
Object Fusion in Mediator Systems*

Yannis Papakonstantinou, Serge Abiteboul, Hector Garcia-Molina
Computer Science Department

Stanford University
Stanford, CA 94305-2140, USA

{ yannis, abitebou, hector} @db.stanford. edu

Abstract

One of the main tasks of mediators is to
fuse information from heterogeneous infor-
mation sources. This may involve, for ex-
ample, removing redundancies, and resolving
inconsistencies in favor of the most reliable
source. The problem becomes harder when
the sources are unstructured/semistructured
and we do not have complete knowledge of
their contents and structure. In this paper
we show how many common fusion opera-
tions can be specified non-procedurally and
succinctly. The key to our approach is to as-
sign semantically meaningful object ids to ob-
jects as they are “imported” into the media-
tor. These semantic ids can then be used to
specify how various objects are combined or
merged into objects “exported” by the medi-
ator. In this paper we also discuss the im-
plementation of a mediation system based on
these principles. In particular, we present key
optimization techniques that significantly re-
duce the processing costs associated with in-
formation fusion.

1 Introduction

The TSIMMIS system provides integrated access to
heterogeneous information, stored not only in conven-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special p.ermission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

User/Application 1 User/Application 2

Integrated View 1 Integrated View 2

Figure 1: The TSIMMIS architecture
tional databases but also in file systems, the Web, and
legacy systems. The TSIMMIS architecture is shown
in Figure 1. Wrappers [C+95] convert data from each
source into a common model and also provide a com-
mon query language. Applications can access data di-
rectly through wrappers, but they may also go through
mediators ;?GMU96, S+], which provide an integrated
view of the data exported by wrappers.

The architecture of Figure 1 is common in many
integration projects [PGMW95, C+95, A+91, S+,
LMRSO, K+93]. H owever, the focus of our project is
on semi-structured and/or unstructured information.
This is information that may not conform to’s rigid
schema fixed in advance, and is frequently found, for
instance, in the World-Wide-Web, SGML documents,
semi-structured repositories such as ACeDB [TMD92]
(very popular among biologists in the Human Genome
Project), and Lotus NOTES. To represent such data,
we use a “schema-less” object-oriented model, called
Object Exchange Model (OEM) [PGMW95].

Mediators play the central role in information in-
tegration, and their most important task is to per-
form object fusion. This involves grouping together
information (from the same or different sources) about
the same real-world entity, possibly removing redun-
dancies, or perhaps resolving inconsistencies between

413

sources in favor of the most reliable source.
In this paper, we present an approach to object fu-

sion that is based on semantic object identifiers. The
basic idea is as follows. The mediator is specified by a
set of declarative, logic rules. Each rule maps objects
at a source that pertain to some identifiable real world
entity, into a “virtual” object at the mediator. The
virtual object is assigned a semantically meaningful
object identifier. Mediator objects that have the same
object-id are then fused together. The above descrip-
tion is conceptual; no objects are fused until a user
query arrives at the mediator. (The mediator speci-
fication is like a database view.) Only when a query
arrives are the sources queried for the object fragments
that are necessary for composing the selected fused ob-
jects.

For our specifications, we use MSL (Mediator Spec-
ification Language) [PGMU96]. However, the original
MSL did not include semantic object-id’s, hence mak-
ing the specification of fusion much harder. We extend
MSL with semantic object-id’s, specified as skolem
functions, that allow rules to specify object fragments
that can be fused together. Construction of object-
id’s as skolem functions has been extensively studied
by the deductive and object-oriented database systems
community, hence providing us with a clear theoretical
foundation.

Our first contribution is to show that the single
concept of “object-id’s as skolem functions,” cast in
the appropriate practical framework, significantly in-
creases the power of the specification language. This
makes it relatively easy to stipulate powerful fusion
mediators. For example, one of the most challeng-
ing aspects of fusion is the integration of source ob-
jects that contain references .to other source objects.
We will show how semantic object-ids can be used to
translate source references into semantically meaning-
ful references at the mediator, allowing the integration
of nested and cross-referenced objects such as those
found on the Web.

A second contribution is the adaptation of resolu-
tion and subsumption for the purpose of efficient query
processing against mediators that perform fusion.

Our last contribution is a set of novel optimization
strategies that are specific to information fusion in an
environment of semistructured sources. For example,
with heterogeneous semistructured sources , it may not
be known in advance what source a particular condi-
tion should be pushed to. In this case traditional tech-
niques force the query processor to explore an expo-
nential number of options for pushing selections to the
sources. We demonstrate alternative query processing
policies that most often perform substantially better.
For example, we precede the information fusion phase
with an information finding phase that attempts to

rule out sources that can not contribute some particu-
lar data required by the query. We also present intelli-
gent schemes to avoid retrieving information that will
eventually be discarded. For example, if two sources
si and s2 provide conflicting information about some
object and the specification indicates that the conflicts
are resolved in favor of s 1, the mediator does not query
s2 for information that is already provided by SI.

Before proceeding, we make a few remarks that may
help position our work. The first is that our specifica-
tion language, MSL, is not intended as an end-user lan-
guage. As a matter of fact, our goal has been to have
a few simple but powerful language constructs. This
simplicity has turned out to be essential for the devel-
opment of efficient optimizers and execution strategies.

Second, the query processing algorithms, with the
optimizations described here, have been implemented
as part of our TSIMMIS system. The need for so-
phisticated processing algorithms became apparent as
the system was being built and tested, and most of
the techniques presented here were developed after v
initial version [PGMU96] identified important weak-
nesses .

Third, since there is not enough space to go into
the full details, in this paper we mainly use examples
to demonstrate the power of MSL for fusion problems
and to explain the key ideas of our query decomposi-
tion and optirnization techniques. The precise syntax
and semantics of the language can be found in [PGM].
Further details on ‘the underlying algorithms can be
found in [PGM] or in our implementation that will
soon be ftp-available.

The outline for our paper is as follows. In Section 2,
we give a brief overview of the OEM model. Section 3
covers typical fusion problems, and shows how MSL
and semantic ids can address them. The query eval-
uation and optimization strategies are then described
in Sections 4 and 5. In Section 6 we briefly survey the
prior work that our system builds upon.

2 The OEM Model
Most applications that have to deal with semi-
structured information use a self-describing model,
where each data item has an associated descriptive
label. Applications include tagged file systems, Lo-
tus NOTES, electronic mail, RFC1532 bibliographic
records, and many more. In [PGMW95] we ‘have de-
fined a self-describing data model, called the Object
Exchange Model (OEM), that captures the essential
features of the self-describing models used in practice
and also generalizes them to allow nesting and to in-
clude object identity.

To illustrate the OEM model, consider a source that
contains bibliographic information. A wrapper, named

414

sl, exports this information as a set of OEM objects,
some of which are shown below (one object per line.)
Notice how the schema information has now been in-
corporated into the labels of individual OEM objects.

