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Abstract 

Integrity constraint checking for stratifiable 
deductive databases has been studied by many 
authors. However, most of these methods may 
perform unnecessary checking if the update is 
irrelevant to the constraints. [Lee941 proposed a 
set called relevant set which can be incorporated 
in these works to reduce unnecessary checking. 
[Lee941 adopts a top-down approach and makes 
use of constants and evaluable functions in the 
constraints and deductive rules to reduce the 
search space. In this paper, we further extend 
this idea to make use of relational predicates, 
instead of only constants and evaluable functions 
in [Lee94]. We first show that this extension is 
not a trivial one as extra database retrieval cost is 
incurred. We then present a new method to 
construct a pre-test which can be incorporated in 
most existing methods to reduce the average 
checking costs in terms of database accesses by a 
significant factor. Our method also differs from 
other partial checking methods as we can handle 
multiple updates. 

1 Introduction 

Integrity constraint checking for stratifiable deductive 
databases has been studied by many authors. Many of 
these researches [Lloy87, Bry88, Celm95] are on strict 
integrity checking - a test that succeeds if and only if the 
constraint remains satisfied. However, as shown in 
[Lee94], all these methods are sometimes expensive and 
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may perform a lot of redundant checkings which can be 
eliminated easily. Thus this motivates another area of 
study - to evaluate a cheaper pre-test such that if the 
pre-test succeeds, then the constraint is not violated. 
However, if the pre-test fails, nothing can be said about 
the constraint, and a strict checking is still needed. 
[Koya87, Gupt94] are examples of this area of research. 
This class of method usually makes use of evaluable 
functions, known constants and some local information to 
devise the pre-test. However, most of these methods 
either focus on single insertion or only work for some 
special forms of constraints or updates. In some cases, the 
incorporation of the pre-test can be more expansive. Our 
method, however, takes both cost and probability into 
consideration, hence, it is likely to reduce the cost of 
checking significantly, while keeping the cost at a small 
amount. And our method can handle transactions for 
general constraints. It makes use of some relational 
predicates and evaluable functions in the deductive rules 
and constraints to compute a set called relevant set. This 
relevant set can be incorporated in most of the existing 
methods in two ways: 

1. It detects those updates that are irrelevant to a given 
constraint, and thus can be ignored by the 
validation process. 

2. It reduces the search space by early abortion of 
computation on irrelevant predicates during 
refutation processes. We will show that it improves 
the performance of methods such as [Kowa87, 
Das89] by a significant factor. 

The paper is organized as follows: Section 2 first give 
some basic terminologies used in this paper. Section 3 
briefly describes some of the existing integrity checking 
methods for stratifiable databases and their inadequacies. 
We then give a brief description on how our method uses 
relational predicates as well as evaluable functions to 
improve the efficiencies of those existing methods. 
Section 4 discusses two problems of using relational 
predicates in a relevancy pre-test for a general transaction. 
Section 5 first gives some required definitions and then 
introduces a heuristic algorithm called O(l)-heuristic to 
solve the problems described in Section 4. Finally, a 
complete algorithm on how to generate a relevant set is 
given. Section 6 continues to give examples on how our 
relevant set can be used in existing methods [Lloy87, 
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Das89] to improve their performances in at least two 
different ways. Section 7 concludes the paper. 

2 Some basic terminologies 

The databases we are using in this work are @amiable 
deductive databases with recursive rules. There are many 
different methods to specify deductive rules. In our work, 
the rules are specified by general program clauses 
[Lloy87b] with evaluable functions. A general program 
clause with evaluable functions is of the form 

A+-L,A . ..AL. 
where A is a predicate, and Li’s are either 
predicates/evaluable functions or negation of 
predicates/evaluable functions. 
For example, the followings is a general program clause: 

sponsor(x,y) + guardk2n(x,y) 
A employed(x) A ystipend(y) 

Since we allow recursive rules with negations, we shall 
focus ourselves on the stratifiable database model. A 
database is stratified if all clauses can be partitioned into 
several group Gi , . . . , Gk such that 

1. If an atom A occurs positively in the body of a 
clause in Gi, then the definition of its predicate 
symbol is contained within Gi withjli. 

2. If an atom A occurs negatively in the body of a 
clause in Gi, then the definition of its predicate 
symbol is contained with Gk with k < i. 

For example, the following is not stratifiable. 
p(XvY)+ TP(XY) 

A fi.dl description can be found in [Ull89]. 
Beside different database models, as shown in [Gupt94], 
the information level available results in different 
integrity verification methods. For example, knowing 
only the set of constraints, [Gupt94] discussed how 
constraint subsumption can be used to eliminate some 
unnecessary checking. In this paper, we assume that we 
need only the information of the integrity constraints and 
the deductive rules to precompute a set called relevant set, 
which will be described in Section 5. However, during 
the verification step, our method assumes that the 
transactions as well as all the database facts are known. 
The form in which integrity constraints are written 
determines what type of constraints that can be expressed. 
For example, conjunctive queries [Chan77] cannot 
express constraints such as “An employee age must be 
between 18 to 60.” In this work, constraints are expressed 
in the form 

L,A ** *L,,+A, V --* VA,,, 
where Li’s are conjunctions of predicates, evaluable 
functions and/or negative formulas. Aj’s are either 
predicates or evaluable functions. Variables that appear 
in any Li is assumed universal quantified, while local 
variables which appear only in Aj but not in any Li is 
assumed existential quantified before Al. For example, the 
constraint 

worker(X) --) manager( Y,x) 
is interpreted as 

V X worker(x) + 3 Y manuger( Y,x) 
In this paper, we only deal with static constraints without 
aggregate functions. 
Lastly, some authors such as [Gupt93] addressed integrity 
checking for single update only. This is quite restrictive. 
Our technique can handle transactions, where a 
transaction is a set of tuple insertions and tuple deletions. 
Modification can be handled if we express it as a deletion 
followed by an insertion. 

