
Further Improvement on Integrity Constraint Checking
for Stratifiable Deductive Databases

Sin Yewng LEE Tok Wang LING

Department of Information Systems and Computer Science
Lower Kent Ridge, Singapore 119260, Singapore.

email : Cjlee, lingtw}@iscs.nus.sg

Abstract

Integrity constraint checking for stratifiable
deductive databases has been studied by many
authors. However, most of these methods may
perform unnecessary checking if the update is
irrelevant to the constraints. [Lee941 proposed a
set called relevant set which can be incorporated
in these works to reduce unnecessary checking.
[Lee941 adopts a top-down approach and makes
use of constants and evaluable functions in the
constraints and deductive rules to reduce the
search space. In this paper, we further extend
this idea to make use of relational predicates,
instead of only constants and evaluable functions
in [Lee94]. We first show that this extension is
not a trivial one as extra database retrieval cost is
incurred. We then present a new method to
construct a pre-test which can be incorporated in
most existing methods to reduce the average
checking costs in terms of database accesses by a
significant factor. Our method also differs from
other partial checking methods as we can handle
multiple updates.

1 Introduction

Integrity constraint checking for stratifiable deductive
databases has been studied by many authors. Many of
these researches [Lloy87, Bry88, Celm95] are on strict
integrity checking - a test that succeeds if and only if the
constraint remains satisfied. However, as shown in
[Lee94], all these methods are sometimes expensive and

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copving is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the
Endowment.
Proceedings of the 22nd VLDB Conference
Mumbai (Bombay), India, 1996

may perform a lot of redundant checkings which can be
eliminated easily. Thus this motivates another area of
study - to evaluate a cheaper pre-test such that if the
pre-test succeeds, then the constraint is not violated.
However, if the pre-test fails, nothing can be said about
the constraint, and a strict checking is still needed.
[Koya87, Gupt94] are examples of this area of research.
This class of method usually makes use of evaluable
functions, known constants and some local information to
devise the pre-test. However, most of these methods
either focus on single insertion or only work for some
special forms of constraints or updates. In some cases, the
incorporation of the pre-test can be more expansive. Our
method, however, takes both cost and probability into
consideration, hence, it is likely to reduce the cost of
checking significantly, while keeping the cost at a small
amount. And our method can handle transactions for
general constraints. It makes use of some relational
predicates and evaluable functions in the deductive rules
and constraints to compute a set called relevant set. This
relevant set can be incorporated in most of the existing
methods in two ways:

1. It detects those updates that are irrelevant to a given
constraint, and thus can be ignored by the
validation process.

2. It reduces the search space by early abortion of
computation on irrelevant predicates during
refutation processes. We will show that it improves
the performance of methods such as [Kowa87,
Das89] by a significant factor.

The paper is organized as follows: Section 2 first give
some basic terminologies used in this paper. Section 3
briefly describes some of the existing integrity checking
methods for stratifiable databases and their inadequacies.
We then give a brief description on how our method uses
relational predicates as well as evaluable functions to
improve the efficiencies of those existing methods.
Section 4 discusses two problems of using relational
predicates in a relevancy pre-test for a general transaction.
Section 5 first gives some required definitions and then
introduces a heuristic algorithm called O(l)-heuristic to
solve the problems described in Section 4. Finally, a
complete algorithm on how to generate a relevant set is
given. Section 6 continues to give examples on how our
relevant set can be used in existing methods [Lloy87,

495

Das89] to improve their performances in at least two
different ways. Section 7 concludes the paper.

2 Some basic terminologies

The databases we are using in this work are @amiable
deductive databases with recursive rules. There are many
different methods to specify deductive rules. In our work,
the rules are specified by general program clauses
[Lloy87b] with evaluable functions. A general program
clause with evaluable functions is of the form

A+-L,A . ..AL.
where A is a predicate, and Li’s are either
predicates/evaluable functions or negation of
predicates/evaluable functions.
For example, the followings is a general program clause:

sponsor(x,y) + guardk2n(x,y)
A employed(x) A ystipend(y)

Since we allow recursive rules with negations, we shall
focus ourselves on the stratifiable database model. A
database is stratified if all clauses can be partitioned into
several group Gi , . . . , Gk such that

1. If an atom A occurs positively in the body of a
clause in Gi, then the definition of its predicate
symbol is contained within Gi withjli.

2. If an atom A occurs negatively in the body of a
clause in Gi, then the definition of its predicate
symbol is contained with Gk with k < i.

For example, the following is not stratifiable.
p(XvY)+ TP(XY)

A fi.dl description can be found in [Ull89].
Beside different database models, as shown in [Gupt94],
the information level available results in different
integrity verification methods. For example, knowing
only the set of constraints, [Gupt94] discussed how
constraint subsumption can be used to eliminate some
unnecessary checking. In this paper, we assume that we
need only the information of the integrity constraints and
the deductive rules to precompute a set called relevant set,
which will be described in Section 5. However, during
the verification step, our method assumes that the
transactions as well as all the database facts are known.
The form in which integrity constraints are written
determines what type of constraints that can be expressed.
For example, conjunctive queries [Chan77] cannot
express constraints such as “An employee age must be
between 18 to 60.” In this work, constraints are expressed
in the form

L,A ** *L,,+A, V --* VA,,,
where Li’s are conjunctions of predicates, evaluable
functions and/or negative formulas. Aj’s are either
predicates or evaluable functions. Variables that appear
in any Li is assumed universal quantified, while local
variables which appear only in Aj but not in any Li is
assumed existential quantified before Al. For example, the
constraint

worker(X) --) manager(Y,x)
is interpreted as

V X worker(x) + 3 Y manuger(Y,x)
In this paper, we only deal with static constraints without
aggregate functions.
Lastly, some authors such as [Gupt93] addressed integrity
checking for single update only. This is quite restrictive.
Our technique can handle transactions, where a
transaction is a set of tuple insertions and tuple deletions.
Modification can be handled if we express it as a deletion
followed by an insertion.

