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Abstract 

We present an elegant technique to reduce inher- 
itance and encapsulation to pure deduction. The 
reduction technique presented in this paper makes 
it possible to model object-oriented database fea- 
tures in a purely deductive system. Encapsula- 
tion has been given a formal treatment for the 
first time by introducing the so called contezt- 
resolution scheme. The completion technique pre- 
sented in this paper elegantly tackles inheritance 
with overriding and conflict resolution by avoiding 
non-monotonic reasoning. We show that the com- 
pletion based reduction technique is robust and 
appealing compared to any other known rewrit- 
ing based approaches. We propose an object- 
oriented front-end language called the Datalog+‘, 
and discuss a rewriting scheme to the acclaimed 
Datalogneg for this language that exploits the con- 
text resolution and completion techniques pre- 
sented here. We claim that our approach outper- 
forms other known approaches in the literature in 
terms of its modeling capabilities and efficiency. 
Unlike most others, an implementation based on 
our reduction technique does not require meta- 
interpretation and consequently readily exploits 
the rich set of optimization techniques available 
in Datalogneg 

1 Introduct ion 

Deductive and object-oriented databases are two parallel 
trends evolved over the past few years in database tech- 
nology having mutually exclusive features. Following the 
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huge research experience of deductive databases, and mo- 
tivated by the need for the design of complex applications 
that demand features characteristic to the object-oriented 
systems, the need for logic based object-oriented query lan- 
guages have emerged. This motivation solidified further be- 
cause of the belief that the next generation database tech- 
nology will require object-oriented features such as complex 
objects, inheritance, encapsulation and inference capabil- 
ity. 

Recently, there have been intense activities in the re- 
search front to develop a deductive object-oriented lan- 
guage. However, there have been no significant develop- 
ment so far. In the last few years, several proposals also 
addressed the issue of a direct semantics for logic based 
object-oriented languages, for example [5, 7, 11, 121. It 
was readily observed that giving a direct semantics to a 
language capable of modeling desired object-oriented fea- 
tures is a daunting task. While few experimental systems 
started to emerge, they are far less likely to be used com- 
mercially than their deductive database counterparts. This 
is simply because these systems either lack a formal foun- 
dation, are too complex to be used as modeling tools, or 
are plainly inadequate for useful applications. 

We consider an extension of Datalog, called the 
Datalog’+, in the direction of the so called object-relational 
models. The goal here is to develop a language that has 
most of the desired object-oriented features well within 
the setting of an existing system, is adequate to use as 
a modeling tool and at the same time has a formal foun- 
dation. Hence, we try to be practical and instead of trying 
to develop a direct semantics of our language, we develop 
a rewriting based semantics. That is, to give a semantics 
to a program in our language we rewrite every Datalog++ 
program to another language, Datalogne” to be exact. Sim- 
ilar approaches have been studied in works by Abiteboul 
et al. [l], Dalal and Gangopadhyay [8], Naish [2], Law- 
ley [14], etc. The advantages of such an approach are as 
follows. Inheritance with overriding can be modeled in a 
practical manner. While encapsulation can also be incor- 
porated by developing suitable machinery and semantics, 
as we demonstrate in this paper, unfortunately none of the 
works known to us have addressed this important issue so 
far. However, the lack of a complete logical semantics for 
both of these features - inheritance with overriding and en- 
capsulation, necessitates a meta-logical treatment of these 
features and thus motivates the rewriting based approach 
to object modeling presented in this paper. 
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1.1 The Merits and Contributions of 
Datalog++ 

We must mention here that a rewriting or translation based 
approach to object modeling is not altogether new. Several 
researchers have used this technique to develop semantics 
for object-oriented logics including [l, 2, 8, 141’. But, our 
proposal should not be dismissed only on the ground that 
we too take a translational approach. In this section, we 
try to convince the skeptics why Datalog++ should be con- 
sidered seriously. 

Among the languages proposed in (1, 2, 8, 141, NUOO 
Prolog [2] perhaps is the closest in spirit to Datalog++ 
but have several important differences. The characteris- 
tics peculiar to Datalog++ makes it possible to be used 
as a practical database language while, others, specially 
NUOO Prolog, are not. But more importantly, all these 
languages fall short of providing a clean class interface fa- 
cility, namely encapsulation - one of the two most essen- 
tial features of object-oriented systems. Encapsulation is 
regarded as the basis for modularity and implementation 
independence in object-oriented systems. Without encap- 
sulation, an object-oriented language may be regarded as 
incomplete. Furthermore, in works like (141, clauses im- 
plementing methods and predicates are mapped to terms 
in me&predicates. This approach defeats the query op- 
timization techniques present in deductive databases and 
hence can not be regarded as a candidate for database ap- 
plications. While NUOO Prolog handles inheritance some- 
what similarly as in Datalog++, they really do not provide 
the high level abstractions such as class and instance meth- 
ods, code and value inheritance, etc. and thus limits itself 
in terms of modeling flexibility. 

Another advantage of Datalog++ is that the inheritabil- 
ity can be compiled and stored making rule invocation 
(during inheritance) equivalent to an index look-up using 
constants, a feature that no other languages have. In fact, 
the decision on inheritance of a rule is non-deterministic in 
the languages like Datalogmeth [ 11, F-logic interpreter( 141, 
NUOO Prolog 12) and OOLP+ [8] and must be deferred 
until at run time. This is a significant impediment when 
practical sized databases are considered that employ the so 
called dynamic inheritance a la F-logic and Datalogmeth. 

We can summarize the contributions and advantages of 
Datalog++ as follows: (i) it provides a clean interface mech- 
anism (encapsulation) for objects and classes in a declar- 
ative style, (ii) it provides a superior inheritance mecha- 
nism based on the idea of i-completion making it possible 
to compile inheritability, and (iii) it provides higher level 
abstractions for capturing both value and code inheritance 
in a single set up, and facilities to declare class and in- 
stance methods. While these are the most important con- 
tributions of this paper over the existing languages, we will 
address other issues as well in section 5. In addition to the 
above it also provides a mechanism to resolve inheritance 
conflict in multiple inheritance, allows selection of a pre- 
ferred inheritance, and utilizes the idea of inheritability 
which is the key to a partial compilation of the database 
and to conflict resolution. 

1.2 Organization of this Paper 

We introduce few not so familiar concepts such as value 
and code inheritance, locality and inheritability of clauses, 

‘Observe that these languages are the most representative in 
the literature. Others are either similar or weaker than these. 
Hence it suffices to compare Datalog++ with this set. 

accessibility of methods, etc. These concepts allow us to 
develop a reduction technique for Datalog++ programs to 
Datalogneg and thus help explain the meta-logical features 
in a logical way. Furthermore, the reduction technique 
helps us model inheritance and encapsulation in purely de- 
ductive ways without having to deal with non-monotonic 
reasoning. 

