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Abstract 
Large multimedia document archives hold most of their data in 

near-line tertiary storage libraries for cost reasons. This paper de- 
velops an integrated approach to the vertical data migration he- 
tween the tertiary and secondary storage in that it reconciles specu- 
lative preloading, to mask the high latency of the tertiary storage, 
with the replacement policy of the secondary storage. In addition, it 
considers the interaction of these policies with the tertiary storage 
scheduling and controls preloading aggressiveness by taking con- 
tention for tertiary storage drives into account. The integrated 
migration policy is based on a continuous-time Markov-chain 
(CTMC) model,fijr predicting the expected number of accesses to a 
document within a specified time horizon. The parameters of the 
CTMC model, the probabilities of co-accessing certain documents 
and the interaction times between successive accesses, are dynami- 
cally estimated and adjusted to evolving workload patterns by keep- 
ing online statistics. The integrated policy for vertical data migra- 
tion has been implemented in a prototype system. Detailed 
simulation studies with Web-server-like synthetic workloads indi- 
cate sign$cant gains in terms of client response time. The studies 
also show that the overhead of the statistical bookkeeping and the 
computations for the access predictions is affordable. 

1 Introduction 

1.1 Problem Statement 
Internet/WWW and Web-like intranet infrastructures gain in- 

creasing importance as a medium for convenient information access 
within large enterprises and across the world. While the narrowly re- 
stricted bandwidth of the Internet currently limits the amount and 
type of data that is offered on the Web (e.g., in electronic product cat- 
alogs), a tremendous growth of multimedia data (images, videos, 
animations, etc.) is expected in the near future with rapidly increas- 
ing network bandwidth. We may soon see Web servers (probably 
with a full-fledged DBMS behind them) that have to manage Tera- 
bytes or even Petabytes of data and provide efficient access to mil- 
lions of clients. In the following we will refer to the data objects of 
such a server generically as documents. 

Among the multitude of documents that are held by a server, typi- 
cally only a small fraction is “hot”, that is, frequently accessed. Fur- 
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thermore, the hot fraction will evolve over time; previously hot doc- 
uments become “cold” (i.e., requested infrequently) but still need to 
be archived for occasional access. For cost/performance reasons (cf. 
[GP87]), cold documents, which may be accessed only once every 
so many hours, should reside in tertiary storage libraries. Such li- 
braries provide “near-line” access by keeping data on magneto-opti- 
cal platters or tapes, generically referred to as volumes, that reside in a 
robot-served jukebox with a certain number of drives, typically at 
least one order of magnitude fewer drives than volumes. So, in prin- 
ciple, all documents are available online, but the high latency of pos- 
sible volume exchanges in the drives may incur response times of 
more than 10 seconds or even minutes. Thus, it is crucial that the cur- 
rently hot documents are indeed held on the secondary storage level 
(i.e., the disks) of the storage hierarchy. 

In the presence of evolving document popularities and access pat- 
terns, the disks then essentially serve as a cache with regard to the ter- 
tiary storage, and good cache replacement policies for variable- 
length documents are extremely important for the overall server 
performance. In addition, the vertical data migration between the ter- 
tiary and the secondary storage and thus the cache hit rate can be fur- 
ther improved by employing “intelligent” preloading policies, so 
that the high latency of the tertiary storage can be masked from the 
client in many cases. 

Designing good replacement and, especially, preloading policies 
for the vertical data migration between secondary and tertiary stor- 
age is substantially more difficult than standard DBMS buffer man- 
agement for a number of reasons: 

The units of data migration, the documents, have a very high vari- 
ance in their size. DBMS buffer management is well understood 
for page granularity, but practical work on variable-size granule 
caching policies has been limited to outdated operating system ar- 
chitectures with non-paged memory and would at least have to be 
re-assessed for the new application setting. 

Prefetching into DBMS page buffers works excellent for sequen- 
tial scans [TG84]. Preloading from tertiary storage, on the other 
hand, can be beneficial for more complex access patterns, and 
thus requires a much richer access-prediction model. 

Overly aggressive prefetching may have a detrimental effect on 
the cache replacement in that it possibly reduces the effectively 
exploited cache size by prefetching data that may turn out not be- 
ing accessed at all or only in the far future. 