3 Problem of existing methods

For integrity checking for stratifiable deductive databases,
[Lloy87] proposed first based on the given update and
deductive rules to compute a set of possibly inserted
tuples, which are the relational/deductive tuples that may
be newly generated after the update; and a set of possibly
deleted tuples, which are the relational/deductive tuples
that may be removed after the update. The method then
evaluates the given constraint after restricting to only
those possibly inserted and possibly deleted tuples. On
the other hand, [Deck861 proposed to evaluate the exact
inserted and deleted tuples, and applied each of them to a
simplified version of the integrity constraint. [Bry88]
improves on [Deck861 by pre-computing the set of
relation tables, updates of which may falsify the
constraint. Bry’s technique then applied [Deck861 to
check for only those updates if they violate the constraint.
[Kowa87] used an extension of the proof procedure to
construct a refutation tree using each of the updates as a
top clause. If all refutations fail, then the constraint is
preserved. Similarly, [Das89] proposed to construct a path
from each update literal to the head of each integrity
constraint. If such a path can be constructed, then the
constraint is violated. [Celm93, Celm95] improved
[Lloy87] on some optimizations on the constraint
evaluation process.
However, since all these methods work from the update
literal, they all suffer one important inadequacy: they may
redundantly compute some facts, refutation paths or
partially instantiated predicates, which are irrelevant to
the constraint checking. Consider the following example,

Example 3.1 In a university database, three deductive
predicates greater to capture if a student S# in the course
C# has scored at least SC in one of year; marScore to
capture the maximum score of a student S# in the course
C#; and failcore to capture if a student S# has failed any
core module in all his/her attempts, are defined as follows,

greater(S#,C#,SC) +
exam(S#,C#,Yrt,ScZ)A (SC* >Sc)

m~c0rt-(S#,C#,Sc)+ exam(S#,C#,Yr,Sc)~
-@earer(S#,C#,SC)

&ilcore(S#)+ cotm(C#,core)A
marscore(S#,C#,Sc)A (SC < 50)

We have another constraint which states that any first year
student who does not fail any core module must also be
attached to an industrial project.

496

s,un(S#,first) A ljhwe(s#) + proj(S#,J#)

Intuitively, a deletion of the tuple exum(.s i ,c 1,1995,60)
should not induce any deletion onfii[core. For even if the
student s i fails some core module, it cannot be c i as the
student at least scores 60 in it. This deletion also cannot
make him pass the other failed module. Hence,
fai/core(s i) cannot be changed from true to false by the
above deletion. Thus the deletion cannot violate the given
constraint. On the other hand, if the deleted tuple is
exam(si ,ci ,1995,30), and if this is the only exam he
takes, then s, no longer fails any core module. In this
case, &ilcore(s i) may be deleted, and thus the constraint
can be violated.
However, all the existing methods [Lloy97, Celm95] fail
to detect that there is a difference between the two above
mentioned updates. In both cases, they need to evaluate
the predicates mascore and fuilcore only to find that the first
update cannot falsify the constraint at all. 0
Other researchers have observed the inefficiency of strict
integrity checking and proposed that some cheaper pre-
tests should be applied first. Only when the test fails will
the strict checking be applied. However, most of these
researches work for only some particular cases. For
example, when the single tuple p+(s , ,j,) is deleted,
[Koba87] and [Gupt93] proposed to check if student s , is
a first year student before a full checking. However, in
the case of insertion of the single tuple snrd(s , ,first),
[Gupt93, Gupt94] proposed to check if the student s i is in
the database before the insertion. It is, however, not a
very useful pre-test, especially when the student number
is the key of the student relation. Furthermore, in the case
where the relation appears in both sides of an integrity
constraint (for example, multi-value dependency), the
method may fail to work. [Blak86] has a similar
irrelevancy idea as in this paper to update derived
relations. However, it only works for evaluable functions
and relational databases without multiple-updates. It is
also unclear of how these methods can be extended to
handle transactions as well as deductive databases with
recursive rules.
In view of this, [Lee941 has discussed how to use
constants and evaluable functions to perform pre-test for
stratifiable deductive databases before each integrity
checking. It basically pre-computes in a top-down
manner a set of partially-instantiated predicates, each.with
an associated condition which is conjunction of only
evaluable functions. In the above example, [Lee941
makes use of the evaluable function (SC ~50) and
deduces that if m , is not less than 50, then the deletion of
exam(s, ,c, ,y i ,m i) will not cause any deletion to the
predicate faiicorr and therefore the given constraint will not
be violated. In this way, it reduces all the unnecessary
computations of the changes of gtmer, marScore and fuilcow
as required by all other existing methods.
To further extend the idea in [Lee94], we use not only
evaluable functions and constants in the constraint and the
deductive rules, but also make use of the relational
predicates as well. Consider the following example,

Example 3.2 With reference to the same rules and
constraint in Example 3.1, if we delete the tuple
exam (s r , c i ,y , ,33) from the database, the constraint may
be violated, and according to [Lee94], the evaluable
function (SC < 50)(&/33} correctly concludes that the
deletion may violate the constraint in general. However,
there are still some unnecessary checkings that can be
detected easily. Consider if the course ct is not a core
module, then intuitively we know that the above deletion
cannot change the predicate failcore, and thus the checking
of the given constraint is redundant. In other words, this
redundancy can be easily detected if we perform a
relevancy pre-test to check if course c t is a core, i.e., we
test

COUW~(c 1 , core)
If it is evaluated to be false, no checking is needed. Only
when it is satisfiable should we proceed a normal integrity
checking procedure by making use of any of the existing
methods such as [Lloy87, Kowa87, Celm95].
Similarly, if student s , is not a first year student, then the
deletion shouldn’t affect the constraint. In other words,
we can have another relevancy pre-test:

.stud(s I , first)
If it is unsatisfiable, again no checking is required. Only
when it is satisfiable should we then make use of other
existing methods [Celm95] to validate the constraint. TV
The above example illustrates how [Lee941 can be
extended. Instead of only making use of the evaluable
predicate (SC < 50), we can extend the method to make
use of the two predicates: COWS~ (C# , core) and
stud(S#,first) in the second rule and the constraint
respectively. In other words, to verify if delete
exam(s , ,c I ,y t ,m i) may violate the constraint, we can
test the following pre-test:

~o~~~(~,,core)Ast~~d(s~,first)A (ml <50)
If it is unsatisfiable, then no further checking is required.
Otherwise, we then apply other existing methods to prove
the database integrity after the deletion.
Similar to [Lee94], the expected reduction of database
accesses are usually quite significant. Consider if 30% of
the available courses are core, then 70% of the time, we
can correctly eliminate all the fruitless database accesses
to recompute the predicate maxscore and failcore with just
one database read. Furthermore, if one third of the
students are first year students, then two third of the
remaining time we can eliminate all the redundant
database accesses. Only 10% (i.e. 30% x l/3) of the time
the deletion concerns both core module and first year
students. If we further assume that the passing rate is
about 80%, then. only 2% (i.e. 10% x 20%) of the time
when we delete an exam tuple, a normal constraint
evaluation is needed. 98% of the time we do not need to
compute the constraint at all. This gives an average about
50 times improvement of performance. Yet the overhead
cost is only two extra database accesses, which is quite
insignificant as compared to the database accesses cost
during constraint evaluation.

