
Vertical Data Migration in Large Near-Line Document Archives
Based on Markov-Chain Predictions*

Achim Kraiss Gerhard Weikum

Department of Computer Science, University of the Saarland
PO. Box 151150, D-66041 Saarbrticken, Germany

E-Mail: (kraiss,weikum] @cs.uni-sb.de http:Nwww-dbs.cs.uni-sb.de

Abstract
Large multimedia document archives hold most of their data in

near-line tertiary storage libraries for cost reasons. This paper de-
velops an integrated approach to the vertical data migration he-
tween the tertiary and secondary storage in that it reconciles specu-
lative preloading, to mask the high latency of the tertiary storage,
with the replacement policy of the secondary storage. In addition, it
considers the interaction of these policies with the tertiary storage
scheduling and controls preloading aggressiveness by taking con-
tention for tertiary storage drives into account. The integrated
migration policy is based on a continuous-time Markov-chain
(CTMC) model,fijr predicting the expected number of accesses to a
document within a specified time horizon. The parameters of the
CTMC model, the probabilities of co-accessing certain documents
and the interaction times between successive accesses, are dynami-
cally estimated and adjusted to evolving workload patterns by keep-
ing online statistics. The integrated policy for vertical data migra-
tion has been implemented in a prototype system. Detailed
simulation studies with Web-server-like synthetic workloads indi-
cate sign$cant gains in terms of client response time. The studies
also show that the overhead of the statistical bookkeeping and the
computations for the access predictions is affordable.

1 Introduction

1.1 Problem Statement
Internet/WWW and Web-like intranet infrastructures gain in-

creasing importance as a medium for convenient information access
within large enterprises and across the world. While the narrowly re-
stricted bandwidth of the Internet currently limits the amount and
type of data that is offered on the Web (e.g., in electronic product cat-
alogs), a tremendous growth of multimedia data (images, videos,
animations, etc.) is expected in the near future with rapidly increas-
ing network bandwidth. We may soon see Web servers (probably
with a full-fledged DBMS behind them) that have to manage Tera-
bytes or even Petabytes of data and provide efficient access to mil-
lions of clients. In the following we will refer to the data objects of
such a server generically as documents.

Among the multitude of documents that are held by a server, typi-
cally only a small fraction is “hot”, that is, frequently accessed. Fur-

Permission to copy without .fee ull or purt of this muteriui is grunted
provided thtrt the uyies ure not mode or distributed .fi,r direct
commerciul udvuntuge, the VLDB copyright notice und the title of the
public&m und its dute uppeur, und notice is given that copying is by
permission ofthe Very Large Dutu Base Endowment. To copy otherwise,
or to republish, requires u .fee cm&or peciul permission .frum the
Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

thermore, the hot fraction will evolve over time; previously hot doc-
uments become “cold” (i.e., requested infrequently) but still need to
be archived for occasional access. For cost/performance reasons (cf.
[GP87]), cold documents, which may be accessed only once every
so many hours, should reside in tertiary storage libraries. Such li-
braries provide “near-line” access by keeping data on magneto-opti-
cal platters or tapes, generically referred to as volumes, that reside in a
robot-served jukebox with a certain number of drives, typically at
least one order of magnitude fewer drives than volumes. So, in prin-
ciple, all documents are available online, but the high latency of pos-
sible volume exchanges in the drives may incur response times of
more than 10 seconds or even minutes. Thus, it is crucial that the cur-
rently hot documents are indeed held on the secondary storage level
(i.e., the disks) of the storage hierarchy.

In the presence of evolving document popularities and access pat-
terns, the disks then essentially serve as a cache with regard to the ter-
tiary storage, and good cache replacement policies for variable-
length documents are extremely important for the overall server
performance. In addition, the vertical data migration between the ter-
tiary and the secondary storage and thus the cache hit rate can be fur-
ther improved by employing “intelligent” preloading policies, so
that the high latency of the tertiary storage can be masked from the
client in many cases.

Designing good replacement and, especially, preloading policies
for the vertical data migration between secondary and tertiary stor-
age is substantially more difficult than standard DBMS buffer man-
agement for a number of reasons:

The units of data migration, the documents, have a very high vari-
ance in their size. DBMS buffer management is well understood
for page granularity, but practical work on variable-size granule
caching policies has been limited to outdated operating system ar-
chitectures with non-paged memory and would at least have to be
re-assessed for the new application setting.

Prefetching into DBMS page buffers works excellent for sequen-
tial scans [TG84]. Preloading from tertiary storage, on the other
hand, can be beneficial for more complex access patterns, and
thus requires a much richer access-prediction model.

Overly aggressive prefetching may have a detrimental effect on
the cache replacement in that it possibly reduces the effectively
exploited cache size by prefetching data that may turn out not be-
ing accessed at all or only in the far future.

Both cache replacement and preloading interfere with the sched-
uling policy of the tertiary storage library, particularly, the policy
for exchanging volumes. Throughput considerations suggest
minimizing volume exchanges and using SCAN-like service pol-

* This work has been supported by the ESPRIT Long Term Research
Project No. 9141, HERMES (Foundations of High Performance
Multimedia Information Management)

246

icies on an individual volume, but this may adversely affect re-
sponse time. Both aspects have to be taken into account by the
vertical data migration policies.

5. Under high load, drive contention leads to queueing of document
requests at the tertiary storage. Speculative preloading would ag-
gravate the queueing delays of pending document requests.
Therefore, a good preloading policy needs to take into consider-
ation the utilization of the tertiary storage drives.

1.2 Contribution and Outline

This paper develops a unified approach to cache replacement and
speculative preloading, based on a stochastic model for predicting
document accesses, and integrates this vertical migration policy with
the scheduling policy of the tertiary storage library. In doing so, we
aim to minimize the response time of client requests. We are not
aware of any similarly comprehensive work on managing large near-
line document archives.

Technically, the major novelty of the paper lies in using a continu-
ous-time Markov-chain model and its underlying theory [Nel95,
Tij94] for predicting future document accesses. This model involves
estimating, through access monitoring, the transition probabilities
between documents that are successively requested within a client
session, that is, the probability that a client requests document j given
that its previous request accessed document i. We further monitor the
interaction times between successive session requests, and also the
arrival rate of new client sessions. From these parameters, we utilize
mathematical results on Markov chains to predict the expected num-
ber of accesses to certain documents within a specified time horizon.

Obviously, a Markov-chain model fits well with navigational ac-
cesses, where a client would start a new session by accessing some
“entry document” and then proceed along a hyperlink structure.
Navigational access seems to be typical for applications like tele-
teaching, virtual museums, and the like. However, the Markov-chain
model does in no way rely on this type of access mode. What it cap-
tures are the patterns of co-accesses: access to a certain document af-
fects the probability of accessing a certain other document in the near
future. Thus, the Markov-chain model is applicable equally well to a
descriptive access model with high-level queries; for example, the
transition probabilities between documents would reflect if two doc-
uments contain semantically related information and consequently
both appear in the result set of many queries. Furthermore, client
caching of documents is automatically factored out, as requests
served by the client cache are not known to the server’s bookkeeping
and are thus not considered in the parameter estimations, which is
perfectly adequate.

