
Implementing Abstract Objects with Inheritance
in Datalogneg

Hasan M. Jamil
Department of Computing

School of MPCE, Macquarie University
Sydney, NSW 2109, Australia

e-mail : jamil@mpce.mq.edu.au

Abstract

We present an elegant technique to reduce inher-
itance and encapsulation to pure deduction. The
reduction technique presented in this paper makes
it possible to model object-oriented database fea-
tures in a purely deductive system. Encapsula-
tion has been given a formal treatment for the
first time by introducing the so called contezt-
resolution scheme. The completion technique pre-
sented in this paper elegantly tackles inheritance
with overriding and conflict resolution by avoiding
non-monotonic reasoning. We show that the com-
pletion based reduction technique is robust and
appealing compared to any other known rewrit-
ing based approaches. We propose an object-
oriented front-end language called the Datalog+‘,
and discuss a rewriting scheme to the acclaimed
Datalogneg for this language that exploits the con-
text resolution and completion techniques pre-
sented here. We claim that our approach outper-
forms other known approaches in the literature in
terms of its modeling capabilities and efficiency.
Unlike most others, an implementation based on
our reduction technique does not require meta-
interpretation and consequently readily exploits
the rich set of optimization techniques available
in Datalogneg

1 Introduct ion

Deductive and object-oriented databases are two parallel
trends evolved over the past few years in database tech-
nology having mutually exclusive features. Following the

Pemzssion to copy wzthout fee all OT part of this matenal as
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwzse, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

huge research experience of deductive databases, and mo-
tivated by the need for the design of complex applications
that demand features characteristic to the object-oriented
systems, the need for logic based object-oriented query lan-
guages have emerged. This motivation solidified further be-
cause of the belief that the next generation database tech-
nology will require object-oriented features such as complex
objects, inheritance, encapsulation and inference capabil-
ity.

Recently, there have been intense activities in the re-
search front to develop a deductive object-oriented lan-
guage. However, there have been no significant develop-
ment so far. In the last few years, several proposals also
addressed the issue of a direct semantics for logic based
object-oriented languages, for example [5, 7, 11, 121. It
was readily observed that giving a direct semantics to a
language capable of modeling desired object-oriented fea-
tures is a daunting task. While few experimental systems
started to emerge, they are far less likely to be used com-
mercially than their deductive database counterparts. This
is simply because these systems either lack a formal foun-
dation, are too complex to be used as modeling tools, or
are plainly inadequate for useful applications.

We consider an extension of Datalog, called the
Datalog’+, in the direction of the so called object-relational
models. The goal here is to develop a language that has
most of the desired object-oriented features well within
the setting of an existing system, is adequate to use as
a modeling tool and at the same time has a formal foun-
dation. Hence, we try to be practical and instead of trying
to develop a direct semantics of our language, we develop
a rewriting based semantics. That is, to give a semantics
to a program in our language we rewrite every Datalog++
program to another language, Datalogne” to be exact. Sim-
ilar approaches have been studied in works by Abiteboul
et al. [l], Dalal and Gangopadhyay [8], Naish [2], Law-
ley [14], etc. The advantages of such an approach are as
follows. Inheritance with overriding can be modeled in a
practical manner. While encapsulation can also be incor-
porated by developing suitable machinery and semantics,
as we demonstrate in this paper, unfortunately none of the
works known to us have addressed this important issue so
far. However, the lack of a complete logical semantics for
both of these features - inheritance with overriding and en-
capsulation, necessitates a meta-logical treatment of these
features and thus motivates the rewriting based approach
to object modeling presented in this paper.

56

1.1 The Merits and Contributions of
Datalog++

We must mention here that a rewriting or translation based
approach to object modeling is not altogether new. Several
researchers have used this technique to develop semantics
for object-oriented logics including [l, 2, 8, 141’. But, our
proposal should not be dismissed only on the ground that
we too take a translational approach. In this section, we
try to convince the skeptics why Datalog++ should be con-
sidered seriously.

Among the languages proposed in (1, 2, 8, 141, NUOO
Prolog [2] perhaps is the closest in spirit to Datalog++
but have several important differences. The characteris-
tics peculiar to Datalog++ makes it possible to be used
as a practical database language while, others, specially
NUOO Prolog, are not. But more importantly, all these
languages fall short of providing a clean class interface fa-
cility, namely encapsulation - one of the two most essen-
tial features of object-oriented systems. Encapsulation is
regarded as the basis for modularity and implementation
independence in object-oriented systems. Without encap-
sulation, an object-oriented language may be regarded as
incomplete. Furthermore, in works like (141, clauses im-
plementing methods and predicates are mapped to terms
in me&predicates. This approach defeats the query op-
timization techniques present in deductive databases and
hence can not be regarded as a candidate for database ap-
plications. While NUOO Prolog handles inheritance some-
what similarly as in Datalog++, they really do not provide
the high level abstractions such as class and instance meth-
ods, code and value inheritance, etc. and thus limits itself
in terms of modeling flexibility.

Another advantage of Datalog++ is that the inheritabil-
ity can be compiled and stored making rule invocation
(during inheritance) equivalent to an index look-up using
constants, a feature that no other languages have. In fact,
the decision on inheritance of a rule is non-deterministic in
the languages like Datalogmeth [11, F-logic interpreter(141,
NUOO Prolog 12) and OOLP+ [8] and must be deferred
until at run time. This is a significant impediment when
practical sized databases are considered that employ the so
called dynamic inheritance a la F-logic and Datalogmeth.

We can summarize the contributions and advantages of
Datalog++ as follows: (i) it provides a clean interface mech-
anism (encapsulation) for objects and classes in a declar-
ative style, (ii) it provides a superior inheritance mecha-
nism based on the idea of i-completion making it possible
to compile inheritability, and (iii) it provides higher level
abstractions for capturing both value and code inheritance
in a single set up, and facilities to declare class and in-
stance methods. While these are the most important con-
tributions of this paper over the existing languages, we will
address other issues as well in section 5. In addition to the
above it also provides a mechanism to resolve inheritance
conflict in multiple inheritance, allows selection of a pre-
ferred inheritance, and utilizes the idea of inheritability
which is the key to a partial compilation of the database
and to conflict resolution.

1.2 Organization of this Paper

We introduce few not so familiar concepts such as value
and code inheritance, locality and inheritability of clauses,

‘Observe that these languages are the most representative in
the literature. Others are either similar or weaker than these.
Hence it suffices to compare Datalog++ with this set.

accessibility of methods, etc. These concepts allow us to
develop a reduction technique for Datalog++ programs to
Datalogneg and thus help explain the meta-logical features
in a logical way. Furthermore, the reduction technique
helps us model inheritance and encapsulation in purely de-
ductive ways without having to deal with non-monotonic
reasoning.