<&rln,rn,string,‘AB-123’>
<%rla,authors,set,{&rlal}>

<%rlal,author,string,‘John Patriot’>
<%rlt,title,string,‘UN Conspiracies’>
<%rlr,rel,set,{%r2}>

~%r2,report,set,{%r2n,%r2a,%r2t,%r2r}>

Each OEM object consists of an object-id (e.g., %rin),
a label that explains its’meaning (e.g., rn that stands
for report number), a type (e.g., string), and a value
of the specified type (e.g., ‘AB-123’.) Labels are
strings that are meaningful to applications or end-
users. Labels may have different meanings at different
sources. Values may be either of an atomic type (e.g.,
‘John Patriot ‘), or be a set of sub-objects object-
id’s (e. .,

f
the value of the rel object is {%r2}). To

simplify he presentation, in the rest of this paper, we
assume that the type of all atomic objects is string
and we omit type information from objects.

From the point of view of the OEM model, ob-
ject ids are strings (starting with b) that are used to
link objects with their sub-objects (e.g., %rlt links the
report to its title). We may use semantically mean-
ingful object-id’s to facilitate the integration tasks.
For example, if the report number rn of the report
objects is a key and can be used to identify this re-
port with other reports that should be considered the
same entity, then we can use %AB-123 as the id for the
report (instead of %rl). Furthermore, if this report
object originally came from another source sss, then
we extend the id to %AB-123Qsss. This convention is
easy to implement and simplifies fusion: Objects that
need to be fused can be identified by their ids, yet
the source of the information is clearly noted to avoid
confusion.

Some OEM objects (e.g., the objects identified by
kr I, 6r2) are “root” or top-level objects and are shown
with left-most indentation. They represent the start-
ing point for queries to the sources.

Finally, note that OEM poses no restrictions on the
labels of sub-objects. For example, some report ob-
jects have a single title object, others may not have
any title, and others may have multiple titles. In
this way, OEM allows us to represent and integrate
information from unstructured sources.

3 Object-Identity Based Fusion

In this section we explain how object fusion can be
achieved with semantic object ids. We start with

a simple example that introduces MSL and demon-
strates the basic principle of id based fusion. We then
present examples that illustrate a variety of fusion op-
erations.

3.1 A Simple Example

Let us consider a mediator called RI that exports tech-
nical report objects with label tr. The tr objects fuse
information about reports that have the same report
number and are exported by the sources sl and s2.
In particular, if source SI contains a report and its ti-
tle, the exported tr object contains the corresponding
title. If source s2 contains the postscript for this
report, then a postscript subobject is also included
in the tr. Note, the specification of the tr object uses
two rules. Each rule describes the contribution of only
one of the sources.
<trep(BN) tr {<title T>}>Qm :- (MS) (R1.l)

<report {<rn RN> <title T>}>Qsl
<trep(BB) tr {<postscript P>}>Qm :- (R1.2)

<report {<rn RN> <postscript P>}>Qs2
A specification consists of rules that define the view
exported by the mediator. Each rule consists of a
head followed by a :- and a tail. The head describes
view objects, whereas the tail describes conditions that
must be satisfied by the source objects. In general,
the heads and tails are based on patterns of the form
<object-id label value>. We may omit the object-id field
when it is irrelevant. If it is missing from a tail pattern
it means that we do not care about the object-id ap-
pearing at the source. If it is missing from a head pat-
tern it means that the mediator has to invent an arbi-
trary, yet unique, object-id for the “generated” object.
(The id’s are invented using skolemization [PGM].)

Going back to our example, rule (R1.l) declares
that if there is a pair of bindings t and r for vari-
ables T and RN (variables are identifiers starting with
a capital letter) such that SI contains a report top-
level object that has a rn subobject with value r and a
title subobject with value t, then mediator m exports
a tr object, with object-id trep(r), that has a title
subobject with value t and a unique system-generated
object-id.

The semantics of rule (R1.2) are defined accord-
ingly. Notice how tr objects at the mediator are as-
signed the semantic object id trep(RN). (We add the
function symbol trep to the report number obtained
from the source to uniquely identify how this id was
generated.) Observe that (R1.l) does not prevent the
tr with object-id trep(r) to have subobjects other
than title, thus allowing the second rule to add more
subobjects to the same tr objects. In general this is
how object fusion is achieved: MSL allows rules to in-
crementally and independently insert information into
a semantically identified mediator object.

415

In this example we assumed that source objects had
some semantic key (like rn) that could be used for fu-
sion. Often keys exist but are represented differently
at sources. As a trivial example, report numbers could
be represented as integers at sl whereas s2 may rep-
resent them in the string format. In this case, we can
build and use an ezternal predicate [PGMUSG] that
converts the string format to integer to map the key
in s2 into the form used in the semantic id. In the rest
of our examples, we continue to assume that match-
ing keys already exist, but keep in mind that this is
equivalent to saying that keys can be converted to a
canonical form.

3.2 Merging Information

It is not necessary to know the structure of the source
reports in order to fuse them. Specification (MS2)
demonstrates that we can group all information about
reports into tr objects, without knowing the structure
and contents of the reports subobjects.
<trep(RN) tr V>Oall :- (MS2) (R2.1)

<report V:{<rn RN>}>&1
<trep(RN) tr V>Qall :-

<report V:{<rn RN>}>Qs2
(R2.2)

V,ariable V binds to set values that contain all sub-
objects of report provided that at least one of the
subobjects has the label rn. Then, every object of the
set value becomes a subobject of the tr object, regard-
less of whether the other source also provides the same
piece of information.

Note, OEM provides the flexibility to integrate in-
formation without having to worry about the simul-
taneous presence of subobjects with same label. In
some cases this may be desirable. For instance, say
each source contains a different title for the same
report. We may want to record these two potentially
different titles in the fused object. In other cases, how-
ever, we may wish to eliminate one of the titles. We
show next how this can be done. The person writing
the mediator specification can decide if redundancies
or inconsistencies are allowed.

3.3 Removing Redundancies

(MS2) generates one redundancy that is not useful:
each tr object contains two rn subobjects with iden-
tical values but different object-id’s. This redundancy
can be eliminated as shown by mediator (MS3). It
assigns the semantic object-id rnOID(RN) to the rn
subobjects with value RN. In this way, the rn yubob-
jects that have the same value are assigned the same
object-id and hence they degenerate into the same rn
object.
<trep(RN) tr {<rnOID(RN) rn RN> (MS3) (R3.1)

(01 Ll Xl>}>Qn :-

<report {Cm RN><01 Ll Xl>}>Osl & NOT Ll=rn
<trep(RN) tr {<rnOID(RN) rn RN> (R3.2)

CO2 L2 X2>}>0n :-
<report {<rn RN><02 L2 X2>}>Os2 & NOT L2=rn

Note, the variables Ll and L2 that appear in label
positions allow the patterns (01 Ll Xl> and (02 L2
X2> to match with any subobject of the reports of SI
and s2, provided that Ll and L2 are not equal to rn.
Then, the subobjects that are bound to (01 Ll Xl>
or ~02 ~2 x2> become subobjects of the tr objects.
(If we did not have explicit NOT conditions the pattern
(01 Ll Xl> and (02 L2 X2> would also match with
rn objects.)