The material contained in this paper is baaed on the 
data model proposed in a preliminery version in [lo]. For 
the lack of space and brevity, we do not repeat the data 
model here. Interested readers may find a discussion on the 
data model, and numerous examples that better clarify the 
concepts introduced in this paper in [lo], and may regard 
it as a companion paper. In the examples in [lo] we step 
by step reduce the Datalog++ program D in Example 2.1 
to a Datalogneg program D,. An extended version of this 
paper that also subsumes [lo] discusses the implementation 
issues of Datalog++ and may be found in 191. 

The rest of the paper is organized as follows. We first 
introduce the Datalog++ language using an example along 
with its intended semantics on intuitive grounds in section 
2. Then we formally present the syntax in section 3. The 
rewriting based semantics is presented in section 4 by in- 
troducing few new concepts and by giving a translation al- 
gorithm to reduce every Datalog++ program to Datalogneg 
We compare our work with few contemporary research and 
discuss implementation issues in section 5 and finally give 
our conclusion in section 6. 

2 The Datalog++ Language Overview 
We now introduce the syntax and the semantics of the 
Datalog++ language with an overview to its salient fea- 
tures. The goal here is to develop a logic based language to 
represent and query deductive object-oriented databases. 
Datalog++ extends Datalog syntax to capture the concepts 
such as classes, objects, signatures, is-a, methods, etc., 
sometimes in a meta-logical way. While the extension in 
Datalog++ is syntactical, the semantic interpretation of ev- 
ery Datalog++ program is still given in Datalognes - a vari- 
ant of Datalog that incorporates negation2 and hence has 
a first-order interpretation. Since some of the Datalog++ 
features lack logical interpretation (meta-logical in nature), 
the semantics relies on a translation function to Datalogneg 
such that every translated feature is given a relational 
characterization. In this way, it becomes possible to cap- 
ture most of the non-standard object-oriented notions in a 
meta-logical way but yet simultaneously give a logical in- 
terpretation to these features. We will show that not only 
our semantics is richer, stronger and more intuitive than 
Datalogmeth [l], OOLP+ [8], logic language in [3], NUOO 
Prolog [2] and similar other languages, our syntax is also 
much more flexible that allows users to model their uni- 
verse of discourse in an object-oriented way as opposed to 
relational ways as in some of these proposals (1, 31. 

2.1 Informal Semantics of Datalog++ 

A Datalog++ program basically is a set of objects, rela- 
tionships, properties - methods and attributes, and ob- 
ject hierarchy definitions. Recall that objects are of two 
types: class and instance objects. A class definition in- 
cludes structure description via signatures and a set of 

2Notice that the choice of the negation semantics in 
Datalognes does not affect the semantics of Datalog++ 
programs. 
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method implementations. An instance object is similar 
to a class object except that instances do not define the 
structural aspects of objects, and can not have instances 
or subclasses of their own. 

We now use a simple example to explain the intended se- 
mantics of Datalog ++ before we formally discuss its syntax 
and the semantics. This will expose the motivation behind 
the language structure and the concepts behind the seman- 
tic interpretation of Datalog++ programs. Notice that an 
extended definite clause fragment of predicate logic is used 
to define methods in objects in the following example. 

Example 2.1 Consider the miniature university database 
D = (DC, DC, DP, Dn) shown below3. The database con- 
sists of three class objects - grad-stud, gta, and faculty, 
and several instance objects - joe, kelly, sally, sue, john 
and max. 

class grad-stud 
1 

instance signatures 

t 
pub, val name/l: 
pub, val sid/l; 
priv, val stipend/l; 
pub, code income/l; 
pub, val avg-income/l; 
pub, code meandev/l; 

1 
1 
The signature component of the class definition for 

grad-stud above says that name is an attribute/method of 
arity 1, denoted name/l, of every instance of grad-stud. 
Furthermore, instances inherit the value of name from 
grad-stud and the method is public and hence is visible 
to any object in this database4. Similarly, sid (student id), 
and avg-income both of arity 1 are value inheritable public 
methods for the instances of this class. However, stipend is 
a private value inheritable method and thus is only acces- 
sible by the instances themselves and their class objects. 
On the other hand, while income and meandeu (mean de- 
viation) are public methods for the instances of grad-stud, 
they are code inheritable. 

(1) grsdstud:stipend(l2K); 
(2) gradstud:income(X) + stipend(X); 
(3) gradstud:avg-income(avg(<I>)) + OEgradstud, 

O<income(I); 
(4) gradstud:meandev(X) + income(I), 

avg-income(A), X=abs(I-A); 
(5) joeEgradstud; 
(6) joe:stipend( 15K); 
(7) kellycgradstud; 
(8) kelly:income(X) +- john<salary(X); 

Rules (1) through (4) define local methods stipend/l, in- 
come/l, avg-income/l and meandev/l in grad-stud. Rules 
(6) and (8) define local methods stipend/l and income/l 
respectively for joe and kelly. Rules (5) and (7) define 
class memberships of joe and kelly and captures the fact 
that they are instances of grad-stud. 

The class faculty below is similar to grad-stud except 
that it has a class method total-faculty/l which is public 
and code inheritable. 

3Note that we are using CORAL [18] like syntax for the ag- 
gregation functions and grouping in our rules in this example. 
The components (C, <, !P, n) are formally introduced in section 
3. 

4See definition 3.6 for the formal meanings of code and value 
inheritance. 

class faculty 
{ 

class signatures 

{ 
pub, code total-faculty/l; 

1 
instance signatures 

1 
pub, val name/l; 
pub, val eid/l; 
priv, val salary/l; 
pub, code income/l; 
pub, val avg-income/I; 
pub, code meandevil; 

1 
1 
(9) faculty:total-faculty(count(<O>)) e OEfaculty; 
(10) faculty:salary(6OK); 
(11) faculty:income(X) + salary(X); 
(12) faculty:avgincome(avg(<I>)) c OEfaculty, 

O<<income(I); 
(13) faculty:meandev(X) +- income(I), 

avg-income(A), X=abs(I-A); 
(14) johncfaculty; 
(15) maxEfaculty; 
(16) john:name(“John”); 
(17) max:salary(75K); 

class gta subclass of {gradstud, faculty} 

1 
instance signatures 

{ 
priv, val taship/l; 

J 
controls 

1 
reject sig avg-income/l from faculty; 
reject sig salary/l from faculty; 
reject sig income/l from faculty; 

1 
1 

(18) gta:tsship( 16K); 
(19) gta:income(X) + stipend(S), taship(T), X=S+T; 
(20) sallyegta; 
(21) sueEgta; 
(22) sally:taship(20K); 

Some features of the class gta (graduate teaching as- 
sistant), defined above, deserves additional clarification. 
The clause subclass of declares that gta is a subclass of 
both grad-stud and faculty and thus inherits properties 
from both the classes due to multiple inheritance. The gta 
class also introduces a specialized value inheritable public 
method taship/l. It also has a control clause and we will 
defer the discussion on this until section 2.1.2. 