The material contained in this paper is baaed on the
data model proposed in a preliminery version in [lo]. For
the lack of space and brevity, we do not repeat the data
model here. Interested readers may find a discussion on the
data model, and numerous examples that better clarify the
concepts introduced in this paper in [lo], and may regard
it as a companion paper. In the examples in [lo] we step
by step reduce the Datalog++ program D in Example 2.1
to a Datalogneg program D,. An extended version of this
paper that also subsumes [lo] discusses the implementation
issues of Datalog++ and may be found in 191.

The rest of the paper is organized as follows. We first
introduce the Datalog++ language using an example along
with its intended semantics on intuitive grounds in section
2. Then we formally present the syntax in section 3. The
rewriting based semantics is presented in section 4 by in-
troducing few new concepts and by giving a translation al-
gorithm to reduce every Datalog++ program to Datalogneg
We compare our work with few contemporary research and
discuss implementation issues in section 5 and finally give
our conclusion in section 6.

2 The Datalog++ Language Overview
We now introduce the syntax and the semantics of the
Datalog++ language with an overview to its salient fea-
tures. The goal here is to develop a logic based language to
represent and query deductive object-oriented databases.
Datalog++ extends Datalog syntax to capture the concepts
such as classes, objects, signatures, is-a, methods, etc.,
sometimes in a meta-logical way. While the extension in
Datalog++ is syntactical, the semantic interpretation of ev-
ery Datalog++ program is still given in Datalognes - a vari-
ant of Datalog that incorporates negation2 and hence has
a first-order interpretation. Since some of the Datalog++
features lack logical interpretation (meta-logical in nature),
the semantics relies on a translation function to Datalogneg
such that every translated feature is given a relational
characterization. In this way, it becomes possible to cap-
ture most of the non-standard object-oriented notions in a
meta-logical way but yet simultaneously give a logical in-
terpretation to these features. We will show that not only
our semantics is richer, stronger and more intuitive than
Datalogmeth [l], OOLP+ [8], logic language in [3], NUOO
Prolog [2] and similar other languages, our syntax is also
much more flexible that allows users to model their uni-
verse of discourse in an object-oriented way as opposed to
relational ways as in some of these proposals (1, 31.

2.1 Informal Semantics of Datalog++

A Datalog++ program basically is a set of objects, rela-
tionships, properties - methods and attributes, and ob-
ject hierarchy definitions. Recall that objects are of two
types: class and instance objects. A class definition in-
cludes structure description via signatures and a set of

2Notice that the choice of the negation semantics in
Datalognes does not affect the semantics of Datalog++
programs.

57

method implementations. An instance object is similar
to a class object except that instances do not define the
structural aspects of objects, and can not have instances
or subclasses of their own.

We now use a simple example to explain the intended se-
mantics of Datalog ++ before we formally discuss its syntax
and the semantics. This will expose the motivation behind
the language structure and the concepts behind the seman-
tic interpretation of Datalog++ programs. Notice that an
extended definite clause fragment of predicate logic is used
to define methods in objects in the following example.

Example 2.1 Consider the miniature university database
D = (DC, DC, DP, Dn) shown below3. The database con-
sists of three class objects - grad-stud, gta, and faculty,
and several instance objects - joe, kelly, sally, sue, john
and max.

class grad-stud
1

instance signatures

t
pub, val name/l:
pub, val sid/l;
priv, val stipend/l;
pub, code income/l;
pub, val avg-income/l;
pub, code meandev/l;

1
1
The signature component of the class definition for

grad-stud above says that name is an attribute/method of
arity 1, denoted name/l, of every instance of grad-stud.
Furthermore, instances inherit the value of name from
grad-stud and the method is public and hence is visible
to any object in this database4. Similarly, sid (student id),
and avg-income both of arity 1 are value inheritable public
methods for the instances of this class. However, stipend is
a private value inheritable method and thus is only acces-
sible by the instances themselves and their class objects.
On the other hand, while income and meandeu (mean de-
viation) are public methods for the instances of grad-stud,
they are code inheritable.

(1) grsdstud:stipend(l2K);
(2) gradstud:income(X) + stipend(X);
(3) gradstud:avg-income(avg(<I>)) + OEgradstud,

O<income(I);
(4) gradstud:meandev(X) + income(I),

avg-income(A), X=abs(I-A);
(5) joeEgradstud;
(6) joe:stipend(15K);
(7) kellycgradstud;
(8) kelly:income(X) +- john<salary(X);

Rules (1) through (4) define local methods stipend/l, in-
come/l, avg-income/l and meandev/l in grad-stud. Rules
(6) and (8) define local methods stipend/l and income/l
respectively for joe and kelly. Rules (5) and (7) define
class memberships of joe and kelly and captures the fact
that they are instances of grad-stud.

The class faculty below is similar to grad-stud except
that it has a class method total-faculty/l which is public
and code inheritable.

3Note that we are using CORAL [18] like syntax for the ag-
gregation functions and grouping in our rules in this example.
The components (C, <, !P, n) are formally introduced in section
3.

4See definition 3.6 for the formal meanings of code and value
inheritance.

class faculty
{

class signatures

{
pub, code total-faculty/l;

1
instance signatures

1
pub, val name/l;
pub, val eid/l;
priv, val salary/l;
pub, code income/l;
pub, val avg-income/I;
pub, code meandevil;

1
1
(9) faculty:total-faculty(count(<O>)) e OEfaculty;
(10) faculty:salary(6OK);
(11) faculty:income(X) + salary(X);
(12) faculty:avgincome(avg(<I>)) c OEfaculty,

O<<income(I);
(13) faculty:meandev(X) +- income(I),

avg-income(A), X=abs(I-A);
(14) johncfaculty;
(15) maxEfaculty;
(16) john:name(“John”);
(17) max:salary(75K);

class gta subclass of {gradstud, faculty}

1
instance signatures

{
priv, val taship/l;

J
controls

1
reject sig avg-income/l from faculty;
reject sig salary/l from faculty;
reject sig income/l from faculty;

1
1

(18) gta:tsship(16K);
(19) gta:income(X) + stipend(S), taship(T), X=S+T;
(20) sallyegta;
(21) sueEgta;
(22) sally:taship(20K);

Some features of the class gta (graduate teaching as-
sistant), defined above, deserves additional clarification.
The clause subclass of declares that gta is a subclass of
both grad-stud and faculty and thus inherits properties
from both the classes due to multiple inheritance. The gta
class also introduces a specialized value inheritable public
method taship/l. It also has a control clause and we will
defer the discussion on this until section 2.1.2.