Both cache replacement and preloading interfere with the sched- 
uling policy of the tertiary storage library, particularly, the policy 
for exchanging volumes. Throughput considerations suggest 
minimizing volume exchanges and using SCAN-like service pol- 
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icies on an individual volume, but this may adversely affect re- 
sponse time. Both aspects have to be taken into account by the 
vertical data migration policies. 

5. Under high load, drive contention leads to queueing of document 
requests at the tertiary storage. Speculative preloading would ag- 
gravate the queueing delays of pending document requests. 
Therefore, a good preloading policy needs to take into consider- 
ation the utilization of the tertiary storage drives. 

1.2 Contribution and Outline 

This paper develops a unified approach to cache replacement and 
speculative preloading, based on a stochastic model for predicting 
document accesses, and integrates this vertical migration policy with 
the scheduling policy of the tertiary storage library. In doing so, we 
aim to minimize the response time of client requests. We are not 
aware of any similarly comprehensive work on managing large near- 
line document archives. 

Technically, the major novelty of the paper lies in using a continu- 
ous-time Markov-chain model and its underlying theory [Nel95, 
Tij94] for predicting future document accesses. This model involves 
estimating, through access monitoring, the transition probabilities 
between documents that are successively requested within a client 
session, that is, the probability that a client requests document j given 
that its previous request accessed document i. We further monitor the 
interaction times between successive session requests, and also the 
arrival rate of new client sessions. From these parameters, we utilize 
mathematical results on Markov chains to predict the expected num- 
ber of accesses to certain documents within a specified time horizon. 

Obviously, a Markov-chain model fits well with navigational ac- 
cesses, where a client would start a new session by accessing some 
“entry document” and then proceed along a hyperlink structure. 
Navigational access seems to be typical for applications like tele- 
teaching, virtual museums, and the like. However, the Markov-chain 
model does in no way rely on this type of access mode. What it cap- 
tures are the patterns of co-accesses: access to a certain document af- 
fects the probability of accessing a certain other document in the near 
future. Thus, the Markov-chain model is applicable equally well to a 
descriptive access model with high-level queries; for example, the 
transition probabilities between documents would reflect if two doc- 
uments contain semantically related information and consequently 
both appear in the result set of many queries. Furthermore, client 
caching of documents is automatically factored out, as requests 
served by the client cache are not known to the server’s bookkeeping 
and are thus not considered in the parameter estimations, which is 
perfectly adequate. 

The Markov-chain model pursued here is substantially richer (in 
terms of capturing more workload information) than a class of mod- 
els that merely aim to estimate the stationary access probabilities of 
the various documents, often referred to as the “heat” of a document 
[Co88]. Taking into consideration the current state of an active client 
session, i.e., the last requested document, leads to much better pre- 
dictions than the simpler stationary-probability models. On the other 
hand, it is evident that the parameter estimation of a Markov-chain 
model incurs much more bookkeeping overhead. We believe that 
this is one of the reasons why Markov-chain models have not re- 
ceived more attention for cache management between memory and 
secondary storage. With the high latency of tertiary storage, it is 
worthwhile to employ a richer decision-making model even if its 
overhead may not be negligible. 

Whereas discrete-time Markov chains have been used in the litera- 
ture for characterizing the access patterns of a single client [TN91, 
CKV93, Be96], our approach proceeds substantially further in that 
we 

1. incorporate document-specific client interaction times between 
successive document requests by using a continuous-time rather 
than a discrete-time Markov chain, 

2. reconcile the Markov-chain-induced access patterns of all simul- 
taneously active client sessions into a global prediction, and 

3. take into account, within the mathematical framework, the dy- 
namic “out-of-the-blue” arrivals of new client sessions, whose 
initial state is unknown so that accesses cannot be predicted based 
on the last requested document, and also the termination (“depar- 
ture”) of sessions. 

Incorporation of time into the model is crucial in order to capture 
the very high variance of client interaction times among documents. 
A user typically spends much less time on overview-like HTML 
documents that merely contain graphically enriched anchors than on 
long text and image documents with complex and interesting con- 
tents. Furthermore some browsing tools support the automatic fol- 
lowing of embedded links which leads to very short interaction 
times. 