The Markov-chain model pursued here is substantially richer (in
terms of capturing more workload information) than a class of mod-
els that merely aim to estimate the stationary access probabilities of
the various documents, often referred to as the “heat” of a document
[Co88]. Taking into consideration the current state of an active client
session, i.e., the last requested document, leads to much better pre-
dictions than the simpler stationary-probability models. On the other
hand, it is evident that the parameter estimation of a Markov-chain
model incurs much more bookkeeping overhead. We believe that
this is one of the reasons why Markov-chain models have not re-
ceived more attention for cache management between memory and
secondary storage. With the high latency of tertiary storage, it is
worthwhile to employ a richer decision-making model even if its
overhead may not be negligible.

Whereas discrete-time Markov chains have been used in the litera-
ture for characterizing the access patterns of a single client [TN91,
CKV93, Be96], our approach proceeds substantially further in that
we

1. incorporate document-specific client interaction times between
successive document requests by using a continuous-time rather
than a discrete-time Markov chain,

2. reconcile the Markov-chain-induced access patterns of all simul-
taneously active client sessions into a global prediction, and

3. take into account, within the mathematical framework, the dy-
namic “out-of-the-blue” arrivals of new client sessions, whose
initial state is unknown so that accesses cannot be predicted based
on the last requested document, and also the termination (“depar-
ture”) of sessions.

Incorporation of time into the model is crucial in order to capture
the very high variance of client interaction times among documents.
A user typically spends much less time on overview-like HTML
documents that merely contain graphically enriched anchors than on
long text and image documents with complex and interesting con-
tents. Furthermore some browsing tools support the automatic fol-
lowing of embedded links which leads to very short interaction
times.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 develops a continuous-time Markov-chain
model for predicting near-future document accesses. Section 4 pres-
ents the integrated vertical migration policy that incorporates pre-
loading, replacement, and the scheduling of volume exchanges. In
Section 5 we discuss the bookkeeping overhead of our policy in
terms of CPU and memory consumption. Section 6 gives an over-
view of our prototype implementation. Section 7 presents experi-
mental performance results based on simulation and Section 8 con-
cludes the paper.

2 Related Work
Tertiary storage management for long-term file archival has been

an important issue for supercomputing centres; policies for the re-
placement of files on the secondary storage have been limited to sim-
ple heuristics, however, based on file age or estimates of the station-
ary access probabilities [Smi8I]. More recent work has focused on
data placement on tertiary storage volumes [FC9 1, CR94, TCG96]
and request scheduling [HS96, NKT97]; this includes work with
special considerations on the real-time requirements of video data
[GMW94, LLW95]. Motivated by the large data volume in data
warehouses, tertiary storage management has also received attention
in the context of relational DBMS queries [Stoc)l, ML97, Sa95].

Prefetching in database systems has been studied mostly for ap-
plications where future access patterns are largely predictable due to
specific structures of the underlying databases and the programs ac-
cessing them, especially in object-oriented database systems [CK89,
CH91, GK94], but also in real-time and multimedia applications
[WZ86, MKK95]. The effect of object preloading is implicitly
achieved (on a per page basis) also by intelligently clustering objects
into pages [CK89, TN9 I, TN92, GKKM93].

There is only little work on prefetching based on probabilistic
models. Fundamental properties of Markov-chain-based paging
have been investigated in [KPR92] with the focus on the asymptotic
worst-case competitiveness of online algorithms. On the practical
side, [PZ91] has proposed an associative memory approach for pre-
dicting object requests and initiating prefetching. A major disadvan-
tage of this approach is that the associative memory needs offline
training, which renders it infeasible for document archives with
evolving workload patterns. [MKK95] has proposed a relevance
ranking scheme for the buffering of video frames in multimedia ap-
plications that aims to capture access probabilities, but relies on ex-
ternal input for determining the relevance measures. In [CKV93]
compression schemes based on kth-order Markov chains have been

247

applied to the problem of prefetching pages, and [Be961 uses a first-
order Markov chain for speculative prefetching in a distributed sys-
tem. All these strategies are tailored to supporting a single access se-
quence running with dedicated client memory, which is not
applicable in our scenario where multiple, dynamically arriving and
departing sessions compete for cache space (i.e., the secondary stor-
age). Also, object-specific interaction times have been disregarded,
and prefetching has been studied in isolation in the above mentioned
work, without considering the interdependencies with cache repla-
cement and storage device scheduling.

The only approaches that aim to reconcile the replacement and
prefetching policies for an in-memory page cache are [GK94],
[CFKLS)Sa, CFKLC)Sb], and [PCG+95], but all of these assume per-
fect knowledge of future page accesses through application hints.
[GK94] explicitly maintains, in a special data structure, the page ac-
cess history of method invocations within object-oriented databases,
and uses this information for prefetching pages into the method’s
working space in memory and also for selecting replacement victims
based on the remaining number of accesses within the method exe-
cution. [CFKLS)Sa, CFKL95b] develops rules for when aggressive
prefetching needs to be throttled in order to avoid adverse effects on
the page replacement (e.g., prefetching a page that causes the re-
placement of a previously cached page that will be re-used earlier
than the prefetched page) and analyzes bounds on the suboptimality
of two heuristics. Finally, [PGG+95] develops a simple cost model
with constant CPU and disk access time per page request to heuristi-
cally control the dynamic subdivision of cache space into an LRU-
managed cache and a separate prefetching cache. All of these ap-
proaches are geared for cases in which the application’s accesses are
perfectly predictable (e.g., a Unix grep command running on a direc-
tory tree of files), and cannot be used in our problem setting.

3 Stochastic Model
In this section we describe the stochastic model for the prediction

of future document accesses. We assume that clients open sessions
with the server and then proceed through a number of document ac-
cesses before terminating a session, which models an interactive
multimedia information system. Let D denote the document set
stored on a server consisting of N documents di E D, i= I ..N. Further-
more let S denote the set of currently active user sessions s] E S,
j=l ..ISI, and let d(s$ denote the last (i.e., most recent) document that
the session s] has requested from the server, We model the request
patterns of a single session as a continuous-time Markov chain
[Nel95, Tij94], as developed in Section 3. I. We will then show in
Section 3.2 how multiple sessions and, particularly, the dynamic ar-
rivals of new sessions can be incorporated into the model.

3.1 A Continuous-Time Markov-Chain Model for a
Single Session

A continuous-time Markov chain (CTMC) is a stochastic process
that proceeds through different states in certain time epochs. Its basic
property is that the probability of entering a state depends only on the
current state, not on the previous history (this is a first-order Markov
chain; higher-order Markov chains are not relevant to this paper).
This property has the mathematical implication that the time for
which the process resides in a given state must be an exponentially
distributed random variable; different states may have different
mean residence times, however. Thus, a CTMC with states denoted
I, 2, N is uniquely described by a matrix P=(pu) of transition prob-
abilities between states, and the mean residence times (or “state hold-
ing times”) Hi of the states. Equivalently, one can specify the transi-

tion rates Vii between states i and j, where vi, = & * ,J,~ ; the term
I

l/Hi is also known as the state departure rate and denoted as vi.
In our application setting, the state of the CTMC corresponds to a

session (i.e., the stochastic process) accessing a certain document.
For each document di, pii denotes the probability that when a session
has requested documentdi, it will next request document dj from the
server. The state residence time corresponds to the time that the ses-
sion resides at a document; this captures the actual interaction time,
i.e., the time that a human user needs to “digest” a document’s con-
tents or a browser needs to process the document before requesting
the next one.

