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Abstract 

Recent results in the Rio project at the University 
of Michigan show that it is possible to create an 
area of main memory that is as safe as disk from 
operating system crashes. This paper explores 
how to integrate the reliable memory provided by 
the Rio file cache into a database system. We pro- 
pose three designs for integrating reliable mem- 
ory into databases: non-persistent database buffer 
cache, persistent database buffer cache, and per- 
sistent database buffer cache with protection. 
Non-persistent buffer caches use an I/O interface 
to reliable memory and require the fewest modifi- 
cations to existing databases. However, they 
waste memory capacity and bandwidth due to 
double buffering. Persistent buffer caches use a 
memory interface to reliable memory by mapping 
it into the database address space. This places 
reliable memory under complete database control 
and eliminates double buffering, but it may 
expose the buffer cache to database errors. Our 
third design reduces this exposure by write pro- 
tecting the buffer pages. Extensive fault tests 
show that mapping reliable memory into the data- 
base address space does not significantly hurt 
reliability. This is because wild stores rarely 
touch dirty, committed pages written by previous 
transactions. As a result, we believe that data- 
bases should use a memory interface to reliable 
memory. 
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1 Introduction 
Current database systems store data on disk and in 

memory. Disks are considered stable storage-they are 
assumed to survive system crashes and power outages. On 
the other hand, database systems traditionally assume that 
the contents of main memory (RAM) are lost whenever 
the system crashes [Gray81, Haerder831, an assumption 
that appears to have its roots in the switch from core mem- 
ories to volatile DRAM [Gray78]. 

Memory is considered unreliable for two reasons: 
power outages and software crashes. Memory’s vulnera- 
bility to power outages is straightforward to understand 
and fix. A $100 uninterruptible power supply can keep a 
system running long enough to dump memory to disk in 
the event of a power outage [APC96], or one can use non- 
volatile memory such as Flash RAM [Wu94]. Critical 
database installations often use uninterruptible power sup 
plies to protect against power failure. Memory’s vulnera- 
bility to software crashes is more challenging to fix; thus 
database systems assume the contents of buffers in mem- 
ory are lost when either the operating system or database 
system crashes. 

The assumption that memory is unreliable hurts data- 
base performance and complicates database system 
design. Systems use strategies such as logging and group 
commit to minimize disk I/O, but these strategies compli- 
cate locking and recovery and do not improve commit 
response time. Even with logging and group commit, disk 
bandwidth is a significant and growing bottleneck to high 
performance (Figure 1) [Rosenblum95]. 

Recent results in the Rio project at the University of 
Michigan show that it is possible to create memory that is 
as safe as disk from operating system crashes [Chen96]. 
This paper explores how to integrate the reliable memory 
provided by the Rio file cache into a database system. In 
particular, we examine how different software designs 
expose the memory to database crashes. We evaluate the 
reliability of three designs: 
l I/O interface (non-persistent database buffer 

cache): Hide the reliable memory under the file system 
interface and use file-system operations (read/write) to 
move data to the reliable memory. Databases see the 
standard I/O interface to stable storage, and hence this 
design should be as safe as a standard database from 
database crashes. This design is attractive as it requires 
no database changes. 
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Figure 1: Database Execution Time Profile on Next- 
Generation Machines. This figure is taken from 
[Rosenblum95] and shows execution time of a database 
workload (Sybase SQL server running the TFCB benchmark) 
on three machine models. The time is normalized to the speed 
of the 1994 model. Without reliable memory, disk I/OS will be 
the first-order bottleneck to higher performance. 

l Memory interface (persistent database buffer 
cache): Map the reliable memory into the address 
space of the database system, and allocate the data- 
base’s buffer cache (or log) from this region. This 
increases the exposure of reliable memory to database 
crashes but eliminates the double buffering experi- 
enced by the I/O interface design. We can also achieve 
better performance than the first design as the database 
manages the buffer cache directly. 

l Memory interface with protection (persistent, pro- 
tected database buffer cache): Map the reliable mem- 
ory into the address space of the database system, and 
use virtual memory protection at the user level to pro- 
tect reliable memory from database crashes. This 
design offers more protection than the first two 
designs, but manipulating protections may slow perfor- 
mance. 
Our main conclusion is that mapping reliable memory 

into the database address space does not significantly 
decrease reliability. To our knowledge, this is the first 
work that measures how often data is corrupted by data- 
base crashes. 

2 Benefits of Reliable Memory 
This section summarizes the main benefits of reliable 

memory, which have been discussed and quantified by 
many studies [Copeland89, Bhide93, Lowe11971. 