Queries:

(23) ? sally<<income(X);
(24) ? sue<income(X);
(25) ? joe<avg-income(X);
(26) ? joe<<meandev(X);
(27) ? john<total-faculty(X);
(28) ? faculty<total-faculty(X);
(29) ? gta<total-faculty(X);
(30) ? joe<stipend(X);
(31) ? kelly<income(X);
(32) ? joe<income(X); q

In the following sections we discuss some of its modeling
features by analyzing answers to few representative queries
in Datalog++.

58

2.1.1 Inheritance

Consider the message query (23) which says that send a
message to sally and get her income. The income is re-
turned as a (constant) binding for the variable X. Notice
that the method income/l is not defined in sally. The clos-
est superclass gta defines a local method for income/l and
hence overrides the definitions in class grad-stud and fac-
u#y for which gta is a subclass. Now that object sally has
a unique source for the method income/l, it must inherit
the method definition from gta. The mode of inheritance
(value or code inheritance), however, must be determined
by inheriting a signature for income/l. Since “pub, code
income/l” is inheritable in sally from grad-studs, we are
inclined to conclude that income/l is code inheritable in
sally. Hence, we have the following code for income/l in
sally: sally:income(X) +- stipend(S), taship(T), X=S+T,
- the clause for income/l is brought down to sally with
proper adjustments in the context (see Definition 3.6). Fi-
nally, to compute income, we must find a stipend/l and
taship/l value for sally. While taship/l is locally defined
through rule (20), stipend/l must be inherited. The clos-
est superclass of gta that defines stipend/l is grad-stud as a
unique source with a value 12K. Since stipend/l is value in-
heritable in sally, the income value for sally is 32K. Follow-
ing a similar analysis the reader may verify that the query
(24) will produce the answer 28K since in this case sue
inherits the default taship/l value from gta and stipend/l
from grad-stud.

In contrast, now consider the query (25). Note that
the method avg-income/l is value inheritable in joe from
grad-stud hence the value for aug-income/l will be inher-
ited in joe after the computation of the rule (3) in grad-stud
giving a value 22.5K. Following a similar analysis, it is easy
to see that query (26) produces X = 7.5K.

Another interesting query is query (27). While john
is a faculty, the query fails since total-faculty/l is a class
method. Since john is an instance of faculty, it can not
inherit the method definition. But note that the queries
(28) and (29) are valid queries that produces X = 4 and
X = 2 respectively. The reader should be able to see why
the same method produces two different values at these
two classes. The answer lies in the mode of inheritance -
namely code inheritance.

2.1.2 Inheritance Conflict and its Resolution

Notice that gta is a subclass of both grad-stud and fac-
ulty. Hence the structure and method definitions local to
these classes will be inherited in gta. But, income/l is de-
fined differently in these two classes and gta has a choice.
As a result an inheritance conflict occurs. By default, gta
should have rejected both the definitions and the signatures
as well (in our model). But due to the control statement
“reject sig income/l from faculty” in the controls clause
of the gta class definition, it only rejects the signature of
income/l from faculty leaving a unique source for income
- the grad-stud class. This is called conflict resolution.
Note that signature rejection implies method rejection but
the converse is not true. This follows from our notion of
well-typing and consistency requirement on the method in-
heritance in our data model [lo]. Method rejection can be
defined using meth keyword in place of the sig keyword.

5Because the signature in faculty has been rejected by gta
due to conflict resolution and income/l is defined as an instance
signature in grad-stud.

2.1.3 Encapsulation

Now consider the query (30) or (31). Both the queries fail.
The reason for the first query to fail is that stipend/l is
a private method in joe and hence is not accessible from
outside. But note that (32) is a legitimate query and pro-
duces 15K which is nothing but joe’s stipend value. This
is possible because income/l is public in joe and internally
joe is sending a message to itself to access it’s stipend value
to compute income without any violation of encapsulation.
But notice that (31) fails simply because the object kelly
is sending a message (in rule (8)) to object john to ac-
cess john’s private method salary/l and hence causing a
violation of encapsulation. Also in rule (3), the subgoal
O<income(I) succeeds without any violation of encapsu-
lation since grad-stud is a superclass of the object 0. A log-
ical basis for this approach to encapsulation may be found
in [S].

3 Syntax
We now formally introduce the syntax of Datalog+‘. The
language L of Datalog++ is a tuple (P, 7, V), where P is an
infinite set of predicate symbols with associated arities, 3
is an infinite set of function symbols, and V is an uncount-
able set of variables. The terms 7 of C are constructed as
usual from F U V. Let the ground subset of ‘T be denoted
by T.

Class definitions in L: can be generated using the pro-
duction rules below. In these rules, we use sans serif and
italic strings to denote terminal symbols and uppercase
strings to denote non-terminals. Furthermore, sans serif
strings represent reserved words, and italic strings term,
pred, and a&y represent respectively user defined identi-
fiers from the set ‘T*, predicate names from the set P and
a natural number (constants of arity zero) from F.
OBJ := class term SUB {DEFN)
SUB := E (subclass of {SUPCLASS}
SUPCLASS := term NULL
NULL := e) , SUPCLASS
DEFN := CLASS INST CONT
CLASS := E (class signatures {DEFK}
INST := E (instance signatures {DEFK}
DEFK := DEF VOID
VOID := E) ; DEFK
DEF := PV, VC, pred/arity
PV := pub 1 priv
VC := val) code
CONT := E) controls {RESK}
RESK := RES EMPTY
EMPTY := c 1 ; RESK
RES := reject SM pred/arity from term;
SM := sig 1 meth
The methods and instance definitions are an extended set
of Horn formulas. We next define the syntax of the Horn
formulas.

3.1 Atomic and Complex Formulas

There are five types of atoms in our language: (global)
predicates, local predicates, message predicates, instance
is-a, and subclass is-a atom8.

6We follow the convention of using strings with lower case let-
ters and numbers for ground terms (e.g., sally), strings starting
with upper case letters for variables (e.g., Tot&-income), and
lower case bold italic strings to denote first-order terms (e.g., o)
in this paper.

59

- Global predicate: Let p be a predicate symbol of ar-
ity k - denoted p/k, and al,. . . ,ak be terms. Then
p(al, . ,ak) is a global predicate. A predicate as-
sumes a meaning depending on its position in a rule.
Usually a predicate represents a relation except when
a predicate is in the rule body and a local predicate is
in the rule head. In that case the predicate represents
a property (method or attribute) of an object.

- Local predicate: Let p(al, . . . , ak) be a predicate and
o be a term, then o : p(al, . . . , ak) is a local pred-
icate. Intuitively, a local predicate of the form o :
p(al,... , ok) means that the predicate p(al, . . . , ak)
holds in the object o. o is called the contezt or the
descriptor of the local predicate atom.

- Message predicate: Let p(al, . . , ak) be a predicate
and o be a term, then o < p(al, . . . ,ak) is a message
predicate. Intuitively, a message predicate of the form
o<p(al,... ,ak) means that evaluate the predicate
p(al, . . , ak) in the object o.