497

4 Problems in using updatable predicates

The previous example shows that the extension of
[Lee941 to include relational predicates can eliminate
more redundant constraint checkings algorithmatically. In
summary, given a transaction TR and an integrity
constraint IC, our proposed method will check for each
update operation in TR if they are relevant to IC. If they
are not, the update is removed from TR before performing
the checking on IC. Before we discuss the algorithm to
generate pre-test to test the relevancy of an update with
respect to a given transaction and a given constraint, there
are two new problems that is different from [Lee94]. We
will discuss each of them in detail now.

4.1 Evaluation of the pretest

The first problem is on the evaluation of the pretest.
Since the pretest may contain relational predicates which
may be updated by the same transaction, hence, the
evaluation can generate different results depending on
whether the evaluation is done before or after the update.
In certain cases, the evaluation of the pre-test should be
based on the database before the update, but in some other
cases, it should be done after. The following shows both
situations:

1. Based on the same constraint and rules in
Example 3.1, the transaction {modify
smd(s , , second) to md(s , ,first), delete
e.rum(s , ,c , ,1995,63)} can violate the constraint
that “each first year student who does not fail any
core module should continue in the industrial
attachment.” Indeed, each operation in this
transaction is relevant to the constraint. To test if
delete e.ram(s i ,c i ,1995,63) is relevant, a possible
pre-test is,

s~d(s , , first)
If we evaluate this pre-test using the database
before the update, we get the wrong conclusion that
the deletion of cxtim(s, ,c , ,1995,63) is irrelevant.
In this case, we must evaluate SIU~(S, Jirst) based
on the database AFTER the update.

2. Consider the case when we modify the course c,
from core to elective. Obviously, the constraint
may be violated only when there was some students
who fail cl before the update. This condition
should not be evaluated after the update. It is
because after c, is updated to be an elective
module, the constraint will not be affected by
whether there are still some students who fail c i in
the updated database. In this case, the evaluation of
the pre-test must be done based on the database
BEFORE the update in order to draw the correct
conclusion.

Hence, it is important for us to decide which database our
evaluation should be based on. We shall denote pred,,,
to indicate that pred is evaluated using the database before
the update, and predNEW to indicate that pred is evaluated
using the database after the update throughout the paper.

For example, in Example 3.1, to decide if deletion of
exofn(s I , c i ,y i , m i) may falsify the constraint, we need to
check if course ct is a core before the update and the
student s i is a first year student after the update, and m ,
is less than 50. This can be written as,

s~ud~~~(s, ,first)/l ~ou)sGJ~~~(~, ,core)Pk (ml <50)
Note that the evaluable function is unaffected by the
database updates.
As we have introduced the OLD and NEW subscripts to the
predicates in the pre-test, we therefore need to be able to

i) compute an expression mixed with NEW and OLD

subscripts, and
ii) decide for each predicate pred in the pre-test, which

version: pred,,, or predNEW, is to be used.
The first problem on computing expression mixed with
NEW and OLD subscripts can be easily solved by using
differential calculus used in [Hens84, Hsu85, Ling87,
Levy93]. This can be illustrated as follows,

Example 4.1 Given a transaction {modify SIU!(~ i ,first)
to srutl(s , ,second), delete exom(s i ,c, ,y i ,30)} and the
following pre-test,

sr~d~~~(s, ,first)A cour:~e~,,(~,,core)n (ml i50)
To evaluate it prior update, according to [Ling87], the
formula can be modified to,

FALSEA CCWX(cl , core) A (m , < 50) 0

The second problem on deciding which denotation of each
predicate with subscripts OLD and NEW can be solved by
the following theorem,

Theorem 4.1 Given a deductive rule of the form,
p +- all bli -S

where a, b and c represent a relational/deductive
predicates. Variables are ignored for simplicity.
Now, the relation p may acquire some new tuples after a
transaction TR only when

i) there are new inserted tuples which can be unified
with a (or b) such that b (or a respectively) is true
AFTER the database is updated by TR, or

ii) there are deletions of tuples which can be unified
with c such that a/l b is true AFTER the database is
updated by TR.

Similarly, the relation p has some old tuples being
removed after a transaction TR only when

i) there are deleted tuples which can be unified with a
(or b) such that b (or a respectively) is true
BEFORE the database is updated by TR, or

ii) there are inserted tuples which can be unified with c
such that. aA b is true BEFORE the database is
updated by TR. Cl

Example 4.2 Consider Example 3.1, insertion of
exom(.s , , c , ,y , ,m ,) will insert new tuple into the
predicate muscore only when C~UX(c i ,core) is true at the
updated database. On the other hand, deletion of
exum(s, ,c , ,y , ,m ,) may remove some tuples from fuilc~
only when course(c , ,core) is true at the original database
before the update. 0

498

4.2 Significant extra database access cost

To incorporate relational predicates into [Lee94], ye have
yet another problem. This is about the improvement of
the performance. Contrast with only using evaluable
functions, the evaluation of a relational predicate needs to
access database and thus incurs an extra cost. Hence, in
order to have a significant database access reduction, we
are required to have

1. a significant probability that the pre-test can
eliminate irrelevant updates, and

2. the cost of pre-test is not too high, as compared to
the integrity checking.

Consider the following two cases where the above
conditions fail,

1. Assume the pre-test needs to evaluate the predicate
CWW(c , , r), but it does not really help to remove
any irrelevant update as CWW(C , , Z’) is always
satisfiable. Hence we pay off an extra database
access, but cannot eliminate any unnecessary
checking. In this case, our first requirement fails.

2. Consider we insert the tuple srud(s, ,fir.sr) in the
database, we can construct a pre-test to verify if
If;ri/Ca,-c(S I) is satisfiable. However, the cost of
such pre-test is significantly high as compared to
the entire constraint evaluation. In fact, the
evaluation of +core(s I) constitutes the major
costs of the constraint evaluation. In this case, the
pre-test evaluation is as bad as the integrity
evaluation itself, and the performance is getting
worse. This is the consequence if our second
requirement is not fulfilled.

From the above discussion, a relevancy pre-test may not
necessarily reduce database accesses during constraint
validations. Hence, we need to have a method to select
the right predicates to be present in the relevancy pre-test.
Before we continue to discuss our algorithm to construct
such a relevancy pre-test, which is not costly to compute,
but has a significant chance of eliminating irrelevant
updates, we shall modify some of the basic definitions
used in [Lee941 now.