Reliable memory can be used to store the log (or the 
tail of the log). Keeping the log in reliable memory 
removes all synchronous disk writes from the critical path 
of a transaction [Copeland89]. This decreases transaction 
commit time and can help to reduce lock contention and 
increase concurrency [DeWittM]. It also removes the need 
for group commit, which improves log throughput at the 

cost of increased transaction commit time. Storing the log 
in reliable memory can also decrease disk bandwidth due 
to logging, because many log records can be removed 
before being written to the log disk [DeWittM, 
Hagmann861. For example, undo records may be removed 
if they belong to transactions that have committed, and 
redo records may be removed if they belong to transac- 
tions that have aborted. Finally, critical information may 
be stored in the stable memory to help improve recovery 
time. For example, storing an appropriate pointer in reli- 
able memory can save scanning the log to find the last 
checkpoint [DeWitt84]. 

A more aggressive use of reliable memory is to store 
the database buffer cache, or to store an entire main-mem- 
ory database [GM92, Bohannon971. This makes all buffer 
cache changes permanent without writing to disk. Like the 
force-at-commit policy, this eliminates the need for check- 
points and a redo log in recovering from system crashes 
(partial redo) [Haerder83, Akyurek951. This simplifies and 
accelerates recovery, because there is no need to redo 
incomplete operations; each commit is a transaction-con- 
sistent checkpoint. Recovering from media failures (global 
redo) still requires a redo log; however, redundant disk 
storage makes this scenario less likely [Chen94]. Since 
undo records can be eliminated after a transaction com- 
mits, removing the redo log implies that no log records 
need be written to disk if memory is large enough to con- 
tain the undo records for all transactions in progress 
[Agrawal89]. In addition, storing the database buffer cache 
in reliable memory allows the system to begin operation 
after a crash with the contents present prior to the crash (a 
warm cache) [Sullivan93, ElhardtM, Bhide931. 

Storing the log and/or the buffer cache in reliable 
memory can thus simplify and accelerate database sys- 
tems. A recent study shows that using a persistent database 
buffer cache can yield a system 40 times faster than using 
a non-persistent buffer cache, even when both run on reli- 
able memory [Lowe1197]. Figure 2 compares the perfor- 
mance of three systems on a workload based on TPC-B. 
RVM is a simple transaction system with a redo log and 
achieves about 100 transactions/second without reliable 
memory [Satyanarayanan93]. Running RVM on Rio with 
an I/O interface to reliable memory speeds it up by a factor 
of 13. Vista is a transaction system tailored to run on Rio. 
By using a persistent buffer cache, Vista achieves a factor 
of 40 improvement over RVM, even though both run on 
Rio. Vista achieves this remarkable performance by elimi- 
nating the redo log, all system calls, and all but one copy. 
Vista also avoids the double buffering that causes RVM- 
Rio performance to drop at 100 MB. The performance 
improvement resulting from the simplicity of Vista-Vista 
is roughly l/10 the size of RVM-is hard to quantify but is 
probably also significant. 

3 The Rio File Cache 
The Rio file cache is an area of memory, maintained by 

the operating system, that buffers file system data 
[Chen96]. It is protected from operating system crashes by 
virtual memory protection, and this protection is enhanced 
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Figure 2: Performance Improvements with Reliable 
Memory. This figure shows the performance of three different 
transaction systems on a DEC 3000/600 with 256 MB memory, 
running a workload based on ‘PC-B. RVM is a simple 
transaction system without reliable memory. Running RVM on 
Rio (RVM-Rio) provides an I/O interface to reliable memory 
and speeds RVM up by a factor of 13. Vista uses a memory 
interface to reliable memory and achieves a factor of 40 speedup 
over RVM, even though both run on Rio. 

by configuring the processor to force all addresses through 
the translation-lookaside buffer. Protection adds negligible 
overhead when writing to a file using write system calls 
and does not affect the performance of mmap’ed files at 
all, because it changes only the kernel’s protection map. 
Upon reboot, the file cache is restored to the file system on 
disk, a technique called warm reboot. Six machine months 
of continuously crashing the operating system (about 2000 
crashes) showed that these techniques make the Rio file 
cache even safer from operating system crashes than a 
disk-based (write-through) file system. 1.1% of the 
crashes corrupted some data in a disk-based (write- 
through) file system, and 0.6% of the crashes corrupted 
some data in a file system using the Rio file cache. See 
[Chen96] for more details on these experiments and subse- 
quent improvement in performance. 