- Is-a: Let ocr oi and os be terms. Then oi E oc
and os :: oc are respectively instance and subclass
is-a atoms. Intuitively, they say that oi and os are
instance and subclass of oc respectively. When the
difference between the two is unimportant, we will
write ol!/p in the remainder of this paper.

Formulas of C are defined as usual. A literal is either an
atom (A) or the negation of an atom (-A). Following the
custom in logic programming, we only consider the definite
(Horn) clause fragment of our language. This is also for a
technical reason. In our set up, a general clause does not
make sense since we can not then talk about locality and
inheritability of clauses in the object hierarchy, which we
will be explaining shortly.

A clause in C is an expression of the form A +
t31 . . . , B, such that A is any atom in C except a message
predicate, and every ,t3i, 0 5 i 5 m, is any literal except a
local predicate. A clause A t f3r . . , B, is called a global,
local or is-a clause depending upon whether the atom A is
a predicate, local predicate or an is-a atom respectively.

Furthermore, let A be a predicate atom - global, local
or message predicate. Then the notation p&(d) = p/k
denotes the predicate symbol of A. For any local predicate
(or a local clause) A of the form o : p(al, . , ak), the
function co&e&(d) = o returns the object o where the
predicate is defined. If A is a head atom, then we call o
as the context of the clause A + Di , . , f3, when A = o :
p(al, . . , ok). Similarly, for any message predicate of the
form A = o << p(al, . . . , ak), recipient(d) = o returns the
target object.

Definition 3.1 (Programs and Queries) A database
A, or equivalently a program P, in Datalog++ is an ex-
pression of the form (C, <, p,17), where C, <, @, and 17
are (possibly empty) sets of class structure, is-a hierarchy,
relationship and object property definitions respectively.
A program P is p-stratified if every subclass is-a clause in
< is message predicate free - i.e., the body literals of the
subclass is-a clauses do not contain message predicates. A
query in P is a clause of the form + 6, , B, where the
head is empty, and Bi, , B, are literals. Cl

For the rest of the paper, we only consider p-stratified pro-
grams. For technical reasons, we assume a system object
oT for every Datalog++ program not defined as part of
the program universe. But to refer to a global predicate
Aal,. . . , ak) in a local clause, we use a message predicate

syntax of the form oT < p(al, . , ak) which captures the
fact that p(al, . . . , ak) is a global predicate since oT is re-
ally not an object in the usual sense7. Furthermore, for

T any query & = +- t31,. . . , t3,, context(&) = 0 .
To be able to capture inheritance with overriding and

conflict resolution, and encapsulation we need to intro-
duce several concepts such as locality and inheritability
of clauses and signatures, and inherited clauses and types
in our language’. We proceed as follows. Herbrand in-
stantiation of programs is defined in a way identical to the
classical case. Furthermore, let 3 be the reflexive transitive
closure of <.

Definition 3.2 (Locality) Let P = (C, <,!T, II) be a
program, IPI be its Herbrand instantiation, oc be a class
object, o be any object, ty -< r, cp,p/k > be any signa-
ture expression for oc in C, and cl z A + Q be any clause
in]nl such that context = o. Then cl and ty are local
to object o and o, in]P]. 0

Definition 3.3 (Signature Inheritability) Let S be a
set of (ground) is-a atoms, p/k be a predicate symbol, and
o be an object. Then the inheritability of the signature of
p/k in the object o is defined by the signature inheritability
function V, as follows:

I if signature p/k is not local to
o and [3q such that olfq E S,

VdS, p/k, 4) = ocr signature of
p/k is local to p and (t/r, such that

OC oflr E S, one of the following holds.

Vs(s,plk,o) = (l Vs(S,p/k,r) = r, and signa-
ture of p/k is not local to r,

l V,(S,p/k, T)=o,, or o rejects
signature of p/k from r.)]

\ 0, in all other cases. 0

Definition 3.4 (Method Inheritability) Let S be a
set of (ground) is-a atoms, p/k be a predicate symbol, and
o be an object. Then the inheritability of method p/k in
the object o is defined by the method inheritability function
v, as follows:

/

OS
Vm(S,plk, 0) = (

if method p/k not local to o
and [3q such that ouq E s
V,(S,p/k, q) = o., method p/k
Is local to os, Vs(S,plk 0) =
Vs(S,plk, os) and (VT, such that
+G’, one of the following holds.

l Vm(S,p/k,r) = r, and
method p/k is not local
to r,

l Vm(S,p/k,r) = os, or o
rejects method or signature
p/k from r.)]

0, in all other cases. 0

7Notice that without this, the predicate p(ar, , ak) will be
treated as a method of the object corresponding to the descriptor
of the local clause. Hence, a predicate will become inaccessible
from a local method defined in an object.

aSimilar concepts of rule locality and inheritability were also
exploited in [7, 111, But the way they were exploited in [7,
111 have important conceptual differences with our method in
Datalog++.

60

Definition 3.5 (Inherited Signatures) Let P be a
program,]P] be its Herbrand instantiation, o be a class
object, and < ?r, cp,p/k > be a signature expression defined
in o. The signature expression < ‘IT, ‘p, p/k > is inheritable
in q if Vs(S,plk,q) = o. We then say that the signature
< ?r,cp,p/k > holds in q. 0

Definition 3.6 (Inherited Clauses) Let P be a pro-
gram,]P] be its Herbrand instantiation, 2 be the ground
closure of <, cl = A +- E in]li’], contezt(cl) = o, and
pred(d) = p/k. Then cl is inherited in q if the signa-
ture < n,cp,p/k > holds in q (i.e., Vs(?,p/k,q) = r) and
V,(?,p/k,q) = o. We say, q code inherits cl if ‘p = code,
otherwise it value inherits cl, i.e., cp = val. Cl

It is important to observe the difference between code in-
heritance and value inheritance. The code inherited clause
may be obtained by replacing every occurrence of o in cl
by q, i.e., cl’ E (A + @[o/q] . This means that if q code
inherits cl from o, then d[o/q] holds in q if G[o/q] holds in
q. In contrast, if q value inherits cl from o, then A holds
in q if 6 holds in o, i.e., if A holds in o.