5 Possible Falsifier and Relevant set

Definition 5.1 An extended literal is a tuple either of the
form up: Cl or 1 lp: Cl wherep is an atom and is called
the associated atom. C is a conjunction of evaluable
functions and partially instantiated relational/deductive
predicates subscripted with OLD and NEW. It is called the
associated condition. If the number of conjunctives in C
is zero, then it is replaced by TRUE. q

Example 5.1 The followings are extended literals:
[cof,,:se(C#.elective):e.wnNEw(S#,C#, Yr,M)l, and
[r~ew,,,(S#,C#,Yr,M):(Yr#1995)~p~c~o,,(S#,J#)~ cl

Definition 5.2 A positive atom t is extended unified with
an extended literal _ up: Cl with respect to two given

databases DB,,, and DB,,, where DB,,, is the database
after a given transaction TR on DBoLD, if t is unifiable with
p with a most general unifier (mgu) CT, and Co
(subscripted with OLD and NEW) is evaluated to be true
under the given databases DBoLo and DB,,,. A negative
atom 7 t is extended unified with an extended literal
11 up: Cl if t is unifiable with p with a mgu cr, and Co is
evaluated to be true under the given databases. cl

Example 5.2 The positive atom u(1,2) can be extended
unified with 1 a(X, Y) : (X#Y) I] under any database.
Furthermore, it can be extended unified with
f a(X, Y) : (X* Y) fl b NEiV (X, r> 1 wrt databases DB Ola and
DB iaw only when the predicate b(1,2) is true under
DB,,,. However, the positive atoms a(1,l) and b(I ,2)
cannot be extended unified with both of the above
extended literals under any database. q

Definition 5.3 An extended literal P is called a possible
falsifier with respect to a given integrity constraint IC if
there is a database DBoLo and there is a tuple t such that
either

1. DB,,, is the database after t is inserted into DB,,,
and

2. t can be extended unifiable with P wrt the two
databases DB,,, and DBNEW, and

3. ZC is satisfiable under DBo,,, but is violated after
insertion, i.e. under DBNEW,

or
1. DB,,, is the database after t is deleted from DB,,,

and
2. -,t can be extended unifiable with P wrt the two

databases DB 0Lo and DBNEW, and
3. ZC is satisfiable under DBoLo, but is violated after

the deletion, i.e. under DB,,,. 0

Intuitively, a possible falsifier wrt constraint IC captures a
set of insertions and deletions which can violate a satisfied
constraint ZC in some database. Since modification can be
viewed as deletion followed by insertion, the above
definitions can be easily extended to handle modification.

Example 5.3 Refer to the conStraint in Example 3.1,
.vd(S#,first)A ~$ilCore(S#)+ pmi(S#,J#)

As there exists some database state which obeys the
constraint, but is violated when &d(s 1 ,first) is inserted,
hence 6 ~ft,ti~~~ (s 1 Jirst) :-I&E 1 is a possible falsifier. ~~jlroj(S~,j,):TFWEn 1 p 1s a so a ossible falsifier as deleting
the project information may violate the constraint.
Similarly, (r -&core(S I) :LJE], 1 7~~~~~.~~(~ l ,core) :TRudI

and IJ ~p~~j(s, ,j 1) :sw/(.s , ,first) 4 are all possible
falsifiers. On the other hand, [r 7~~~~.~e(c , , elective) :TRuEn
is not a possible falsifier as deleting an elective course
cannot falsify the constraint. Similarly, modification of
the course c , from elective to other type cannot falsify the
constraint. U -proj(S , ,j I) :stun(s , ,second) n is also not a
possible falsifier as deleting a second year student’s
project shbuld not affect the constraint. n

499

Definition 5.4 An extended literal [r PI : Cl 1 (or
[I -,P 1 : C, 1) is said to subsume another extended literal
UP2:C21 (or U7Pz:Czl respectively) if there is a mgu
(J such that

i)P2 = P,o,
ii) C2 + C I CT under any database. 0

Example 5.4 U course(C#, ZJ :TRUEn subsumes both
U c~~~~~(c#,coT~):~&~ and U~~~,:\.~(c#,~):(~#core)ll.
However, the latter two do not subsume each other. q

Theorem 5.1 Given any integrity constraint ZC, if the
possible falsifier P wrt ZC subsumes another possible
falsifier Q wrt ZC, then for any update U which violates
ZC, U is extended unifiable with Q implies that it is also
extended unifiable with P. 0

Definition 5.5 A relevant set with respect to an integrity
constraint is a collection of possible falsifiers such that
any possible update which violates the constraint can be
extended unified with some possible falsifiers in the set. q

Note that, however, not all updates which extended unify
with some of the possible falsifiers in the relevant set will
definitely violate the constraint. Hence, since the relevant
set does not describe exactly only all the updates which
will violate the constraint, but just updates which may
violate the constraint, the relevant set, by definition, is not
an unique set for a given constraint ZC. In particular, we
can always replace a possible falsifier P 1 in a relevant set
by another possible falsifier P2 if P2 subsumes P 1.
Following the discussion in section 4.2, we know that if
the database access cost to verify if Pl can extended
unified with a tuple t (or ,t) is high, we can remove some
conjunctive predicates from P 1 to form P2, which clearly
subsumes P 1, and has a lower database access cost. But
in return, removing some of the conjunctives in the
associated condition also means that the condition is less
restrictive and the chances is increased to be satisfiable.
According to the discussion in section 4.2, if the possible
falsifier is almost always satisfiable, then it is less useful
to eliminate any unnecessary informations and checkings.
To balance these two conflicting objectives, we propose a
heuristic called O(l)-heuristic, which is to drop any
conjunctive predicates except those predicates that can be
verified within one database read operation and has a
significant chance to be unsatisfiable.
The first type of predicates to be kept are those evaluable
dictions which used only variables found in the
associated atom of a possible falsifier as shown by
[Lee94]. For example, given a possible falsifier of
U~xcrm(s#,c~,Yr,s~):(Yr~Yrz)A (sc<50)n, we will
not keep the first evaluable function (YrzYr*) as it uses a
variable Yr2 which is not found in the associated atom
eXU,(S#,C#,Yr,Sc). On the other hand, we keep the
second evaluable function (SC < 50) as it satisfies our
requirement. For this class of evaluable functions, their
evaluations take no database read. Furthermore, after the
associated atom is unified with a tuple, the evaluable
function will be fully instantiated, and it is quite unlikely

that the instantiated function is always satisfiable.
The second type of predicates are those relational
predicates which obey the following two criteria:

1. The tist criterion is that all those variables which

2.

appear in the primary key attributes’ positions must
also be found in the associated atom of the possible
falsifier. Satisfying this criterion, all the primary
key attributes in the predicate will be bounded by
constants during the unifying step. Since after the
value of the key of a relational predicate is known,
it only takes one database read to retrieve the entiie
tuple. Therefore, the satisfiability of the relational
predicate can be evaluated within one database
read. For example, given the possible falsifier P:
[failCore :~t~d(S#,first)A exm(S#,C#, Yr,Sc) n
the predicate St&S#,first) satisfies this criterion as
the variable S#, which appears in the primary key
position in relation stud, also appears in the atom of
P. However, for predicate exom(S#,C#, Yr,Sc), the
variables C# and Yr, which appear in the primary
key position of relation exam, do not appear in the
atom of P, hence this predicate does not satisfy the
first criterion.
The second criterion requires that there is at least
some conditions to bind the value of some of the
non primary attributes in the predicate. The
binding can be just some constants or instantiation
of variables used in the associated atoms. Having
some restrictions on some of the non primary
attributes, it will provide a significant chance that
the associated condition of the possible falsifier to
be unsatisfiable. Thus the chance to eliminate some
irrelevant updates is better. For example, given the
possible falsifier: [faiKore(S#) : Shrd(S#,first) 1 the
predicate Srud(s#,first) satisfies the second
criterion since the constant first binds at least one
of the non-primary key attributes. On the other
hand, the predicate Snd(S#, Yr) does not satisfy this
criterion as none of the non-primary key attribute is
bounded with any constant.

Finally, we will not use any deductive predicate. The
evaluation of deductive predicates usually requires more
than one database read operation, especially if the
predicate is a recursive one.
We can summarize the above discussion by the following
algorithm. The algorithm modifies a given possible
falsifier P by reducing the condition part of P so that each
conjunct satisfies the 0(l)-heuristic.

Algorithm 5.1
Ol-heuristic(Possible-Falsifier& P)

begin
for each conjunct C in the condition of P

begin
case I : if IC is an evaluable function and

if (C uses some variables not found in the associated
atom of P)

remove C from the condition part of P;

case 2: if (C is a relation predicate OR
C is a negation of a relation predicate)

500

if some of the variables which appear in some primary
key positions in C, but does not appear in the
associated atom of P,
OR
if none of the variables of non-primary key attributes
is binded with constants, then

remove C from the condition part of P;
case 3: if C is a deductive predicate then

remove C from the condition part of P;
end;

end;

Example 5.5 Consider the following possible falsifier P,
Uexom(S#,C#,Yr,Sc):~rud~~~(S#,first)A

projo,(S#,J#)A CourseaD(C#,core)A
examNEW(S#,C#,Yr,Sc2)4

This possible falsifier can be reduced by Algorithm 5.1 as
followed:

1. The conjunct sf~d~,,(S#,first) corresponds to the
second case in the Algorithm 5.1. Since all of its
primary key attributes (S#) appear in the associated
atom of P, and some of its non-primary key
attributes (i.e. year-level) bind with a constant (i.e.
first), hence, we will not remove it from P, and
keep this conjunct.

2. For the conjunct p~oj,,(S#,J#), the primary key’s
attributes are S# and J#. However, J# does not
appear in the associated atom of P, hence, the
conjunct is removed.

3. The conjunct cour~~(C#,co~e) is not removed.
The reason is the same as the first conjunct
StunNEw (S# ,first).

4. Finally, the conjunct exclmNEW(S#,C#,Yr,Sc2) is
removed as its non-primary key attribute SC* is not
bounded by a constant.

Now, the modified P by Algorithm 5.1 is
Uexum(S#,C#,Yr,Sc):stud,,,(S#,fir;t)A

course om (C#, core) 1) cl

5.1 Computation of relevant set

The computation of a relevant set with respect to a given
constraint is essentially top-down. As we do not require
the set to be fully instantiated, we do not need to access
the database to generate the set and the process can
always terminate. Moreover, this computation needs only
to be done once for each constraint and is independent of
any transaction until some database rules or constraints
are changed. Hence, it can be classified as compiled
approach. The following algorithm describes how we
construct a relevant set with respect to a given constraint,

Algorithm 5.2 Given a stratifiable deductive database
DB and a constraint IC, we construct a relevant set as
follows:

1. Temporary add the deductive rule
violated+ TIC

into DB where the predicate violated is not an
existing predicate in DB. Convert ,IC to a closed
first-order formula if necessary.

2. Initialize S to contain only a single possible falsifier
1 violated :liw 1

3. If u&Y*, . . . ,y,>:cil is in S, and if there is a
deductive rule in DB,

p(n1,... rXn)+- W(XI,. . .9x,>
such that p(y,, . . . ,y,) can unify with
P(X,, . . . ,x,)withamgu&then

i) rename the local variables (i.e. not
Xl,..., x ,J in W if necessary so that they do
not share the same name with variables in C
aW-4v,,...,y,)

ii) for each positive literal q(.z 1 , . . . , z,) (or
negative literal 7q(z1, . . . ,z,)) in W,
construct
Uqh...

possible

Lqzz,, . .
,zmyii:c* (w,e)ll

falsifier
(or

. ,z,)B:CA (w3)n
respectively) where W’ is the same as W
except that the predicate q(z 1, . . . , z,) (or
‘7q(z1,... , z ,,,) respectively) is removed,
and every relational predicate in W’ is
labeled as NEW. Apply Algorithm 5.1 on this
possible falsifier and generate a new possible
falsifier
i-i-w,~ .

Uq(z,, . . . ,zm)8:C’Il. (or
.) z,)9X’I) respectively)

Include it into S if it is not just a renaming of
any existing element in S.

4. If Lpcy,, . . . ,yn):Cn is in S, and if there is a
deductive rule in DB,

P@l,..* 5X,)+- ml,. . .7x,)
such that p(y,, . . . ,y,) can unify with
P(Xl,... ,x,) with a mgu 0, then

i) Rename the variable in W if necessary
similar to previous case.

ii) for each positive literal q(z 1 , . . . , z,) (or
-I(z19 . ..,,))inthebodyofW,
construct the
u4%..

possible falsifier
.,zm)8:~~(~r0)n (or

Uqh... , z,) 8: CA (W’0) n respectively)
where W’ is the same as W except that the
predicate 4Zl,...,Zm) (or
-@I,. . . , z,) respectively) is removed,
and every relational predicate in W’ is
labeled as OLD. Apply Algorithm 5.1 on this
possible falsifier and generate a new possible
falsifier u7q(z1,...,zm)kc~n (or
Lqh.. . ,zm)e:c~il respectively).
Include it into S if it is not just a renaming of
any existing element in S.