The goal of this paper is to explore how to use the Rio 
file cache to provide reliable memory for databases. Data- 
base systems traditionally encounter two problems in try- 
ing to use buffer caches managed by the operating system 
(the file cache) [Stonebraker81]. 

First, buffer caches managed by the file system make it 
difficult for the database to order updates to disk. These 
writes to disk need to be done in order to obey the con- 
straints imposed by write-ahead logging [Gray78]. To 
order updates to disk, databases either use fsync or bypass 
the file cache entirely using direct I/O. The Rio file cache 
solves this problem completely, because data is persistent 
as soon as it enters the file cache. Thus, databases control 
the order of persistence by controlling the order that I/O is 
done to the file cache; no fsync is needed. 

Second, databases can manage memory more opti- 
mally than a file system can, because databases know 
more about their access patterns. Our second software 
design (Section 5.2) addresses this problem by mapping 
the Rio file cache into the database address space. This 
exposes reliable memory to database crashes, and we 
quantify the increased risk posed by this design. 

4 The Postgres Storage System 
We use the PostgresM database management system 

developed at U.C. Berkeley as the database in our experi- 
ments [Stonebraker87]. Postgres has a few unique features 
which are relevant to this paper, but our results should 
apply to more conventional databases as well. 

One novel aspect of Postgres is that it appends new 
data at commit. In contrast, conventional databases with 
write-ahead logs write undo/redo records at commit, then 
later write new data in-place over the old version of the 
data. Postgres’ scheme forces new data to disk at commit, 
whereas a conventional scheme forces only the log at com- 
mit (a no-force policy for the actual data). A force-at-com- 
mit policy decreases the amount of time database buffers 
are vulnerable to database crashes (Section 5.2). 

As with nearly all database systems, Postgres keeps a 
database buffer cache in main memory to store frequently 
used data. Transactions modify the buffer cache data, then 
force the modified data to disk on commit. Because Post- 
gres appends new data rather than overwriting it, a steal 
policy may be used without an explicit undo log. If a trans- 
action aborts, the old copy of the data can be recovered 
from disk. Our second software design (Section 5.2) 
makes the database buffer cache persistent and hence 
delays writing data to disk until after commit. 

5 Software Designs for Integrating Reliable 
Memory 

In this section, we describe three ways databases can 
include reliable memory and the implication of each 
design on reliability and performance. 

5.1 I/O Interface to Reliable Memory (Non-Persistent 
Database Buffer Cache) 

Our first design minimizes the changes needed to the 
database system by hiding the reliable memory under the 
file system interface (Figure 3). The Rio file cache is used 
automatically when accessing the file system, so the data- 
base need only write persistent data to the file system 
instead of to the raw disk (or via direct I/O). NO fsync is 
needed, because all file system writes to Rio are persistent 
immediately as soon as the data enters the file cache. In 
fact, Rio implements fsyncs as null operations. This 
removes all synchronous writes from the critical path of 
any transaction. This design requires no changes to the 
database; it needs only run on top of the Rio file system. 

Because the interface to stable storage has not 
changed, this design is as safe as a standard database from 
database crashes. Recall that the Rio file cache is responsi- 
ble for protecting and restoring the file system data if the 
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Figure 3: J/O Interface to Reliable Memory. This design 
hides the reliable memory under the file system interface. The 
database uses read0 and write0 system calls to write data to the 
reliable memory. This design uses a traditional, non-persistent 
database buffer cache and thus requires change to the database. 
Because the interface to stable storage has not changed, this 
design is as safe as a standard database system from database 
crashes. 

operating system should crash. This transparency and reli- 
ability incurs some costs, however. 

Using an l/O interface to reliable memory partitions 
main memory between the Rio file cache and the database 
buffer cache. The operating system would like the Rio file 
cache to be large so it can schedule disk writes flexibly and 
allow the largest number of writes to die in the file cache. 
But larger file caches reduce the size of memory available 
to the database. This partitioning creates two copies of 
data in memory (double buffering), one in the Rio file 
cache and one in the database buffer cache. Not only does 
this waste memory capacity, it also causes extra memory- 
to-memory copies. 

One possible solution to these problems is to eliminate 
the database buffer cache and have the database use the file 
cache to store frequently used data. This is likely to make 
memory less effective at buffering database data, however, 
because a database can manage its buffer cache more 
effectively than file systems can (databases have more 
information on usage patterns). Researchers have pro- 
posed various ways for applications to control memory 
[Harty92, Patterson95 Bershad95, Seltzer961, and eventu- 
ally this may enable the file cache to be as effective as a 
database buffer cache. At least for now, however, the best 

performance will be achieved by databases that wire down 
memory in their buffer caches and control it completely. 