Queries: 

(23) ? sally<<income(X); 
(24) ? sue<income(X); 
(25) ? joe<avg-income(X); 
(26) ? joe<<meandev(X); 
(27) ? john<total-faculty(X); 
(28) ? faculty<total-faculty(X); 
(29) ? gta<total-faculty(X); 
(30) ? joe<stipend(X); 
(31) ? kelly<income(X); 
(32) ? joe<income(X); q 

In the following sections we discuss some of its modeling 
features by analyzing answers to few representative queries 
in Datalog++. 
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2.1.1 Inheritance 

Consider the message query (23) which says that send a 
message to sally and get her income. The income is re- 
turned as a (constant) binding for the variable X. Notice 
that the method income/l is not defined in sally. The clos- 
est superclass gta defines a local method for income/l and 
hence overrides the definitions in class grad-stud and fac- 
u#y for which gta is a subclass. Now that object sally has 
a unique source for the method income/l, it must inherit 
the method definition from gta. The mode of inheritance 
(value or code inheritance), however, must be determined 
by inheriting a signature for income/l. Since “pub, code 
income/l” is inheritable in sally from grad-studs, we are 
inclined to conclude that income/l is code inheritable in 
sally. Hence, we have the following code for income/l in 
sally: sally:income(X) +- stipend(S), taship(T), X=S+T, 
- the clause for income/l is brought down to sally with 
proper adjustments in the context (see Definition 3.6). Fi- 
nally, to compute income, we must find a stipend/l and 
taship/l value for sally. While taship/l is locally defined 
through rule (20), stipend/l must be inherited. The clos- 
est superclass of gta that defines stipend/l is grad-stud as a 
unique source with a value 12K. Since stipend/l is value in- 
heritable in sally, the income value for sally is 32K. Follow- 
ing a similar analysis the reader may verify that the query 
(24) will produce the answer 28K since in this case sue 
inherits the default taship/l value from gta and stipend/l 
from grad-stud. 

In contrast, now consider the query (25). Note that 
the method avg-income/l is value inheritable in joe from 
grad-stud hence the value for aug-income/l will be inher- 
ited in joe after the computation of the rule (3) in grad-stud 
giving a value 22.5K. Following a similar analysis, it is easy 
to see that query (26) produces X = 7.5K. 

Another interesting query is query (27). While john 
is a faculty, the query fails since total-faculty/l is a class 
method. Since john is an instance of faculty, it can not 
inherit the method definition. But note that the queries 
(28) and (29) are valid queries that produces X = 4 and 
X = 2 respectively. The reader should be able to see why 
the same method produces two different values at these 
two classes. The answer lies in the mode of inheritance - 
namely code inheritance. 

2.1.2 Inheritance Conflict and its Resolution 

Notice that gta is a subclass of both grad-stud and fac- 
ulty. Hence the structure and method definitions local to 
these classes will be inherited in gta. But, income/l is de- 
fined differently in these two classes and gta has a choice. 
As a result an inheritance conflict occurs. By default, gta 
should have rejected both the definitions and the signatures 
as well (in our model). But due to the control statement 
“reject sig income/l from faculty” in the controls clause 
of the gta class definition, it only rejects the signature of 
income/l from faculty leaving a unique source for income 
- the grad-stud class. This is called conflict resolution. 
Note that signature rejection implies method rejection but 
the converse is not true. This follows from our notion of 
well-typing and consistency requirement on the method in- 
heritance in our data model [lo]. Method rejection can be 
defined using meth keyword in place of the sig keyword. 

5Because the signature in faculty has been rejected by gta 
due to conflict resolution and income/l is defined as an instance 
signature in grad-stud. 

2.1.3 Encapsulation 

Now consider the query (30) or (31). Both the queries fail. 
The reason for the first query to fail is that stipend/l is 
a private method in joe and hence is not accessible from 
outside. But note that (32) is a legitimate query and pro- 
duces 15K which is nothing but joe’s stipend value. This 
is possible because income/l is public in joe and internally 
joe is sending a message to itself to access it’s stipend value 
to compute income without any violation of encapsulation. 
But notice that (31) fails simply because the object kelly 
is sending a message (in rule (8)) to object john to ac- 
cess john’s private method salary/l and hence causing a 
violation of encapsulation. Also in rule (3), the subgoal 
O<income(I) succeeds without any violation of encapsu- 
lation since grad-stud is a superclass of the object 0. A log- 
ical basis for this approach to encapsulation may be found 
in [S]. 

3 Syntax 
We now formally introduce the syntax of Datalog+‘. The 
language L of Datalog++ is a tuple (P, 7, V), where P is an 
infinite set of predicate symbols with associated arities, 3 
is an infinite set of function symbols, and V is an uncount- 
able set of variables. The terms 7 of C are constructed as 
usual from F U V. Let the ground subset of ‘T be denoted 
by T. 

Class definitions in L: can be generated using the pro- 
duction rules below. In these rules, we use sans serif and 
italic strings to denote terminal symbols and uppercase 
strings to denote non-terminals. Furthermore, sans serif 
strings represent reserved words, and italic strings term, 
pred, and a&y represent respectively user defined identi- 
fiers from the set ‘T*, predicate names from the set P and 
a natural number (constants of arity zero) from F. 
OBJ := class term SUB {DEFN) 
SUB := E ( subclass of {SUPCLASS} 
SUPCLASS := term NULL 
NULL := e ) , SUPCLASS 
DEFN := CLASS INST CONT 
CLASS := E ( class signatures {DEFK} 
INST := E ( instance signatures {DEFK} 
DEFK := DEF VOID 
VOID := E ) ; DEFK 
DEF := PV, VC, pred/arity 
PV := pub 1 priv 
VC := val ) code 
CONT := E ) controls {RESK} 
RESK := RES EMPTY 
EMPTY := c 1 ; RESK 
RES := reject SM pred/arity from term; 
SM := sig 1 meth 
The methods and instance definitions are an extended set 
of Horn formulas. We next define the syntax of the Horn 
formulas. 