5. [Optional simplification step] For any pair of
possible falsifiers P 1 and P2 in S, if P 1 subsumes
P2, then remove P2 from S.

6. Repeat step 3 until no more new possible falsifier is
included in S.

7. Remove the possible falsifier U violated:&] from
S and remove the temporary deductive rule,

violated+ TIC
from the deductive database.

8. Return S as a relevant set of ZC. 0

501

Theorem 5.2 Algorithm 5.2 will terminate and correctly
generate a relevant set. In other words, any update which
is not extended unifiable with any of the elements of the
set generated from Algorithm 5.2 cannot falsify the
constraint. cl

Example 5.6 With reference to Example 3.1, we have
three deductive rules Rl , R2 and R3:

grearer(S#,C#,Sc)t
exm(S#,C#,Yr2,Sc2)A (S+>Sc) WI

~uLscow(S#,C#,SC)+ exum(S#,C#,Yr,Sc)A
7greoter(S#,C#,Sc) 032)

fuilc~~(S#) +- COWW(C#,core) A
mo.Lscore(S#,C#,Sc)A (SC <50) (R3)

and the constraint that a first year student who does not
fail any core module must do some project:

srud(S#,first) A -ttUCow(S#) -+ pmj(S#,J#)

the relevant set wrt to the given constraint can be
computed as follows,

1. According to the first step of Algorithm 5.1, we add
the following deductive rule,

violated+- Stud(S#,first) A yfuiIcow(S#)
A Iproj(S#,J#) WV

2. According to the second step of Algorithm 5.1, we
initialize the relevant set S to contain only
U violated:hI].

3. On applying Algorithm 5.1 in RO, we instantiated
violated with p(x , , . . . , xn) in step 3, and the first
predicate of W(x, , . . . ,x,) is sad(S#,first).
However, every predicate in W’ is a deductive
predicate and is removed by O(l)-heuristic, We
generate U smd(S#,first) :-l&II. Similarly, two
other possible falsifiers are generated in this step:
[r~~ilc~re(S#):~rud~,,(S#,first)I] and
[-proj(S#,J#):stud,,,(S#,first)~.

4. For the first possible falsifier [r srud(S#,fir.st) :T+uE],
smd(S#,first) cannot be unified with any head
predicate in any deductive rule. For the second
possible falsifier,
UI~ilco~e(S#):~tud,,,(S#,fir~t)Il, we can make
use of R3 to expand failcow and generate two more
possible falsifiers: U Ycourse(C#,core) &a, and
u -lmurscore(s#,c#,sc) : srud,,,(S#,first)A

comea,(C#,core)A (SC <SO)].

Note that the condition “smdNEw (S#,first)” is
dropped in the first possible falsifier
U ~cou,:ve(C#,core):TRUEn by our algorithm as S#
no longer appears in the associated atom of the new
possible falsifier.

5. We expand further on ~USCOW by R2, and we
generate U Tem(S#,C#, Yr,Sc) : mdNw(S#,first)
A coum oLD (C# , core) A (Sc <50)n, and
ugreo~er(s#,c#,sc): StudNEw (s# ,first) A