5.2 Memory Interface to Reliable Memory (Persistent 
Database Buffer Cache) 

Our second design maps the Rio file cache directly into 
the database system’s address space using the mmap sys- 
tem call (Figure 4). The database system allocates the 
database buffer cache (or redo log) from this area and 
wires these pages in memory. This design allows the data- 
base to manipulate reliable memory directly using ordi- 
nary load/store instructions. 

Using a memory interface to reliable memory has sev- 
eral advantages over the first design. First, management of 
this area of memory is completely under database control. 
Hence no special support is required from the operating 
system to allow the database to determine replacement and 
prefetching policies. 

Second, this design eliminates double buffering and 
extra memory-to-memory copies. The database simply 
manipulates data in its buffer cache, and these changes are 
automatically and instantly permanent. Hence this design 
performs better than the non-persistent buffer cache (Fig- 
ure 2). 

Third, this design can simplify databases by eliminat- 
ing the need for redo logs and checkpoints (Section 2). 

Making the database buffer cache persistent leads to a 
few changes to the database. These changes are the same 
as those needed by a database using a steal policy 
[Haerder83]. The steal policy allows dirty buffers to be 
written back to disk (that is, made persistent) at any time. 
In particular, buffers may be made persistent before the 
transaction commits. This policy requires an undo log so 
the original values may be restored if the transaction 
aborts. Persistent database buffer caches require an undo 
log for the same reason, because all updates to the buffer 
cache are instantly persistent, just as if they had been sto- 
len immediately. 

Other designs are possible that map the Rio file cache 
into the database address space. For example, the database 
log could be stored in reliable memory. Or an entire data- 
base could be mmap’ed, and the database could trust the 
virtual memory and file system of the operating system to 
page in and out appropriate pages. This latter approach 
may be appropriate for situations where the database pro- 
gram is one of several concurrent jobs (perhaps a machine 
running a client database program). In general, however, 
we believe that databases prefer to manage their own 
memory. Because of this, we mmap only the database 
buffer cache, and we lock these pages in memory to pre- 
vent paging. 

The main disadvantage to using a memory interface to 
reliable memory is an increased vulnerability to software 
errors. The interface to stable storage with this design is 
now much simpler: load/store instructions instead of 
read/write system calls. Hence it is easier for a software 
bug in the database to accidentally overwrite persistent 
data [Rahm92, Sullivan9lal. This section discusses the 
increased vulnerability conceptually, and Section 6 com- 
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Figure 4: Memory Interface to Reliable Memory. This design 
maps the Rio file cache directly into the database system’s 
address space using the mmap system call. The database system 
can allocate its buffer cache from this region to make a 
persistent buffer cache. Access to stable storage (the persistent 
database buffer cache) takes place using load/store instructions 
to memory. This design eliminates double buffering and can 
simplify database recovery. However, database crashes can 
more easily corrupt stable storage than in the I/O interface 
design. 

pares quantitatively the chances of data corruption among 
the different designs. 

Consider the possible states of a database buffer. It 
may be clean or dirty, where dirty means the memory ver- 
sion of the buffer is different than the disk version. Dirty 
buffers may contain committed or uncommitted data. In 
our modification of Postgres95, we keep commit and dirty 
flags for each database buffer. After a database crash, we 
restore to disk only those pages that are marked as com- 
mitted and dirty. Dirty pages that are not yet committed 
are restored to their before-image using the undo log. The 
following compares the vulnerabilities of different buffer 
states for persistent and non-persistent database buffer 
caches. 
l clean: This state occurs when a piece of data is read 

from disk or when a dirty buffer is written back to disk. 
Buffers in this state are safe from single errors for both 
designs. To corrupt stable storage with a non-persistent 
buffer cache, the system would need to corrupt the 
buffer and later force it to disk (a double error). To cor- 
rupt stable storage with a persistent buffer cache, the 
system would need to corrupt the buffer and mark it as 
dirty (a double error). With either design, errant stores 