Comparison of object-id based fusion with
outerjoin: Outerjoin has also been suggested as a
way to join information from sources that may or may
not contribute to the joined object. MSL contains a
variant of outerjoin (see extended version [PGM]) that
could be used to implement the example above. Using
outerjoin we could, in a single rule, create a tr virtual
object with report number T if there is a report with
number T at si or s2. However, we believe that the
object-id based fusion scheme we illustrated above is
more powerful. In particular, with object-id based fu-
sion we can easily join objects from the same source.
The need for this arises if, for example, sl has mul-
tiple report objects that refer to the same real-world
report. To do the same with outerjoin, we would have
to know the maximum number of outerjoins that we
may need to apply. This number is data-dependent.
Furthermore, object-id based fusion is a more modular
solution: If we want to add one more source we simply
introduce one more rule.

3.4 Blocking Sources

More than one source may offer information about the
same real world entity. If all sources offer roughly the
same information we may want to avoid retrieving in-
formation about an entity from some source(s) if some
other source provides us enough information about
this entity. Information sources that charge their users
make this scenario particularly important; if we can re-
trieve enough information from some “cheap” source,
we want to avoid retrieving similar information from
an “expensive” source. In this section we show spec-
ifications where the presence of some data “blocks”
the retrieval of other data. We also show that MSL’s
flexibility allows blocking at various levels of granular-
ity, from blocking entire objects to selectively blocking
subobjects that meet various conditions.

As our example, assume that source sl can be ac-
cessed for free whereas s2 charges a fee for providing
information. In this case, we may wish to have me-
diator s that collects from s2 only information about

416

reports that do not appear in sl.
<trep(RN) tr V>Qs :-

<report V:{<rn RN>}>Qsl
(MS4

provides(RN) :- <report {<rn FlN>}>Qsi
<trep(RN) tr V>Qs :-

<report V:{<rn RN>}>082 & NOT provides(RN)
The first rule declares that every report of s 1 becomes
a tr of s. Then the second rule collects in relation
provides the report numbers RN of all reports that
come from sl. In. general, MSL specifications may
define and use relations that serve as “intermediate”
results. We could as well use OEM objects for storing
intermediate results (e.g., <provides RN>Qt, where t
is an “intermediate” mediator) but the use of relations
often makes the specification clearer.

Finally, the third rule exports a tr for every
report of s2 unless the report appears in the rela-
tion provides. Note, we use traditional “negation as
failure” semantics. In effect, the relation provides
prevents (or blocks) s2 from exporting a report via
the third rule if the “same” report has been exported
by sl via the first rule. In Section 5.3 we demonstrate
techniques used by the query optimizer that prevent
the mediator from retrieving “blocked” data from the
wrappers.

There are many variations for blocking data. In
[PGM] we present an example where an external pred-
icate assigns “reliability degrees” to the source reports
and then we create a view where only the most reliable
copies appear.

3.5 Removing Inconsistencies

In Section 3 we showed that specifications such as
(MSl) may cause the same tr to have multiple title
objects. In this section we show that using nega-
tion and label variables we may block subobjects that
come from one source (presumably the less reliable
source) in favor of subobjects that come from the
other source (the more reliable). In effect, we use fine-
grained blocking, i.e., blocking where we individually
access each subobject (using label variables) and de-
cide whether it must be blocked or not.

For example, (MS5) resolves all inconsistencies in
favor of SI, i.e., if SI provides some report subobject
with label F, then 92 should not provide a subobject
with the same label. Note, in this example we assume
that no report has two subobjects with the same label
and different values.’
<trep(RN) tr {<f(RN,F) F V>}>Qp (MS5) (R5.1)

:- <report {<rn RN> <F V>}>Qsl
provides(RN,F) :- <report {<rn RN> <F V>}>Qsl
<trep(RN) report {<f’(RN,F) F V>}>Qp (R5.3)

‘In [PGM] we generalize MSL to handle the case where mul-
tiple subobjects with the same label exist.

:- <report {<r-n RN> <F V>}>Qs2
& NOT provides(RN,F)

The subgoal NOT provides(RN,F) blocks (R5.3) from
exporting any subobject with label f of a report with
number r if the tuple (r, f) is in provides, i.e., if data
about the f subobject of the report with number r can
be found in si.

3.6 Handling References

When we import objects from sources and fuse them
into mediator objects we must be careful with the ob-
ject references that are imported. For example, assume
that reports stored in si have references to related re-
ports, also stored in si. From an OEM point of view,
each report contains a subobject rel whose value is
a set containing the sl object ids of the referenced
reports’ (see example OEM structure of Section 2.) If
we are not careful when we import rel into the media-
tor, we will end up with object references that point to
the original objects of si and not to the corresponding
fused tr objects.

In this section we show two ways to resolve this
problem. The first solution is more efficient but as-
sumes that we know which subobjects contain refer-
ences to fused objects (the subobject rel in our ex-
ample,) The second one is less efficient but it works
even if we do not know which subobjects contain ref-
erences. The latter solution is very useful when we
integrate structures that are deeply nested and we do
not have complete knowledge of their structure (as is
the case with World-Wide-Web).

The first solution is implemented by (MS6).
Rule (R6.1) puts in the tr objects all information of
the source reports with the exception of the rel sub-
object and it also adds a semantic object-id, namely
trep(RN), that is used for object fusion. Rule (R6.2)
creates rel objects and inserts in them the correspond-
ing tr objects. For simplicity we omit the correspond-
ing rules for s2.
<trep(RN) tr {CL X>}>Qa :- (MS6) (R6.1)

<report {<rn.RN> CL X>}>Qsl & NOT L=rel
<trep(RN) tr (R6.2)

{<rel {<trep(REL) tr {}>}>}>Qa
:- <report {<rn RN>

<rel {<report {cm REL>}>}>}>Qsl
Our second solution does not rely on knowing which
subobjects refer to source objects. The basic idea is to
create two virtual objects for each tr. The first virtual
object (as before) has the id trep(RN) and its rel
subobject contains sl object-ids. The second mediator
object contains the same information except that its
object-id is identical to the object-id in sl. The first
copy is needed for fusion, since its semantic id is used

20EM allows top-ievel objects to be subobjects as well.