The rest of the paper is organized as follows. Section 2 discusses 
related work. Section 3 develops a continuous-time Markov-chain 
model for predicting near-future document accesses. Section 4 pres- 
ents the integrated vertical migration policy that incorporates pre- 
loading, replacement, and the scheduling of volume exchanges. In 
Section 5 we discuss the bookkeeping overhead of our policy in 
terms of CPU and memory consumption. Section 6 gives an over- 
view of our prototype implementation. Section 7 presents experi- 
mental performance results based on simulation and Section 8 con- 
cludes the paper. 

2 Related Work 
Tertiary storage management for long-term file archival has been 

an important issue for supercomputing centres; policies for the re- 
placement of files on the secondary storage have been limited to sim- 
ple heuristics, however, based on file age or estimates of the station- 
ary access probabilities [Smi8I]. More recent work has focused on 
data placement on tertiary storage volumes [FC9 1, CR94, TCG96] 
and request scheduling [HS96, NKT97]; this includes work with 
special considerations on the real-time requirements of video data 
[GMW94, LLW95]. Motivated by the large data volume in data 
warehouses, tertiary storage management has also received attention 
in the context of relational DBMS queries [Stoc)l, ML97, Sa95]. 

Prefetching in database systems has been studied mostly for ap- 
plications where future access patterns are largely predictable due to 
specific structures of the underlying databases and the programs ac- 
cessing them, especially in object-oriented database systems [CK89, 
CH91, GK94], but also in real-time and multimedia applications 
[WZ86, MKK95]. The effect of object preloading is implicitly 
achieved (on a per page basis) also by intelligently clustering objects 
into pages [CK89, TN9 I, TN92, GKKM93]. 

There is only little work on prefetching based on probabilistic 
models. Fundamental properties of Markov-chain-based paging 
have been investigated in [KPR92] with the focus on the asymptotic 
worst-case competitiveness of online algorithms. On the practical 
side, [PZ91] has proposed an associative memory approach for pre- 
dicting object requests and initiating prefetching. A major disadvan- 
tage of this approach is that the associative memory needs offline 
training, which renders it infeasible for document archives with 
evolving workload patterns. [MKK95] has proposed a relevance 
ranking scheme for the buffering of video frames in multimedia ap- 
plications that aims to capture access probabilities, but relies on ex- 
ternal input for determining the relevance measures. In [CKV93] 
compression schemes based on kth-order Markov chains have been 
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applied to the problem of prefetching pages, and [Be961 uses a first- 
order Markov chain for speculative prefetching in a distributed sys- 
tem. All these strategies are tailored to supporting a single access se- 
quence running with dedicated client memory, which is not 
applicable in our scenario where multiple, dynamically arriving and 
departing sessions compete for cache space (i.e., the secondary stor- 
age). Also, object-specific interaction times have been disregarded, 
and prefetching has been studied in isolation in the above mentioned 
work, without considering the interdependencies with cache repla- 
cement and storage device scheduling. 

The only approaches that aim to reconcile the replacement and 
prefetching policies for an in-memory page cache are [GK94], 
[CFKLS)Sa, CFKLC)Sb], and [PCG+95], but all of these assume per- 
fect knowledge of future page accesses through application hints. 
[GK94] explicitly maintains, in a special data structure, the page ac- 
cess history of method invocations within object-oriented databases, 
and uses this information for prefetching pages into the method’s 
working space in memory and also for selecting replacement victims 
based on the remaining number of accesses within the method exe- 
cution. [CFKLS)Sa, CFKL95b] develops rules for when aggressive 
prefetching needs to be throttled in order to avoid adverse effects on 
the page replacement (e.g., prefetching a page that causes the re- 
placement of a previously cached page that will be re-used earlier 
than the prefetched page) and analyzes bounds on the suboptimality 
of two heuristics. Finally, [PGG+95] develops a simple cost model 
with constant CPU and disk access time per page request to heuristi- 
cally control the dynamic subdivision of cache space into an LRU- 
managed cache and a separate prefetching cache. All of these ap- 
proaches are geared for cases in which the application’s accesses are 
perfectly predictable (e.g., a Unix grep command running on a direc- 
tory tree of files), and cannot be used in our problem setting. 