to buffers in this state may lead to corruption if other 
transactions read the corrupted data. 
dirty, uncommitted: This state occurs when a buffer 
has been modified by a transaction that is still in 
progress. Buffers in this state are equally vulnerable 
for both designs. In either design, stable storage will be 
corrupted if and only if the buffer is corrupted and the 
transaction commits. 
dirty, committed: This state indicates the buffer has 
been changed by a transaction and that the transaction 
has committed, but that the data has not yet been writ- 
ten to disk. 
Dirty, committed buffers can exist in a persistent data- 
base buffer cache, because data is not written to disk 
until the buffer is replaced. Buffers in this state are vul- 
nerable to software corruption; any wild store by 
another transaction can corrupt these buffers, and any 
change is instantly made persistent. 
With non-persistent buffer caches, dirty, committed 
buffers can exist if the database uses a no-force policy. 
Buffers are dirty and committed until being forced to 
disk, at which time they are marked as clean. However, 
non-persistent buffer caches keep these buffers safer 
than persistent buffer caches. This is because the 
recovery process for non-persistent buffer caches dis- 
cards memory buffers and uses the redo log to recover 
the data. Hence if the database system corrupts a buffer 
in this state and crashes soon afterwards, the corrupted 
data will not be made persistent. Corruption occurs 
only if the system stays up long enough to write the 
affected buffer to disk. 
Dirty, committed buffers make systems with persistent 
buffer caches more vulnerable to software corruption 
than systems with non-persistent buffer caches. Dirty, 
committed buffers are vulnerable for a longer period of 
time in a system with persistent buffer caches, particu- 
larly compared to systems using a force policy (such as 
Postgres). And systems with non-persistent buffer 
caches experience corruption due to these buffers only 
if the system remains up long enough to propagate 
them to disk. 

5.3 Memory Interface to Reliable Memory with 
Protection (Persistent, Protected Database Buffer 
Cache) 

Our third design also uses a memory interface to reli- 
able memory but adds virtual memory protection to pro- 
tect against wild stores to dirty, committed buffers (this 
scheme was suggested in [Sullivan9la]). In this system, 
clean or committed buffers are kept write protected. When 
a transaction locks an object, the page containing the 
object is unprotected; when the transaction commits, the 
page is reprotected. If multiple transactions use objects on 
the same page, the system reprotects the page when all 
transactions release their locks. 

This scheme protects the dirty, committed buffers that 
are more vulnerable with persistent buffer caches. It also 
protects clean pages, so this scheme can make persistent 

80 



r Fault ‘Qpe 

I initialization 1 

Example of Programming Error 

Correct Code Faulty Code 

numFreePages = count(fieePageHeadPtr) numPages = count(freePageHeadPtr) 

numPages = physicalMemorySizeJpageSize numPages = virtualMemorySize/pageSize 

while (flag) {body} I while (!flag) (body) I 
for (i=O; i40; i++j++) {body} 

function () { int i=O; .:.) 

for (i=O; i<lO; i++) {body} 

function () {int i; . ..} 

ptr = ptr->next->next; 

ptr = malloc(N); use ptr; use ptr; free(ptr); 

for (i=O; i<sixeUsed; i++) { a[i] = b[i]); 

ptr = ptr->next; 

ptr = ma&z(N); use ptr; free(ptr); use ptr 

for (i=O; i4zeTotal; i++) { a[i] = b[i]); 

for (i=O; i<size; i++) 

getwritelock; write(); freewritelock; 

for (i=O; i<=size; i++) 

write(); 

frf4pb); 
insertcbuf, index); insert(bufl,iudex); 

Table 1: Relating faults to progranunlng errors. This table shows examples of how real-world progranuning errors can manifest 
themselves as the faults we inject in OUT experiments. None of the errors shown above would be caught during compilation. 

buffer caches safer than non-persistent buffer caches. 
Because the virtual memory hardware uses a page granu- 
larity, this scheme exposes unrelated objects that happen 
to be on the same page as the locked object. The scheme 
does not prevent object-level locking, however, since this 
locking can be accomplished independently from our pro- 
tection mechanism. 

Section 6 measures how effectively the virtual memory 
protection scheme protects dirty, committed, pages from 
wild stores. The disadvantage of this scheme is that the 
extra protection operations may lower performance. 

6 Reliability Evaluation 
Persistent database buffer caches solve the double 

buffering problem by placing stable storage under data- 
base control. As discussed in Section 5.2, however, this 
design may be more vulnerable to database crashes. This 
section compares the reliability of the different designs 
quantitatively by injecting software bugs into Postgres to 
crash it, then measuring the amount of corruption in the 
database. We detect database corruption by running a 
repeatable set of database commands modeled after TPB- 
B [TPC90] and comparing the database image after a 
crash with the image that shouM exist at the point at which 
the crash occurred. 