417

mediator specification

Query Decomposer
& Algebraic Optimizer

datamerge program

Plan Generator
I

datamerge graph (physical datamerge program)

Datamerge Engine
I

Figure 2: The basic architecture of MS1
to combine fragments from other sources. The second
copy is simply used so that ids in the first, refer to valid
mediator objects.

<trep(RN) tr {CL X>}>Qa :-
<report {cm RN> CL X>}>Qsl

CO tr V>Qa :- <t.r V:{ cm RN> }>Qa
6 CO report {<rn RN>}>Osl

(R7.1)

(R7.1)

The first rule (and the analogous one for s2 that is not
shown) generates the first copy of each tr fused object.
(Note that these objects contain si ids.) The second
rule generates the copy objects and simply changes
the id. If fused objects are expected to contain s2 ids,
then another rule would be needed to generate virtual
copies with ,552 ids. Note that we only create copies of
the top-level tr objects; these “reuse” the same sub-
objects, such as title. Furthermore, the copies are
virtual.

In summary, this section illustrated how fusion can
be specified with MSL. In [FGM] we give additional
examples and discuss how fusion can be done when
there are no keys (like report number) to aid us.

4 Query Processing .

In [PGMU96] we describe how the Mediator Specify-
cation Interpreter (Msr) processes queries in the ab-
sence of object-id’s and fusion. In this section we focus
on the system extensions for processing specifications
with object-id’s (arid hence fusion). The extended MS1
has the following four components (see Figure 2):

1. The Normalizer reduces the query and the specifi-
cation into a normal form that facilitates the next
steps when semantic ids are involved.

2. The Query Decomposer and Algebmic Optimizer
(&D&A 0) reads th e query and the mediator spec-
ification and produces a logical datamerge program
that determines, at a logical level, how the source
objects are combined to construct the required
query.

3. The Plan Generator develops the physical
datamerge program, which specifies in detail the
execution strategy that will be used, i.e., what
queries will be sent to the sources, and so on.

4. The Datamerge Engine executes the physical
datamerge program and produces the result,.

In the rest of this section we show how the first
three components operate, using extensions of resolu-
tion, unification and subsumption from classical de-
ductive systems. We do not discuss here how the
fourth component (datamerge engine) works, since
object-id based fusion does not require any major
changes. In Section 5 we discuss novel optimization
techniques for the algebraic optimizer and plan gen-
erator. These techniques are specific to dealing with
fusion of semi-structured information. As stated ear-
lier, our goal here is to explain the fundamental ideas
mainly through examples, leaving the full details for
[PGM] (or in the actual implementation code that will
be ftp-available soon).

4.1 Normalization, Query Decomposition,
and Algebraic Optimization

The top two components of our system formulate a
logical datamerge program from a query and a media-
tor specification. Recall, the query refers to mediator
objects. The QD&AO transforms the query into a log-
ical datamerge program that refers to source objects
only. More precisely, a logical datamerge program is
a collection of rules whose tails refer to the source ob-
ject structures and whose heads describe the object
structure of the answer objects.

Before the &D&A0 is invoked, the normalizer
transforms queries and mediators into normal form
MSL. Normal form MSL patterns always have three
fields and certain constructs (like V: {<title ‘a’>})
are not allowed. Having fewer and more regular con-
structs simplifies the query processing work that fol-
lows. In the extended version of the paper [PGM] we
give the syntax of full and reduced MSL and present
an algorithm for converting expressions into normal
form MSL. As an example, the algorithm converts the
query (Q8) into the query (Q9).

CX tr V> :- CX tr V:{<title ‘a’>}>Qm
CX tr {<Void Vl Vv>}> :- ;:ii

CX tr (XT2 title ‘a’> <Void Vl Vv>}>Qm

Then &D&A0 generates a logical datamerge program
by matching the query tail conditions with rule heads.
The process considers each condition c in the query
tail, starting from the leftmost. Condition c is com-
pared against rule heads; c matches’s rule T if the rule
can produce objects that satisfy the condition. Each
successful match produces a unifier that describes the

418

match between c and T. For each unifier, we replace
the condition c by conditions on the sources specified
in T (see below). In the tail of this datamerge rule we
still have the remaining query tail conditions which
may refer to mediator objects. For each of these, we
repeat the process of unifying them against some me-
diator rule until the tail of the datamerge rule only
refers to objects at the sources.3

To illustrate consider the following mediator
(MSlO) that contains a single rule.
<trep(RN) tr ((0 L X>}>Qml :- (MSlO) (R1O.l)

<I- (<rn RN> CO L X>}>Osi

Let us now consider the query (Qll) that retrieves the
tr objects where the object-id is trep() 123 J).
(trep(‘i23’) tr V> :- (Qll)

<trepOi23’) tr V>Qml
The match of this query and specification (MSlO) re-
sults in the single unifier 0 where

6 = [(Rlo.l) : RN c) ‘123’,V I+ {< 0 L X >]]

0 maps the variables to the left of e to the constructs
to the right of c-). In general, variables map to con-
stants, variables, terms, or set patterns of the form
{< 01 I1 211 > . . . < on I, w, >}. Note, the latter
case (mapping to set patterns) differentiates our uni-
fiers from unifiers of first-order logic. The unifier also
contains the name (R1O.l) of the rule that matched to
the query.

After the unification, we apply 0 to the query and
the rule and we replace the transformed query condi-
tion with the transformed rule tail of (R1O.l). When 6’
is applied to the query head V is substituted by ((0 L
X>}. Similarly, applying 0 to the rule tail of (RlO.l),
we replace RN by ’ 123 ’ . Thus, we derive datamerge
rule (DRl).
<trep(‘i23’) tr {CO L X>}> :- PW

<r {<rn ,‘123’> <O L X>}>Qsi
Formal Specification of Unifiers: To define the

matching process more precisely, we give a few addi-
tional details. The notation e(e) represents the ex-
pression e where the substitutions indicated by unifier
9 have been performed. A condition el matches with
the head e2 of rule r if there is a unifier 6’ from el to
ez, as described by Definition 4.1 below. (Note, both
ei and ez are MSL patterns.)

Definition 4.1 (Unifier 0 from ei to ez) A map-
ping 0 is a unifier from el to ez,if the pattern 0(ei) is
included in the pattern e(e,), as described by Defini-
tion 4.2. 0

31t is easy to see that in the absence of recur&n this process
terminates. In the presence of recursion more complex resolution
strategies are required. Also, note that the matching of query
conditions with rules corresponds to resolution of Horn clauses,
whereas the unifiers that we use are extensions of unifiers of first
order clauses.