We are interested in predicting the future accesses of a session. In
this prediction, we can exploit the knowledge of a session’s current
state. Thus, the first relevant measure that we are interested in are the
probabilities Pii that a session will be in state j (i.e., will access doc-
ument d$ at time t from now, given that it currently resides in state i
(i.e., document di). There are well-known methods for performing
this type of transient analysis of a CTMC. However, a first difficulty
in applying these methods is the fact that the mean residence times
are not uniform across all states. To overcome this problem, we apply
a method that is known as uniformization [Tij94] to transform the
CTMC into an equivalent CTMC with uniform mean residence
times. Here equivalence means that both processes will be in the
same state with the same probability for all times t; so we have
/7&t) = F;,(t) where pii@) refers to the original CTMC and

pjj(t) to the uniformized CTMC. The uniformization method es-

sentially adjusts the state transition probabilities so as to factor out
the different mean residence times; this involves introducing transi-
tions back into the left state and is described mathematically as fol-
lows:

vi* v p;j. j*i
jFjj=

C
I -:, j=i

where v= max(v; I i= I..N} (3.1)

The formal proof for this uniformization can be found in [Tij94].
The central property that is exploited here is that the state-transition
epochs of the uniformized CTMC can be generated by a Poisson
process with rate v, the maximum state departure rate of the original
CTMC.

Next we consider the m-step transition probabilities $“’ of the

uniformized CTMC, i.e., the probabilities that the session will be in
state j after m transitions given that it currently is in state i. These can
be inductively computed from the Chapman-Kolmogorov equa-
tions [Ne195, Tij94J:

with 37 = I
1 if i=,j
Oothenvise (3.2)

Finally we obtain the time-dependent transition probabilities pij(t)
by taking the product of the probability that m steps are performed in
time t with the m-step transition probability, and summing up these
products for all possible values of m. This is exactly the part of the
derivation that is greatly simplified by the previous uniformization,
and we obtain:

/J&f) = 1 t!-“‘s * $’ for all ij and t > 0 (3.3)
,,,=o

We will show in Section 5 that these probabilities can be computed
efficiently in an incremental manner, i.e., without actually having to
approach the infinite sum. The pij(t) values denote the probability

248

that a session resides on document dj at time t (from now on) under
the condition that the session currently resides on document di. For
the decision on whether it is beneficial to preload a certain document
from tertiary storage onto disk and possibly drop another document
from the secondary storage as a replacement victim, we are interested
in the expected number of requests to a document within a certain
lookahead time horizon t. We postpone the discussion on how to set
and possibly fine-tune the value of the lookahead time until Section
4.3. Note that we are still focusing on a single session only, but esti-
mating the expectation of the number of requests to a document will
later allow us to reconcile multiple, concurrently active sessions by
essentially summing up these expectation values.

The expected amount of time that a session that currently resides
in state i will spend in state j within a time horizon of duration t is ob-
tained by the product of the mean residence time per visit of state j,
which is l/v, and the expected number of visits to j or, actually, de-
partures from state j within time t. We consider departures from j
rather than arrivals at j so that we count only complete visits within
the time horizon t (i.e., complete residence times), where the differ-
ence matters in the transient analysis, as opposed to steady-state anal-
yses, for the time horizon t may be relatively short. The expected
number of departures from j is in turn obtained by summing up, for
all possible values it of the total number of transitions within time t,
the product of the probability that n transitions are performed within
time t and the probability that state j is reached from state i in less than
n steps. So we arrive at the following formula [Tij94]:

Finally, to derive the expected number of arrivals at state k, or,
equivalently, accesses to document dk. we consider all possible pre-
decessor states j that have transitions into k (with non-zero probabili-
ty). Eij(t) / (l/v), the ratio of the total time spent in j (during complete
visits) to the mean time per visit, is the expected number of complete
visits to and thus departures from j, and we finally obtain the ex-
pected number of transitions into k by multiplying the expected
number of departures from the predecessor state j with the transition
probability pjk and summing up these values over all predecessor
states j. This yields the following formula:

AI

E[number of accesses to d, in time t] = 2 v * E&t) * & (3.5)
j=l

So we finally have a mathematically founded predictor for the near-
future number of accesses to a document and, thus, a basis for assess-
ing the “worthiness” of a document, i.e., the benefit of preloading the
document from tertiary storage and/or keeping it in the secondary-
storage cache.

3.2 Incorporating Multiple Sessions with Dynamic
Arrival and Termination

The prediction formula derived in the preceding subsection holds
only for a single session for which we know its current state (i.e., its
last requested document). For the overall optimization of the server,
we still need to reconcile the predictors of multiple ongoing sessions,
and we also have to take into consideration that new sessions arrive
dynamically and we do not know in advance their initial state (i.e.,
the first requested document of a session). The first problem can be
easily solved by summing up, over all ongoing sessions, the ex-

pected values of the number of accesses to a document within a ses-
sion:

E[total number of accesses to d, in time t]=

(3.6)
,vES j=l

where d(s) is the document on which session s currently resides (i.e.,
the current session state).

Now consider the issue of newly arriving sessions. Disregarding
these and focusing only on the ongoing sessions would underesti-
mate the number of near-future accesses to certain documents, in par-
ticular, those documents that are the first ones to be accessed by new
sessions. Accesses to these “entry” documents arrive “out of the
blue” so-to-speak. There is an elegant way of incorporating these ac-
cesses into the CTMC framework. We simply add to the CTMC
model additional, fictitious states N+ I, N+c that represent all cur-
rently inactive clients (which do not have a session in progress)
among which we expect c new sessions to be started within the time
horizon t. The value of c is derived from the session arrival rate h,
which can easily be monitored, by setting c = t*h, and the mean resi-
dence time of state N+i is set to i*(IA), the expected time until the ith
session starts. The transition probabilities pN+i,j (i=l ..c) are the sta-
tionary access probabilities for the entry documents of new sessions.
Once the CTMC is extended in this way, we can directly apply the
derivation of Section 3.1 with states N+l through N+c added to the
various formulas, and the only thing to do in addition is to add c ficti-
tious sessions, one session residing on each of the states N+l,
N+c, to the set S of sessions over which the per-session expectations
are summed up (see formula 3.6).

In contrast to session arrivals, there is no explicit notion of a ses-
sion termination. We simply consider a session as terminated if it
does not issue any further requests for a certain timeout period. In
terms of modeling the impact of terminations, however, the termina-
tion of ongoing sessions can be taken into account, similarly to the
above considerations on arrivals, by adding transitions between each
state i and an additional, fictitious (absorbing) state 0, where the tran-
sition probability pi,0 denotes the probability that a session termi-
nates (i.e., remains inactive for the timeout period) after having ac-
cessed document di. These probabilities can be estimated through
continuous monitoring in the same way as all other transition proba-
bilities.