6.1 Fault Models 

This section describes the types of faults we inject. Our 
primary goal in designing these faults is to generate a wide 
variety of database crashes. Our models are derived from 
studies of commercial databases and operating systems 
[Sullivan92, Sullivan9lb, Lee931 and from prior models 
used in fault-injection studies [BartongO, Kao93, 

Kanawati95, Chen96]. The faults we inject range from 
low-level hardware faults such as flipping bits in memory 
to high-level software faults such as memory allocation 
errors. We classify injected faults into three categories: bit 
flips, low-level software faults, and high-level software 
faults. Unless otherwise stated, we inject 5 faults for each 
run to increase the chances that a fault will be triggered. 
Most crashes occurred within 10 seconds from the time 
the fault was injected. If a fault did not crash the database 
after ten minutes, we restarted the database (and measure 
the amount of corruption as usual). This happened about 
l/3 of the time and led to one instance of corruption. 

The first category of faults flips random bits in the 
database’s address space [BartongO, Kanawati951. We tar- 
get three areas of the database’s address space: the text, 
heap, and stuck. These faults are easy to inject, and they 
cause a variety of different crashes. They are the least real- 
istic of our bugs, however. It is difficult to relate a bit flip 
with a specific error in programming, and most hardware 
bit flips would be caught by parity on the data or address 
bus. 

The second category of fault changes individual 
instructions in the database text segment. These faults are 
intended to approximate the assembly-level manifestation 
of real C-level programming errors [Kao93]. We corrupt 
assignment statements by changing the source or destinu- 
tion register. We corrupt conditional constructs by deleting 
brunches. We also delete rundom instructions (both 
branch and non-branch). 

The last and most extensive category of faults imitate 
specific programming errors in the database [Sullivan9 1 b]. 
These are more targeted at specific programming errors 
than the previous fault category. We inject an initiulia.ztion 
fault by deleting instructions responsible for initializing a 



variable at the start of a procedure [Kao93, Lee93]. We 
inject pointer corruption by 1) finding a register that is 
used as a base register of a load or store and 2) deleting the 
most recent instruction before the load/store that modifies 
that register [Sullivanglb, Lee93]. We do not corrupt the 
stack pointer register, as this is used to access local vari- 
ables instead of as a pointer variable. We inject an alloca- 
tion management fault by modifying the database’s malloc 
procedure to occasionally free the newly allocated block 
of memory after a delay of O-64 ms. Malloc is set to inject 
this error every 1000-4000 times it is called; this occurs 
approximately every 10 seconds. We inject a copy overrun 
fault by modifying the database’s bcopy procedure to 
occasionally increase the number of bytes it copies. The 
length of the overrun was distributed as follows: 50% cor- 
rupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4 
KB. This distribution was chosen by starting with the data 
gathered in [Sullivan9lb] and modifying it somewhat 
according to our specific platform and experience. bcopy 
is set to inject this error every 1000-4000 times it is called; 
this occurs approximately every 5 seconds. We inject o$- 
by-one errors by changing conditions such as > to >=, c to 
<=, and so on. We mimic common synchronization errors 
by randomly causing the procedures that acquire/free a 
lock to return without acquiring/freeing the lock. We inject 
memory leaks by modifying free0 to occasionally return 
without freeing the block of memory. We inject interface 
emrs by corrupting one of the arguments passed to a pro- 
cedure. 

Fault injection cannot mimic the exact behavior of all 
real-world database system crashes. However, the wide 
variety of faults we inject (15 types), the random nature of 
the faults, and the sheer number of crashes we performed 
(2250) give us confidence that our experiments cover a 
wide range of real-world crashes. Table 1 shows examples 
of how real-world programming errors can manifest them- 
selves as the faults we inject in our experiments. 

6.2 Reliability Results 

Table 2 presents reliability measurements of our three 
designs. We conducted 50 tests for each fault category for 
each of the three systems; this represents 2 machine- 
months of testing. Individual faults are not directly compa- 
rable because of non-determinism in the timing of the 
faults and differences in code between the different sys- 
tems; instead we look primarily at trends between the dif- 
ferent systems. 