Definition 4.2 (Pattern el is included in e2) A
pattern el is included in a pattern e2 if and only if

(a) ei has identical object-id and label fields as e2
(b) ifthe value field of ei is {ef,. . .,e;}

then the value field of e2 is {ei, . . . , e?}
and for every pattern ef , i = 0, . . . , n
there is a pattern $, j = 0,. . . , m such that
ei, is included in ei.

else el and e2 have the same value field. 0

The algorithm for computing the unifiers from a
pattern s to a pattern P and the algorithm for apply-
ing a unifier 6 to a pattern p are given .in the extended
version of this paper [PGM]. Using these algorithms it
is straightforward to develop datamerge programs (as
described above). Note, computing unifiers is impor-
tant not only for developing datamerge programs but
also for performing the subsumption based optimiza-
tions described later.

4.2 Resolution in the Presence of Fusion

Object-id based fusion introduces additional complex-
ity to the &D&A0 process because multiple rules or
multiple instantiations of the same rule may contribute
to the same mediator object. This is more challenging
because we have to simultaneously match the query
tail conditions with the heads of more than one rule.
In this section, we generalize our &D&A0 algorithm
to cover this case.

Let us consider mediator (MSl) of Section 3 that
merges information from sources si and s2. The first
step is to convert the rules to normal form MSL. At
the same time we rename variables so that no two
rules have common variables. We have also abbre-
viated some labels; this is just to have more compact
patterns in this paper.
<trep(RNi) tr (CT1 title T>}>Qm (MS12) (R12.1)

:- cRo1 r {<RN01 rn RNI> CT1 title T>}>Osl
Ctrep(RN2) tr {<Paid postscript P>}>Om (R12.2)

:- CR02 r {<RN02 rn FlN2>
<Paid postscript P>}>Qs2

Rules (R12.1) and (R12.2) contribute information to
the same tr objects. Furthermore, different instan-
tiations of the same rule may contribute information
to the same tr object. For example, assume that si
has two r objects for the same report number (the
source may have duplicates for the same report). Then
rule (R12.1) will have two different instantiations with
the same FlNl binding and possibly different T bind-
ings. These two instantiations will both contribute
information to the same tr.

Let us now submit to m query (Q9) which asks for
all the subobjects of the tr objects where the title is
) a’. Since the subobjects of the query may come from

419

different rules, the normalizer rewrites query (Q9) as

(Q13):
CX tr {<Void Vl Vv>}> :- (Ql3)

CX r (CT2 title ‘a’>}>Qm
& <X r {<Void Vl Vv>}>Qm

In this transformed form, we break up the tail so that
every set pattern { . . . } contains exactly one object
pattern < . . . >.

Now we can match the two patterns that appear
in the (Q13) query tail to different rule heads. Sup-
pose that we start by matching the first pattern of the
tail, i.e., CX r {<T2 title ‘a’>}>. It matches only
with the head of (R12.1). This produces the unifier
01 = [(R12.1) : X I+ trep(RNl),Tl I+ T2,T I+ ‘a’].
Applying, 01 to the query and the rule and replacing
the query condition, we produce
<trep(RNl) tr {<Void Vl Vv>}> :- (Ql4)

<Roi r {<RN01 rn RNI> CT1 title ‘a’>}>Qsl
& <trep(RNl) r {<Void Vl Vv>}>Om

Observe that this new query has only one condition
referring to mediator m. To complete the process, we
match the remaining condition that refers to m with
the mediator rules. Pattern <trep(RNl) r {<Void
Vl Vv>}>Om matches with either one of the rules of
our specification.

First, it matches with rule (R12.2) thus pro-
ducing the unifier 62 = [(R12.2) : RIK? e
RNl, Void I+ Poi’d, Vl I+ postscript, Vv e P]. Sec-
ond, <trep(RNl) r {<Void Vl Vv>}> matches with
(R12.1). Since we have already used (R12.1) for
matching the first condition of the query tail, we
must not use (R12.1) again for matching the sec-
ond condition. Thus, we introduce an instance of
(R12.1) with renamed variables (see rule (R12.1.b) be-
low) and we match <trep(RNi) r {<Void Vl Vv>}>
against it, producing the unifier 0s = [(R12.l.b) :
RNb~RNl,Void~Tlb,V1++title,Vv~Tlb].
<trep(RNb) tr {<Tlb title Tb>}>Qm (R12.1.b)

:- <Rolb r {<RNolb rn RNb>
<Tlb title Tb>}>Qsl

Finally, for each one of the two unifiers 62 and 0s we
develop one datamerge rule, shown below in datamerge
program (DP15). Rule (DR15.1) is obtained by re-
placing the m condition of (Q14) with the rule tail
of (R12.2) and subsequently applying 02. Similarly,
(DR15.2) is derived using the rule tail of (R12.1.b)
and unifier 6%.
<trep(RNi) tr (DP15) (DR15.1)

{<Paid postscript P>}> :-
<Roi r {<RNol rn RNl><TZ- title ‘a’>}>Qsi &
<Ro2 r {<RN02 rn RNl>

<Paid postscript P>}>Qs2
<trep(RNi) tr {<Tlb title Tb>}> :- (DR15.2)

<Roi r {ClNol rn RND <T2 title ‘a’>}>Qsl &
<Rolb r{<RNolb rn RNI> <Tib title Tb>}>Qsl

In this particular case one query condition matched
with only one rule head. In the worst case each condi-
tion matches with many rule heads potentially yielding
an exponential number of datamerge rules. More pre-
cisely, if each of the m query conditions unify with n
rules, we produce n”’ datamerge rules. This explosion
can occur, for instance, if the mediator specification
has variables in label positions. We will study tech-
niques for reducing the number of datamerge rules in
Section 5. The extended version [PGM] presents for-
mally the general query decomposition and unification
steps necessary for object fusion.

4.3 Subsumption-Based Optimizations

Datamerge rules are evaluated by sending queries to
the sources, yielding bindings for the rule variables.
Since querying sources may be expensive, we want to
reduce the number of queries to a minimum. QD&AO
uses two subsumption-based optimizations for this
purpose. First, QD&AO eliminates any datamerge
rule that produces data that are subsumed by the data
produced by another rule. Second, &D&A0 reuses
rules. That is, we may avoid issuing a query if all
of its bindings for necessary variables are obtained by
another rule. Note, not all variables are necessary for
constructing the fused object. Only variables that ap-
pear in the rule head, or variables that join conditions
in the tail, are necessary.