4 Integrated Migration Policy
This section presents our vertical migration policy that aims to rec-

oncile the preloading from tertiary storage, the replacement on sec-
ondary storage, and the scheduling of volume exchanges. The algo-
rithms are based on the expected number of near-future accesses to a
document as derived by equation (3.6). We will first present the pre-
loading and replacement algorithms in Subsection 4.1, and then
elaborate on the tertiary storage scheduling in Subsection 4.2. Sub-
section 4.3 discusses the fine-tuning of the lookahead time horizon
used by the CTMC predictions.

4.1 Preloading and Replacement of Documents

As the worst-case access time to near-line tertiary storage is orders
of magnitude higher than a disk access (i.e., access to secondary stor-
age), the general objective of our migration policy is to maximize the
number of document requests that can be served from disk. The
number of requests within a lookahead time t is constituted by two
classes of requests. First, a document may have been explicitly re-
quested so that sessions are waiting for it to be delivered; we will re-
fer to such requests as pending requests. Second, documents have a

249

A 2
sijx
9” .z

-IL A)
e& au

0 0.02 --- 20 100 response
time [s]

Figure I:
Typical response time distribution of document accesses

probabilistically expected number of requests as given by the formu-
la (3.6); we will refer to such requests as speculative requests. The
latter class are the candidates for preloading, whereas the pending re-
quests definitely need to be served. We denote the current number of
pending and speculative requests for document d as Npe,,d(d) and
Nspec(d,t) where t is the lookahead time horizon. Obviously, the ran-
king of documents in terms of migrating them to disk or dropping
them from disk should be based on the sum of Nn,,d(d) and
Nspec(d,t). An important additional consideration, however, is that
the size of a document and thus its cache space occupation affects its
worthiness of being cached. Normalizing the caching worthiness on
a per byte basis leads to the following definition of document
weights (see also [Co88, SSV96] for similar considerations):

weight(d):= rN~w,d(dj+~s~ec(dt)) /size(d) (4.1)

Clearly, the disk hit rate within the next t time units is maximized
by trying to bring onto disk and keeping those documents that have
the highest weights. (We assume that the disk space is so large
compared to the document size that space fragmentation is not an is-
sue.) To approach this behavior by an online decision-making algo-
rithm, our migration algorithm considers preloading requests for
those documents whose weight exceeds that of currently disk-resi-
dent documents. The algorithm actually proceeds in incremental
steps by picking in a single step one preloading candidate, based on
descending weight order, and one or more replacement candidates
(depending on the required space), based on ascending weight order.
The disk space for the preloading candidates is pre-reserved but not
yet freed up until the tertiary storage is actually ready to transfer the
document. At that time, the weights of the preloading candidates and
the replacement victims are re-assessed (as they may have changed
in the meantime), and the preloading request may be cancelled if the
document’s weight no longer indicates the worthiness of being
cached.

From the above considerations we would expect to obtain a re-
sponse time distribution for the client requests with a shape as shown
in Figure I. This is a bimodal probability density function (i.e., with
two local maxima) where the first mode corresponds to requests
served from disk and the second mode to the much slower tertiary
storage accesses. If preloading and caching work effectively, then
most of the probability mass (i.e., area under the curve) should be a-
round the first mode; so the probability of still having to fetch a docu-
ment from tertiary storage after it has been explicitly requested by a
client should be low. The distribution of that remaining probability
mass around the second mode is an important factor, too. Namely,
we want to ensure that the mode itself (say the mean access time of
the tertiary storage if these times were normally distributed) occurs at
a minimum horizontal position, and that the tail of the probability
distribution is as “light” (pictorially, quickly approaching zero) as
possible so as to bound the tail some percentile.

Unfortunately, this desired result is not self-guaranteed. Namely,
if preloading requests are initiated too aggressively, they may lead to
high contention for tertiary storage drives. The net effect could be
that speculative requests are served at the expense of delaying pend-

ing requests. Therefore, in spite of a high disk hit rate, a performance
problem may arise if the response time of disk misses, i.e., explicit
client requests that end up having to be served from tertiary storage,
deteriorates. TO avoid such adverse effects, our algorithm performs a
benefit-penalty comparison for each preloading candidate and in&
ates the speculative request only if its benefit exceeds the penalty that
it incurs on pending requests. Let Tmig denote the average migration
time from tertiary storage, i.e., the time between an explicit client re-
quest to a document and the arrival of the document on disk from
where it can be delivered to the client; this time may include volume
exchanges. The benefit of a preloading request within the time hori-
zon t can be defined as its expected number of accesses Nspec(d,t)
times the response time Tmig that it would have if it is not preloaded:

benefit (d) := i$&d,t) * TmiR (4.2)

On the other hand, pending requests are potentially delayed by an
additional speculative preloading request; this is the penalty of initi-
ating the preloading. Obviously, we would not want to cause a vol-
ume exchange merely for speculative requests; rather we should start
serving a speculative request only when the required volume is on-
line anyway. This time point depends on the tertiary storage schedu-
ling policy, but fortunately we need to assess the penalty of the pre-
loading request only when we are about to serve it, which is exactly
when its volume becomes online, so that our considerations do not
depend on the scheduling policy. Let Npend be the total number of
pending requests to off-line volumes at the time when we consider
serving a speculative request. Each of these requests is delayed by
the extra time it takes to tranfer the speculative document from terti-
ary storage (into memory and then onto disk). Let Rtc,,rs denote the
effective transfer rate of the tertiary storage, taking into account head
positioning delays on a volume but no volume exchanges. Then the
penalty of speculatively preloading document d is given by:

penalty (d) := Npend * (size(d) / R,,,) (4.3)

Finally, tertiary storage drive contention is taken into account by
initiating only such speculative requests, based on the weight rank-
ing, whose benefit exceeds the penalty. Requests that have been initi-
ated but, at the time when they are about to be served, turn out to have
a penalty that is higher than the benefit, are cancelled.

4.2 Scheduling of Volume Exchanges
Because of the very high delay incurred by volume exchanges,

any reasonable tertiary storage scheduling policy must attempt to
batch requests for the same volume so as to limit or even minimize
the unproductive time wasted by volume exchanges. This holds for
both pending and speculative requests, but pending requests are crit-
ical in terms of response time so that they should not be postponed
too much for the benefit of batching. The scheduling policy that we
advocate therefore keeps two queues qPen,j and qspec of volume IDS
for which explicit, pending requests and speculative preloading re-
quests have been issued. As long as the qP& queue is not empty, tho-
se volumes are loaded into drives which have pending requests. Nat-
urally, preference should be given to volumes v with a high number
of pending requests, Npend(v). On the other hand, setting volume pri-
orities only on this basis would cause the danger of request starva-
tion. Thus, to prevent starvation, volumes are actually loaded into
drives in descending order of the product Nn,rr<t(v)*Tw&v) where
Tw,ir(v) is the longest waiting time among all pending requests for
volume v. Once a volume is loaded into a drive, all pending and spe-
culative requests are combined and reordered for being served by a
SCAN-like pass on the volume. It is at this point when the benefit
and penalty of serving a speculative request are re-assessed and spec-
ulative requests may be cancelled (see Section 4.1 above). Requests

250

that arrive during the pass and whose position on the volume have
already been passed are held back in their queue until the next time
when the volume is loaded (which may be right after finishing the
current pass if there is no contention for drives).

