GConds(Q) are then used in 
checking conditions C2, C,h and C.+ 

Example3.2 Consider again the telephone company 
database from Example 1.1. The following query 43 can be 
used to determine, for each customer, the maximum charge 
for a single call under the calling plan ‘TmeUniverse” in 
December 1995, provided that the charge exceeds $10. 

Q3: SELECT FI,MAX(CI) 
FROM . Calls(F~,T~,TI~,D~,M~,Y~,DUI,Pr,Cl), 

Calling-Plans( PII, PNI) 
WHERE PI = PII AND PNl = “TrueUniveTse” 

ANDK= 1995AND Ml = 12 
GROUPBY FI 
HAVING MAX(C1) > 10 

Assume that the telephone company maintains detailed call 
data for 1995, for calls whose charge exceeds $1, as the 
view V3 below: 
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6: SELECT Fz,Tl,TIz,Dz, Mz,Yz,DUz, P2, C2 

FROM CaWF2,Tz,TIz,D2, Mz, Y2, DU2, P2,Cz) 
WHERE Yz=1995ANDCz> 1 

Although the WHERE clause of Qs does not enforce any 
conditions on the Charge column, while the WHERE 
clause of V3 does, V3 can still be used to evaluate 93. This 
is because the condition MAX(C1) > 10 in the HAVING 
clause of Q3 is equivalent to having the condition Ci > 10 
in the WHERE clause of Q3. Strengthening Conds(Q3) 
by conjoining Cl > 10 (and subsequently removing the re- 
dundant HAVING clause) allows the detection of usability 
of V3 in evaluating 93. The rewriting of &3 that uses V3 is: 

Q;: SELECT FI, MAx(Ci) 
FROM V3(Fl,~,TIl,Dl,Ml,~,DUl, A,G), 

Calling-Plans(PIi, PN,) 
WHERE PI = PII AND PN1 = “TrueUniverse” 

AND MI = !2ANDCr > 10 
GROUPBY Fl 

Note that view V3 cannot be used to answer query Q2 (from 
Example 3.1), since conditions C4 and Cr are violated 
- in particular, V3 enforces the condition Cz > 1, which 
results in the discarding of Calls tuples needed by Q2, 0 

4 Aggregation Query and Views 

In this section we consider the problem of using single- 
block views in evaluating single-block queries when both 
the view and the query have grouping and aggregation. We 
only consider the case when the rewritten query is required 
to be a single-block query. 

Recall that the two intuitive requirements for the usabil- 
ity of a conjunctive view V in answering a single-block 
aggregation query Q (described in the beginning of Sec- 
tion 3) are that V not project out columns needed in Q, and 
that V not discard tuples needed in Q. In the presence of 
grouping and aggregation in the view, these requirements 
become more subtle: 

o An aggregation over a column in V can be thought of as 
though that column was partially projected out, since 
V contains just aggregate values over that column, not 
the original column values themselves. 

l Asgroupby in V results in the multiplicities of the 
tuples being lost. 

However, as the following examples illustrate, in some cases 
it is possible to overcome the difficulties introduced by 
grouping and aggregation in the view. 

4.1 Illustrative Examples 

The following example illustrates that the aggregate infor- 
mation in a view may be sufficient to compute the aggregate 
information needed in the query. 

Example 4.1 (Coal+ng Subgroups) 
Consider the telephone company database from Exam- 
ple 1 .l . The following query Q4 can be used to determine 
the total earnings of various calling plans as well as the 
maximum charge under each calling plan in 1995. 

Q4: SELECT PI, P NI , SUhf(Cl ), MAX(C1) 
PROM Calls(F~,T~,TI1,D1,MI,~,DU1,A,G1), 

Calling-Plans(PI1, PN1) 
WHERE PI= PII ANDYi = 1995 
GROUPBY PI, PNl 

Assume that the telephone company also maintains infor- 
mation giving the total earnings as well as the maximum 
charge of each calling plan in each month in the form of 
view V4 below: 

V4: SELECT P2, M2, Y2, SUM(&), MAX(C2) 
FROM Calls(F2, T2, TI2, D2, Mz, Y2, DU2, P2, C2) 

GROUPBY P2, M2, Y2 

View V4 groups the table Calls by the Plan-Id, Month 
and Year columns, and computes aggregate information on 
each such group. Query 94, on the other hand, groups the 
table Calls only on the Plan-Id column, resulting in more 
coarse groups than those computed in VS. However, the 
aggregate information of the Plan-fd groups in Q4 can be 
computed by further aggregating the aggregate information 
computed for the (Plan-Id, Month, Year) groups in V4, 
as illustrated in the following rewritten query. 