3 Problem of existing methods 

For integrity checking for stratifiable deductive databases, 
[Lloy87] proposed first based on the given update and 
deductive rules to compute a set of possibly inserted 
tuples, which are the relational/deductive tuples that may 
be newly generated after the update; and a set of possibly 
deleted tuples, which are the relational/deductive tuples 
that may be removed after the update. The method then 
evaluates the given constraint after restricting to only 
those possibly inserted and possibly deleted tuples. On 
the other hand, [Deck861 proposed to evaluate the exact 
inserted and deleted tuples, and applied each of them to a 
simplified version of the integrity constraint. [Bry88] 
improves on [Deck861 by pre-computing the set of 
relation tables, updates of which may falsify the 
constraint. Bry’s technique then applied [Deck861 to 
check for only those updates if they violate the constraint. 
[Kowa87] used an extension of the proof procedure to 
construct a refutation tree using each of the updates as a 
top clause. If all refutations fail, then the constraint is 
preserved. Similarly, [Das89] proposed to construct a path 
from each update literal to the head of each integrity 
constraint. If such a path can be constructed, then the 
constraint is violated. [Celm93, Celm95] improved 
[Lloy87] on some optimizations on the constraint 
evaluation process. 
However, since all these methods work from the update 
literal, they all suffer one important inadequacy: they may 
redundantly compute some facts, refutation paths or 
partially instantiated predicates, which are irrelevant to 
the constraint checking. Consider the following example, 

Example 3.1 In a university database, three deductive 
predicates greater to capture if a student S# in the course 
C# has scored at least SC in one of year; marScore to 
capture the maximum score of a student S# in the course 
C#; and failcore to capture if a student S# has failed any 
core module in all his/her attempts, are defined as follows, 

greater(S#,C#,SC) + 
exam(S#,C#,Yrt,ScZ)A (SC* >Sc) 

m~c0rt-(S#,C#,Sc)+ exam(S#,C#,Yr,Sc)~ 
-@earer(S#,C#,SC) 

&ilcore(S#)+ cotm(C#,core)A 
marscore(S#,C#,Sc)A (SC < 50) 

We have another constraint which states that any first year 
student who does not fail any core module must also be 
attached to an industrial project. 
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s,un(S#,first) A ljhwe(s#) + proj( S#,J#) 

Intuitively, a deletion of the tuple exum(.s i ,c 1,1995,60) 
should not induce any deletion onfii[core. For even if the 
student s i fails some core module, it cannot be c i as the 
student at least scores 60 in it. This deletion also cannot 
make him pass the other failed module. Hence, 
fai/core(s i) cannot be changed from true to false by the 
above deletion. Thus the deletion cannot violate the given 
constraint. On the other hand, if the deleted tuple is 
exam(si ,ci ,1995,30), and if this is the only exam he 
takes, then s, no longer fails any core module. In this 
case, &ilcore(s i ) may be deleted, and thus the constraint 
can be violated. 
However, all the existing methods [Lloy97, Celm95] fail 
to detect that there is a difference between the two above 
mentioned updates. In both cases, they need to evaluate 
the predicates mascore and fuilcore only to find that the first 
update cannot falsify the constraint at all. 0 
Other researchers have observed the inefficiency of strict 
integrity checking and proposed that some cheaper pre- 
tests should be applied first. Only when the test fails will 
the strict checking be applied. However, most of these 
researches work for only some particular cases. For 
example, when the single tuple p+(s , ,j, ) is deleted, 
[Koba87] and [Gupt93] proposed to check if student s , is 
a first year student before a full checking. However, in 
the case of insertion of the single tuple snrd(s , ,first), 
[Gupt93, Gupt94] proposed to check if the student s i is in 
the database before the insertion. It is, however, not a 
very useful pre-test, especially when the student number 
is the key of the student relation. Furthermore, in the case 
where the relation appears in both sides of an integrity 
constraint (for example, multi-value dependency), the 
method may fail to work. [Blak86] has a similar 
irrelevancy idea as in this paper to update derived 
relations. However, it only works for evaluable functions 
and relational databases without multiple-updates. It is 
also unclear of how these methods can be extended to 
handle transactions as well as deductive databases with 
recursive rules. 
In view of this, [Lee941 has discussed how to use 
constants and evaluable functions to perform pre-test for 
stratifiable deductive databases before each integrity 
checking. It basically pre-computes in a top-down 
manner a set of partially-instantiated predicates, each.with 
an associated condition which is conjunction of only 
evaluable functions. In the above example, [Lee941 
makes use of the evaluable function (SC ~50) and 
deduces that if m , is not less than 50, then the deletion of 
exam(s, ,c, ,y i ,m i ) will not cause any deletion to the 
predicate faiicorr and therefore the given constraint will not 
be violated. In this way, it reduces all the unnecessary 
computations of the changes of gtmer, marScore and fuilcow 
as required by all other existing methods. 
To further extend the idea in [Lee94], we use not only 
evaluable functions and constants in the constraint and the 
deductive rules, but also make use of the relational 
predicates as well. Consider the following example, 

Example 3.2 With reference to the same rules and 
constraint in Example 3.1, if we delete the tuple 
exam (s r , c i ,y , ,33 ) from the database, the constraint may 
be violated, and according to [Lee94], the evaluable 
function (SC < 50)(&/33} correctly concludes that the 
deletion may violate the constraint in general. However, 
there are still some unnecessary checkings that can be 
detected easily. Consider if the course ct is not a core 
module, then intuitively we know that the above deletion 
cannot change the predicate failcore, and thus the checking 
of the given constraint is redundant. In other words, this 
redundancy can be easily detected if we perform a 
relevancy pre-test to check if course c t is a core, i.e., we 
test 

COUW~( c 1 , core) 
If it is evaluated to be false, no checking is needed. Only 
when it is satisfiable should we proceed a normal integrity 
checking procedure by making use of any of the existing 
methods such as [Lloy87, Kowa87, Celm95]. 
Similarly, if student s , is not a first year student, then the 
deletion shouldn’t affect the constraint. In other words, 
we can have another relevancy pre-test: 

.stud(s I , first) 
If it is unsatisfiable, again no checking is required. Only 
when it is satisfiable should we then make use of other 
existing methods [Celm95] to validate the constraint. TV 
The above example illustrates how [Lee941 can be 
extended. Instead of only making use of the evaluable 
predicate (SC < 50), we can extend the method to make 
use of the two predicates: COWS~ ( C# , core) and 
stud(S#,first) in the second rule and the constraint 
respectively. In other words, to verify if delete 
exam(s , ,c I ,y t ,m i ) may violate the constraint, we can 
test the following pre-test: 