Whenever a drive is unused with regard to the explicitly issued
pending requests, the scheduling policy loads a volume solely for
serving speculative requests. The volume selection policy that we
advocate here is to give preference to volumes with a high number of
expected accesses. For each volume we simply sum up the expected
number of near-future accesses (formula (3.6)) for all preloading
candidate documents that reside on the volume, and maintain a
queue of volumes in descending order of this total number of ex-
pected accesses. We refer to this algorithm as the MEAT (most ex-
pected accesses top-priority) policy. So the results from our stochas-
tic model (see Section 3) are not only useful for initiating preloading
requests, they also serve as a heuristics for scheduling volume ex-
changes.

4.3 Fine-‘liming of the Lookahead Time Horizon

So far it may appear that the migration policy crucially depends on
a proper setting of the lookahead time horizon t that plays a promi-
nent role in predicting the benefit of a speculative request. It is indeed
true that a careless choice of this fine-tuning parameter can cause ad-
verse performance etfects: setting it too small means that even highly
likely but speculative requests are recognized too late, and setting it
too high would overestimate the benefit of speculative requests and
may cause high contention for tertiary storage drives. In particular,
the second case may lead to situations where a volume is loaded info
a drive solely on behalf of speculative requests and an explicit pend-
ing request that is issued a second later is delayed for a long time as
the speculative request queue for the volume in the drive may be very
long. Furthermore, if secondary storage space is scarce and the pre-
loading is too aggressive, the preloaded documents may cause the re-
placement of documents that turn out to be (re-) used earlier than the
preloaded ones.

Fortunately, there is a simple rationale for setting the lookahead
time horizon. Consider the average time period between two succes-
sive points where the same volume is loaded into a drive; this metric
can be measured online and will be denoted as Ttoa,j. A speculative
request can be served “conveniently” (i.e., at low marginal cost)
when the corresponding volume resides in a drive, and such a specu-
lation will eventually turn out to be a good decision if the preloaded
document will be explicitly requested within the time Ttoad (i.e., until
the same volume is accessible again). Otherwise, if the speculatively
requested document turns out to be not used at all within time Ttond,
then loading it now would be a waste of cache space and it should
better be loaded upon the next opportunity when the required vol-
ume is accessible, which will be T toad time units later. This consider-
ation shows us that Tload is an upper bound for the lookahead time of
the access predictor. Conversely, if a document that is expected to be
accessed within time Ttoad is not preloaded, it would eventually be-
come a pending request and penalize the client response time as that
pending request would likely have to wait for the volume to be
loaded again into a drive. So T),,,t is indeed a reasonable canonical
choice for the lookahead time.

5 Implementation of the Bookkeeping
In this section we discuss the implementation and the overhead of

the bookkeeping for the access predictions, the preloading and re-
placement of documents, and the tertiary storage scheduling. We
consider both consumption of memory space and CPU time.

We keep moving-average statistics for all state transition probabil-
ities of the CTMC (i.e., a dynamically aging counter of how frequent
a transition from di to di occurs) and all state residence times (i.e., the
total residence time of the last z visits to di where z is a fine-tuning
parameter which we set to 50). In principle, this incurs space over-
head that grows quadratically with the number of documents. How-
ever, the transition probability matrix P of the CTMC is typically
very sparse provided that the workload exhibits spatial locality,
which has been observed for Web server traces [ABC0961 and is a
reasonable assumption for other document-archive applications,
too. All the statistical information is kept in hash tables indexed on
state i.

Each time a session changes its state by requesting the next docu-
ment di, the expected numbers of near-future accesses to other docu-
ments change according to equation (3.5). At this point, the state-
transition graph of the Markov chain is traversed, starting from di
and always proceeding along the highest-probability transition of
the state with the currently highest probability of being reached from
di. During this traversal, upon each visit of a state j its Eii(t) value is
incremented by the product of the mean residence time and the accu-
mulated probability of reaching j within time t (see formula (3.4)).
The procedure is terminated when the probability of reaching a state
within the lookahead time t drops below a specified threshold 6
(which we have set to 0.01). Note that this stopping threshold allows
us to bound the computational overhead of the traversal. Further
note that the entire computation is incremental in that it reuses inter-
mediate results to the most possible extent. Finally note that the com-
puted Eij(t) values are actually session-independent; thus they are
kept and reused for all subsequent access predictions of other ses-
sions, as long as the basic statistical parameters, the transition proba-
bilities and the state residence times, do not change much. In real ap-
plications, we would expect exactly such quasi-stable base
parameters with major shifts occurring only occasionally on a long-
term scale.

The algorithms for generating preloading requests and deciding
on cache replacements are driven by two sorted lists, I,,, and lter,
which keep the document IDS and the weights of all documents that
reside on secondary storage and all relevant documents that reside on
tertiary storage, respectively. Both lists are sorted by weight. The size
of I,,, obviously depends on the number of disk-resident documents
and should incur only negligible space overhead. The size of It,,, on
the other hand, is bounded by considering only documents for which
at least one session is predicted to access the document within time t
(with probability above the aforementioned threshold 8). In addi-
tion, the requirement that benefit(d) > penalty(d) should hold for a
document d to be preloaded can be exploited to further prune the list
Iter, as this inequation yields a lower bound on N,,,,(d,t) and thus
weight(d) for document d to be relevant at all. Note that this consid-
eration leads to the nicely adaptive effect that the overhead of the
migration algorithm’s data structures is automatically reduced when
the load in terms of explicit, pending requests becomes very high.

The overhead of the tertiary storage scheduling algorithm, MEAT,
is negligible. We merely have to track the values of Npc,,d and Tw;iit
on a per volume basis.

6 Prototype Architecture
In this section we describe the architecture and some implementa-

tion details of our document archive prototype. Figure 2 shows the
general architecture of the system, with data structures depicted by
ovals and dynamically adjusted control parameters depicted by
hexagons. At the top level, the system consists of the Session Man-
ager that maintains information about the state of active sessions, the

251

invokeAct

outOt~hrBlue nextState t&out
+ + +

Migration
Manager

getReplacementVictim J Loader
gcneratePreloading- _

checkBenetit/Pennlty -

documentLoaded -

I 4,

I
writeBlocks readdiocks load\l/olume eject$olume

4 4 4 4 ,

Figure 2: Architectural overview of the prototype system

Migration Manager for predicting and scheduling document ac-
cesses, and the Storage Manager.