3.1 Atomic and Complex Formulas 

There are five types of atoms in our language: (global) 
predicates, local predicates, message predicates, instance 
is-a, and subclass is-a atom8. 

6We follow the convention of using strings with lower case let- 
ters and numbers for ground terms (e.g., sally), strings starting 
with upper case letters for variables (e.g., Tot&-income), and 
lower case bold italic strings to denote first-order terms (e.g., o) 
in this paper. 
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- Global predicate: Let p be a predicate symbol of ar- 
ity k - denoted p/k, and al,. . . ,ak be terms. Then 
p(al, . ,ak) is a global predicate. A predicate as- 
sumes a meaning depending on its position in a rule. 
Usually a predicate represents a relation except when 
a predicate is in the rule body and a local predicate is 
in the rule head. In that case the predicate represents 
a property (method or attribute) of an object. 

- Local predicate: Let p(al, . . . , ak) be a predicate and 
o be a term, then o : p(al, . . . , ak) is a local pred- 
icate. Intuitively, a local predicate of the form o : 
p(al,... , ok) means that the predicate p(al, . . . , ak) 
holds in the object o. o is called the contezt or the 
descriptor of the local predicate atom. 

- Message predicate: Let p(al, . . , ak) be a predicate 
and o be a term, then o < p(al, . . . ,ak) is a message 
predicate. Intuitively, a message predicate of the form 
o<p(al,... ,ak) means that evaluate the predicate 
p(al, . . , ak) in the object o. 

- Is-a: Let ocr oi and os be terms. Then oi E oc 
and os :: oc are respectively instance and subclass 
is-a atoms. Intuitively, they say that oi and os are 
instance and subclass of oc respectively. When the 
difference between the two is unimportant, we will 
write ol!/p in the remainder of this paper. 

Formulas of C are defined as usual. A literal is either an 
atom (A) or the negation of an atom (-A). Following the 
custom in logic programming, we only consider the definite 
(Horn) clause fragment of our language. This is also for a 
technical reason. In our set up, a general clause does not 
make sense since we can not then talk about locality and 
inheritability of clauses in the object hierarchy, which we 
will be explaining shortly. 

A clause in C is an expression of the form A + 
t31 . . . , B, such that A is any atom in C except a message 
predicate, and every ,t3i, 0 5 i 5 m, is any literal except a 
local predicate. A clause A t f3r . . , B, is called a global, 
local or is-a clause depending upon whether the atom A is 
a predicate, local predicate or an is-a atom respectively. 

Furthermore, let A be a predicate atom - global, local 
or message predicate. Then the notation p&(d) = p/k 
denotes the predicate symbol of A. For any local predicate 
(or a local clause) A of the form o : p(al, . , ak), the 
function co&e&(d) = o returns the object o where the 
predicate is defined. If A is a head atom, then we call o 
as the context of the clause A + Di , . , f3, when A = o : 
p(al, . . , ok). Similarly, for any message predicate of the 
form A = o << p(al, . . . , ak), recipient(d) = o returns the 
target object. 

Definition 3.1 (Programs and Queries) A database 
A, or equivalently a program P, in Datalog++ is an ex- 
pression of the form (C, <, p,17), where C, <, @, and 17 
are (possibly empty) sets of class structure, is-a hierarchy, 
relationship and object property definitions respectively. 
A program P is p-stratified if every subclass is-a clause in 
< is message predicate free - i.e., the body literals of the 
subclass is-a clauses do not contain message predicates. A 
query in P is a clause of the form + 6, , B, where the 
head is empty, and Bi, , B, are literals. Cl 

For the rest of the paper, we only consider p-stratified pro- 
grams. For technical reasons, we assume a system object 
oT for every Datalog++ program not defined as part of 
the program universe. But to refer to a global predicate 
Aal,. . . , ak) in a local clause, we use a message predicate 

syntax of the form oT < p(al, . , ak) which captures the 
fact that p(al, . . . , ak) is a global predicate since oT is re- 
ally not an object in the usual sense7. Furthermore, for 

T any query & = +- t31,. . . , t3,, context(&) = 0 . 
To be able to capture inheritance with overriding and 

conflict resolution, and encapsulation we need to intro- 
duce several concepts such as locality and inheritability 
of clauses and signatures, and inherited clauses and types 
in our language’. We proceed as follows. Herbrand in- 
stantiation of programs is defined in a way identical to the 
classical case. Furthermore, let 3 be the reflexive transitive 
closure of <. 

Definition 3.2 (Locality) Let P = (C, <,!T, II) be a 
program, IPI be its Herbrand instantiation, oc be a class 
object, o be any object, ty -< r, cp,p/k > be any signa- 
ture expression for oc in C, and cl z A + Q be any clause 
in ]nl such that context = o. Then cl and ty are local 
to object o and o, in ]P]. 0 

Definition 3.3 (Signature Inheritability) Let S be a 
set of (ground) is-a atoms, p/k be a predicate symbol, and 
o be an object. Then the inheritability of the signature of 
p/k in the object o is defined by the signature inheritability 
function V, as follows: 

I if signature p/k is not local to 
o and [3q such that olfq E S, 

VdS, p/k, 4) = ocr signature of 
p/k is local to p and (t/r, such that 

OC oflr E S, one of the following holds. 

Vs(s,plk,o) = ( l Vs(S,p/k,r) = r, and signa- 
ture of p/k is not local to r, 

l V,(S,p/k, T)=o,, or o rejects 
signature of p/k from r.)] 

\ 0, in all other cases. 0 

Definition 3.4 (Method Inheritability) Let S be a 
set of (ground) is-a atoms, p/k be a predicate symbol, and 
o be an object. Then the inheritability of method p/k in 
the object o is defined by the method inheritability function 
v, as follows: 

/ 

OS 
Vm(S,plk, 0) = ( 

if method p/k not local to o 
and [3q such that ouq E s 
V,(S,p/k, q) = o., method p/k 
Is local to os, Vs(S,plk 0) = 
Vs(S,plk, os) and (VT, such that 
+G’, one of the following holds. 

l Vm(S,p/k,r) = r, and 
method p/k is not local 
to r, 

l Vm(S,p/k,r) = os, or o 
rejects method or signature 
p/k from r.)] 