~o~~~(~,,core)Ast~~d(s~,first)A (ml <50) 
If it is unsatisfiable, then no further checking is required. 
Otherwise, we then apply other existing methods to prove 
the database integrity after the deletion. 
Similar to [Lee94], the expected reduction of database 
accesses are usually quite significant. Consider if 30% of 
the available courses are core, then 70% of the time, we 
can correctly eliminate all the fruitless database accesses 
to recompute the predicate maxscore and failcore with just 
one database read. Furthermore, if one third of the 
students are first year students, then two third of the 
remaining time we can eliminate all the redundant 
database accesses. Only 10% (i.e. 30% x l/3) of the time 
the deletion concerns both core module and first year 
students. If we further assume that the passing rate is 
about 80%, then. only 2% (i.e. 10% x 20%) of the time 
when we delete an exam tuple, a normal constraint 
evaluation is needed. 98% of the time we do not need to 
compute the constraint at all. This gives an average about 
50 times improvement of performance. Yet the overhead 
cost is only two extra database accesses, which is quite 
insignificant as compared to the database accesses cost 
during constraint evaluation. 
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4 Problems in using updatable predicates 

The previous example shows that the extension of 
[Lee941 to include relational predicates can eliminate 
more redundant constraint checkings algorithmatically. In 
summary, given a transaction TR and an integrity 
constraint IC, our proposed method will check for each 
update operation in TR if they are relevant to IC. If they 
are not, the update is removed from TR before performing 
the checking on IC. Before we discuss the algorithm to 
generate pre-test to test the relevancy of an update with 
respect to a given transaction and a given constraint, there 
are two new problems that is different from [Lee94]. We 
will discuss each of them in detail now. 

4.1 Evaluation of the pretest 

The first problem is on the evaluation of the pretest. 
Since the pretest may contain relational predicates which 
may be updated by the same transaction, hence, the 
evaluation can generate different results depending on 
whether the evaluation is done before or after the update. 
In certain cases, the evaluation of the pre-test should be 
based on the database before the update, but in some other 
cases, it should be done after. The following shows both 
situations: 

1. Based on the same constraint and rules in 
Example 3.1, the transaction {modify 
smd( s , , second) to md( s , ,first), delete 
e.rum( s , ,c , ,1995,63 )} can violate the constraint 
that “each first year student who does not fail any 
core module should continue in the industrial 
attachment.” Indeed, each operation in this 
transaction is relevant to the constraint. To test if 
delete e.ram(s i ,c i ,1995,63) is relevant, a possible 
pre-test is, 

s~d( s , , first) 
If we evaluate this pre-test using the database 
before the update, we get the wrong conclusion that 
the deletion of cxtim(s, ,c , ,1995,63) is irrelevant. 
In this case, we must evaluate SIU~(S, Jirst) based 
on the database AFTER the update. 

2. Consider the case when we modify the course c, 
from core to elective. Obviously, the constraint 
may be violated only when there was some students 
who fail cl before the update. This condition 
should not be evaluated after the update. It is 
because after c, is updated to be an elective 
module, the constraint will not be affected by 
whether there are still some students who fail c i in 
the updated database. In this case, the evaluation of 
the pre-test must be done based on the database 
BEFORE the update in order to draw the correct 
conclusion. 

Hence, it is important for us to decide which database our 
evaluation should be based on. We shall denote pred,,, 
to indicate that pred is evaluated using the database before 
the update, and predNEW to indicate that pred is evaluated 
using the database after the update throughout the paper. 

For example, in Example 3.1, to decide if deletion of 
exofn(s I , c i ,y i , m i ) may falsify the constraint, we need to 
check if course ct is a core before the update and the 
student s i is a first year student after the update, and m , 
is less than 50. This can be written as, 

s~ud~~~(s, ,first)/l ~ou)sGJ~~~(~, ,core)Pk (ml <50) 
Note that the evaluable function is unaffected by the 
database updates. 
As we have introduced the OLD and NEW subscripts to the 
predicates in the pre-test, we therefore need to be able to 

i) compute an expression mixed with NEW and OLD 

subscripts, and 
ii) decide for each predicate pred in the pre-test, which 

version: pred,,, or predNEW, is to be used. 
The first problem on computing expression mixed with 
NEW and OLD subscripts can be easily solved by using 
differential calculus used in [Hens84, Hsu85, Ling87, 
Levy93]. This can be illustrated as follows, 

Example 4.1 Given a transaction {modify SIU!(~ i ,first) 
to srutl(s , ,second), delete exom(s i ,c, ,y i ,30)} and the 
following pre-test, 

sr~d~~~(s, ,first)A cour:~e~,,(~,,core)n (ml i50) 
To evaluate it prior update, according to [Ling87], the 
formula can be modified to, 

FALSEA CCWX( cl , core) A (m , < 50) 0 

The second problem on deciding which denotation of each 
predicate with subscripts OLD and NEW can be solved by 
the following theorem, 

Theorem 4.1 Given a deductive rule of the form, 
p +- all bli -S 

where a, b and c represent a relational/deductive 
predicates. Variables are ignored for simplicity. 
Now, the relation p may acquire some new tuples after a 
transaction TR only when 

i) there are new inserted tuples which can be unified 
with a (or b) such that b (or a respectively) is true 
AFTER the database is updated by TR, or 

ii) there are deletions of tuples which can be unified 
with c such that a/l b is true AFTER the database is 
updated by TR. 

Similarly, the relation p has some old tuples being 
removed after a transaction TR only when 

i) there are deleted tuples which can be unified with a 
(or b) such that b (or a respectively) is true 
BEFORE the database is updated by TR, or 

ii) there are inserted tuples which can be unified with c 
such that. aA b is true BEFORE the database is 
updated by TR. Cl 

Example 4.2 Consider Example 3.1, insertion of 
exom(.s , , c , ,y , ,m , ) will insert new tuple into the 
predicate muscore only when C~UX( c i ,core) is true at the 
updated database. On the other hand, deletion of 
exum(s, ,c , ,y , ,m , ) may remove some tuples from fuilc~ 
only when course( c , ,core) is true at the original database 
before the update. 0 
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4.2 Significant extra database access cost 

To incorporate relational predicates into [Lee94], ye have 
yet another problem. This is about the improvement of 
the performance. Contrast with only using evaluable 
functions, the evaluation of a relational predicate needs to 
access database and thus incurs an extra cost. Hence, in 
order to have a significant database access reduction, we 
are required to have 

1. a significant probability that the pre-test can 
eliminate irrelevant updates, and 

2. the cost of pre-test is not too high, as compared to 
the integrity checking. 