Q;: SELECT PI, PNI, SUM(MEI), MAX(MCi) 
FROM Vi(P1, MI,%, MW, MC& 

Calling-Plans(PI1, PNI) 
WHERE R=PI1ANDY1=1995 
GROUPBY PI, P NI 

0 

The following example illustrates that the existence of 
other columns in the view may enable us to recover the 
tuple multiplicities lost because of grouping in the view. 

Example 4.2 (Recovery of Lost Multiplicities) 
Consider again the telephone company database from Ex- 
ample 1.1. The following query QS can be used to determine 
the total number of calls under each calling plan in 1995: 

&5: SELECT PI, COUNT(CNI) 
FROM Calls(Fl,Tl,TI1, D1, Ml,Yl, DU1, Pl,Cl), 

Customer(PN1, CN1) 
WHERE F1 = PNl AND Yl = 1995 
GROUPBY PI 

View V& below maintains the total annual revenue for each 
customer, plan, and year: 

Vsa: SELECT F2, Pz, Y2, SUM(Cz) 
FROM Calls(F2, T2, TI2, D2, M2, Y2, DU2, P2, (72) 

GROUPBY F2, P2, Y2 
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Although Vs, does not project out any column that is needed 
in Qs, Vso cannot be used to evaluate Qs. This is because 
the multiplicity of the From column of Culls is needed 
in order to compute COUNT(CNi), but that multiplicity is 
lost in the view Vs,. However, consider view Vsb below: 

fib: SELECT &, Pz, &, Sm(c2), COUNT(C2) 
FROM Calls(F2, Tz,TI2, Dz, Mz, Yz, bU2, Pz, C2) 
GROUPBY F2, Pz, Y2 

Although the multiplicities of the From column are not 
explicit in Vsb, they can be computed using the available 
information. Vsb can be used to evaluate Qs as follows: 

Q;: SELECT PI, SUM(CG,) 
FROM &b(Fl, PI, x, YEl,CG& 

Customer(PN1, CN,) 
WHERE PI = PNI AND K = 1995 
GROUPBY PI 

0 

As the examples illustrate, to use views that involve 
aggregations, we need to verify that (a) the aggregate infor- 
mation in the view is sufficient to compute the aggregates 
needed in the query, and that (b) the correct multiplicities 
exist or can be computed. We formalize these intuitions 
below, present conditions for usability, and provide an al- 
gorithm to rewrite Q using V. 

4.2 Without HAVING Clauses 

To specify conditions for usability for single-block aggre- 
gation views, we need to slightly modify conditions CZ and 
Cd, and to substantially modify condition C’s to deal with 
the different cases of aggregates appearing in the SELECT 
clause of the query. (Condition Ci is unchanged.) The 
modified conditions are formally presented in Figure 8. 

Since ColSel(&) must be a subset of Groups(Q), con- 
dition Cz is a generalization of condition C2. Intuitively, 
condition C; guarantees that the columns in the view con- 
tain enough information to compute the aggregates required 
in the query. In particular, conditions C$‘, parts l(b), l(c) 
and 2 guarantee that we can recover the multiplicities in the 
view in order to perform an aggregation that depends on 
such multiplicities (i.e., either SUM or COUNT). The two 
parts of the condition cover the cases when the aggregation 
is on a column mapped by the view, and not mapped by the 
view, respectively. Note that the second part of condition 
15’: does not allow Con&’ to constrain any of the columns 
in 4(AggSel(V)). Intuitively, this is because the columns 
in AggSel( V) are aggregated upon in view V, and hence 
are not “available” for imposition of additional constraints 
in the rewritten query Q’. 

If conditions Cp - C$ are satisfied, the rewritten query 
Q’ is obtained from Q by applying algorithm AggViewS- 
ingleBlock, presented in Figure 9. Steps Sp , S’ and S$ are 

similar to steps Si , Sz and Ss of algorithm ConjViewSin- 
gleBlock. Steps St and S; deal with the various kinds of 
aggregation that may occur in the view and the query. 

Theorem 4.1 Let Q and V be single-block aggregation 
queries without HAVING clauses. 

Zf conditions Cf - C$ are satisfied, V is usable in eval- 
uating.9. In that case Q’, obtained by applying algo- 
rithm AggViewSingleBlock, is a rewriting of Q using V. 
0 

Example 4.3 Consider again the query Q4 and view V4 
from Example 4.1. View V4 can be used to evaluate Q4 
since conditions Cp - Ci are satisfied. 