coursea,(C#,core)A (S~<50)Ij.
6. Finally, using Rl , we generate the followings,

[re~0m(S#,C#,Yr~,Sc~): sfudNEW(S#,first)A
~~~~~~~~~~ (C#,core) n. 

Note that the evaluable function (SC ~50) is 
removed in the last possible falsifier as variable SC 

is not in the associated atom. 

Finally, Algorithm 5.2 computes the relevant set to have 
the following elements: 

1. [r~rud(s#,fir~t):h~], 

2. IT 7course( C#,core) kn, 
3. U-qoj(S#,J#):~t~d,,(S#,first)ll, 
4. U 7exam(S#,C#, Yr,Sc) :SfUdNw(S#,first) 

A course OLD ( C# , core)A (S~<50)n, 
5. Uexm~(S#,C#,Yr,Sc~):~fud~~~(S#,first) (C# core)n 
6. u~~,~~~~):s,~6,,(S#~r~t,]l, 
7. U+~U.X.T~O~~(S#,C#,SC):S~~~~,(S#,~~~S~) 

(C# core)A (SC <50)n. 
8. Ugt-~~~~~~?% Sci*s d (S# first) 

A c0,,d,c~#,,o~e~~cSc~50)n. 

Hence, with the first five elements in this relevant set, the 
only updates that may violate the constraint are 

1. an insertion of a first year student, or 
2. a deletion of a core module, or 
3. a deletion of a project tuple of a first year student in 

the updated database, or 
4. a deletion of an exam tuple which the student is a 

first year students and the course was a core module 
and the mark is less than 50, or 

5. an insertion of an exam tuple which the student is a 
first year students. and the course was a core 
module. 

Note that the last three items in the relevant set do not 
concern updates on relation table. They, however, will 
still be usefil in reducing search space during refutation. 
We will discuss it in the next section. 0 

6 Application of the relevant set 

In this section, we shall discuss how relevant sets can be 
used in various steps of most existing constraint 
validation processes [Lloy87, Das89, Celrn951. 
Furthermore, we will show that the additional overhead 
cost is negligible as compared with the expected saving 
we can achieve. 

6.1 Eliminate irrelevant updates 

A relevant set provides the information on whether a 
partially instantiated update can violate a given constraint. 
Hence, a direct application of this method is to eliminate 
irrelevant updates in a transaction, and so the integrity 
method needs only check a transaction of smaller size. In 
some methods such as [Lloy87], a reduction of the 
transaction size means a reduction of the checking cost. 
We shall now show how our method can improve 
[Lloy87]. 
[Lloy87] computes the possibly-inserted and possibly- 
deleted partially instantiated instances iteratively without 
first consulting the database. To use the relevant set in 
[Lloy87], we can fist check if the update literal can be 
extended unified with any of the possible falsifier of the 

502 



relevant set. If none is found, then no further computation 
is necessary. Otherwise, we shall apply [Lloy87] to verify 
the constraint. 

Example 6.1 Given the rules, 
PK r) +- 4x27 A b(Z, y> 
q(X,Y)+p(X,Z)A CC&Y) 

and a constraint 
P(X,x)-, 9( 1 A 

A relevant set for this constraint is 
{II (X,X):TR”En,u~q(l,~:TR”En, 

If a(X,Z):b,,,(Z,X)n, u b(Z,IY):l-wd, 
[r~~(l,X):TRUEI),[r~C(Z,Y):TRVEn, 

~~a(l,Z):TA~E~,~~b(Z,73:a,,,(l,Z)n) 

Since --,a(2,2) cannot extended unify with any element in 
the relevant set, hence no checking is required for this 
constraint for deleting a( 2,2). Furthermore, if a( 1,5) is 
not in the database before the update, then the deletion of 
b(5, r) for any Y will also be impossible to falsify the 
constraint. It is because that 7b(5, Y) fails to extended 
unify with (I,b(Z,Y):u,,(l,Z)] as the condition 
a,,( 1 ,Z){.Z/5} fails. Note that without the relevant set, 
[Lloy87] needs to redundantly compute both the positive 
and negative sets only to discover that no checking is 
necessary. The same problem appears in later works 
[BrySS, Celm93, Celm95J. For example, concerning the 
deletion of b( 5, Y) when a( 1,5) is not in the database 
before the update, [Celm95] will lose the constant 5 
during the computation of the changes to the database. 
Hence, lots of unnecessary database accesses are needed 
in this case to discover that the constraint is not falsified. 
For our method, however, such unnecessary checking is 
detected just by a few database reads. 
When more evaluable functions and constants appear in 
the constraint, our method has even better performance. 
For example, given the same deductive rules in 
Example 6.1 and the constraint 

p(X,Y)A (X>5)-+e(X,Y) 
our method can conclude that inserting a( 1,2) is 
irrelevant without any database access due to the on1 
possible falsifier using relation a is (r u(X,Z) :(X> 5) . I7 
However, [Lloy87] still needs to evaluate the entire 
constraint only to find that the constraint can never be 
violated. This is very costly. Again this problem also 
exists in [Deck86, Bry88, Celm95]. cl 

6.2 Use of relevant sets during refutation 

While our method can be applied to eliminate irrelevant 
updates in a transaction, it can also be used during the 
constraint evaluation process. In particular, given a 
bottom-up constraint checking method, we can inspect if 
the intermediate computed instances are unifiable with 
any possible falsifier in the relevant set. If it is not, then 
further computation from that instance is irrelevant to the 
validation. For example, during the process when 
[Deck861 computes exact induced updates, we can check 
if each computed update is relevant to the constraint. If it 
is not, then further computations based on it can be 

eliminated. This idea can be applied to other bottom-up 
constraint evaluation process such as in [Das89]. We 
shall illustrate how the relevant set can improve [Das89]. 
[Das89] uses a refutation procedure to construct a 
refutation path to reach to the given constraint. If such 
path exists, then the constraint is violated. Now, given the 
following deductive database with the rules, 

pv,Y)+ 4KY) (RI) 
P(X?Y)+- dX,U)AP(U,V)fl dV>Y) (W 
q(X,Y)‘-- 4Xu)A b(U,Y) @33 
r(X,Y)+- 4XY)A 4x,Y) (R4) 

and the facts 
u(LO), 43,0),...,499,0), 

4&l), c(3,1),...,c(99,1),41) 
To verify the constraint, 

&v+r(l,X) 
after the transaction (insert b(0, 1 )}, [Das89] will try to 
construct a path which leads to the constraint as shown in 
Figure I. 

‘@Al) 

fail 0theri;duced f 
inserted p 

fail 
Figure I 

The search space involves many unnecessary 
computations, such as +-(2,1) and all the induced 
insertions of predicate p. However, knowing that the 
relevant set with respect to this constraint is {Ud(xpidl,U 7r( 1,X) :kn, 

[IlC(l,a:%UEk k(l,x):C&l,x)~, 

h(l,X):Td, [rb(X,Yku,,,(l,X)I]J 
we can deduce that insertion of b(0, 1) alone cannot 
violate the constraint. The inserted tuple fails to extended 
unify with the possible falsifier 1 b(X, u) :a,, ( 1 ,X) 1. 
The condition a NEW( 1 ,X)(X/O} fails in the new database 
as the tuple a( 1 ,O) does not exist in the new database. 
This gives a huge reduction of search space as shown in 
Figure 2. 

WA 1) 

fail 

(Cannot extended unifL with [b(X,Y):a( 1,X)] 
since a( I ,0) not exist.) 

Figure 2 

Even if a( 1 ,O) is true in the updated database, there is 
still a considerable saving according to our method. 
Consider the transaction {insert b( 0, 1 ), insert a( 1 ,O)}, 
[Das89] will verify b( 0,l) according to Figure 3. 

503 



b(O,l) 

q(,y,--2=T qV,l) sP9,l) 
RI I’ : : 

Other ihduced 
inserted p 

fail 
Figure 3 

W, 1) 

& 

q(l.1) qcL1) q(99,l) 

I I I 
./hi1 

fhil jhil 

(q( l,l) cannot unify 
(q(2,l) cannot unify (Same reason) 

the relevant set) 
with [q( 1,X)x( 1,X)] 

since c( I, I) not exist.) 

Figure 4 

However, by incorporating the relevant set, our method 
aborts any further computation from the branch of q(X, 1) 
whenever X is not 1. As shown in Figure 4, the search 
space is now much reduced. This alone already gives us at 
least a 99 times reduction as compared to [Das89]. 