Consider the following two cases where the above 
conditions fail, 

1. Assume the pre-test needs to evaluate the predicate 
CWW( c , , r), but it does not really help to remove 
any irrelevant update as CWW(C , , Z’) is always 
satisfiable. Hence we pay off an extra database 
access, but cannot eliminate any unnecessary 
checking. In this case, our first requirement fails. 

2. Consider we insert the tuple srud(s, ,fir.sr) in the 
database, we can construct a pre-test to verify if 
If;ri/Ca,-c(S I ) is satisfiable. However, the cost of 
such pre-test is significantly high as compared to 
the entire constraint evaluation. In fact, the 
evaluation of +core( s I ) constitutes the major 
costs of the constraint evaluation. In this case, the 
pre-test evaluation is as bad as the integrity 
evaluation itself, and the performance is getting 
worse. This is the consequence if our second 
requirement is not fulfilled. 

From the above discussion, a relevancy pre-test may not 
necessarily reduce database accesses during constraint 
validations. Hence, we need to have a method to select 
the right predicates to be present in the relevancy pre-test. 
Before we continue to discuss our algorithm to construct 
such a relevancy pre-test, which is not costly to compute, 
but has a significant chance of eliminating irrelevant 
updates, we shall modify some of the basic definitions 
used in [Lee941 now. 

5 Possible Falsifier and Relevant set 

Definition 5.1 An extended literal is a tuple either of the 
form up: Cl or 1 lp: Cl wherep is an atom and is called 
the associated atom. C is a conjunction of evaluable 
functions and partially instantiated relational/deductive 
predicates subscripted with OLD and NEW. It is called the 
associated condition. If the number of conjunctives in C 
is zero, then it is replaced by TRUE. q 

Example 5.1 The followings are extended literals: 
[ cof,,:se(C#.elective):e.wnNEw(S#,C#, Yr,M)l, and 
[r~ew,,,(S#,C#,Yr,M):(Yr#1995)~p~c~o,,(S#,J#)~ cl 

Definition 5.2 A positive atom t is extended unified with 
an extended literal _ up: Cl with respect to two given 

databases DB,,, and DB,,, where DB,,, is the database 
after a given transaction TR on DBoLD, if t is unifiable with 
p with a most general unifier (mgu) CT, and Co 
(subscripted with OLD and NEW) is evaluated to be true 
under the given databases DBoLo and DB,,,. A negative 
atom 7 t is extended unified with an extended literal 
11 up: Cl if t is unifiable with p with a mgu cr, and Co is 
evaluated to be true under the given databases. cl 

Example 5.2 The positive atom u( 1,2) can be extended 
unified with 1 a(X, Y) : (X#Y) I] under any database. 
Furthermore, it can be extended unified with 
f a(X, Y) : (X* Y) fl b NEiV (X, r> 1 wrt databases DB Ola and 
DB iaw only when the predicate b( 1,2) is true under 
DB,,,. However, the positive atoms a( 1,l) and b( I ,2) 
cannot be extended unified with both of the above 
extended literals under any database. q 

Definition 5.3 An extended literal P is called a possible 
falsifier with respect to a given integrity constraint IC if 
there is a database DBoLo and there is a tuple t such that 
either 

1. DB,,, is the database after t is inserted into DB,,, 
and 

2. t can be extended unifiable with P wrt the two 
databases DB,,, and DBNEW, and 

3. ZC is satisfiable under DBo,,, but is violated after 
insertion, i.e. under DBNEW, 

or 
1. DB,,, is the database after t is deleted from DB,,, 

and 
2. -,t can be extended unifiable with P wrt the two 

databases DB 0Lo and DBNEW, and 
3. ZC is satisfiable under DBoLo, but is violated after 

the deletion, i.e. under DB,,,. 0 

Intuitively, a possible falsifier wrt constraint IC captures a 
set of insertions and deletions which can violate a satisfied 
constraint ZC in some database. Since modification can be 
viewed as deletion followed by insertion, the above 
definitions can be easily extended to handle modification. 

Example 5.3 Refer to the conStraint in Example 3.1, 
.vd(S#,first)A ~$ilCore(S#)+ pmi(S#,J#) 

As there exists some database state which obeys the 
constraint, but is violated when &d( s 1 ,first) is inserted, 
hence 6 ~ft,ti~~~ (s 1 Jirst) :-I&E 1 is a possible falsifier. ~~jlroj(S~,j,):TFWEn 1 p 1s a so a ossible falsifier as deleting 
the project information may violate the constraint. 
Similarly, (r -&core(S I ) :LJE], 1 7~~~~~.~~(~ l ,core) :TRudI 

and IJ ~p~~j(s, ,j 1 ) :sw/(.s , ,first) 4 are all possible 
falsifiers. On the other hand, [r 7~~~~.~e( c , , elective) :TRuEn 
is not a possible falsifier as deleting an elective course 
cannot falsify the constraint. Similarly, modification of 
the course c , from elective to other type cannot falsify the 
constraint. U -proj( S , ,j I ) :stun(s , ,second) n is also not a 
possible falsifier as deleting a second year student’s 
project shbuld not affect the constraint. n 
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Definition 5.4 An extended literal [r PI : Cl 1 (or 
[I -,P 1 : C, 1) is said to subsume another extended literal 
UP2:C21 (or U7Pz:Czl respectively) if there is a mgu 
(J such that 

i)P2 = P,o, 
ii) C2 + C I CT under any database. 0 

Example 5.4 U course( C#, ZJ :TRUEn subsumes both 
U c~~~~~(c#,coT~):~&~ and U~~~,:\.~(c#,~):(~#core)ll. 
However, the latter two do not subsume each other. q 

Theorem 5.1 Given any integrity constraint ZC, if the 
possible falsifier P wrt ZC subsumes another possible 
falsifier Q wrt ZC, then for any update U which violates 
ZC, U is extended unifiable with Q implies that it is also 
extended unifiable with P. 0 