The Session Manager tracks the arrivals of new sessions and the
current state of the active sessions, and also decides that a session is
terminated by means of a timeout and then discards all session-spe-
cific bookkeeping information. The Migration Manager organizes
the migration of documents between tertiary storage and secondary
storage and the transfer to the requesting client. The most important
submodule of the Migration Manager is the Weight Watcher which
implements the access predictions and manages the sorted lists lter
and Isec. Each new request of a session as well as session arrivals and
departures are signalled to the Weight Watcher which then updates
the document weights as described in Section 5. Each time a volume
becomes loaded into a drive, the Weight Watcher is requested to gen-
erate speculative requests.

Finally, the StorageManager provides a block-oriented interface
to the secondary storage disks and the tertiary storage jukebox and
maintains directory information such as address mapping tables.
Free space is managed by a first-fit allocation algorithm for both
disks and tertiary storage volumes. The Storage Manager can inter-
act with real devices, or it can use simulated devices from a library of
detailed device models based on the CSIM simulation package
[DevSim,CSIM]. The simulated devices include controller caching,
realistic seek times, rotational latencies, head switch times, and so on
[RW94]. In this paper we have considered only simulated devices for
better reproducibility and statistical confidence of the performance
results.

7 Experimental Evaluation
In this section we present simulation results on the performance

and overhead of our vertical migration policy. We restrict ourselves
to studies with synthetic workloads whose key parameters have been
derived from current Web applications; in contrast to trace-based
studies, this gives us higher statistical confidence and the ability to

systematically vary certain parameters so as to obtain insights on
workloads that are expected for future applications. We compare
three different policies, all of which use the MEAT policy for the
scheduling of volume exchanges:

l MCMin (MC-based -ration policy for Rear-line storage): the
integrated vertical migration policy that we have developed in
this paper, based on the CTMC model.

l TEMP: a replacement-only algorithm with no preloading at all,
which selects replacement victims based on the temperature of
documents (i.e., heat I size). The heat of a document reflects its
stationary access probability, and is dynamically estimated by
tracking a moving average of the interarrival times of the last 20
requests to a document. This method can be viewed as a straight-
forward generalization of the LRU-K buffering algorithm
[OOW93, WHMZ94] to the case of variable-size buffering gran-
ules.

l TEMP-P: this algorithm extends TEMP by additionally preload-
ing those documents from tertiary storage whose estimated tem-
perature exceeds the lowest temperature among the currently
disk-resident documents. Like MCMin, the preloading is subject
to a comparison of benefit vs. penalty (see Section 4.1) but with
N spec based on stationary access probabilities only.

7.1 Experimental Testbed
The experiments have been carried out on the prototype system

described in Section 6 with simulated secondary and tertiary storage
devices. The parameters of the devices used throughout all experi-
ments are given in Table I; these devices reflect today’s commodity
SCSI disks and low-end magneto-optical jukeboxes.

Table 1: System parameters of the simulation testbed

I Tertiary Storage 1
Parameter Value

Number of Drives I I
Average Seek Time
Average Rotational Latency
Transfer Rate
Controller Cache Size
Number of Volumes
Volume Exchange Time

J
2s ms

IO ins
3.4 MBytes/s
I MByte
8
10 see

We have considered an archive with 20,000 documents; docu-
ment sizes are exponentially distributed with mean 500 KBytes.
Thus, the total archive size is approximately 10 GBytes. The docu-
ments are allocated randomly across the volumes of the tertiary stor-
age library. We have analyzed the Web-server traces of two virtual
museums to characterize the skewness of transition probabilities and
the distribution of state residence times. We have incorporated these
observations in a synthetic workload that we believe is realistic for
large archives and also allows us to investigate a wide spectrum of
different workloads. The synthetic workload is generated as follows:

l The documents are first arranged into a tree with constant fanout
4. This tree serves as a skeleton for generating the state transitions,

252

All .

25
E

B
20

g 15

8 8 10

I?
d

5

0

20 40 60 80 100 120 140 160 180 200
Secondary Storage Size [MBytes]

LOW-FAST

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

Secondary Storage Size [MBytes] Secondary Storage Size [MBytes]

z j, HIGH-SLOW
30

i; 25
2 20
g 15

d 10 5
n

20 40 60 80 100 120 140 160 180 200
Secondary Storage Size [MBytes]

MCMin TEMP m TEMP-P

Figure 3: Response time results for the four workloads

which themselves are not tree-based and may even have cycles.
For each document di (i.e., node in the tree) the transition proba-
bilities to all other documents (including ancestors in the tree) are
generated by a Gamma distribution with a coefficient of variation
greater than 1 (namely, 1.5, to be specific) [A1190]. This captures
a skewed ranking of the transition probabilities from di to all other
documents which starts with document d4i-2 and proceeds by
document number modulo the total number of documents. This
means that the highest-probability transition out of di leads to its
leftmost child in the tree, and transitions to ancestors are less like-
ly than to nodes further down in the tree. For leaf documents the
highest-probability transition target is chosen randomly among
all documents.

l The skewness of the transition probabilities out of a document di
is determined by the expectation value of the Gamma distribution
from which the transition probabilities are drawn. We assume that
these values are exponentially distributed among the documents
and generate this parameter of the document-specific Gamma
distribution accordingly. The mean value for this exponential dis-
tribution is set to 6, where the value 6 would imply that 90 percent
of the probability mass among a document’s outgoing transitions
is covered by the 16 most probable transitions of a document. The
fictitious documents dN+I through dN+c (see Section 3.2) are
treated separately as their successors represent the “entry” docu-
ments of new sessions; the mean value for the Gamma distribu-
tion associated with these states is set to 2, which implies that 90
percent of the probability mass among the outgoing transitions is
covered by the 6 most probable successor states.

l The state residence times are exponentially distributed with the
document-specific mean values drawn from a uniform distribu-
tion. New sessions arrive according to a Poisson process with rate
h (i.e., exponentially distributed interarrival times with mean
I/h).

l The duration of a session is specified in terms of the number of
requests that a session is going to issue; this number is generated
according to a normal distribution.

We have considered four workloads which differ in their session
arrival rate and the distribution of mean residence times. The work-
load LOW-SLOW has low session arrival rate and high state resi-
dence times, whereas workload LOW-FAST has lower residence
times. The workloads HIGH-SLOW and HIGH-FAST both have
higher session arrival rate but differ in their residence times. The
workload parameters are listed in Table 2.

Table 2: Workload parameters for the simulation experiments

Mean session length
Standard deviation of ses-
sion length

24 requests

12 requests

Min. mean residence time 30s 110s 1 30 s 110s
Max. mean residence time 180s 160s 1180s 160s

7.2 Experimental Results
The response time results for the three policies under comparison

are shown in Figure 3 for each of the four different workloads. The
charts show the mean response time of client requests as a function of
the secondary storage cache space which is varied from 20 MBytes
(0.2 percent of the archive size) to 200 MBytes (2 percent of the ar-
chive size).