0, in all other cases. 0 

7Notice that without this, the predicate p(ar, , ak) will be 
treated as a method of the object corresponding to the descriptor 
of the local clause. Hence, a predicate will become inaccessible 
from a local method defined in an object. 

aSimilar concepts of rule locality and inheritability were also 
exploited in [7, 111, But the way they were exploited in [7, 
111 have important conceptual differences with our method in 
Datalog++. 
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Definition 3.5 (Inherited Signatures) Let P be a 
program, ]P] be its Herbrand instantiation, o be a class 
object, and < ?r, cp,p/k > be a signature expression defined 
in o. The signature expression < ‘IT, ‘p, p/k > is inheritable 
in q if Vs(S,plk,q) = o. We then say that the signature 
< ?r,cp,p/k > holds in q. 0 

Definition 3.6 (Inherited Clauses) Let P be a pro- 
gram, ]P] be its Herbrand instantiation, 2 be the ground 
closure of <, cl = A +- E in ]li’], contezt(cl) = o, and 
pred(d) = p/k. Then cl is inherited in q if the signa- 
ture < n,cp,p/k > holds in q (i.e., Vs(?,p/k,q) = r) and 
V,(?,p/k,q) = o. We say, q code inherits cl if ‘p = code, 
otherwise it value inherits cl, i.e., cp = val. Cl 

It is important to observe the difference between code in- 
heritance and value inheritance. The code inherited clause 
may be obtained by replacing every occurrence of o in cl 
by q, i.e., cl’ E (A + @[o/q] . This means that if q code 
inherits cl from o, then d[o/q] holds in q if G[o/q] holds in 
q. In contrast, if q value inherits cl from o, then A holds 
in q if 6 holds in o, i.e., if A holds in o. 

Example 3.1 Interested readers may verify that the 
method income/l in gta is indeed code inheritable 
in sally, i.e., Vs(S,income/l, sally) = gradstud, 
V,(S, income/l, sally) = gta, S={gta::gmd-stud, 
gta::faculty, joecgmd-stud, kellyEgmdAud, johnEfaculty, 
maxEfaculty, sallycgta, sueEgta}, and that grad-stud de- 
fines the signature <pub,code,income/l>. Hence, as an- 
ticipated from Definition 3.6, we derive sally:income(X)+- 
stipend(S), taship(T), X=S+T from clause (19) in 
database D of Example 2.1 as a result of gta:income(X)+ 
stipend(S), taship(T), X=S+ qgta/sally]. 0 

4 Semantics Based on Rewriting 
We take the rewriting baaed approach to give semantics 
to our language. The primary reasons for this are the fol- 
lowings. Inheritance (value inheritance and code inheri- 
tance) and encapsulation in our set up necessitate the use 
of meta-knowledge not available in the source programs. 
The traditional fix point operator can not handle such 
knowledge and the standard proof techniques become in- 
applicable forcing us to develop new operators and proof 
techniques. While such techniques are not forthcoming, 
we are ready to accept the cost associated with rewriting 
based evaluation techniques for the time being. Although 
the semantics is not direct, it sheds light on the working 
principles of the language that can be exploited to develop 
a direct semantics in future. 

To be able to give semantics to Datalog++ programs in 
Datalogneg , we must be able to capture inheritance and 
encapsulation with all their intricacies and complexities 
solely by using the machineries in Datalognes. Hence the 
goal here is to obtain a purely deductive program that en- 
codes the semantics of the source program but does not 
lend itself to non-monotonic reasoning, which appears to 
be the principal obstacle in devising a logical characteriza- 
tion of object-oriented languages. Furthermore, we would 
like to make sure that the two semantics, i.e., Da&log++ 
and Datalogneg , are identical and intended. 

gNote that, the term replacement [o/q], in general [p/r], is 
different from usual definition of substitutions where only vari- 
ables are replaced by terms (e.g., 0 = {X/o,}). 

In the following sections we first develop a theoretical 
basis to reduce inheritance and encapsulation to pure de- 
duction. The techniques we develop are called i-completion 
and context resolution. We then develop a suitable tmnsla- 
tion function r that encodes every i-completed and context 
resolved Datalog++ program into a Datalognes program 
which preserves the intended semantics of every source pro- 
gram. Observe that the reduced program in Datalog”=s is 
computable but the Datalog++ program is not. 

4.1 Disassembling Class Structures 

Recall that signature definitions in Datalog++ are com- 
pound non-Horn expressions. To be able to use the signa- 
ture expressions effectively, we break the structure of the 
class description, i.e., disassemble the class definitions, as 
follows. 

Definition 4.1 Let P = (C, <,P,II) be a Da&log++ 
program. Then the disassembled program P’ = (C’, <’ 
,!F’,li”) of P is such that <I=<, !@’ = p, and 17’ = 17, 
and C’ is the smallest set of expressions1o obtained es fol- 
lows from every class structure definition oC in C: 

l add an expression o[oC] in C’, 
l for every superclass os of oC, add fl[oC,os] in C’, 
l for every class signature definition of the form 

<“,‘p,p/k>,adda,[o,,~,cp,p/k]inC’, 
l for every instance signature definition of the form 

< A, (p,p/k >, add (T~[o~, 7r, cp,p/k] in C’, and 
0 for every control definition of the form 

< reject 7 p/k from oa >, add p[y,p/k,o,,o,] in 
C’. 

4.2 Exposing Clause Locality Through L- 
closures 

The notion of clause locality introduced in section 3 is, 
however, a meta-knowledge and is not explicitly captured 
in a Datalog++ program. L-closure defined below helps 
syntactically expose this important piece of knowledge im- 
plicitly assumed by every Datalog++ programmer. 

Definition 4.2 Let P = (C, <, 9, n) be a disassembled 
Datalog++ program. Then the l-closure P* = (C*,<*, 
!I’*, II*) of P is the smallest set of expressions such that 

l C’ = Z, <*=<, iP* = !P and II C li’*, 
l whenever a local clause of the form o : p(tl, . . , tk) +- 

6 E U*, then also the expression X[o,p/k] E II*. 

The expression of the form X[o,p/k] captures the fact that 
a method predicate p of arity k is locally defined in object 
o. Once we have the knowledge about the locality in this 
form and the signature expressions in C’, we can read- 
ily determine the inheritability of signatures and methods 

lOObserve that the expressions in C’ are not in the language 
of Datalog++, nor they are in Datalognes. The goal here is 
to recognize them as special expressions which will ultimately 
be converted to Datalognea vocabulary. The same remark ap- 
plies for the expressions introduced in the next few sections. 
To distinguish between the Datalog++ formulas and these ex- 
pressions, we will call them reduction expressions since they are 
introduced during the reduction process. For simplicity, we will 
call Datalog++ formulas and reduction expressions as expres- 
sions in the rest of this paper. 
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in II* using the 0, and V, functions presented in sec- 
tion 3. Let the expressions of the form w,[p/lc, o, q]” and 
w,[p/k, o, q, ‘p] denote the fact that the object o inherits 
from q respectively the signature for p/k, and the method 
p/k with mode cp. We can now use this explicit expressions 
to capture inheritance of methods with overriding and con- 
flict resolution. 