Example 3.1 Interested readers may verify that the
method income/l in gta is indeed code inheritable
in sally, i.e., Vs(S,income/l, sally) = gradstud,
V,(S, income/l, sally) = gta, S={gta::gmd-stud,
gta::faculty, joecgmd-stud, kellyEgmdAud, johnEfaculty,
maxEfaculty, sallycgta, sueEgta}, and that grad-stud de-
fines the signature <pub,code,income/l>. Hence, as an-
ticipated from Definition 3.6, we derive sally:income(X)+-
stipend(S), taship(T), X=S+T from clause (19) in
database D of Example 2.1 as a result of gta:income(X)+
stipend(S), taship(T), X=S+ qgta/sally]. 0

4 Semantics Based on Rewriting
We take the rewriting baaed approach to give semantics
to our language. The primary reasons for this are the fol-
lowings. Inheritance (value inheritance and code inheri-
tance) and encapsulation in our set up necessitate the use
of meta-knowledge not available in the source programs.
The traditional fix point operator can not handle such
knowledge and the standard proof techniques become in-
applicable forcing us to develop new operators and proof
techniques. While such techniques are not forthcoming,
we are ready to accept the cost associated with rewriting
based evaluation techniques for the time being. Although
the semantics is not direct, it sheds light on the working
principles of the language that can be exploited to develop
a direct semantics in future.

To be able to give semantics to Datalog++ programs in
Datalogneg , we must be able to capture inheritance and
encapsulation with all their intricacies and complexities
solely by using the machineries in Datalognes. Hence the
goal here is to obtain a purely deductive program that en-
codes the semantics of the source program but does not
lend itself to non-monotonic reasoning, which appears to
be the principal obstacle in devising a logical characteriza-
tion of object-oriented languages. Furthermore, we would
like to make sure that the two semantics, i.e., Da&log++
and Datalogneg , are identical and intended.

gNote that, the term replacement [o/q], in general [p/r], is
different from usual definition of substitutions where only vari-
ables are replaced by terms (e.g., 0 = {X/o,}).

In the following sections we first develop a theoretical
basis to reduce inheritance and encapsulation to pure de-
duction. The techniques we develop are called i-completion
and context resolution. We then develop a suitable tmnsla-
tion function r that encodes every i-completed and context
resolved Datalog++ program into a Datalognes program
which preserves the intended semantics of every source pro-
gram. Observe that the reduced program in Datalog”=s is
computable but the Datalog++ program is not.

4.1 Disassembling Class Structures

Recall that signature definitions in Datalog++ are com-
pound non-Horn expressions. To be able to use the signa-
ture expressions effectively, we break the structure of the
class description, i.e., disassemble the class definitions, as
follows.

Definition 4.1 Let P = (C, <,P,II) be a Da&log++
program. Then the disassembled program P’ = (C’, <’
,!F’,li”) of P is such that <I=<, !@’ = p, and 17’ = 17,
and C’ is the smallest set of expressions1o obtained es fol-
lows from every class structure definition oC in C:

l add an expression o[oC] in C’,
l for every superclass os of oC, add fl[oC,os] in C’,
l for every class signature definition of the form

<“,‘p,p/k>,adda,[o,,~,cp,p/k]inC’,
l for every instance signature definition of the form

< A, (p,p/k >, add (T~[o~, 7r, cp,p/k] in C’, and
0 for every control definition of the form

< reject 7 p/k from oa >, add p[y,p/k,o,,o,] in
C’.

4.2 Exposing Clause Locality Through L-
closures

The notion of clause locality introduced in section 3 is,
however, a meta-knowledge and is not explicitly captured
in a Datalog++ program. L-closure defined below helps
syntactically expose this important piece of knowledge im-
plicitly assumed by every Datalog++ programmer.

Definition 4.2 Let P = (C, <, 9, n) be a disassembled
Datalog++ program. Then the l-closure P* = (C*,<*,
!I’*, II*) of P is the smallest set of expressions such that

l C’ = Z, <*=<, iP* = !P and II C li’*,
l whenever a local clause of the form o : p(tl, . . , tk) +-

6 E U*, then also the expression X[o,p/k] E II*.

The expression of the form X[o,p/k] captures the fact that
a method predicate p of arity k is locally defined in object
o. Once we have the knowledge about the locality in this
form and the signature expressions in C’, we can read-
ily determine the inheritability of signatures and methods

lOObserve that the expressions in C’ are not in the language
of Datalog++, nor they are in Datalognes. The goal here is
to recognize them as special expressions which will ultimately
be converted to Datalognea vocabulary. The same remark ap-
plies for the expressions introduced in the next few sections.
To distinguish between the Datalog++ formulas and these ex-
pressions, we will call them reduction expressions since they are
introduced during the reduction process. For simplicity, we will
call Datalog++ formulas and reduction expressions as expres-
sions in the rest of this paper.

61

in II* using the 0, and V, functions presented in sec-
tion 3. Let the expressions of the form w,[p/lc, o, q]” and
w,[p/k, o, q, ‘p] denote the fact that the object o inherits
from q respectively the signature for p/k, and the method
p/k with mode cp. We can now use this explicit expressions
to capture inheritance of methods with overriding and con-
flict resolution.

4.3 Inheritance Based on I-completion

Consider rule (2) in Example 2.1. Since this clause is local
to grad&& it computes an income value for the class
object grad-stud. Recall that the language itself does not
have any mechanism to inherit this rule to, say, an instance
object joe of grad-stud. Since we allow the context of a
local clause to be a term as well, we may rewrite rule (2)
as follows:
(2’) V:income(X) +- stipend(X);

vis a vis Definition 3.6. We will discuss the second ap-
proach to capture this phenomenon later when we discuss
the translation algorithm to Datalogneg because it is possi-
ble to axiomatize value inheritance. Observe a subtle issue
here. Since the signature definitions are independent of the
method definitions, and the signatures may be inherited
from any arbitrary superclass (other than the class from
where the method definition is being inherited), seemingly
there is no easy way to determine whether a local clause
is to be value inherited or code inherited. Consequently,
we are forced to do both for a single rule. However, since
inheritability is a total function and it does not differenti-
ate between the modes, all we know is that the definition
corresponding to a method, say, p/k is inheritable. Hence
only one of the two rewritten rules will become active at
run time.

4.4 Encapsulation Through Context Resolu-

and thus make this rule local to every object in the
database which, however, is not our intention. To make it
meaningful, we must restrict the instantiation of the vari-
able V to only those objects which must inherit this rule.
This is accomplished by adding the inheritability subgoal
as follows12 :

tion

Encapsulation is an issue that did not receive proper atten-
tion from the logic programming community so far except
perhaps in the works by Miller [17], Kifer et al. [12], and
by Bugliesi and Jamil [S]. While Miller addresses this issue
in a logical way, his semantics is too restrictive and hand

(2”) V:income(X) e stipend(X), w,[income/I,V,gradstud,code]; coded, and actually is not in the spirit of object-oriented
logics. Kifer’s approach to encapsulation is meta-logical
and does not tackle the issue in a computationally efficient
way. The language proposed in [S] addresses the issue in
a more direct and intuitive way and provides a basis for
a logical analysis of encapsulation in logic based object-
oriented languages. While the setting is restricted in [6],
we exploit the basic theory and fully extend the idea in our
present paper.