Due to space limitations we illustrate only rule reuse
and not rule elimination. Consider datamerge rule
(DR15.1). To evaluate it, we need to send a query to
sl to evaluate the condition <Rol r { <RN01 rn RND
<T2 title ‘a’>}>Qsi. This query only contains one
necessary variable, RNI. Notice that ail RN1 bindings
in the above condition are also bindings of RN1 in
rule (DR15.2). Hence, instead of accessing sl twice,
we can reuse the bindings retrieved for (DR15.2) by
rewriting the datamerge program as follows. Note,
(DR15.2.b) and (DR15.1.b) correspond to the rewrit-
ten versions of (DR15.2) and (DR15.1).
[<trep(RNl) tr {<Tlb title Tb>}> (DR15.2.b)
bindl(RNl)l :-

<Rol r {<RN01 rn RNI> <T2 title ‘a’>}>Qsi
& <Rol r {<RNolb rn RNI><Tlb title Tb>}>Qsi

<trep(RN) tr {<Paid postscript P>}> (DR15.1.b)
.:- bindl(RN1)

& CR02 r {<RN02 rn RNI>
<Paid postscript P>}>Qs2

The notation C . . .] specifies multi-head rules.
Thus, the data retrieved from the tail of (DR15.2.b)
is used for constructing <trep(FtN) tr {<Tlb title
Tb>}> objects, as well as collecting the RN1 bindings
in relation bindl(RN1) (the name bind1 is a unique
name generated by the QD&AO.) Then, the RN1 bind-
ings are used by (DR15.1.b).

420

C<trep(RNl) tr (~01 Al Xl>}> (DP18) (DR18.1)
bindl(RNl)] : -

<FL01 r {<RN01 rn RNl> CY year J95,>}>Qsl
& <Rolb r {<RNolb rn RNl> <Ol Al Xl>}>Qsl

<trep(RNl) tr ((02 A2 X2>}> :- (DR18.2)
bindl(RN1)
& CR02 r {<RN02 rn RNl> CO2 A2 X2>}>Qs2

[<trep(RN2) tr ((02 A2 X2>}> (DR18.3)
bind2(RN2) 1 :-

<Ro2 r {<RN02 rn RN2> CO2 A2 X2>}>Qs2
& <Ro2b r {<RNo2b rn RN2>

<Y year ,95,>}>Qs2
<trep(RN2) tr {<Ol Al Xl>}> :-

binda(RN2)
(DR18.4)

& <Rol r {<RN01 rn RN2> (01 Al Xl>}>Qsl

Figure 3: Datamerge Program
We can detect the applicability of subsumption us-

ing unifiers. In particular, a datamerge rule condition
c can reuse a datamerge rule P if there is a unifier ~9
such that every condition ci of the tail,of r is included
in c (after we apply 0) and every useful variable of c
appears in the head of T.

Subsumption-based Optimizations in Plan
Generation: Some subsumption-based optimizations
are applied during or after physical plan generation.
Thus, we start by briefly describing how physical plans
are obtained. Then, in the remainder of the paper we
discuss subsumption-based optimizations to the phys-
ical plans.

Let us consider mediator (MS16) (that also ap-
peared in non-normal form as (MS2) in Section 3).
(MS16) integrates documents without explicitly men-
tioning their non-key attributes.

<trep(RNl) tr (CO1 Al Xl>}>Qall (MS16) (R16.1)
.- . cRo1 r {<RN01 rn RNl> ~01 Al Xl>}>Qsl

ctrep(RN2) tr ((02 A2 X2>}>Qall (R16.2)
:- <Ro2 r {<RN02 rn RN2> <02 A2 X2>}>Qs2

Let us assume that query (Q17) is sent to mediator
(MS16).

<X tr {<Void Vl Vv>}> :- (&17)
<X tr {CY year ,95,> <Void Vl Vv>}>Qm

The label year may come either from sl or ~2.
This intuition is captured by the standard query/rule
matching process (see Section 4.1) that results in the
datamerge program (DP18) of Figure 3.

The cost based optimizer receives the logical
datamerge program and creates a physical datamerge
program that consists of a list of (possibly param-
eterized) queries that will be sent to the sources,
along with a description of how to combine query re-
sults. To illustrate, let us consider the datamerge pro-
gram (DP18). (PDPlS), in Figure 4, is one of the

C<trep(FlN) L V>, bindl(RN)l (PDP19) (PDR19.1)
:- <trep(RN) L V>Q(q2O,sl)

<trep(RN) L V> :- (PDR19.2)
bindI
a(=>) <trep(RN) L V>Q(q2l,s2)

[<trep(RN) L V>, bind2(RN)l :- (PDR19.3)
<trep(RN) L V>Q(q22,s2)

<trep(RN) L V> :- (PDR19.4)
bind2(RN)
&(local) <trep(RN) L V>Q(q23,sl)

<trep(RN) tr (CO1 Al Xl>}> :- (Q20)
<r {<rn RN> CY year ,95>}>Qsl
& <r {<rn RN> CO1 Al Xl>}>Qsl

<trep(RN) tr ((02 A2 X2>}> :- (Q21)
ir {<rn $FlN> <02 A2 X2>}>Qs2

<trep(RN) tr (CO2 A2 X2>}> :- (&22)
<r {Cm RN> <Y year ,95’>}>Qs2
& <r {<rn RN> CO2 A2 X2>}>Qs2

<trep(RN) tr (CO1 Al Xl>}> :- (&23)
<r {<rn RN> (01 Al Xl>}>Qsl

Figure 4: Physical Datamerge Programs
possible physical datamerge programs (from now on
referred as physical programs) for (DP18).

The notation Q(q20,sl) in physical rule (PDR19.1)
indicates that query (Q20) should be sent to s I and the
result should be treated as a “data source” for the rule.
The query obtains from sl all data about reports with
year ‘95’. Rule (PDR19.1) then saves the retrieved
reports and stores the RN bindings in bindl.

The => annotation in rule (PDR19.2) indicates that
we perform a nested-loops join of bindl(RN) and
<trep(RN) L V>Q(q2l,s2). That is, for every bind-
ing r of RN in bindl; we instantiate a parameterized
query (&21), by replacing w with T, and we send the
instantiated query to 92. Similarly, the local anno-
tation that appears in (PDR19.4) indicates that we
perform a local join of bind2(RN) with <trep(RN) L
V>Q(q23, s 1). The join policy decision is made by esti-
mating the cost of each option using information about
the sources. We will not deal in this paper with these
cost-based optimization problems.

Applying Query Subsumption on the Plan:
Earlier we showed how to eliminate redundant rules
from a datamerge program and how to reuse the re-
sults of some rules. We now revisit subsumption and
demonstrate that once the actual queries have been
formulated some query calls may be saved by reusing
the results of other queries.

For example, query (Q20) is subsumed by
query (Q23) because (Q23) retrieves all the reports of
sl whereas (Q20) retrieves only the reports with year
‘95’. Furthermore, once we have the result of (Q23)
we may locally apply the condition on year and hence

421

compute the result of (Q20). The optimizer captures
this relationship between (Q20) and (&23), eliminates
(&20), and modifies rule (PDR19.1) to use the sub-
suming query (Q23). Note the condition on year that
is applied on the result of (Q23).