Furthermore, as c( 1,l) does not exist in the database, we 
can stop any further computation from q( I,1 ). This gives 
us another large reduction of the search space. Without 
using a relevant set, [Das89] needs to explore much larger 
search space to validate the constraint. Hence, using the 
relevant set in this case proves to gain a great saving, 
especially when the relations p and q are considerably 
large. 
Note that methods which clearly separate constraint 
simplification from constraint evaluation such as [Deck86, 
Bry88] cannot eliminate this type of irrelevant evaluation 
as no database facts are known to these methods during 
the simplification step. 

6.3 Overall performance of relevant set method 

We now further discuss the extra costs incurred by our 
method and show that these extra costs are insignificant. 
There are three extra costs incurred: 

1. Computation of a relevant set, 
2. extra cost of extended unification as compared with 

conventional unification, 
3. extra cost to access the relevant set before each step 

of the refutation process. 
The computation of the relevant set needs only to be done 
once for each constraint until some deductive rules are 
changed. Furthcrmorc, this one-time computation does 
not need to access the database and is done in the main 
memory. Hcncc, the cost is insignificant for normal 
database applications. 

As compared with the conventional unification, our 
extended unification requires some database accesses to 
check for its associated condition. However, as the 
condition is only conjunctions of only those predicates 
which can be computed in at most one database read 
access, the overhead cost remains a small constant. and is 
insignificant compare to the possible reduction of the 
number of database accesses by our method as shown in 
the previous two examples. 
Lastly, as the size of a relevant set is usually small, it can 
be stored in the main memory and hence, searching 
possible falsifiers in the relevant set to test for extended 
unification does not require any extra database accesses. 
The savings gained from the relevant set can vary a lot. 
While the relevant set can eliminate the entire integrity 
checking process which other methods fail to do, or 
reduce the search space during refutation by a significant 
proportion, it is also possible that extra overhead worsen 
the performance without eliminating any informations. 
Recall that unnecessary checkings are detected based on 
those constants, evaluable functions, relational predicate 
evaluation as well as those relational symbol symbols 
which are relevant to the constraints. Hence, if there is no 
constant and evaluable function, nor any useful relational 
predicate in the constraint, and all the deductive rules, as 
well as all the deductive predicate symbols need to be re- 
calculated in order to evaluate the constraint (i.e. no 
irrelevant predicate), then there will be no saving gained 
from using the relevant set. However, when this situation 
happens, it can be easily identified by the following, 

i) The associated atom for each extended literal is not 
instantiated with any constant, and 

ii) the associated condition for each extended literal is 
TRUE, and 

iii) every deductive relation is included in the set. 
In this case, such relevant set cannot reduce the search 
space. However, we can implement an extra flag to 
disable the relevancy checking if necessary. So even in 
this worst case, our method, as compared as the existing 
methods, only requires an additional pre-computation of 
the relevant set once for each integrity constraint, and to 
check the flag in 0( 1) time for each transaction. The extra 
cost is insignificant as no database access is involved. 
With this flexibility, our method can give much better 
overall performance than other existing methods most of 
the time. 

7 Conclusion 
We have presented the extension of relevant set method 
in [Lee941 and how it can be used to incorporated into 
other existing methods to reduce their average database 
accesses during constraint validation. This is achieved by 
making use of existing evaluable functions, constants and 
certain relational predicates in the deductive rules and 
constraints to detect irrelevant updates and prune off 
computations of many deductive tuples which cannot 
falsify the constraint. However, as relational predicates 

504 



are run-time updatable and their evaluation requires 
database accesses, this brings up the timing of validation 
as well as selection of predicates problem. We therefore 
presented a heuristic called O(l)-heuristic to solve the 
selection problem. For further research, we can revise the 
O(l)-heuristic so that more relational and deductive 
predicates can be used to eliminate more unnecessary 
checkings. 

REFERENCES 

[Blak86] 

PYW 

J.A.Blakeley, M.Cobum and P.A.Larson, 
“Updating Derived Relations: Detecting 
Irrelevant and Autonomously Computable 
Updates”, Proceedings of the 12th VLDB, 
Kyoto, 1986,457-466. 

F. Bry, H. Decker and R. Manthey, “A uniform 
approach to constraint satisfaction and 
constraint satisfiability in deductive databases”, 
Proceedings of Extending Database 
Technology, Venice, 1988,488-505. 

[Celm93]M. Celma, J.C. Casamayor and H. Decker, 
“Improving Integrity Checking by Compiling 
Derivation Paths”, Proceedings of the Fourth 
Australian Database Conference, 15 160, 
Australia, 1993. 

[Celm95] M. Celma, H.Decker, “Integrity Checking in 
Deductive Databases. The Ultimate Method?“, 
Proceedings of the 5th Australiasian Database 
Conference, 136-146, Australia, 1995. 

[Chan77] A.K. Chandra and P.M.Merlin, “Optimal 
implementation of conjunctive queries in 
relational databases”, Proc Ninth Annual ACM 
Symposium on the Theory of Computing, pp 
77-90, 1977. 

[Das89] S.K. Das and M.H. Williams, “A path finding 
method for constraint checking in deductive 
databases”, Data and Knowledge Engineering 3 
(1989) 223-244. 

[Deck861 H. Decker, “Integrity enforcements on 
deductive databases”, in L.Kerschberg (ed.) 
Proceedings of the 1st International Conference 
on Expert Database Systems, Charleston, South 
Carolina (Apr 1986) 271-285. 

[Gupt93] A.Gupta and J.Widom, “Local verification of 
global integrity constraints in distributed 
databases”, ACMSIGMOD (1993) 49-58. 

[Gupt94] A.Gupta, Y.Sagiv, J.D.Ullman and J.Widom, 
“Constraint Checking with Partial Information”, 
PODS 1994, Minneapolis, 45-55. 

[Hens841 L.J. Henschen, W.W. McCune and S.A. Naqui, 
“Compiling constraint-checking programs from 
first-order formulas”, Advances in Data Base 
Theoty, Vol. 2, Plenum Press, New York, 1984, 

145169. 

[Koba87] Isamu Kobayashi, “Database Consistency and 
Update Validation”, Sanno College Bulletin Vol 
7 No 2 Mark 1987, 105-129. 

[Kowa87] R.A. Kowalski, F. Sadri and P. Soper, 
“Integrity constraint in deductive databases”, 
Proceedings of the 13th VLDB Conference, 
Brighton (1987) 6 l-69. 

[Lee941 S.Y. Lee, T.W. Ling, “Improving Integrity 
Constraint Checking for Stratified Deductive 
Databases”, Proceedings of Database and 
Expert Svstems Applications, 59 l-600, Athens, 
1994. 

[Levy931 A.Y.Levy and Y.Sagiv, “Queries independent of 
update”, Proceedings of the 19th VLDB 
Conference, 1993, 171-181. 

[Ling87] T.W. Ling, “Integrity constraint checking in 
deductive database using Prolog not-predicate”, 
Data and Knowledge Engineering, Vol 2, 1987, 
145-168. 

[Lloy87] J.W . Lloyd, E.A. Sonenberg and R.W. Topor, 
“Integrity Constraint Checking in Stratified 
Databases”, Journal of Logic Programming, Vol 
4, No 4, 1987. 

[Lloy87b] J.W. Lloyd, Foundation of Logic 
Programming, 2nd edition, Springer-Verlag, 
1987. 

[U1189] J.D. Ullman, Principles of Database and 
I 

Knowledge-Base Systems, Computer Science 
Press, 1989. 

505 