3 Stochastic Model 
In this section we describe the stochastic model for the prediction 

of future document accesses. We assume that clients open sessions 
with the server and then proceed through a number of document ac- 
cesses before terminating a session, which models an interactive 
multimedia information system. Let D denote the document set 
stored on a server consisting of N documents di E D, i= I ..N. Further- 
more let S denote the set of currently active user sessions s] E S, 
j=l ..ISI, and let d(s$ denote the last (i.e., most recent) document that 
the session s] has requested from the server, We model the request 
patterns of a single session as a continuous-time Markov chain 
[Nel95, Tij94], as developed in Section 3. I. We will then show in 
Section 3.2 how multiple sessions and, particularly, the dynamic ar- 
rivals of new sessions can be incorporated into the model. 

3.1 A Continuous-Time Markov-Chain Model for a 
Single Session 

A continuous-time Markov chain (CTMC) is a stochastic process 
that proceeds through different states in certain time epochs. Its basic 
property is that the probability of entering a state depends only on the 
current state, not on the previous history (this is a first-order Markov 
chain; higher-order Markov chains are not relevant to this paper). 
This property has the mathematical implication that the time for 
which the process resides in a given state must be an exponentially 
distributed random variable; different states may have different 
mean residence times, however. Thus, a CTMC with states denoted 
I, 2, N is uniquely described by a matrix P=(pu) of transition prob- 
abilities between states, and the mean residence times (or “state hold- 
ing times”) Hi of the states. Equivalently, one can specify the transi- 

tion rates Vii between states i and j, where vi, = & * ,J,~ ; the term 
I 

l/Hi is also known as the state departure rate and denoted as vi. 
In our application setting, the state of the CTMC corresponds to a 

session (i.e., the stochastic process) accessing a certain document. 
For each document di, pii denotes the probability that when a session 
has requested documentdi, it will next request document dj from the 
server. The state residence time corresponds to the time that the ses- 
sion resides at a document; this captures the actual interaction time, 
i.e., the time that a human user needs to “digest” a document’s con- 
tents or a browser needs to process the document before requesting 
the next one. 

We are interested in predicting the future accesses of a session. In 
this prediction, we can exploit the knowledge of a session’s current 
state. Thus, the first relevant measure that we are interested in are the 
probabilities Pii that a session will be in state j (i.e., will access doc- 
ument d$ at time t from now, given that it currently resides in state i 
(i.e., document di). There are well-known methods for performing 
this type of transient analysis of a CTMC. However, a first difficulty 
in applying these methods is the fact that the mean residence times 
are not uniform across all states. To overcome this problem, we apply 
a method that is known as uniformization [Tij94] to transform the 
CTMC into an equivalent CTMC with uniform mean residence 
times. Here equivalence means that both processes will be in the 
same state with the same probability for all times t; so we have 
/7&t) = F;,(t) where pii@) refers to the original CTMC and 

pjj(t) to the uniformized CTMC. The uniformization method es- 

sentially adjusts the state transition probabilities so as to factor out 
the different mean residence times; this involves introducing transi- 
tions back into the left state and is described mathematically as fol- 
lows: 

vi* v p;j. j*i 
jFjj= 

C 
I -:, j=i 

where v= max(v; I i= I..N} (3.1) 

The formal proof for this uniformization can be found in [Tij94]. 
The central property that is exploited here is that the state-transition 
epochs of the uniformized CTMC can be generated by a Poisson 
process with rate v, the maximum state departure rate of the original 
CTMC. 

Next we consider the m-step transition probabilities $“’ of the 

uniformized CTMC, i.e., the probabilities that the session will be in 
state j after m transitions given that it currently is in state i. These can 
be inductively computed from the Chapman-Kolmogorov equa- 
tions [Ne195, Tij94J: 

with 37 = I 
1 if i=,j 
Oothenvise (3.2) 

Finally we obtain the time-dependent transition probabilities pij(t) 
by taking the product of the probability that m steps are performed in 
time t with the m-step transition probability, and summing up these 
products for all possible values of m. This is exactly the part of the 
derivation that is greatly simplified by the previous uniformization, 
and we obtain: 

/J&f) = 1 t!-“‘s * $’ for all ij and t > 0 (3.3) 
,,,=o 

We will show in Section 5 that these probabilities can be computed 
efficiently in an incremental manner, i.e., without actually having to 
approach the infinite sum. The pij(t) values denote the probability 
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that a session resides on document dj at time t (from now on) under 
the condition that the session currently resides on document di. For 
the decision on whether it is beneficial to preload a certain document 
from tertiary storage onto disk and possibly drop another document 
from the secondary storage as a replacement victim, we are interested 
in the expected number of requests to a document within a certain 
lookahead time horizon t. We postpone the discussion on how to set 
and possibly fine-tune the value of the lookahead time until Section 
4.3. Note that we are still focusing on a single session only, but esti- 
mating the expectation of the number of requests to a document will 
later allow us to reconcile multiple, concurrently active sessions by 
essentially summing up these expectation values. 