4.3 Inheritance Based on I-completion 

Consider rule (2) in Example 2.1. Since this clause is local 
to grad&& it computes an income value for the class 
object grad-stud. Recall that the language itself does not 
have any mechanism to inherit this rule to, say, an instance 
object joe of grad-stud. Since we allow the context of a 
local clause to be a term as well, we may rewrite rule (2) 
as follows: 
(2’) V:income(X) +- stipend(X); 

vis a vis Definition 3.6. We will discuss the second ap- 
proach to capture this phenomenon later when we discuss 
the translation algorithm to Datalogneg because it is possi- 
ble to axiomatize value inheritance. Observe a subtle issue 
here. Since the signature definitions are independent of the 
method definitions, and the signatures may be inherited 
from any arbitrary superclass (other than the class from 
where the method definition is being inherited), seemingly 
there is no easy way to determine whether a local clause 
is to be value inherited or code inherited. Consequently, 
we are forced to do both for a single rule. However, since 
inheritability is a total function and it does not differenti- 
ate between the modes, all we know is that the definition 
corresponding to a method, say, p/k is inheritable. Hence 
only one of the two rewritten rules will become active at 
run time. 

4.4 Encapsulation Through Context Resolu- 

and thus make this rule local to every object in the 
database which, however, is not our intention. To make it 
meaningful, we must restrict the instantiation of the vari- 
able V to only those objects which must inherit this rule. 
This is accomplished by adding the inheritability subgoal 
as follows12 : 

tion 

Encapsulation is an issue that did not receive proper atten- 
tion from the logic programming community so far except 
perhaps in the works by Miller [17], Kifer et al. [12], and 
by Bugliesi and Jamil [S]. While Miller addresses this issue 
in a logical way, his semantics is too restrictive and hand 

(2”) V:income(X) e stipend(X), w,[income/I,V,gradstud,code]; coded, and actually is not in the spirit of object-oriented 
logics. Kifer’s approach to encapsulation is meta-logical 
and does not tackle the issue in a computationally efficient 
way. The language proposed in [S] addresses the issue in 
a more direct and intuitive way and provides a basis for 
a logical analysis of encapsulation in logic based object- 
oriented languages. While the setting is restricted in [6], 
we exploit the basic theory and fully extend the idea in our 
present paper. 

That is, rule (2”) now applies to those objects V such that 
V can legitimately code inherit income/l from grad-stud 
where it is originally defined. Observe that rule (2”) (or 
the Datalogneg version of it) is a purely deductive rule with 
a built-in inheritance mechanism. We will revisit this is- 
sue again in section 5 and discuss its elegance with respect 
to, for example, works proposed in [l, 3, 81. The infor- 
mal presentation above is the idea behind the so called 
i-completion which is formalized below. 

Definition 4.3 Let P = (C, <,!P, II) be an l-closed pro 
gram. Then the i-completion of P, denoted Pi = (Ci, <i 
, @I”, Iii) is the smallest set of expressions such that 

l Ci = C, <i=<, and Pi = !P, 
l for every clause Cl s A +- E E Ii’, add a clause Cl’ G 

(4 b/VI +- (6) WV1 7 um[p/k, V, o, code] E ZIi such 
that the contezt(C1) = o, pred(d) = p/k and V is a 
distinct variable not occurring in Cl. 

Notice that i-completion can only handle code inheritance, 
hence value inheritance, which is a much simpler problem, 
must be handled separately. There are two ways to address 
this issue -- (i) by rewriting every rule in II, or (ii) by 
adding an axiom to II’. For example, to value inherit 
avg-income/l in joe from grad-stud (rule (3)), we may write 
(3’) V:avg-income(X) +- gradstud<avg-income(X), 

This rewriting for value inheritance, as shown above in 
rule (3’), is costlier than our alternative approach. Observe 
specially the rewriting of the avg-income/l subgoal in rule 
(3’) above that encodes the meaning of value inheritance 

1 1 We, however, do not make use of the expression wS [p/k, 0, q] 
in this paper for i-completion based signature inheritance. The 
reason for this is that we do not yet allow signature definition 
using clauses in Datalog++. 

12Contrast this approach to the negation based approach, for 
example in [I]. We present a discussion on their differences in 
section 5. 

Let the expression n[os, op < p(ar, . . , uk)] denote the 
fact that object os (sender) is sending a message to object 
or (receiver) to evaluate the method p(al, . . . ,uk) in or. 
or will respond to this message only if p/k is accessible 
in 0,. for os (the rules for method accessibility may be 
found in [lo]). The accessibility function presented below 
formalizes these rules. 

Definition 4.4 (Method Accessibility) Let S be a set 
of (ground) signature expressions, I be a set of (ground) 
is-a atoms, p/k be a predicate symbol, os and or be two 
object symbols. Then the accessibility of method p/k in 
the object oT. with respect to os is defined by the context 
resolution function r as follows: 

if one of the following condi- 
[ ltions holds: 

. 08 =or, 

l 0s # or, and 07 I! 05 
true 

holds, or 

T(S,p/kos,or) = ( 
.08 # Or,T = pub, 

and ((~C[G, nr, v,plk]ES 
and V,(I,p/k,or) =G) 
or (oi[oc, nTT, ‘P,P/~IES and 
V,(l,p/k,o,)=oc)) holds 

L false, in all other cases. Cl 

Let the expression &/k,or,oS] state the fact that p/k is 
accessible in object 0,. by object os. Consider now rule (8) 
in Example 2.1. We first transform rule (8) as follows to 
capture the context of the message call. 
(8’) kelly:income(X) t g[kelly,john<salary(X)]; 
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Then we finally transform the rule as follows to resolve the 
context. 
(8”) kelly:income(X) + john<salary(X), e[salary/l,john,keIly]; 

Now, the expression e[salary/ljohn,kelly] will evaluate to 
true only if salary/l is public or kelly is a superclass of 
john. From the database description, we know that none 
of them are true, and hence the implication fails as ex- 
pected. The following definition formalizes the intuitive 
observations above. 