Condition Cf : The l- 1 column mapping f$ from V4 to 
Q4 is {Fz - Fl,Tz + Tl,TIz + TI1, D2 -+ 
D1,M2 - M1,Y2 + Yt,DU2 -+ DUl,Pz - 
4, c2 - Cl). 

Condition Ci : For column PI in GTOUPS(QJ), BP, is the 
column P2 in ColSel(V4). 

Condition C$ : For column SUM(Ci) in Sel(Qd), 
Sel(V4) contains column SUM(C3, and for col- 
umn MAX(Ci) in Sel(Q4), Sel(V4) contains column 
MAWC2). 

Condition 15’; : Conds’ is the same as Conds(Q& i.e., 
PI = PI1 &VI = 1995 since no conditions are en- 
forced in V4. 

The rewritten query Q: resulting from applying steps Sp - 
S; is given in Example 4.1. 0 

Example 4.4 (Constraining 4(AggSel( V))) 
Consider again the telephone company database from Ex- 
ample 1.1. The following query &a can be used to deter- 
mine the total earnings of various calling plans in 1995, 
considering only calls whose charge exceeds $1. 

&a: SELECT A, SuM(cl) 
FROM Calls(Fl, Tl,TZl, D1, Ml, l’i, DUI, A, Cl) 
WHERE K= 1995 AND C, > 1 
GROUPBY PI 

Let the view v6 be the same as view v4 (from Example 4.1): 

v6: SELECT Pz, M2, k5, SUM(C2). MAX(c2) 

FROM Calls(F2, T2, TI2, D2, M2, Y2, DU2,9, C2) 

GROUPBY 9, Mz, Y2 

View v6 cannot be used to evaluate &a above, although 
in the absence of the condition “Cl > 1” in the WHERE 
clause in Q6, v6 could be used to evaluate &a. Intuitively, 
this is because the built-in predicates in the query constrain 
the possible values of Ci , and CZ is aggregated upon in the 
view v6; no condition on the result of the SUM or the MAX 
in v6 can capture the effect of the condition on Ci in Q6. 0 
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Condition Cp : Same as condition Cr. 

Condition C,O : of a cohmm A in ~~~~~~~~~ is a column in (b(CoJs(V)), then CoJSeJ(V) must have a column BA such that 

Conds(Q) implies (A = d(BA)). 

Condition C,o : Suppose AGG(A) is in Se/( 9). 

1. If column A is in qi(CoJs(V)), then: 

(a) If AGG is MM or MAX, then them must exist a column BA in CoJs(V) such that Con&(Q) implies (A = 
I), and SeJ(V) contains either the non-aggregation column BA, or an aggregation column of the form 
AMWA). 

(b) If AGG is COUNT, then SeJ(V) must include a column of the form COUNT(Ao), where Ao is a column in 
CoJs(V). 

(c) If AGG is SUM, then there must exist a column BA in CoJs(V) such that Con&(Q) implies (A = I), 
and SeJ(V) contains either BA and a column of the form COUNT(Ao), or an aggregation column of the form 
AGG(BA). 

2. If column A is not in $(CoJs(V)), and AGG is either SUM or COUNT, then SeJ(V) must include a column of the 
form COUNT(AO), where AO is a column in CoJs(V). 

Condition C,” : There exists Con&‘, such that: 

1. Conds(Q) is equivalentto 4(Conds(V)) & Conds’. 

2. Conds’ involves only the columns in $(CoJSeJ(V)) and the columns in CoJs(Q) that are not in h(CoJs(V)). 

Figure 8: Usability conditions for a single-block aggregation query without a HAVING clause, a single-block aggregation 
view without a HAVING clause, with a single-block rewritten query 

Algorithm AggViewShgleBlock 

Step S,O : Replace all the tables in q5( TabJes( V)) by I$( V), where q%(V) is defined as follows: for each non-aggregation column A 
in SeJ(V), 4(V) contains the column 4(A); for each aggregation column A in SeJ(V), d(V) contains a new column name. 

Step S,O : Replace eachcolumn A in Croups(Q) U CoJSeJ(Q) U AggSeJ(Q) by I, where BA satisfies conditions C,O and 
G, part I(a). 
In the remaining steps of this algorithm, Grotq~s(Q), CoJSeJ(Q) and AggSeJ(Q) refer to these new column names. 

Step S; : Determine a boolean combination of built-in predicates Conds’ satisfying condition C,O as above. Replace Conds(Q) 
in Q by Conds’. 

Step ST : ConsideranaggregationcolumnAGG(A) in SeJ(Q) suchthat Ah intj(CoJs(V)). 