The expected amount of time that a session that currently resides 
in state i will spend in state j within a time horizon of duration t is ob- 
tained by the product of the mean residence time per visit of state j, 
which is l/v, and the expected number of visits to j or, actually, de- 
partures from state j within time t. We consider departures from j 
rather than arrivals at j so that we count only complete visits within 
the time horizon t (i.e., complete residence times), where the differ- 
ence matters in the transient analysis, as opposed to steady-state anal- 
yses, for the time horizon t may be relatively short. The expected 
number of departures from j is in turn obtained by summing up, for 
all possible values it of the total number of transitions within time t, 
the product of the probability that n transitions are performed within 
time t and the probability that state j is reached from state i in less than 
n steps. So we arrive at the following formula [Tij94]: 

Finally, to derive the expected number of arrivals at state k, or, 
equivalently, accesses to document dk. we consider all possible pre- 
decessor states j that have transitions into k (with non-zero probabili- 
ty). Eij(t) / (l/v), the ratio of the total time spent in j (during complete 
visits) to the mean time per visit, is the expected number of complete 
visits to and thus departures from j, and we finally obtain the ex- 
pected number of transitions into k by multiplying the expected 
number of departures from the predecessor state j with the transition 
probability pjk and summing up these values over all predecessor 
states j. This yields the following formula: 

AI 

E[number of accesses to d, in time t] = 2 v * E&t) * & (3.5) 
j=l 

So we finally have a mathematically founded predictor for the near- 
future number of accesses to a document and, thus, a basis for assess- 
ing the “worthiness” of a document, i.e., the benefit of preloading the 
document from tertiary storage and/or keeping it in the secondary- 
storage cache. 

3.2 Incorporating Multiple Sessions with Dynamic 
Arrival and Termination 

The prediction formula derived in the preceding subsection holds 
only for a single session for which we know its current state (i.e., its 
last requested document). For the overall optimization of the server, 
we still need to reconcile the predictors of multiple ongoing sessions, 
and we also have to take into consideration that new sessions arrive 
dynamically and we do not know in advance their initial state (i.e., 
the first requested document of a session). The first problem can be 
easily solved by summing up, over all ongoing sessions, the ex- 

pected values of the number of accesses to a document within a ses- 
sion: 

E[total number of accesses to d, in time t]= 

(3.6) 
,vES j=l 

where d(s) is the document on which session s currently resides (i.e., 
the current session state). 

Now consider the issue of newly arriving sessions. Disregarding 
these and focusing only on the ongoing sessions would underesti- 
mate the number of near-future accesses to certain documents, in par- 
ticular, those documents that are the first ones to be accessed by new 
sessions. Accesses to these “entry” documents arrive “out of the 
blue” so-to-speak. There is an elegant way of incorporating these ac- 
cesses into the CTMC framework. We simply add to the CTMC 
model additional, fictitious states N+ I, . . . . N+c that represent all cur- 
rently inactive clients (which do not have a session in progress) 
among which we expect c new sessions to be started within the time 
horizon t. The value of c is derived from the session arrival rate h, 
which can easily be monitored, by setting c = t*h, and the mean resi- 
dence time of state N+i is set to i*( IA), the expected time until the ith 
session starts. The transition probabilities pN+i,j (i=l ..c) are the sta- 
tionary access probabilities for the entry documents of new sessions. 
Once the CTMC is extended in this way, we can directly apply the 
derivation of Section 3.1 with states N+l through N+c added to the 
various formulas, and the only thing to do in addition is to add c ficti- 
tious sessions, one session residing on each of the states N+l, . . . . 
N+c, to the set S of sessions over which the per-session expectations 
are summed up (see formula 3.6). 