Definition 4.5 Let P = (C, <, p, n) be an i-completed 
Datalog++ program. Then the context resolution of P, 
denoted PC = (Cc, <‘, @lie, DC) is the smallest set of ex- 
pressions such that 

l Cc = C, and cc=<, 
l for every global clause Cl = A +- B E !J’, add Cl’ to 

9’ such that Cl’ = oT : A +- 6, 
. for every query clause Cl = t Br, . . . , & E p, add 

Cl’ to rY” obtained from Cl as follows: 

- Cl=Cl’, 
- for every t3i E Cl’, such that 0 5 i 5 n 

and Bi is a message predicate, pred(Bi) = p/k, 
recipient(&) = or, add &/k,o,-, oT] as &+I 
in Cl’, 

l foreverylocalclauseCl~dt&,...,&~E,add 
Cl’ to II” obtained from Cl as follows: 

- Cl = Cl’, 
- for every Bi E Cl’, such that 0 < i 5 n and 

context(C1) = oS do the following: 

* if 
Bi is a message predicate add &/k, or, os] 
as &,+I in Cl’ where contezt(C1) = os, 
recipient(&) = or, pred(&) = p/k and 
OS Or. 

* if 8 i is a (self) predicate then replace Bi as 
OS < ai. 

Notice that an accessibility expression is added only when 
it is necessary to do so - that is the addition is avoided 
when the terms representing the sender and receiver ob- 
jects are identical, implying a self invocation. Also notice 
that the global clauses are assigned to the system object 
(doing so does not disrupt the semantics of the programs) 
and queries are evaluated in the context of system object 
oT the reason for which is described in [6] and should be 
easy to see. 

4.5 Datalogneg Rewriting of Datalog++ Pro- 
grams 

We are now ready to define an algorithm to reduce ev- 
ery Datalog++ program to Datalogneg. This requires US 

to develop a translation function r as stipulated in Def- 
inition 4.6 that will map every Datalog++ expression to 
Datalogneg expressions. We proceed as follows. 

Given any Datalog++ expression 4, its encoding into 
Datalogneg , denoted 6, is given by the following recursive 
transformation rules. In the following, T is an identity 
function on terms and symbols in Datalog++. 

l Encoding of complex formulas: 

- T(d + al,. . . ,&) = T(d) + +I),. . . , +m) 
. Encoding of atomic Datalog++ formulas (given case 

by case): 

- 
7(p(a1,. . . ,ak)) = rel(p,arg(al, . . . ,ak))13. 

- T(OT<<P(O1) . . . ,ak)) = ‘el(p,arg(a17.. . ,ak)). 

- T(OT :p(a1,... , Ok)) = rel(p, aV(alj. . . ? ale)). 

- T(o:p(al, . . . ,ak)) = meth(o,p, k,av(al, . . . , 
ak)) when o # oT. 

- 7(o<p(a1,.. . ,ak)) = meth(o,p, k,arg(al,. , 
ak)) when 0 # oT. 

- ~(0 E q) = ins(0, q). 
- T(O :: q) = sub(o,q). 

s Encoding of reduction expressions (given case by 
case): 

- ~(a[o,]) = class(oc). 

- ~(fl[oc, os]) = sub(oc, 0.4. 
- T(o&, n, cp,p/kl) = sig(oc, K, CP,P, k, class). 

- T(u~[o~, A, cp,p/k]) = sig(o,, T, (p,p, k, ins). 

- +[-f,P/k, ocr 0~1) = dr,P,k, oc, a). 

- T(X[O,p/k]) = ioc(o,p, k). 

- T(um[p/k, o,q, cp]) = meth-inh(p, k, o,q, cp). 
- T&/k, or, 0~1) = vis(p, k, or, 0.~). 

4.6 Reduction 

Finally, we have the following definition for inheritance 
and encapsulation reduced first-order Datalog++ programs. 
Let the reduction expressions denote the set of meta- 
expressions introduced in a Datalog++ program during, 
disassembling, l-closure, i-completion and context resolu- 
tion 

Deflnition 4.6 Let P be a Datalog++ program, and T 

be a translation function for every expressions in P Let 
PO,, PO,, and Pr be Datalognes programs that imple- 
ment respectively the V,, V,, and r functions. Also 
let Pi,, and Pval be Datalogneg programs for computing 
the reflexive transitive closure 1: from < and the value 
inheritance axiom respectively. If PL is a disassembled, 
l-closed, i-completed and context resolved program of P 
then P, s T(P’) U Pv, U Pv, U Pr U pi,, U Pva[ is the 
inheritance and encapsulation reduced Datalogneg program 
of the Datalog++ program P. 

The reduction algorithm can be given as follows as sug- 
gested by Definition 4.6. Note that the programs PO,, 
PO,, Pr, Pi,, and Pval are already in Datalogneg. 
Input: A Datalog++ program P. 
Output: A reduced program P, of program P 

in Datalogneg . 
begin 

- P’ = Apply disassembling to program P. 
- P’ = Apply l-closure to program P’. 
- Pi = Apply i-completion to program P*. 
- PC = Apply context resolution to program P’. 
- P, = T(P”) U PO, U PO,,, U PT U Pi,, U Pval. 

end. 
Note that, so long P remains a definite program, the reduc- 
tion P, is always stratified. The inheritability axioms we 
introduce as part of the implementation for PO, and Pv,,, 
contain negative literals and thus necessitate Datalognes . 
However, the rules in Pv, and Pv,, are locally stratified 
as shown in [lo). 

r3Note that ~(p(ar, , ak)) = p(al, ) as) is also possible. 
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5 Related Research and Implementa- 
t ion Issues 

It is easy to see that a one pass compiler for Datalog++ 
can be developed which can reduce the program in a single 
scan. This is possible because of the techniques presented 
in this paper. Recall that none of the techniques presented, 
for example disassembling, l-closure, i-completion and con- 
text resolution, require to inspect an expression other than 
which is being reduced. This is not true for most other 
proposals including [l, 3, 81. In their cases, to disallow 
application of clauses, at least, a hierarchy computation is 
essential. If the hierarchy depend on inherited properties, 
then a rewriting is not really possible. We do not have 
such serious limitations. In fact, every and any Datalog+’ 
database is Datalogneg reducible. We now discuss some 
of the implementation and system related issues that in- 
fluenced our design in comparison to few representative 
proposals. 