1, Let AGG be MIN. MAX or SUM. By condition Cf. pan 1, there are two cases to consider. 

(a) Suppose Se J( V) contains the aggregation column AGG(BA). Let S denote the corresponding column in q3( V) . 
Replace AGG(A) in SeJ(Q) by AGG(S). 

(b) Suppose SeJ(V) contains the non-aggregation column BA. 
If Ac;G is either MIN or MAX, leave AGG(A) in SeJ(Q) unchanged. 
If AGG is SUM, then by condition C,O, part l(c), SeJ(V) must include a column of the form COUNT(Ao). Let N 
denote the corresponding column in 4(V). Replace SUM(A) in SeJ( Q) by SUM(A * N). 

2. Let AGG be COUNT. By condition C,O, part l(b), SeJ(V) must include a column of the form COyAo). Let N 
denote the corresponding column in I+(V). Replace COUNT(A) in SeJ(Q) by SUM(N). . ’ 

Step S,O : Consider an aggregation column AGG(A) in SeJ(Q) such that column A is not in ti(CoJs(V)). 
If AGG is MIN or MAX, leave AGG(A) unchanged. . 
If AGG is SUM or COUNT, do the following. By condition Ct, part 2, SeJ(V) must include a column of the’form 
COUNT(Ao). Let N denote the column in d(V) corresponding to that COUNT(Ao) column. 

1. If AGG is C&NT, replace COUNT(A) in SeJ(Q) by SUM(N). 

2. If AGG is SUM, replace SUM(A) in SeJ(Q) by SUM(A * N). 

Figure 9: Rewriting algorithm for a single-block aggregation query without a HAVING clause, a single-block aggregation 
view without a HAVING clause, with a single-block rewritten query 
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4.3 With HAVING Clauses 

Essentially, the additional subtleties that must be considered 
involve the relationships between the GROUPBY and HAV- 
ING clauses in the view V and the query Q. Intuitively, 
the HAVING clause in V may eliminate certain groups in 
V (i.e., those that do not satisfy GConds(V)). If any of 
these eliminated groups in V is “needed” to compute an ag- 
gregate function over a group in Q, by coalescing multiple 
groups in I/, then V cannot be used to evaluate Q. Hence, 
condition C’i must be extended to test whether there exists 
GConds’ such that GConds( Q) is equivalent to the combi- 
nation of GConds( V) and GConds’, taking the grouping 
columns Groups(V) and Groups(Q) into account. 

Before checking any of the conditions for usability, the 
query Q and view V can be independently pre-processed 
to “move” maximal sets of conditions from the HAVING 
clause to the WHERE clause, as discussed in Section 3.3; 
the resulting normal form allows independent comparison 
of Conds(Q) and Conds(V), on the one hand, and of 
GConds(Q) and GConds(V), on the other. 

The rewriting algorithm takes these additional refine- 
ments of the conditions of usability into account. Specifi- 
cally, step 5’: determines a GConds’ in addition to Conds’, 
using GConds(V) and GConds(Q) (resulting from the 
pre-processing step). Steps 5’: and St are augmented to 
compute aggregation columns appearing in GConds( Q), 
in addition to those appearing in Se/(Q). 

5 Conjunctive Query and Aggregation Views 

Consider the case when the query Q is a conjunctive query 
(i.e., no groupin; and aggregation), but the view V has 
grouping and aggregation. In this case, the GROUPBY 
clause in the view results in losing information about the 
multiplicities of tuples, and view V cannot be used to eval- 
uate Q if the multiset semantics is desired. 

Theorem 5.1 Let Q be a conjunctive query, and V be a 
single-block aggregation view. Then, there is no single- 
block rewriting of Q using V. 0 

The following example illustrates the problem with con- 
junctive queries and aggregation views: 

Example 5.1 Consider the telephone company database 
from Example 1.1. The query Q7 below is used to obtain 
information about calls exceeding an hour in duration: 

Q7: SELECT Ft, DI, Ml, Yi 
FROM C~~~~(F~,T~,TI~,D~,MI,YI,DU~,P~,CI) 
WHERE DU, > 3600 

The view VT below counts the number of calls exceeding an 
hour in duration made by each caller on a daily basis: 

&: SELECT F2, D2, M2, y2, COUNT(Z) 
FROM Call4.h T2, TI2, Dz, M2. y2, DUZ, P2, C2) 
WHERE DlJ2 > 3600 
GROUPBY F2, D2, M2, Y2 

There is a l-l column mapping from l$ to Q7, Se/(V,) 
contains all the columns required in Sel(QT), and the con- 
ditions enforced by the WHERE clauses are identical. Even 
though COUNT(T2) has the required multiplicity informa- 
tion, this information cannot be used in an SQL query to 
“replicate” the tuples in V+ the appropriate number of times. 
Thus, there is no rewriting of Q7 that uses view V7.3 D 

6 Related Work 
There has been previous work on using views to answer 
queries (e.g., [YL87, SJGP90, TS194, CR94, CKPS95, 
LMSS95]), but the problem of finding the equivalent rewrit- 
ings for SQL queries with multiset semantics, grouping and 
aggregation, have received little attention. 