Overall, all three designs experienced few corrup- 
tions-only 2-3% of the crashes corrupted permanent data 
over 2250 tests. This argues that, even with research data- 
base such as Postgres, software bugs may crash the system 
but usually do not corrupt permanent data. There are sev- 
eral factors contributing to Postgres’s robustness. First, 
Postgres has many programmer assertions that stop the 
system soon after a fault is activated. Detecting the fault 
quickly and stopping the system prevents erroneous data 
from being committed to the permanent database image. 
Second, the operating system provides built-in assertions 
that check the sanity of various operations. For example, 

heap II 0 I 0 I 0 I 
stack 0 0 0 

destination reg. 4 5 5 

source reg. 2 2 2 

delete branch 1 1 0 

delete random 
inst. II 2 I 2 I 2 I 

I, I I 

initialization 0 1 1 

pointer 0 0 0 

allocation 0 0 0 

copy overrun 0 0 0 

off-by-one II 5 I 5 I 3 I 
II I I 

synchronization 0 0 

memory leak II 0 
! 0 

I 
I 0 I 0 I 

II 1 

interface error 4 I 3 I 3 I 

Total 19 of 750 20 of 750 17 of 750 
(2.5%) (2.7%) (23%) 

DB2 Weights 

IMS Weights 
Table 2: Comparing Reliability. This table shows how often 
each type of error corrupted data for three designs. We 
conducted 50 tests for each fault type for each of three systems 
using the TIC-B benchmark as the workload. We show the 
corruption rate for three weightings: equal, DB2. and IMS. Even 
without protection, the reliability of the persistent database 
buffer cache is about the same as a traditional, non-persistent 
buffer cache. We have observed similar results in an earlier 
experiment using the Wisconsin benchmark [Bitton as the 
workload. 

dereferencing a NULL pointer will cause the database to 
stop with a segmentation violation. In general, faults that 
left the system running for many transactions (such as off- 
by-one and interface) tended to corrupt data more fre- 
quently than faults that crashed the system right away 
(such as heap and stack). 

We next compare the reliabilities of the three designs. 
The amount of corruption in all three systems is about the 
same. The differences are not large enough to make firm 
conclusions distinguishing the three systems, however we 
note that, as expected, the traditional I/O interface (non- 
persistent buffer cache) is slightly more reliable than the 
memory interface (persistent buffer cache) (2.5% corrup- 



kernel heap data error 

kernel stack data error 

3.3% 2.1% 

3.3% 2.1% 

1 destination reg. 11 data error 11 3.3% 1 2.1% 
II I, I 

source reg. data error 3.3% 2.1% 

I delete b lranch 

delete random 
inst. 

statement 
logic 

statement 
logic 

2.8% 3.9% 

2.8% 3.9% 

initialization 

pointer 

initialization 

pointer 

9.7% 11.1% 

15.9% 20.3% 

I allocation II allocation 11 12.4% 1 9.3% I 

I COPY ov ‘errun __ 

off-by-one 

copy overrun 

statement 
error 

8.3% 6.5% 

2.8% 3.9% 

I synchroniza- 
tion II 

synceza-T13.8% ) 8.3% ( 

I memory leak II memory leak II 5.5% I 6.5% I 
interface II interface 10.3% 13.9% 

Table 3: Proportional Mapping. This table shows how we 
map between the fault type in our study and those of 
[Sullivao92], and the corresponding weight assigned to each 
fault type. 

tion rate versus 2.7%). Also as expected, adding protection 
to the persistent buffer cache improves its reliability 
(2.3%). Protection can increase reliability over an I/O 
interface by trapping errant stores to clean buffers and 
dirty, committed buffers. 

As it is difficult to prove that our fault model repre- 
sents real faults, we present two other interpretations of 
the data by varying the weights associated with each fault 
type according to fault distributions published on DB2 and 
IMS [Sullivan92]. Sullivan’s study includes a detailed 
breakdown of software errors according to the following 
classification: deadlock and synchronization, pointer man- 
agement, memory leak, uninitialized data, copy overrun, 
allocation management, statement logic, data error, inter- 
face error, undefined state, and other. Table 3 shows the 
mapping between our fault categories and Sullivan’s stud- 
ies, together with the resulting weights. Undefined state 
and other are too vague to be precisely modeled, so we 
distribute their weights evenly across other categories. 

Our main conclusion is that mapping reliable memory 
directly into the database address space has only a small 
effect on the overall reliability of the system. This is con- 

sistent with the estimates given in [Sullivan9la, 
Sullivan93J. There are several factors that minimize the 
reliability impact of persistent buffer caches. First, most 
stores in Postgres are not to the buffer cache. Using the 
ATOM program analysis tool [Srivastava94], we found 
that only 2-3% of stores executed during a run .were to the 
buffer cache. Second, store instructions that are not 
intended to access the buffer cache have little chance of 
accidentally wandering into buffer cache space, especially 
with the vast, 64-bit virtual address space on DEC Alphas. 
As a result, most corruptions are due to corrupting the cur- 
rent transaction’s data. These uncommitted buffers are 
vulnerable to the same degree in all three systems (Section 
5.2). 