5.1 Compile Time Inheritability 

It is possible to compute the inheritability expressions at 
compile time. This is possible only if the class hierarchy is 
static - no rules of the form o :: p +- D exists in P such 
that G contains any message atom. A dynamic computa- 
tion of inheritability is always possible. Only difference is 
that, we may have to accept multiple minimal models as 
opposed to a least model. Note that, for every reduced 
Datalog++ program, we currently have a least model. Ob- 
serve that by design, our class hierarchy is static while 
we allow instance membership to be dynamic (rules of the 
form o E p +- G) since it does not affect the inheritabil- 
ity. The programs P-Q, and Pv,, added during reduction 
computes inheritability of signatures and methods at run 
time which involves (only) negation computation and thus 
slowing down the execution of queries. It, appears that if 
we accept programs with static class hierarchies, we can 
avoid negation computation all together by procedurally 
computing inheritability at compile time and improve per- 
formance. Another advantage of a compile time inheri- 
tability computation is that we can now throw away most 
of the reduction expressions and make the target program 
more neat and compact. 

5.2 Efficiency of Static Overriding 

We took the so called static overriding [l] approach to 
inheritance14. While it is possible to adopt dynamic in- 
heritance a la Datalogmeth [l] and F-logic 1121, we think it 
has serious practical drawbacks. For example, consider the 
following code fragment adapted from [I]. 
1’1 - employee:socins(Y) +- salary(Z), Y=O.l*Z; 
~2 - wstudent:socins(50) +- dept<paystax(wstudent,X), 

salary(S), S<SOO; 
~3 - wstudent::employee; 

In this case, if we are to verify the applicability of 
~2 in wstudent, we must also compute the subgoal 
dept<paystax(wstudent,X) which in turn may require us 
to compute another message subgoal in a chain reaction 
fashion -- virtually forcing us to compute a huge portion of 
the database only to discover later that salary(S), Ss500 
is false or dept<<paystax(wstudent,X) is false. In contrast 

14Recall that the database systems such as 02 [15], Orion [13], 
and Gemstone [16], and programming languages such as Cf+ 
[19], and Smalltalk [4] take our approach. 

we believe that overriding based on definition makes bet- 
ter sense from a practical point of view. We regard the 
above program as ill-conceived and a case of poorly de- 
fined method, i.e., if we have to apply r1 in wstudent if ~-2 
should fail. In our framework we would include the fol- 
lowing rule to alleviate the problem and to complete the 
definition for socins/l in wstudent. 
7-4 - wstudent:socins(Y) +- salary(Z), Z>500, Y=O.l*Z; 

As another example, consider the following database. 
~~ - employee:income(60K); 
~2 - wstudent.:income(l5K); 
~3 - wstudent::employee; 

In [I], wstudents will inherit both 60K and 15K if static 
inheritance is adopted which may not make sense for many 
applications. Similar remark applies for [8, 21. Dynamic 
inheritance also does not come to rescue us from this un- 
wanted situation. But in our case, we will inherit neither 
considering it as an inheritance conflict and can emit an 
error message if desired. We also are able to choose one 
of the inheritance if it seems appropriate. This is possi- 
ble because of our inheritability function and i-completion. 
Static overriding in OOLP+ [8] is even more restrictive. In 
OOLP+, users have to override methods using keywords in 
the class definition practically making it hand coded and 
defeating the spirit of inheritance to a large extent. 

5.3 Completion Based Rewriting 

It is easy to notice the superiority of our completion based 
rewriting of local clauses as opposed to negation based 
blocking of rule application in [I] or the Prolog cut op- 
erator in [8]. In our case, we add an inheritability expres- 
sion of the form um[p/k, V, o, code] to every local clause 
with appropriate term replacement which does not re- 
quire inspection of any other rule. Also the expression 
wTn[p/k, V, o, code] is computable either statically at com- 
pile time or dynamically at run time. But in the case of [I], 
for every class c that has a local definition, we are forced to 
add a subgoal of the form -c(X) to the rule. In fact, this 
forces us to hand code the inheritance for every class de- 
feating the purpose of declarative programming. Besides, 
if all the classes, at the worst, overrides a method, we will 
have to include each one of the classes as -c(X) in the rule. 

Furthermore, the approach in [l] assumes that only 
classes may override a method (or state variable) but not 
instances. This is a quite restricted view of the databases. 
Consider, for example, a football.player database where we 
would like to define that all instances of a player class have 
a default height of 6 feet while the individual instances are 
allowed to override this value with their own. This very 
common phenomenon can not be captured in [l] while can 
very easily be captured in ours. While with proper tun- 
ing it is possible to capture this in (11, it readily becomes 
awkward and computationally infeasible. 

5.4 Encapsulation and Context Resolution 

Probably for the first time, we have introduced a sound and 
effective semantics for encapsulation in deductive systems 
with inheritance. A theoretical basis for our approach may 
be found in [S]. The rewriting based on context resolution 
and the visibility function r together form the basis for 
encapsulation in Datalog++. None of the works, to our 
knowledge, so far addressed this issue. Notice that the 
function r can not be computed at compile time since it 
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depends on inheritance and involves network of visibility 
relationships. 

6 Conclusion and Future Works 
In this paper, we presented a langua e called the 
Datalog++. The semantics of Datalog +$ is given in 
Datalogneg by reducing inheritance and encapsulation to 
pure deduction. Several meta-logical constructs enriched 
the features of our language and the reduction was neces- 
sary to develop a translational semantics of these features 
in the language. We also provided several computable func- 
tions to compute the so called inheritability and visibility 
of methods, and demonstrated that our completion based 
technique allows flexible modeling of the applications and 
supports an object-oriented perception of the world. 

We believe that the semantics developed in this paper 
has a far reaching influence on the design of the deductive 
object-oriented languages. It shows that certain features 
that are believed to be difficult to address logically, can 
indeed be captured logically. Since a logic program (the 
reduced Datalogneg program) can be developed to model 
object-oriented features (as demonstrated in this work) in 
an indirect way, perhaps the working principle of these fea- 
tures can be studied and isolated, and given a full logical 
characterization. We thus believe that a direct semantics 
for every feature we introduced in this paper can be devel- 
oped. 

Our work can be extended in several different ways. It 
seems appropriate for some applications to have a choice 
to override methods dynamically or statically based on the 
need of the application. For some applications, a method 
may call for monotonic inheritance and not override at all. 
We think, giving such a choice to application designers will 
result in a flexible design environment. While Datalogneg 
and CORAL has built-in optimization mechanisms, specific 
Datalog++ optimization techniques may be possible that 
utilizes knowledge specific to object-oriented paradigm. Fi- 
nally, update can be accommodated as an orthogonal fea- 
ture as it was addressed in [3]. These are some of the issues 
we plan to investigate in our future research. 
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