Definition 5.5 A relevant set with respect to an integrity 
constraint is a collection of possible falsifiers such that 
any possible update which violates the constraint can be 
extended unified with some possible falsifiers in the set. q 

Note that, however, not all updates which extended unify 
with some of the possible falsifiers in the relevant set will 
definitely violate the constraint. Hence, since the relevant 
set does not describe exactly only all the updates which 
will violate the constraint, but just updates which may 
violate the constraint, the relevant set, by definition, is not 
an unique set for a given constraint ZC. In particular, we 
can always replace a possible falsifier P 1 in a relevant set 
by another possible falsifier P2 if P2 subsumes P 1. 
Following the discussion in section 4.2, we know that if 
the database access cost to verify if Pl can extended 
unified with a tuple t (or ,t) is high, we can remove some 
conjunctive predicates from P 1 to form P2, which clearly 
subsumes P 1, and has a lower database access cost. But 
in return, removing some of the conjunctives in the 
associated condition also means that the condition is less 
restrictive and the chances is increased to be satisfiable. 
According to the discussion in section 4.2, if the possible 
falsifier is almost always satisfiable, then it is less useful 
to eliminate any unnecessary informations and checkings. 
To balance these two conflicting objectives, we propose a 
heuristic called O(l)-heuristic, which is to drop any 
conjunctive predicates except those predicates that can be 
verified within one database read operation and has a 
significant chance to be unsatisfiable. 
The first type of predicates to be kept are those evaluable 
dictions which used only variables found in the 
associated atom of a possible falsifier as shown by 
[Lee94]. For example, given a possible falsifier of 
U~xcrm(s#,c~,Yr,s~):(Yr~Yrz)A (sc<50)n, we will 
not keep the first evaluable function (YrzYr* ) as it uses a 
variable Yr2 which is not found in the associated atom 
eXU,(S#,C#,Yr,Sc). On the other hand, we keep the 
second evaluable function (SC < 50) as it satisfies our 
requirement. For this class of evaluable functions, their 
evaluations take no database read. Furthermore, after the 
associated atom is unified with a tuple, the evaluable 
function will be fully instantiated, and it is quite unlikely 

that the instantiated function is always satisfiable. 
The second type of predicates are those relational 
predicates which obey the following two criteria: 

1. The tist criterion is that all those variables which 

2. 

appear in the primary key attributes’ positions must 
also be found in the associated atom of the possible 
falsifier. Satisfying this criterion, all the primary 
key attributes in the predicate will be bounded by 
constants during the unifying step. Since after the 
value of the key of a relational predicate is known, 
it only takes one database read to retrieve the entiie 
tuple. Therefore, the satisfiability of the relational 
predicate can be evaluated within one database 
read. For example, given the possible falsifier P: 
[failCore :~t~d(S#,first)A exm(S#,C#, Yr,Sc) n 
the predicate St&S#,first) satisfies this criterion as 
the variable S#, which appears in the primary key 
position in relation stud, also appears in the atom of 
P. However, for predicate exom(S#,C#, Yr,Sc), the 
variables C# and Yr, which appear in the primary 
key position of relation exam, do not appear in the 
atom of P, hence this predicate does not satisfy the 
first criterion. 
The second criterion requires that there is at least 
some conditions to bind the value of some of the 
non primary attributes in the predicate. The 
binding can be just some constants or instantiation 
of variables used in the associated atoms. Having 
some restrictions on some of the non primary 
attributes, it will provide a significant chance that 
the associated condition of the possible falsifier to 
be unsatisfiable. Thus the chance to eliminate some 
irrelevant updates is better. For example, given the 
possible falsifier: [faiKore( S#) : Shrd( S#,first) 1 the 
predicate Srud( s#,first) satisfies the second 
criterion since the constant first binds at least one 
of the non-primary key attributes. On the other 
hand, the predicate Snd(S#, Yr) does not satisfy this 
criterion as none of the non-primary key attribute is 
bounded with any constant. 

Finally, we will not use any deductive predicate. The 
evaluation of deductive predicates usually requires more 
than one database read operation, especially if the 
predicate is a recursive one. 
We can summarize the above discussion by the following 
algorithm. The algorithm modifies a given possible 
falsifier P by reducing the condition part of P so that each 
conjunct satisfies the 0( l)-heuristic. 

Algorithm 5.1 
Ol-heuristic(Possible-Falsifier& P) 

begin 
for each conjunct C in the condition of P 

begin 
case I : if IC is an evaluable function and 

if (C uses some variables not found in the associated 
atom of P) 

remove C from the condition part of P; 

case 2: if (C is a relation predicate OR 
C is a negation of a relation predicate) 
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if some of the variables which appear in some primary 
key positions in C, but does not appear in the 
associated atom of P, 
OR 
if none of the variables of non-primary key attributes 
is binded with constants, then 

remove C from the condition part of P; 
case 3: if C is a deductive predicate then 

remove C from the condition part of P; 
end; 

end; 

Example 5.5 Consider the following possible falsifier P, 
Uexom(S#,C#,Yr,Sc):~rud~~~(S#,first)A 

projo,(S#,J#)A CourseaD(C#,core)A 
examNEW(S#,C#,Yr,Sc2)4 

This possible falsifier can be reduced by Algorithm 5.1 as 
followed: 

1. The conjunct sf~d~,,(S#,first) corresponds to the 
second case in the Algorithm 5.1. Since all of its 
primary key attributes (S#) appear in the associated 
atom of P, and some of its non-primary key 
attributes (i.e. year-level) bind with a constant (i.e. 
first), hence, we will not remove it from P, and 
keep this conjunct. 

2. For the conjunct p~oj,,(S#,J#), the primary key’s 
attributes are S# and J#. However, J# does not 
appear in the associated atom of P, hence, the 
conjunct is removed. 

3. The conjunct cour~~(C#,co~e) is not removed. 
The reason is the same as the first conjunct 
StunNEw (S# ,first). 

4. Finally, the conjunct exclmNEW(S#,C#,Yr,Sc2) is 
removed as its non-primary key attribute SC* is not 
bounded by a constant. 