[<trep(FlN) L ‘0, bindi(:- (PDR19.1.b)
<trep(RN) L {<Y year ‘95’>}>O(Q23,si)

Detecting query subsumption is again done through
unifiers. In particular, a query q is subsumed by a
query q’ if there is a unifier B that maps the tail of
q’ to the tail q and furthermore all variables that ap-
pear in O(head(q)) also appear in O(head(q’)). With a
few extensions to the unification process, we can also
derive the condition that has to be applied on the sub-
suming query.

Note that query subsumption optimization can only
be performed after we know which queries will be sent
to sources, i.e., after the physical plan is generated.
The subsumption optimizations of QD&AO could also
be performed at this latter stage, but it is much bet-
ter to do them as early as possible to simplify plan
generation. This leads to the following strategy: first
do in QD&AO as many subsumption optimizations as
possible, then generate plans, and finally perform the
remaining subsumption optimizations.

.5 Advanced Optimization Techniques

In this section we describe further optimizations that
are performed by the algebraic optimizer and the plan
generator. The first two techniques (Section 5.1)
are useful for reducing the exponential number of
datamerge rules that can be generated when there is
incomplete information about the sources. The third
technique (Section 5.3) deals with negation and block-
ing operations.

5.1 Reducing the number of datamerge rules

Mediator (MS16) and query (Q17) illustrated the
problem of exploding conditions. Since the label year
could come either from si or 92, the condition on year
had to be pushed to both si and s2. One of the nice
features of MSL is that it does not force us to specify
where data might come from, but this flexibility then
forces the system to explore all possible options.

In the general case we may have a query requir-
ing fused objects satisfying a conjunction of conditions
Cl, ..‘, cn, where the object components come from
sources si , . , s,. If the specification does not state
what conditions should be pushed to what sources, res-
olution leads to an exponential number of datamerge
rules, corresponding to all possible ways of splitting
cl, ..,, c, between the sources. The subsumption tech-
niques of Section 4 can help reduce the amount of

work, but we may still have too many queries for the
sources.

One way to reduce the number of queries is to de-
termine in advance those that will return an empty
answer because no source objects could ever match.
For instance, in our example, if we know that year in-
formation may not come from si then we can remove
rules (DR18.1) and (DR18.2) from (DP18) since they
both require that year is found at sl.

Even though the mediator does not have a “schema”
dictating what type of information a source may have,
it could achieve the same effect by asking at run time
if source si has any objects with year label. If no
such objects exist at si, the mediator can eliminate
all datamerge rules that require a year at si. (In
practice, we can interleave query decomposition with
this label checking, so the rules would never have to
be created.)

The label queries we have described could be ad-
dressed to a lexicon service residing either at the source
or the wrapper for the source. The service could an-
swer label queries based on its knowledge of the do-
main (e.g., only medical terms defined in a known dic-
tionary are used as labels in a given structure), based
on index structures (e.g., the source provides a label
index for speeding up queries), or based on a local
schema if there happens to be one (e.g., the data at this
source is stored in a relational database.) There are
many variations to the idea of lexicon services; [PGM]
presents some.

5.2 Refraining from Simultaneously Pushing
Conditions

We now briefly consider a second technique for reduc-
ing the number of datamerge rules. The key observa-
tion is that pushing all conditions to the sources may
not be (and most often is not) the best plan. At first
sight this appears counter-intuitive because in conven-
tional query optimization it is alw.ays beneficial to eval-
uate selection conditions as early as possible. However,
the absence of complete knowledge about the structure
of the sources prompts us to try all possible ways of
splitting the conditions among the sources, hence pro-
ducing a potentially inefficient plan.

Let us present an alternative for processing a query
with n conditions to m sources without pushing all
conditions. We can answer the query by (i) fetching
from each source all objects satisfying any one of the
c; conditions and (ii) fusing these objects at the me-
diator, and (iii) selecting those fused objects that sat-
isfy all the ci conditions. For example, suppose that
in a query like (Q17) we look both for reports with
year equal to 95 and topic equal to “databases.” Our
original policy, that we call conjunctive, would involve

422

datamerge rules that split the two conditions among
the sources in all possible ways. Instead, we send a
single query to each source asking for all documents
that either have year 95 or topic databases. After
constructing the fused objects, we filter out those that
do not meet both conditions. This policy, which we
call disjunctive (we are sending disjunction of atomic
conditions to the.sources), beats the original conjunc-
tive policy when the number of sources is larger than
the number of conditions.

In [PGM] we present more alternatives. Currently
we are working on the evaluation of these alternatives
and the implementation of an optimizer that efficiently
chooses among these alternatives.

5.3 Optimization of Negation Operations

In Section 3.4 we argued that information blocking
is effective for removing inconsistencies and establish-
ing priorities between information drawn from vari-
ous sources. In general, all specifications involving in-
formation blocking contain NOT conditions that guide
blocking. The performance challenge is to avoid issu-
ing queries that retrieve information that is blocked.
The interpreter can reduce to a minimum the num-
ber of queries sent to the sources and the amount of
retrieved dater. fi)r a wide class of queries and infor-
mation block\ 11: I 1 mediator specifications. Due to space
limitations, II(‘YI, we only sketch the techniques that
are used.

Let us cotlhicler mediator specification (MS4) that
exports all sl reports and s2 reports with numbers
that do not, ;ippear in si. In the simplest case, the
query specifit>s the required report number RN, say
‘123’. In this case we develop a. physical datamerge
program that contains (PDR24). The important point
is that we evaluate the NOT providesc ’ 123 ’ > condi-
tion of (PDR24) before we emit the query Q that ob-
tains data for ‘123’ from s2. (We omit Q.) . Thus, if
’ 123 ’ is provided by sl we avoid sending Q to s2.

<trep(RN) tr {<02 A2 X2>}> :- (PDR24)
NOT provides(‘i23’) &
<trep(RN) tr (CO2 A2 X2>}>Q(Q,s2)

In other cases, avoiding the retrieval of “blocked data”
is more complicated, or even impossible. For example,
consider query (Q9) that requests reports with title
‘a’. The best strategy here depends on the expected
number of matching reports at each site. For instance,
assume that the number of ‘a ’ reports retrieved from
si is not large. To be specific, say that only reports
’ 123’ and ’ 136 have title ‘a’. In this case the best
strategy is probably to send to 92 query (Q25) with
explicit negation conditions for each one of the si re-
ports. (In general it has a NOT R.N=b for every b that
is a member of provides.)

<trep(FtN) tr ((02 A2 X2>q}> :- (&25)
CR02 r {<RN02 rn RN> <02 A2 XZ>}>Os2
& NOT RN='123' AND & RN='136'

If the number of reports retrieved from sl is large it
may be preferable to ship relation provides to s2 and
then send to s2 a query that requests all reports whose
report numbers do not appear in provides. If s2 is
not willing to accept a full relation from the mediator,
another option is to retrieve from s2 all reports with
title) a’ and test locally whether these reports are also
provided from si. If they are, the s2 version can be
discarded. In this last case, blocking could not really
be exploited to reduce the data retrieved from s2.