Thus, mapping reliable memory directly into the data- 
base address space does not significantly lower reliability. 
Combined with the advantages of persistent buffer caches 
(reliable memory under database control, no double buff- 
ering, simpler recovery), these results argue strongly for 
using a memory interface to reliable memory. Stated 
another way, the high-overhead I/O interface to reliable 
memory is not needed, because wild stores are unlikely to 
corrupt non-related buffers. 

7 Related Work 
Section 2 summarized the many benefits of using reli- 

able memory. In this section, we describe prior studies that 
have suggested methods for integrating and protecting 
reliable memory in databases. 

The study most closely related to this paper was done 
by Mark Sullivan in the context of the Postgres project 
[Sullivan9 1 a, Sullivan93]. Sullivan implemented two gen- 
eral methods for protecting database buffers from database 
errors using virtual memory protection. Expose page 
unprotects a page before writing to a record on the page 
and reprotects the page after the write is done. Our protec- 
tion model in Section 5.3 is very similar but does not 
reprotect the page until the transaction commits. Our 
method incurs fewer protection operations and is simpler 
to implement, because reprotection operations are local- 
ized to the commit function. Deferred write uses copy-on- 
write to make a private copy of a page for a transaction, 
then copies the data back on commit. Sullivan measures 
the performance overhead of these protection mechanisms 
for a debit-credit type workload to be 5-10% when manip- 
ulating a database contained in non-volatile memory (no 
disk activity) and 2-3% when manipulating a database too 
large to fit in memory and forcing data to disk. 

Sullivan evaluates the reliability impact of these pro- 
tection schemes by examining prior failure studies and 
estimating which fault categories were most likely to be 
affected. [Sullivan93] concludes that only 5-7% of errors 
are the type of error (wild stores) that would be prevented 
by his protection mechanism, although this ignores sec- 
ondary effects such as wild stores generated by other 
errors. [Sullivan91a] mentions as future work the type of 
fault injection studies performed in this paper. These fault 
injection studies can provide more detailed data than 
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extrapolating from prior failure studies, because the 
crashes are conducted under monitored environments. 

Other general means to protect memory include using 
separate processes [BartlettSl], replication [Liskovgl, 
Muller961, and software fault isolation [Wabbe93]. 

[Copeland discusses two organizations for integrat- 
ing reliable memory (safe RAM) in databases. A separate 
safe uses an I/O interface to reliable memory, while an 
integrated safe is similar to our memory interface to reli- 
able memory. [Copeland evaluates analytically the per- 
formance of the separate safe, but does not evaluate the 
effect on reliability of either organization. 

[Rabm92] examines different technologies that can be 
used as reliable memory (SSD, disk cache, extended mem- 
ory) but assumes these are not directly addressable by the 
processor. Hence he evaluates only the performance bene- 
fits of using an l/O interface to reliable memory. 

This paper extends the previous work in the following 
ways: 

We discuss the performance and reliability tradeoffs of 
different ways to integrate reliable memory provided 
by an operating system into a database. We also dis- 
cuss effects of persistent buffer caches on undo/redo 
logging and cache policies (force, steal). 
We conduct fault experiments to measure the reliability 
of the three designs (non-persistent buffer cache, per- 
sistent buffer cache, persistent buffer cache with pro- 
tection). 
Because tbe memory area we use is provided by the 
Rio file cache, the reliable memory area survives both 
database crashes and operating system crashes. Yet we 
do this while providing persistence to individual stores 
and without needing any extra disk activity. All other 
work that has provided a memory-mapped interface to 
reliable memory requires extra checkpoint/logging to 
disk. 

8 Conclusions 
We have proposed three designs for integrating reliable 

memory into databases. Keeping an I/O interface to reli- 
able memory requires the fewest modifications to an exist- 
ing database but wastes memory capacity and bandwidth 
with double buffering. Mapping reliable memory into the 
database address space allows a persistent database buffer 
cache. This places reliable memory under complete data- 
base control, eliminates double buffering, and simplifies 
recovery. However, it also exposes the buffer cache to 
database errors. This exposure can be reduced by write 
protecting buffer pages. 

Extensive fault tests show that mapping reliable mem- 
ory into the database address space does not significantly 
hurt reliability. This is because wild stores rarely touch 
dirty, committed pages written by previous transactions. 
Combined with the advantages of persistent buffer caches, 
these results argue strongly for using a memory interface 
to reliable memory. 
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