Now, the modified P by Algorithm 5.1 is 
Uexum(S#,C#,Yr,Sc):stud,,,(S#,fir;t)A 

course om ( C#, core) 1) cl 

5.1 Computation of relevant set 

The computation of a relevant set with respect to a given 
constraint is essentially top-down. As we do not require 
the set to be fully instantiated, we do not need to access 
the database to generate the set and the process can 
always terminate. Moreover, this computation needs only 
to be done once for each constraint and is independent of 
any transaction until some database rules or constraints 
are changed. Hence, it can be classified as compiled 
approach. The following algorithm describes how we 
construct a relevant set with respect to a given constraint, 

Algorithm 5.2 Given a stratifiable deductive database 
DB and a constraint IC, we construct a relevant set as 
follows: 

1. Temporary add the deductive rule 
violated+ TIC 

into DB where the predicate violated is not an 
existing predicate in DB. Convert ,IC to a closed 
first-order formula if necessary. 

2. Initialize S to contain only a single possible falsifier 
1 violated :liw 1 

3. If u&Y*, . . . ,y,>:cil is in S, and if there is a 
deductive rule in DB, 

p(n1,... rXn)+- W(XI,. . .9x,> 
such that p(y,, . . . ,y,) can unify with 
P(X,, . . . ,x,)withamgu&then 

i) rename the local variables (i.e. not 
Xl,..., x ,J in W if necessary so that they do 
not share the same name with variables in C 
aW-4v,,...,y,) 

ii) for each positive literal q(.z 1 , . . . , z, ) (or 
negative literal 7q(z1, . . . ,z,)) in W, 
construct 
Uqh... 

possible 

Lqzz,, . . 
,zmyii:c* (w,e)ll 

falsifier 
(or 

. ,z,)B:CA (w3)n 
respectively) where W’ is the same as W 
except that the predicate q(z 1, . . . , z,) (or 
‘7q(z1,... , z ,,, ) respectively) is removed, 
and every relational predicate in W’ is 
labeled as NEW. Apply Algorithm 5.1 on this 
possible falsifier and generate a new possible 
falsifier 
i-i-w,~ . 

Uq(z,, . . . ,zm)8:C’Il. (or 
. ) z,)9X’I) respectively) 

Include it into S if it is not just a renaming of 
any existing element in S. 

4. If Lpcy,, . . . ,yn):Cn is in S, and if there is a 
deductive rule in DB, 

P@l,..* 5X,)+- ml,. . .7x,) 
such that p(y,, . . . ,y,) can unify with 
P(Xl,... ,x,) with a mgu 0, then 

i) Rename the variable in W if necessary 
similar to previous case. 

ii) for each positive literal q(z 1 , . . . , z,) (or 
-I(z19 . ..,,))inthebodyofW, 
construct the 
u4%.. 

possible falsifier 
.,zm)8:~~(~r0)n (or 

Uqh... , z,) 8: CA (W’0) n respectively) 
where W’ is the same as W except that the 
predicate 4Zl,...,Zm) (or 
-@I,. . . , z,) respectively) is removed, 
and every relational predicate in W’ is 
labeled as OLD. Apply Algorithm 5.1 on this 
possible falsifier and generate a new possible 
falsifier u7q(z1,...,zm)kc~n (or 
Lqh.. . ,zm)e:c~il respectively). 
Include it into S if it is not just a renaming of 
any existing element in S. 

5. [Optional simplification step] For any pair of 
possible falsifiers P 1 and P2 in S, if P 1 subsumes 
P2, then remove P2 from S. 

6. Repeat step 3 until no more new possible falsifier is 
included in S. 

7. Remove the possible falsifier U violated:&] from 
S and remove the temporary deductive rule, 

violated+ TIC 
from the deductive database. 

8. Return S as a relevant set of ZC. 0 
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Theorem 5.2 Algorithm 5.2 will terminate and correctly 
generate a relevant set. In other words, any update which 
is not extended unifiable with any of the elements of the 
set generated from Algorithm 5.2 cannot falsify the 
constraint. cl 

Example 5.6 With reference to Example 3.1, we have 
three deductive rules Rl , R2 and R3: 

grearer(S#,C#,Sc)t 
exm(S#,C#,Yr2,Sc2)A (S+>Sc) WI 

~uLscow(S#,C#,SC)+ exum(S#,C#,Yr,Sc)A 
7greoter(S#,C#,Sc) 032) 

fuilc~~(S#) +- COWW( C#,core) A 
mo.Lscore(S#,C#,Sc)A (SC <50) (R3) 

and the constraint that a first year student who does not 
fail any core module must do some project: 

srud(S#,first) A -ttUCow(S#) -+ pmj(S#,J#) 

the relevant set wrt to the given constraint can be 
computed as follows, 

1. According to the first step of Algorithm 5.1, we add 
the following deductive rule, 

violated+- Stud(S#,first) A yfuiIcow(S#) 
A Iproj(S#,J#) WV 

2. According to the second step of Algorithm 5.1, we 
initialize the relevant set S to contain only 
U violated:hI]. 

3. On applying Algorithm 5.1 in RO, we instantiated 
violated with p(x , , . . . , xn) in step 3, and the first 
predicate of W(x, , . . . ,x,) is sad(S#,first). 
However, every predicate in W’ is a deductive 
predicate and is removed by O(l)-heuristic, We 
generate U smd(S#,first) :-l&II. Similarly, two 
other possible falsifiers are generated in this step: 
[r~~ilc~re(S#):~rud~,,(S#,first)I] and 
[-proj(S#,J#):stud,,,(S#,first)~. 

4. For the first possible falsifier [r srud(S#,fir.st) :T+uE], 
smd(S#,first) cannot be unified with any head 
predicate in any deductive rule. For the second 
possible falsifier, 
UI~ilco~e(S#):~tud,,,(S#,fir~t)Il, we can make 
use of R3 to expand failcow and generate two more 
possible falsifiers: U Ycourse( C#,core) &a, and 
u -lmurscore(s#,c#,sc) : srud,,,(S#,first)A 

comea,(C#,core)A (SC <SO)]. 

Note that the condition “smdNEw (S#,first)” is 
dropped in the first possible falsifier 
U ~cou,:ve(C#,core):TRUEn by our algorithm as S# 
no longer appears in the associated atom of the new 
possible falsifier. 