6 Discussion and Related Work

In this paper we have shown that the OEM data model
and the MSL mediator specification language, eadh ex-
tended with semantic object-ids, provide a conceptu-
ally simple yet powerful framework for object fusion.
The rules use a small but general set of features that
consists of: (a) semantic object-id’s, (b) negation, and
(c) variables that can range over object-id’s, labels,
and values. Multiple MSL rules can monotonically
and independently add information to fused objects by
specifying the semantic object-id of the fused object.
The combined use of negation and attribute variables
allows the specification of complex conflict resolution
schemes.

Our work builds on many prior results and ex-
periences, and we briefly review here some of them.
Many projects have dealt with data integration and fu-
sion (e.g., [LMRSO, A+91, C+95, S+;HM93, TRV95,
K+93].) Most of them base fusion on a precise de-
scription of the schemas exported by the sources and
present classifications and resolution techniques for the
various schematic and semantic conflicts that may be
found in the schemas [K+93]. Unlike these approaches,
in the present paper, we assume minimal knowledge of
the structure and contents of the sources.

MSL is an object-oriented logic, but has certain sim-
plifying features. In particular, a number of problems
are avoided by not considering sets as first-class citi-
zens. (Variables may explicitly refer only to existing
sets of objects.) Indeed, in absence of negation and
semantic object-id’s, MSL can be viewed simply as a
variant of datalog (see [U&39]). In the extended ver-
sion of paper [PGM] we present the reduction of MSL
to datalog with function symbols and negation. In ab-
sence of recursion, MSL can be viewed as a variant
of O&L [Cat94]. However, unlike datalog and O&L,
MSL makes it possible to handle both unstructured
and structured data.

MSL’s handling of semantic object-ids is based on a
particular use of Skolem functions as first introduced

423

in object-oriented systems in [Mai86] and refined in

[KKS92, CKW93]. A u omatic creation and manipula- t
tion of object-id’s based on Skolem functors are consid-
ered in depth in [HYSO]. [LSS93, KLKSl] propose log-
its and languages with higher-order syntax and first-
order semantics for schema integration and evolution
and also demonstrates the need for higher order views.
MSL achieves the same effects with the use of label
variables.

Finally, though MSL can be reduced to a variant
of Datalog [UllSS], q uer execution against mediators y
cannot be achieved by a simple modification of dat-
alog evaluation mechanisms because the environment
(i.e., remote heterogeneous sources) is radically differ-
ent from a conventional database.

Implementation Status: We have developed a
prototype system that fully implements the query de-
composition and evaluation algorithm described here.
It also features the subsumption based optimizations
and some of the optimization techniques of Section 5.3.
The system has been demonstrated on a collection of
heterogeneous bibliographic sources. We are currently
working on including the rest of the optimization tech-
niques we have described into the prototype. At the
same time we are evaluating the performance of the
proposed plans.

References
[A+911

[c+95]

[Cat941

[CKW93]

[HM93]

[HY90]

[K+93]

R. Ahmed et aI. The Pegasus heteroge-
neous multidatabase system. IEEE Computer,
24:19-27, 1991.

M.J. Carey et al. Towards heterogeneous
multimedia information systems: The Garlic
approach. In Proc. RIDE-DOM Workshop,
pages 124-31, 1995.

R.G.G Cattell. The Object Database Stan-
dard: ODMG-93. Morgan Kaufmann Pub-
lishers, 1994. with contributions from Tom
Atwood et.aI.

W. Chen, M. Kifer, and D.S. Warren. Hilog:
a foundation for higher-order logic program-
ming. Journal of Logic Programming, 15:187-
230, February 1993.

J. Hammer and D. McLeod. An approach to
resolving semantic heterogeneity in a federa-
tion of autonomous, heterogeneous database
systems. Intl Journal of Intelligent and Coop-
erative information Systems, 2:51-83, 1993.

R. Hull and M. Yoshikawa. ILOG: Declara-
tive creation and manipulation of object iden-
tifiers. In Proc. VLDB Conference, pages 455-
68, Brisbane, Australia, August 1990.

W. Kim et al. On resolving schematic hetero-
geneity in multidatabase systems. Distributed
And Parallel Databases, 1:251-279, 1993.

[KKS92]

[KLKQl]

[LMRSO]

[LSS93]

[Mai86]

P’GMI

M. Kifer, W. Kim, and Y. Sagiv. Querying
object-oriented databases. In Proc. ACM SIG-
MOD, pages 59-68, 1992.
R. Krishnamurthy, W. Litwin, and W. Kent.
Language features for interoperability of het-
erogeneous databases with schematic discrep-
ancies. In Proc. ACM SIGMOD, pages 40-9,
Denver, CO, May 1991.
W. Litwin, L. Mark, and N. Roussopou-
10s. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22:267-
293, 1990.
L. Lakshmanan, F. Sadri, and I.N. Subrama-
nian. On the logical foundations of schema in-
tegration and evolution in heterogeneous dat-
base systems. In Proc. DOOD, pages 81-100,
1993.
D. Maier. A logic for objects. In J. Minker, ed-
itor, Preprints of Workshop on Foundations of
Deductive Database and Logic Programming,
Washington, DC, USA, August 1986.
Y. Papakonstantinou and H. Garcia-Molina.
Object fusion in mediator systems (ex-
tended version). Available by anony-
mous ftp at db.stanford.edu as the file
/pub/papakonstantinou/1995/fusion-exte
nded.ps.

[PGMU96] Y. Papakonstantinou, H. Garcia-Molina, and
J. Ullman. Medmaker: A mediation system
based on declarative specifications. In Proc.
ICDE Conf., pages 132-41, 1996.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and

F-+1

[TMD92]

[TRV95]

[U&39]

J. Widom. Object exchange across hetero-
geneous information sources. In Proc. ICDE
Conf., pages 251-60, 1995.
V.S. Subrahmanian et al. HERMES: A het-
erogeneous reasoning and mediator system.
http://www.cs.umd.edu/projects/hermes/
overview/paper.
J. Thierry-Mieg and R. Durbin. Syntac-
tic definitions for the acedb data base man-
ager . Technical Report MRC-LMB xX.92,
MRC Laboratory for Molecular Biology, 1992.
A. Tomasic, L. Raschid, and P. Valduriez.
Scaling heterogeneous databases and the de-
sign of DISCO. Technical report, INRIA,
1995.
J.D. UIIman. Principles of Database and
Knowledge-Base Systems, Vol. II: The New
Technologies. Computer Science Press, New
York, NY, 1989.

424