Overall, it is evident that the newly developed MCMin policy con-
sistently outperforms the other two policies. It improves the mean re-
sponse time by up to a factor of 2. The highest gains are achieved for
the LOW-SLOW workload, as this has the lowest utilization of the
jukebox drives on behalf of explicit, pending requests and thus has
the largest potential for preloading benefits. With 200 MBytes sec-
ondary storage space, MCMin achieves a disk hit rate of 68.1%,
compared to 27.1% and 30.6% of the TEMP and TEMP-P methods,
respectively. For all three methods, the disk arm utilization is less
than 15 percent, whereas the jukebox drive is highly utilized, name-
ly, by 99.6 percent with MCMin versus 77.3 and 99.8 percent with

253

60

z so

8 40
G
z 30

g 20
3
d

10

0
LOW- LOW- HIGH- HIGH- LOW- LOW-
FAST SLOW FAST SLOW

HIGH- HIGH-
FAST SLOW FAST SLOW

MCMin m MCMin without benefit/penalty comparison

Figure 4: Impact of the beneBt/penalty comparison

TEMP and TEMP-P, respectively. Note that the full utilization of the
jukebox drives is exactly desirable if it contributes to shorter client
response times by using idle time for preloading.

8 Concluding Remarks
The vertical migration method for storage hierarchies presented in

this paper is based on an integrated, quantitative assessment of the
benefits and costs that arise in the cache replacement decisions, the
initiation of speculative prefetching, and the scheduling of tertiary
storage devices. The key to this reconciliation of the different aspects
is the continuous-time Markov chain model that we havedeveloped
for predicting near-future accesses and its underlying mathematical
theory. We believe that analytic models of this kind deserve much
more attention for their ability to drive online decisions in the re-
source management of large-scale information systems. Note that
the developed method is completely self-reliant in that it does notre-
quire any intervention by human administrators or tuning experts.
All input parametersare automatically estimated by means of online
statistics. Furthermore, although the method includes a number of
control parameters that may be fine-tuned, we have providedsimple,
practically viable guidelines for choosing appropriate, robust values
for these parameters.

The gains for the other workloads are less impressive as the higher
jukebox utilization prevents more preloading, and for the same rea-
son the relative improvements become smaller with increasing cache
size. Note that in these cases, where preloading is less attractive, the
MCMin method automatically throttles the preloading activity
based on its benefit-penalty computation (see Section 4.1); this is
what makes it a robust, practically viable method. Figure 4 compares
the MCMin response time (mean values depicted by filled bars and
80th percentiles by hatched bars) for small and large cache size to the
performance that is achieved when the benefit-penalty comparison
is switched off. The importance of this component of our integrated
policy is evident.

It is interesting to note that the preloading-enriched TEMP-P
policy has virtually no advantage over the TEMP method. The rea-
son is its inherent limitation to stationary access probabilities. Under
high jukebox utilization, particularly with the HIGH-FAST work-
load, TEMP-P would preload only documents that have very high
stationary access probability, and these documents reside on secon-
dary storage anyway. Under lower jukebox utilization, particularly
with LOW-SLOW, on the other hand, it initiates many preloading
requests, but these fail to fetch the relevant documents, namely, those
that are actually fairly cold in terms of their stationary access proba-
bility but have a high near-future access probability because a ses-
sion currently resides in the document’s “proximity”. This nicely il-
lustrates the fundamental superiority of our Markov-chain-based
approach over a stationary probability model. Only in the
HIGH-SLOW scenario, TEMP-P is able to obtain a small gain over
TEMP. for in this case, the arrivals of new sessions benefit from the
preloading of documents in the “proximity” of the “entry” docu-
ments (which have a high stationary access probability).

Additional experiments with variations of the workload parame-
ters essentially confirmed these tindings and are omitted here for
space limitation. We also investigated the bookkeeping overhead of
the prototype implementation. The total space overhead of all book-
keeping data was I .8 MBytes, and the CPU consumption for the pre-
dictions (i.e., the Markov chain computations) per session step was
I00 milliseconds on average on a Sparc20 (i.e., a low-end server).
This is clearly a small price for achieving such substantial gains in
terms of client response time. The CPU overhead can be reduced
even further by keeping a small number of recently computed pre-
dictions in a special lookup buffer; our experiments have shown that
we can achieve an acceleration by approximately a factor of IO with a
lookup buffer of I MByte for the synthetic workloads that we con-
sidered.

The experimental studies of this paper have shown significant per-
formancegains, up to a factor of two in the client response time, at the
cost of an acceptablebookkeeping overhead. Thus, it is promising to
generalize the approach to other, more comprehensive settings:

l Although the method can be carried over from jukeboxes with
magneto-optical platters to tape library without any changes, we
realize that the volume scheduling may pose more complex prob-
lems with tapes. Particularly, policies that emphasize batching
and perform a complete volume scan when a volume is loaded
into a drive may incur unacceptable delays with modern tape re-
cording techniques like serpentine recording, where a complete
tape scan would take several minutes [HS96]. Therefore, the
scheduling issues need to be reconsidered with tape libraries.

l It is tempting to generalize our vertical migration method to an
entire storage hierarchy with main memory and possibly distrib-
uted memory [SW97, VLN97] considered in addition to secon-
dary and tertiary storage. However, the bookkeeping overhead
for the access predictions may then become a critical issue, as they
require a substantial fraction of the managed resources them-
selves, namely, main memory. Under these conditions, the book-
keeping information should itself be subdivided and dynamically
migrate between secondary and primary storage, and we could
employ the weight of a document as the criterion for whether we
should cache the information on a document’s outgoing transi-
tions. Thus, the mathematical basis of our approach should pay
off also at the meta level.

254

. The continuous-time Markov chain model upon which our meth-
od is based may be used not only for vertical data migration, but
also for data placement (e.g., clustering) on both secondary and
tertiary storage devices and for horizontal data migration between
devices at the same storage level, for example, for dynamic and
incremental load balancing among disks. As Markov chain mod-
els are substantially richer than the stationary-probability models
that have mostly been suggested for these purposes [Wo83,
TCG96, SWZ94]. improvements of performance could be ex-
pected.

Encouraged by the very positive results that we obtained for the
architectural setting of the current paper, we have started investigat-
ing the above issues.