5. We expand further on ~USCOW by R2, and we 
generate U Tem(S#,C#, Yr,Sc) : mdNw(S#,first) 
A coum oLD ( C# , core) A (Sc <50)n, and 
ugreo~er(s#,c#,sc): StudNEw (s# ,first) A 

coursea,(C#,core)A (S~<50)Ij. 
6. Finally, using Rl , we generate the followings, 

[re~0m(S#,C#,Yr~,Sc~): sfudNEW(S#,first)A 
~~~~~~~~~~ (C#,core) n. 

Note that the evaluable function (SC ~50) is 
removed in the last possible falsifier as variable SC 

is not in the associated atom. 

Finally, Algorithm 5.2 computes the relevant set to have 
the following elements: 

1. [r~rud(s#,fir~t):h~], 

2. IT 7course( C#,core) kn, 
3. U-qoj(S#,J#):~t~d,,(S#,first)ll, 
4. U 7exam(S#,C#, Yr,Sc) :SfUdNw(S#,first) 

A course OLD ( C# , core)A (S~<50)n, 
5. Uexm~(S#,C#,Yr,Sc~):~fud~~~(S#,first) (C# core)n 
6. u~~,~~~~):s,~6,,(S#~r~t,]l, 
7. U+~U.X.T~O~~(S#,C#,SC):S~~~~,(S#,~~~S~) 

(C# core)A (SC <50)n. 
8. Ugt-~~~~~~?% Sci*s d (S# first) 

A c0,,d,c~#,,o~e~~cSc~50)n. 

Hence, with the first five elements in this relevant set, the 
only updates that may violate the constraint are 

1. an insertion of a first year student, or 
2. a deletion of a core module, or 
3. a deletion of a project tuple of a first year student in 

the updated database, or 
4. a deletion of an exam tuple which the student is a 

first year students and the course was a core module 
and the mark is less than 50, or 

5. an insertion of an exam tuple which the student is a 
first year students. and the course was a core 
module. 

Note that the last three items in the relevant set do not 
concern updates on relation table. They, however, will 
still be usefil in reducing search space during refutation. 
We will discuss it in the next section. 0 

6 Application of the relevant set 

In this section, we shall discuss how relevant sets can be 
used in various steps of most existing constraint 
validation processes [Lloy87, Das89, Celrn951. 
Furthermore, we will show that the additional overhead 
cost is negligible as compared with the expected saving 
we can achieve. 

6.1 Eliminate irrelevant updates 

A relevant set provides the information on whether a 
partially instantiated update can violate a given constraint. 
Hence, a direct application of this method is to eliminate 
irrelevant updates in a transaction, and so the integrity 
method needs only check a transaction of smaller size. In 
some methods such as [Lloy87], a reduction of the 
transaction size means a reduction of the checking cost. 
We shall now show how our method can improve 
[Lloy87]. 
[Lloy87] computes the possibly-inserted and possibly- 
deleted partially instantiated instances iteratively without 
first consulting the database. To use the relevant set in 
[Lloy87], we can fist check if the update literal can be 
extended unified with any of the possible falsifier of the 
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relevant set. If none is found, then no further computation 
is necessary. Otherwise, we shall apply [Lloy87] to verify 
the constraint. 

Example 6.1 Given the rules, 
PK r) +- 4x27 A b(Z, y> 
q(X,Y)+p(X,Z)A CC&Y) 

and a constraint 
P(X,x)-, 9( 1 A 

A relevant set for this constraint is 
{II (X,X):TR”En,u~q(l,~:TR”En, 

If a(X,Z):b,,,(Z,X)n, u b(Z,IY):l-wd, 
[r~~(l,X):TRUEI),[r~C(Z,Y):TRVEn, 

~~a(l,Z):TA~E~,~~b(Z,73:a,,,(l,Z)n) 

Since --,a(2,2) cannot extended unify with any element in 
the relevant set, hence no checking is required for this 
constraint for deleting a( 2,2). Furthermore, if a( 1,5) is 
not in the database before the update, then the deletion of 
b(5, r) for any Y will also be impossible to falsify the 
constraint. It is because that 7b(5, Y) fails to extended 
unify with (I,b(Z,Y):u,,(l,Z)] as the condition 
a,,( 1 ,Z){.Z/5} fails. Note that without the relevant set, 
[Lloy87] needs to redundantly compute both the positive 
and negative sets only to discover that no checking is 
necessary. The same problem appears in later works 
[BrySS, Celm93, Celm95J. For example, concerning the 
deletion of b( 5, Y) when a( 1,5) is not in the database 
before the update, [Celm95] will lose the constant 5 
during the computation of the changes to the database. 
Hence, lots of unnecessary database accesses are needed 
in this case to discover that the constraint is not falsified. 
For our method, however, such unnecessary checking is 
detected just by a few database reads. 
When more evaluable functions and constants appear in 
the constraint, our method has even better performance. 
For example, given the same deductive rules in 
Example 6.1 and the constraint 

p(X,Y)A (X>5)-+e(X,Y) 
our method can conclude that inserting a( 1,2) is 
irrelevant without any database access due to the on1 
possible falsifier using relation a is (r u(X,Z) :(X> 5) . I7 
However, [Lloy87] still needs to evaluate the entire 
constraint only to find that the constraint can never be 
violated. This is very costly. Again this problem also 
exists in [Deck86, Bry88, Celm95]. cl 

6.2 Use of relevant sets during refutation 

While our method can be applied to eliminate irrelevant 
updates in a transaction, it can also be used during the 
constraint evaluation process. In particular, given a 
bottom-up constraint checking method, we can inspect if 
the intermediate computed instances are unifiable with 
any possible falsifier in the relevant set. If it is not, then 
further computation from that instance is irrelevant to the 
validation. For example, during the process when 
[Deck861 computes exact induced updates, we can check 
if each computed update is relevant to the constraint. If it 
is not, then further computations based on it can be 

eliminated. This idea can be applied to other bottom-up 
constraint evaluation process such as in [Das89]. We 
shall illustrate how the relevant set can improve [Das89]. 
[Das89] uses a refutation procedure to construct a 
refutation path to reach to the given constraint. If such 
path exists, then the constraint is violated. Now, given the 
following deductive database with the rules, 

pv,Y)+ 4KY) (RI) 
P(X?Y)+- dX,U)AP(U,V)fl dV>Y) (W 
q(X,Y)‘-- 4Xu)A b(U,Y) @33 
r(X,Y)+- 4XY)A 4x,Y) (R4) 

and the facts 
u(LO), 43,0),...,499,0), 

4&l), c(3,1),...,c(99,1),41) 
To verify the constraint, 

&v+r(l,X) 
after the transaction (insert b(0, 1 )}, [Das89] will try to 
construct a path which leads to the constraint as shown in 
Figure I. 

‘@Al) 

fail 0theri;duced f 
inserted p 

fail 
Figure I 

The search space involves many unnecessary 