That is, rule (2”) now applies to those objects V such that
V can legitimately code inherit income/l from grad-stud
where it is originally defined. Observe that rule (2”) (or
the Datalogneg version of it) is a purely deductive rule with
a built-in inheritance mechanism. We will revisit this is-
sue again in section 5 and discuss its elegance with respect
to, for example, works proposed in [l, 3, 81. The infor-
mal presentation above is the idea behind the so called
i-completion which is formalized below.

Definition 4.3 Let P = (C, <,!P, II) be an l-closed pro
gram. Then the i-completion of P, denoted Pi = (Ci, <i
, @I”, Iii) is the smallest set of expressions such that

l Ci = C, <i=<, and Pi = !P,
l for every clause Cl s A +- E E Ii’, add a clause Cl’ G

(4 b/VI +- (6) WV1 7 um[p/k, V, o, code] E ZIi such
that the contezt(C1) = o, pred(d) = p/k and V is a
distinct variable not occurring in Cl.

Notice that i-completion can only handle code inheritance,
hence value inheritance, which is a much simpler problem,
must be handled separately. There are two ways to address
this issue -- (i) by rewriting every rule in II, or (ii) by
adding an axiom to II’. For example, to value inherit
avg-income/l in joe from grad-stud (rule (3)), we may write
(3’) V:avg-income(X) +- gradstud<avg-income(X),

This rewriting for value inheritance, as shown above in
rule (3’), is costlier than our alternative approach. Observe
specially the rewriting of the avg-income/l subgoal in rule
(3’) above that encodes the meaning of value inheritance

1 1 We, however, do not make use of the expression wS [p/k, 0, q]
in this paper for i-completion based signature inheritance. The
reason for this is that we do not yet allow signature definition
using clauses in Datalog++.

12Contrast this approach to the negation based approach, for
example in [I]. We present a discussion on their differences in
section 5.

Let the expression n[os, op < p(ar, . . , uk)] denote the
fact that object os (sender) is sending a message to object
or (receiver) to evaluate the method p(al, . . . ,uk) in or.
or will respond to this message only if p/k is accessible
in 0,. for os (the rules for method accessibility may be
found in [lo]). The accessibility function presented below
formalizes these rules.

Definition 4.4 (Method Accessibility) Let S be a set
of (ground) signature expressions, I be a set of (ground)
is-a atoms, p/k be a predicate symbol, os and or be two
object symbols. Then the accessibility of method p/k in
the object oT. with respect to os is defined by the context
resolution function r as follows:

if one of the following condi-
[ltions holds:

. 08 =or,

l 0s # or, and 07 I! 05
true

holds, or

T(S,p/kos,or) = (
.08 # Or,T = pub,

and ((~C[G, nr, v,plk]ES
and V,(I,p/k,or) =G)
or (oi[oc, nTT, ‘P,P/~IES and
V,(l,p/k,o,)=oc)) holds

L false, in all other cases. Cl

Let the expression &/k,or,oS] state the fact that p/k is
accessible in object 0,. by object os. Consider now rule (8)
in Example 2.1. We first transform rule (8) as follows to
capture the context of the message call.
(8’) kelly:income(X) t g[kelly,john<salary(X)];

62

Then we finally transform the rule as follows to resolve the
context.
(8”) kelly:income(X) + john<salary(X), e[salary/l,john,keIly];

Now, the expression e[salary/ljohn,kelly] will evaluate to
true only if salary/l is public or kelly is a superclass of
john. From the database description, we know that none
of them are true, and hence the implication fails as ex-
pected. The following definition formalizes the intuitive
observations above.

Definition 4.5 Let P = (C, <, p, n) be an i-completed
Datalog++ program. Then the context resolution of P,
denoted PC = (Cc, <‘, @lie, DC) is the smallest set of ex-
pressions such that

l Cc = C, and cc=<,
l for every global clause Cl = A +- B E !J’, add Cl’ to

9’ such that Cl’ = oT : A +- 6,
. for every query clause Cl = t Br, . . . , & E p, add

Cl’ to rY” obtained from Cl as follows:

- Cl=Cl’,
- for every t3i E Cl’, such that 0 5 i 5 n

and Bi is a message predicate, pred(Bi) = p/k,
recipient(&) = or, add &/k,o,-, oT] as &+I
in Cl’,

l foreverylocalclauseCl~dt&,...,&~E,add
Cl’ to II” obtained from Cl as follows:

- Cl = Cl’,
- for every Bi E Cl’, such that 0 < i 5 n and

context(C1) = oS do the following:

* if
Bi is a message predicate add &/k, or, os]
as &,+I in Cl’ where contezt(C1) = os,
recipient(&) = or, pred(&) = p/k and
OS Or.

* if 8 i is a (self) predicate then replace Bi as
OS < ai.

Notice that an accessibility expression is added only when
it is necessary to do so - that is the addition is avoided
when the terms representing the sender and receiver ob-
jects are identical, implying a self invocation. Also notice
that the global clauses are assigned to the system object
(doing so does not disrupt the semantics of the programs)
and queries are evaluated in the context of system object
oT the reason for which is described in [6] and should be
easy to see.

4.5 Datalogneg Rewriting of Datalog++ Pro-
grams

We are now ready to define an algorithm to reduce ev-
ery Datalog++ program to Datalogneg. This requires US

to develop a translation function r as stipulated in Def-
inition 4.6 that will map every Datalog++ expression to
Datalogneg expressions. We proceed as follows.

Given any Datalog++ expression 4, its encoding into
Datalogneg , denoted 6, is given by the following recursive
transformation rules. In the following, T is an identity
function on terms and symbols in Datalog++.

l Encoding of complex formulas:

- T(d + al,. . . ,&) = T(d) + +I),. . . , +m)
. Encoding of atomic Datalog++ formulas (given case

by case):

-
7(p(a1,. . . ,ak)) = rel(p,arg(al, . . . ,ak))13.

- T(OT<<P(O1) . . . ,ak)) = ‘el(p,arg(a17.. . ,ak)).

- T(OT :p(a1,... , Ok)) = rel(p, aV(alj. . . ? ale)).

- T(o:p(al, . . . ,ak)) = meth(o,p, k,av(al, . . . ,
ak)) when o # oT.

- 7(o<p(a1,.. . ,ak)) = meth(o,p, k,arg(al,. ,
ak)) when 0 # oT.

- ~(0 E q) = ins(0, q).
- T(O :: q) = sub(o,q).

s Encoding of reduction expressions (given case by
case):

- ~(a[o,]) = class(oc).

- ~(fl[oc, os]) = sub(oc, 0.4.
- T(o&, n, cp,p/kl) = sig(oc, K, CP,P, k, class).

- T(u~[o~, A, cp,p/k]) = sig(o,, T, (p,p, k, ins).

- +[-f,P/k, ocr 0~1) = dr,P,k, oc, a).