References
[A11901 A.O. Allen: Probubility, Statistics, and Queueing Theor)
with Computer Science Applications, Academic Press, 1990
[ABC0961 V. Almeida, A. Bestavros, M. Crovella, A. de Oliveira:
Characterizing Reference Localit)r in the WWW, Int. Conf. on Paral-
lel and Distributed Information Systems (PDIS), Miami Beach,
1996
[Be961 A. Bestavros: Speculutive Data Dissemination and Service
in Distributed Information Systems, Int. Conf. on Data Engineering,
New Orleans, 1996
[CFKL95a] I? Cao, E.W. Felten, A.R. Karlin, K. Li: A Study of Inte-
grated Prcfetching and Caching Strategies, ACM SIGMETRICS
Conf., 1995
[CFKL95b] P. Cao, E.W. Felten, A.R. Karlin, K. Li: Itnplementu-
tion and Pecformance qflntegrated Application-Controlled Cach-
ing, Prefitching and Disk Scheduling, Technical Report TR-
CS95-493, Princeton University, 1995
[CKS9] E.E. Chang, R.H. Katz: Exploiting Inheritance and Struc-
ture Semantics for effective Clustering and Buffering in an Object-
Oriented DBMS , ACM SIGMOD Conf., Portland, 1989
[CR941 L.T. Chen, D. Rotem: Optimizing Storage of Objects on
Mass Storage Systems with Robotic Devices, Int. Conf. on Extend-
ing Database Technology (EDBT), Cambridge, UK, 1994
[CH91] J.R. Cheng, A.R. Hurson: On The Perjormance Issues qf
Object-Bused B@ering, Int. Conf. on Parallel and Distributed Infor-
mation Systems (PDIS), Miami Beach, 1991
[Co881 G. Copeland. W. Alexander, E. Boughter, T. Keller: Data
Placement in Bubba, ACM SIGMOD Conf., Chicago, 1988
[CKV93] K.M. Curewitz, P. Krishnan, J.S. Vitter: Practical Pre-
,fetching via Data Compression, ACM SIGMOD Conf., Washing-
ton, DC, 1993
[CSIM] CSIMI7 Userk Guide, Mesquite Software Inc., Austin
[DevSim] M. Gillmann, W. Gross: User’s Guide of DevSim- A Li-
brary of Secondary und Tertiary Storage Device Simulations (in
German), University of the Saarland, 1996
[FC91] D.A. Ford, S. Christodoulakis: Optimal Placement of High-
Probability Randomly Retrieved Blocks on CLV Optical Disks,
ACM Transactions on Information Systems, 9(l), 1991
[GK94] C.A. Gerlhof, A. Kemper: Prefetch Support Relations in
Object Bases, Int. Workshop on Persistent Object Stores (POS),
1994
[GKKM93] C.A. Gerlhof, A. Kemper, C. Kilger, G. Moerkotte:
Partition-Bused Clustering in Object Bases: From Theory to Pruc-
tice, Int. Conf. on Foundations of Data Organization and Algorithms
(FODO), Chicago, 1993
[GMW94] L. Golubchik, R. Muntz, R.W. Watson: Analysis of Strip-
ing Techniques in Robotic Storage Libraries, Technical Report, Uni-
versity of California, Los Angeles, 1994
[GP87] J. Gray, F. Putzolu: The 5 Minute Rule for Trading Memory

for Disc Accesses and the 10 Byte Rule for Truding Memory for CPU
Time, ACM SIGMOD Conf., San Francisco, 1987

[HS96] B.K. Hillyer, A. Silberschatz: Random l/O Scheduling in
Online Tertiar.y Storage Systems, ACM SIGMOD Conf., Montreal,
1996
[KPR92] A.R. Karlin, S.J. Phillips, P. Raghavan: Markov Paging,
IEEE Symposium on Foundations of Computer Science, 1992
[LLW<S] S.W. Lau, J.C.S. Lui, PC. Wong:‘A Cost-effective Near-
line Stora,pe Server for Multimedia Svstem. Int. Conf.‘& Data Enei-
neering, Taipeh, 19”95
[MKK95] F. Moser, A. Kraiss, W. Klas: UMRP - A Buffer Manage-
ment Strategy for Interactive Continuous Dam Flows in a Multime-
dia DBMS, VLDB Conf., Zurich, 1995
[ML971 M. Myllimaki, M. Livny: Relational ./oin.s,fi>r Data on Ter-
tiary Storage, Int. Conf. on Data Engineering, Birmingham, UK,
1997
[Nel95] R. Nelson: Probability, Stochastic Processes. and Queueing
Theory - The Mathematics of Computer Parfi~rmancc~ Modeling,
Springer, 1995
[NKT97] T. Nemoto, M. Kitsuregawa, M. Takagi: Simulation Stud-
ies of the Cassette Migration Actrvities in a Scalable T%pe Archiver,
Int. Conf. on Database Systems for Advanced Applications. Mel-
bourne, 1997
[OOW93] E.J. O’Neil, l?E. O’Neil, G. Weikum: The LRU-K Page
Replacement Alporithm For Dutubase Disk Bufferine. ACM SIG-
M6D Conf., Wishington, DC, 1993 ‘&’ “’
[PZ91] M. Palmer, S.B. Zdonik: Fido: A Cache that learns to,fetch,
VLDB Conf., Barcelona, I99 I
[PGG+95] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky,
J. Zelenka: Informed Prcfetching and Caching, ACM Symposium
on Operating Systems Principles, I Y95
[RW94] C. Ruemmler, J. Wilkes: An Introduction to Disk Model-
ling, IEEE Computer 27(3), I994
[Sa95] S. Sarawagi: Query Processing in Tertiury Memory Data-
bases, VLDB Conf., Zurich, 1995
[SSV96] P. Scheuermann, J. Shim, R. Vingralek: WATCHMAN: A
Data Warehouse Intelligent Cache Manager, VLDB Conf., Bom-
bay, 1996
[SW971 M. Sinnwell, G. Weikum: A Cost-Model-Based Online
Method for Distributed Caching. Int. Conf. on Data Engineering.
Birming”ham, UK, 1997 I’

.A.

[SWZ94] P. Scheu&mann, G. Weikum, F! Zabback: Disk Cooling in
Parallel Disk Systems, IEEE Data Engineering Bulletin 17(3), 1994
[SmiU] A.J. Smith: Long Term File Migration: Drvelopment and
Evaluation of Algorithms, Communications of the ACM 24(8),
1981
[Sto91] M. Stonebraker: Managing Persistent Objects in a Multi-
hvel Store, ACM SIGMOD Conf., Denver, I99 I
[TG84] J.Z. Teng, R.A. Gumaer: Managing IBM Datubase 2 Bufs-
ers to Maximize Petjtirmance, IBM Systems Journal 23(2), 1984
[Tij94] H.C. Tijms: Stochastic Models -An Algorithmic Approach,
John Wiley & Sons, I994
[TCG96] i. Triantafillou, S. Christodoulakis, C. Geogiadis: Opti-
mal Data Placement on Disks: A Comnrehensive Solution for Dif-
,ferent Technologies, HERMES Technical Report, Multimedia Sii-
terns Institute of Crete, 1996
[TN911 M.M. Tsangaris, J.F. Naughton: A Stochastic Approach for
Clustering in Object Buses, ACM SIGMOD Conf., Denver, IYY I
[TN921 M.M. Tsangaris, J.F. Naughton: On the Pe~ftirmunce of Ob-
ject Clustering Techniques, ACM SIGMOD Conf., San Diego, lYY2
[VLN97] S. Venkataraman, M. Livny, J.F. Naughton: Memory
Management for Scalable Web Dutu Servers, Int. Conf. on Data En-
gineering, Birmingham, UK, I997
[WZ86] H. Wedekind, G. Zoerntlein: Prefetching in Reultime Data-
base Applications, ACM SIGMOD Conf., Washington, DC, 1986
[WHMZ94] G. Weikum, C. Hasse, A. Moenkeberg. P. Zabback:
The COMFORT Automatic Tuning Project, Information Systems
lY(5), I994
[Wo83] C.K. Wong: Algorithmic Studies in Mass Storage Systems,
Computer Science Press, 1983

255