Caching of previous query results was explored 
in [Sel88, SJGP90] as a means of supporting stored proce- 
dures. This corresponds to using materialized views when 
they match syntactically a sub-expression of the query. In 
the ADMS optimizer [CR94], subquery expressions corre- 
sponding to nodes in the query execution (operator) tree 
were also cached. A cached result was matched against a 
new query by using common expression analysis [Fin82]. 
Grouping and aggregation issues were not addressed. 

View usability has been studied for conjunctive queries 
with set semantics and without grouping and aggregation 
in, e.g., [YL87, LMSS95]. Levy et al. [LMSS95] showed 
a close connection between the problem of usability of 
a view in evaluating a query and the problem of query 
containment. However, this connection does not carry over 
to the multiset case. [LMSS95] also presented a simple 
technique for generating a rewriting of a query Q using 
view V, under the set semantics. Essentially, the technique 
consists of first conjoining V to the FROM clause of Q, 
and then (independently) minimizing the resulting query to 
eliminate redundant tables. In the case of SQL queries, 
however, because of the multiset semantics, the query will 
not be equivalent after conjoining V to the FROM clause, 
even if it may be equivalent after removing other tables. 
Therefore, we need to find a priori which tables in the 
FROM clause will be replaced by V. 

Optimization of conjunctive SQL queries using conjunc- 
tive views has been studied in [CKPS95]. In addition to 
considering when such views are usable in evaluating a 
query, they suggest how to perform this optimization in a 
cost-based fashion. However, they did not consider group- 
ing and aggregation, nor did they consider the possibility of 
rewritings that are UNION ALLs of single-block queries. 

3Gupta et al. [GHQ95] have suggested an “expand” operator to replicate 
htples in a given table. 
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Recently, Gupta et al, [GHQ95] considered the prob- 
lem of using materialized aggregation views to answer 
aggregation queries using a purely transformational .ap- 
preach. They perform syntactic transformations on the 
operator tree representation of the query such that the 
definition of the view would be identical to a sub-part 
of the definition of the query. Additional transforma- 
tions on queries involving aggregation have been proposed 
by [YL94, LMS94, CS94, RSSS95, GHQ95, CS96, LM96]. 
The transformational approach is more restrictive than our 
semantic approach - in particular, the algorithm of Gupta 
et al. does not take the conditions in the WHERE and HAV- 
ING clauses into account when comparing Se/(&) with 
Se/(V) and Groups(Q) with Groups(V) (see, e.g., condi- 
tions Ci and Ci). Further, their approach does not consider 
rewritings that are UNION ALLs of single-block queries. 
For example, their techniques would neither determme the 
usability of view VI in evaluating query Q 1 in Example 1.1, 
nor the usability of view V{ in evaluating Qi in the same 
example. Also, Gupta et al. do not provide any formal 
guarantees of completeness. 

A related problem is studied in Gupta et al. [GMR95]. 
They assume that a materialized view may be redefined, 
and investigate how to adapt the materialization of the view 
to reflect the redefinition. This problem is clearly a special 
case of the one we study, with the additional assumptions 
that the system knows the type of modification that took 
place, that the new view definition is “close” to the old def- 
inition, and that the view materialization may be modified. 

7 Conclusions 

The exploitation of materialized views is likely to be an 
important technique for performance enhancement, partic- 
ularly for applications such as data warehousing where ac- 
cess to the base data is more expensive than access to the 
views. In this paper we presented general techniques to 
rewrite a given SQL query so that it uses materialized views, 
if possible. 

We have focused on single-block SQL queries and views. 
Often, multi-block SQL queries that have view tables in the 
FROM clause can be transformed to single-block queries, 
e.g., using techniques described in [YL94, CS94, GHQ95, 
CS961. In such cases, our techniques can also be applied. 

We are currently extending our work in several ways, 
including considering the view usage problem for arbitrary 
nested queries, integrating our techniques with cost-based 
optimizers along the lines described in [CKPS95], and de- 
veloping strategies for determining which views to cache. 
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