computations, such as +-(2,1) and all the induced 
insertions of predicate p. However, knowing that the 
relevant set with respect to this constraint is {Ud(xpidl,U 7r( 1,X) :kn, 

[IlC(l,a:%UEk k(l,x):C&l,x)~, 

h(l,X):Td, [rb(X,Yku,,,(l,X)I]J 
we can deduce that insertion of b(0, 1) alone cannot 
violate the constraint. The inserted tuple fails to extended 
unify with the possible falsifier 1 b(X, u) :a,, ( 1 ,X) 1. 
The condition a NEW( 1 ,X)(X/O} fails in the new database 
as the tuple a( 1 ,O) does not exist in the new database. 
This gives a huge reduction of search space as shown in 
Figure 2. 

WA 1) 

fail 

(Cannot extended unifL with [b(X,Y):a( 1,X)] 
since a( I ,0) not exist.) 

Figure 2 

Even if a( 1 ,O) is true in the updated database, there is 
still a considerable saving according to our method. 
Consider the transaction {insert b( 0, 1 ), insert a( 1 ,O)}, 
[Das89] will verify b( 0,l) according to Figure 3. 
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b(O,l) 

q(,y,--2=T qV,l) sP9,l) 
RI I’ : : 

Other ihduced 
inserted p 

fail 
Figure 3 

W, 1) 

& 

q(l.1) qcL1) q(99,l) 

I I I 
./hi1 

fhil jhil 

(q( l,l) cannot unify 
(q(2,l) cannot unify (Same reason) 

the relevant set) 
with [q( 1,X)x( 1,X)] 

since c( I, I) not exist.) 

Figure 4 

However, by incorporating the relevant set, our method 
aborts any further computation from the branch of q(X, 1) 
whenever X is not 1. As shown in Figure 4, the search 
space is now much reduced. This alone already gives us at 
least a 99 times reduction as compared to [Das89]. 
Furthermore, as c( 1,l) does not exist in the database, we 
can stop any further computation from q( I,1 ). This gives 
us another large reduction of the search space. Without 
using a relevant set, [Das89] needs to explore much larger 
search space to validate the constraint. Hence, using the 
relevant set in this case proves to gain a great saving, 
especially when the relations p and q are considerably 
large. 
Note that methods which clearly separate constraint 
simplification from constraint evaluation such as [Deck86, 
Bry88] cannot eliminate this type of irrelevant evaluation 
as no database facts are known to these methods during 
the simplification step. 

6.3 Overall performance of relevant set method 

We now further discuss the extra costs incurred by our 
method and show that these extra costs are insignificant. 
There are three extra costs incurred: 

1. Computation of a relevant set, 
2. extra cost of extended unification as compared with 

conventional unification, 
3. extra cost to access the relevant set before each step 

of the refutation process. 
The computation of the relevant set needs only to be done 
once for each constraint until some deductive rules are 
changed. Furthcrmorc, this one-time computation does 
not need to access the database and is done in the main 
memory. Hcncc, the cost is insignificant for normal 
database applications. 

As compared with the conventional unification, our 
extended unification requires some database accesses to 
check for its associated condition. However, as the 
condition is only conjunctions of only those predicates 
which can be computed in at most one database read 
access, the overhead cost remains a small constant. and is 
insignificant compare to the possible reduction of the 
number of database accesses by our method as shown in 
the previous two examples. 
Lastly, as the size of a relevant set is usually small, it can 
be stored in the main memory and hence, searching 
possible falsifiers in the relevant set to test for extended 
unification does not require any extra database accesses. 
The savings gained from the relevant set can vary a lot. 
While the relevant set can eliminate the entire integrity 
checking process which other methods fail to do, or 
reduce the search space during refutation by a significant 
proportion, it is also possible that extra overhead worsen 
the performance without eliminating any informations. 
Recall that unnecessary checkings are detected based on 
those constants, evaluable functions, relational predicate 
evaluation as well as those relational symbol symbols 
which are relevant to the constraints. Hence, if there is no 
constant and evaluable function, nor any useful relational 
predicate in the constraint, and all the deductive rules, as 
well as all the deductive predicate symbols need to be re- 
calculated in order to evaluate the constraint (i.e. no 
irrelevant predicate), then there will be no saving gained 
from using the relevant set. However, when this situation 
happens, it can be easily identified by the following, 

i) The associated atom for each extended literal is not 
instantiated with any constant, and 

ii) the associated condition for each extended literal is 
TRUE, and 

iii) every deductive relation is included in the set. 
In this case, such relevant set cannot reduce the search 
space. However, we can implement an extra flag to 
disable the relevancy checking if necessary. So even in 
this worst case, our method, as compared as the existing 
methods, only requires an additional pre-computation of 
the relevant set once for each integrity constraint, and to 
check the flag in 0( 1) time for each transaction. The extra 
cost is insignificant as no database access is involved. 
With this flexibility, our method can give much better 
overall performance than other existing methods most of 
the time. 

7 Conclusion 
We have presented the extension of relevant set method 
in [Lee941 and how it can be used to incorporated into 
other existing methods to reduce their average database 
accesses during constraint validation. This is achieved by 
making use of existing evaluable functions, constants and 
certain relational predicates in the deductive rules and 
constraints to detect irrelevant updates and prune off 
computations of many deductive tuples which cannot 
falsify the constraint. However, as relational predicates 
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are run-time updatable and their evaluation requires 
database accesses, this brings up the timing of validation 
as well as selection of predicates problem. We therefore 
presented a heuristic called O(l)-heuristic to solve the 
selection problem. For further research, we can revise the 
O(l)-heuristic so that more relational and deductive 
predicates can be used to eliminate more unnecessary 
checkings. 
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