- T(X[O,p/k]) = ioc(o,p, k).

- T(um[p/k, o,q, cp]) = meth-inh(p, k, o,q, cp).
- T&/k, or, 0~1) = vis(p, k, or, 0.~).

4.6 Reduction

Finally, we have the following definition for inheritance
and encapsulation reduced first-order Datalog++ programs.
Let the reduction expressions denote the set of meta-
expressions introduced in a Datalog++ program during,
disassembling, l-closure, i-completion and context resolu-
tion

Deflnition 4.6 Let P be a Datalog++ program, and T

be a translation function for every expressions in P Let
PO,, PO,, and Pr be Datalognes programs that imple-
ment respectively the V,, V,, and r functions. Also
let Pi,, and Pval be Datalogneg programs for computing
the reflexive transitive closure 1: from < and the value
inheritance axiom respectively. If PL is a disassembled,
l-closed, i-completed and context resolved program of P
then P, s T(P’) U Pv, U Pv, U Pr U pi,, U Pva[is the
inheritance and encapsulation reduced Datalogneg program
of the Datalog++ program P.

The reduction algorithm can be given as follows as sug-
gested by Definition 4.6. Note that the programs PO,,
PO,, Pr, Pi,, and Pval are already in Datalogneg.
Input: A Datalog++ program P.
Output: A reduced program P, of program P

in Datalogneg .
begin

- P’ = Apply disassembling to program P.
- P’ = Apply l-closure to program P’.
- Pi = Apply i-completion to program P*.
- PC = Apply context resolution to program P’.
- P, = T(P”) U PO, U PO,,, U PT U Pi,, U Pval.

end.
Note that, so long P remains a definite program, the reduc-
tion P, is always stratified. The inheritability axioms we
introduce as part of the implementation for PO, and Pv,,,
contain negative literals and thus necessitate Datalognes .
However, the rules in Pv, and Pv,, are locally stratified
as shown in [lo).

r3Note that ~(p(ar, , ak)) = p(al,) as) is also possible.

63

5 Related Research and Implementa-
t ion Issues

It is easy to see that a one pass compiler for Datalog++
can be developed which can reduce the program in a single
scan. This is possible because of the techniques presented
in this paper. Recall that none of the techniques presented,
for example disassembling, l-closure, i-completion and con-
text resolution, require to inspect an expression other than
which is being reduced. This is not true for most other
proposals including [l, 3, 81. In their cases, to disallow
application of clauses, at least, a hierarchy computation is
essential. If the hierarchy depend on inherited properties,
then a rewriting is not really possible. We do not have
such serious limitations. In fact, every and any Datalog+’
database is Datalogneg reducible. We now discuss some
of the implementation and system related issues that in-
fluenced our design in comparison to few representative
proposals.

5.1 Compile Time Inheritability

It is possible to compute the inheritability expressions at
compile time. This is possible only if the class hierarchy is
static - no rules of the form o :: p +- D exists in P such
that G contains any message atom. A dynamic computa-
tion of inheritability is always possible. Only difference is
that, we may have to accept multiple minimal models as
opposed to a least model. Note that, for every reduced
Datalog++ program, we currently have a least model. Ob-
serve that by design, our class hierarchy is static while
we allow instance membership to be dynamic (rules of the
form o E p +- G) since it does not affect the inheritabil-
ity. The programs P-Q, and Pv,, added during reduction
computes inheritability of signatures and methods at run
time which involves (only) negation computation and thus
slowing down the execution of queries. It, appears that if
we accept programs with static class hierarchies, we can
avoid negation computation all together by procedurally
computing inheritability at compile time and improve per-
formance. Another advantage of a compile time inheri-
tability computation is that we can now throw away most
of the reduction expressions and make the target program
more neat and compact.

5.2 Efficiency of Static Overriding

We took the so called static overriding [l] approach to
inheritance14. While it is possible to adopt dynamic in-
heritance a la Datalogmeth [l] and F-logic 1121, we think it
has serious practical drawbacks. For example, consider the
following code fragment adapted from [I].
1’1 - employee:socins(Y) +- salary(Z), Y=O.l*Z;
~2 - wstudent:socins(50) +- dept<paystax(wstudent,X),

salary(S), S<SOO;
~3 - wstudent::employee;

In this case, if we are to verify the applicability of
~2 in wstudent, we must also compute the subgoal
dept<paystax(wstudent,X) which in turn may require us
to compute another message subgoal in a chain reaction
fashion -- virtually forcing us to compute a huge portion of
the database only to discover later that salary(S), Ss500
is false or dept<<paystax(wstudent,X) is false. In contrast

14Recall that the database systems such as 02 [15], Orion [13],
and Gemstone [16], and programming languages such as Cf+
[19], and Smalltalk [4] take our approach.

we believe that overriding based on definition makes bet-
ter sense from a practical point of view. We regard the
above program as ill-conceived and a case of poorly de-
fined method, i.e., if we have to apply r1 in wstudent if ~-2
should fail. In our framework we would include the fol-
lowing rule to alleviate the problem and to complete the
definition for socins/l in wstudent.
7-4 - wstudent:socins(Y) +- salary(Z), Z>500, Y=O.l*Z;

As another example, consider the following database.
~~ - employee:income(60K);
~2 - wstudent.:income(l5K);
~3 - wstudent::employee;

In [I], wstudents will inherit both 60K and 15K if static
inheritance is adopted which may not make sense for many
applications. Similar remark applies for [8, 21. Dynamic
inheritance also does not come to rescue us from this un-
wanted situation. But in our case, we will inherit neither
considering it as an inheritance conflict and can emit an
error message if desired. We also are able to choose one
of the inheritance if it seems appropriate. This is possi-
ble because of our inheritability function and i-completion.
Static overriding in OOLP+ [8] is even more restrictive. In
OOLP+, users have to override methods using keywords in
the class definition practically making it hand coded and
defeating the spirit of inheritance to a large extent.

5.3 Completion Based Rewriting

It is easy to notice the superiority of our completion based
rewriting of local clauses as opposed to negation based
blocking of rule application in [I] or the Prolog cut op-
erator in [8]. In our case, we add an inheritability expres-
sion of the form um[p/k, V, o, code] to every local clause
with appropriate term replacement which does not re-
quire inspection of any other rule. Also the expression
wTn[p/k, V, o, code] is computable either statically at com-
pile time or dynamically at run time. But in the case of [I],
for every class c that has a local definition, we are forced to
add a subgoal of the form -c(X) to the rule. In fact, this
forces us to hand code the inheritance for every class de-
feating the purpose of declarative programming. Besides,
if all the classes, at the worst, overrides a method, we will
have to include each one of the classes as -c(X) in the rule.

Furthermore, the approach in [l] assumes that only
classes may override a method (or state variable) but not
instances. This is a quite restricted view of the databases.
Consider, for example, a football.player database where we
would like to define that all instances of a player class have
a default height of 6 feet while the individual instances are
allowed to override this value with their own. This very
common phenomenon can not be captured in [l] while can
very easily be captured in ours. While with proper tun-
ing it is possible to capture this in (11, it readily becomes
awkward and computationally infeasible.

5.4 Encapsulation and Context Resolution

Probably for the first time, we have introduced a sound and
effective semantics for encapsulation in deductive systems
with inheritance. A theoretical basis for our approach may
be found in [S]. The rewriting based on context resolution
and the visibility function r together form the basis for
encapsulation in Datalog++. None of the works, to our
knowledge, so far addressed this issue. Notice that the
function r can not be computed at compile time since it

64

depends on inheritance and involves network of visibility
relationships.

6 Conclusion and Future Works
In this paper, we presented a langua e called the
Datalog++. The semantics of Datalog +$ is given in
Datalogneg by reducing inheritance and encapsulation to
pure deduction. Several meta-logical constructs enriched
the features of our language and the reduction was neces-
sary to develop a translational semantics of these features
in the language. We also provided several computable func-
tions to compute the so called inheritability and visibility
of methods, and demonstrated that our completion based
technique allows flexible modeling of the applications and
supports an object-oriented perception of the world.

We believe that the semantics developed in this paper
has a far reaching influence on the design of the deductive
object-oriented languages. It shows that certain features
that are believed to be difficult to address logically, can
indeed be captured logically. Since a logic program (the
reduced Datalogneg program) can be developed to model
object-oriented features (as demonstrated in this work) in
an indirect way, perhaps the working principle of these fea-
tures can be studied and isolated, and given a full logical
characterization. We thus believe that a direct semantics
for every feature we introduced in this paper can be devel-
oped.

Our work can be extended in several different ways. It
seems appropriate for some applications to have a choice
to override methods dynamically or statically based on the
need of the application. For some applications, a method
may call for monotonic inheritance and not override at all.
We think, giving such a choice to application designers will
result in a flexible design environment. While Datalogneg
and CORAL has built-in optimization mechanisms, specific
Datalog++ optimization techniques may be possible that
utilizes knowledge specific to object-oriented paradigm. Fi-
nally, update can be accommodated as an orthogonal fea-
ture as it was addressed in [3]. These are some of the issues
we plan to investigate in our future research.

Acknowledgement: This research was supported
in part by the Macquarie University Research Grant. The
author would like to thank Mohammad Ashrafuzzaman of
the University of Saskatchewan, Canada for reading the
initial version of this paper and giving helpful comments.

References
[l] S. Abiteboul, G. Lausen, H. Uphoff, and E. Wailer.

Methods and Rules. In ACM SIGMOD Conference
on Management of Data, pages 3241, 1993.

[2] F. Belli, 0. Jack, and L. Naish. Object-oriented pro-
gramming in Prolog: Rationale and a case study.
Technical Report 92/2, Department of Electrical and
Electronics Engineering, University of Paderborn,
Paderborn, Germany, 1992.

(31 E. Bertino and D. Montesi. Towards a logical object-
oriented programming language for databases. In
A Pirotte, C. Delobel, and G. Gottlob, editors, Proc.
of the 3rd Intl. Conf. on EDBT, pages 168-183.
Springer-Verlag, 1992. LNCS 580.

[4] A. H. Borning and D. H. Ingalls. A type declaration
and inference system for Smalltalk. In Proc. of the

151

P31

I71

PI

PI

PO1

WI

P21

1131

[I41

1151

I161

P71

PI

P91

ACM Symposium on Principles of Programming Lan-
guages, pages 133-141, 1982.
M. Bugliesi. A declarative view of inheritance in logic
programming. In K. Apt, editor, Proc. Joint Int. Con-
ference and Symposium on Logic Programming, pages
113-130. The MIT Press, 1992.
M. Bugliesi and H. M. Jamil. A logic for encapsula-
tion in object oriented languages. In M. Hermenegildo
and J. Penjam, editors, Proceedings of the 6th Inter-
national Symposium on Programming Language Im-
plementation and Logic Programming (PLILP), pages
213-229, Madrid, Spain, 1994. Springer-Verlag. LNCS
844.
M. Bugliesi and H. M. Jamil. A stable model seman-
tics for behavioral inheritance in deductive object ori-
ented languages. In G. Gottlob and M. Y. Vardi, ed-
itors, Proceedings of the 5th International Conference
on Database Theory (ICDT), pages 222-237, Prague,
Czech Republic, 1995. Springer-Verlag. LNCS 893.
M. Dalal and D. Gangopadhyay. OOLP: A transla-
tion approach to object-oriented logic programming.
In Proceedings of the First DOOD Conference, pages
593-606, 1990.
H. M. Jamil. Architecture and implementation of the
Visual Datalog++ system. Technical report, Depart-
ment of Computing, Macquarie University, Sydney,
Australia, February 1997. Submitted for publication.
H. M. Jamil. Inheritance with overriding without non-
monotonic reasoning in Datalog++. In Proceedings of
the 5th International ICLP Workshop on Deductive
Databases and Logic Programming (DDLP), Leuven,
Belgium, July 1997.
H. M. Jamil and L. V. S. Lakshmanan. A declar-
ative semantics for behavioral inheritance and con-
flict resolution. In John Lloyd, editor, Proceedings
of the 12th International Logic Programming Sym-
posium, pages 130-144, Portland, Oregon, December
1995. MIT Press.
M. Kifer, G. Lausen, and J. Wu. Logical Foun-
dations for Object-Oriented and Frame-B& Lain-
guages. Journal of the Association of Computing Ma-
chinery, 42(3):741-843, July 1995.
W. Kim. A model of queries for object-oriented
databases. Technical Report ACA-ST-365-88, MCC,
1988.
M. J. Lawley. A Prolog interpreter for F-logic. Un-
published Manuscript. Griffith University, Brisbane,
Australia, 1993.
C. Lecluse, P. Richard, and F. Velez. 02, An Object-
Oriented Data Model. ACM Press, 1987.
D. Maier and J. Stein. Development and implemen-
tation of object-oriented DBMS. In B. Shriver and
P. Wegner, editors, Research Directions in Object-
Oriented Programming, pages 355-392, Cambridge,
MA, 1987. MIT Press.
D. Miller. A Logical Analysis of Modules in Logic Pro
gramming. Journal of Logic Programming, 6(1/2):79-
108, January/March 1989.
R. Ramakrishnan, D. Srivastava, and S. Sudarshan.
CORAL : Control, Relations and Logic. In Proc. of
18th VLDB Conference, pages 238-250, 1992.
B. Stroustroup. The c*+ Programming Language.
Addison-Wesley, 1986.

65