In contrast to session arrivals, there is no explicit notion of a ses- 
sion termination. We simply consider a session as terminated if it 
does not issue any further requests for a certain timeout period. In 
terms of modeling the impact of terminations, however, the termina- 
tion of ongoing sessions can be taken into account, similarly to the 
above considerations on arrivals, by adding transitions between each 
state i and an additional, fictitious (absorbing) state 0, where the tran- 
sition probability pi,0 denotes the probability that a session termi- 
nates (i.e., remains inactive for the timeout period) after having ac- 
cessed document di. These probabilities can be estimated through 
continuous monitoring in the same way as all other transition proba- 
bilities. 

4 Integrated Migration Policy 
This section presents our vertical migration policy that aims to rec- 

oncile the preloading from tertiary storage, the replacement on sec- 
ondary storage, and the scheduling of volume exchanges. The algo- 
rithms are based on the expected number of near-future accesses to a 
document as derived by equation (3.6). We will first present the pre- 
loading and replacement algorithms in Subsection 4.1, and then 
elaborate on the tertiary storage scheduling in Subsection 4.2. Sub- 
section 4.3 discusses the fine-tuning of the lookahead time horizon 
used by the CTMC predictions. 

4.1 Preloading and Replacement of Documents 

As the worst-case access time to near-line tertiary storage is orders 
of magnitude higher than a disk access (i.e., access to secondary stor- 
age), the general objective of our migration policy is to maximize the 
number of document requests that can be served from disk. The 
number of requests within a lookahead time t is constituted by two 
classes of requests. First, a document may have been explicitly re- 
quested so that sessions are waiting for it to be delivered; we will re- 
fer to such requests as pending requests. Second, documents have a 
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Figure I: 
Typical response time distribution of document accesses 

probabilistically expected number of requests as given by the formu- 
la (3.6); we will refer to such requests as speculative requests. The 
latter class are the candidates for preloading, whereas the pending re- 
quests definitely need to be served. We denote the current number of 
pending and speculative requests for document d as Npe,,d(d) and 
Nspec(d,t) where t is the lookahead time horizon. Obviously, the ran- 
king of documents in terms of migrating them to disk or dropping 
them from disk should be based on the sum of Nn,,d(d) and 
Nspec(d,t). An important additional consideration, however, is that 
the size of a document and thus its cache space occupation affects its 
worthiness of being cached. Normalizing the caching worthiness on 
a per byte basis leads to the following definition of document 
weights (see also [Co88, SSV96] for similar considerations): 

weight(d):= rN~w,d(dj+~s~ec(dt)) /size(d) (4.1) 

Clearly, the disk hit rate within the next t time units is maximized 
by trying to bring onto disk and keeping those documents that have 
the highest weights. (We assume that the disk space is so large 
compared to the document size that space fragmentation is not an is- 
sue.) To approach this behavior by an online decision-making algo- 
rithm, our migration algorithm considers preloading requests for 
those documents whose weight exceeds that of currently disk-resi- 
dent documents. The algorithm actually proceeds in incremental 
steps by picking in a single step one preloading candidate, based on 
descending weight order, and one or more replacement candidates 
(depending on the required space), based on ascending weight order. 
The disk space for the preloading candidates is pre-reserved but not 
yet freed up until the tertiary storage is actually ready to transfer the 
document. At that time, the weights of the preloading candidates and 
the replacement victims are re-assessed (as they may have changed 
in the meantime), and the preloading request may be cancelled if the 
document’s weight no longer indicates the worthiness of being 
cached. 

From the above considerations we would expect to obtain a re- 
sponse time distribution for the client requests with a shape as shown 
in Figure I. This is a bimodal probability density function (i.e., with 
two local maxima) where the first mode corresponds to requests 
served from disk and the second mode to the much slower tertiary 
storage accesses. If preloading and caching work effectively, then 
most of the probability mass (i.e., area under the curve) should be a- 
round the first mode; so the probability of still having to fetch a docu- 
ment from tertiary storage after it has been explicitly requested by a 
client should be low. The distribution of that remaining probability 
mass around the second mode is an important factor, too. Namely, 
we want to ensure that the mode itself (say the mean access time of 
the tertiary storage if these times were normally distributed) occurs at 
a minimum horizontal position, and that the tail of the probability 
distribution is as “light” (pictorially, quickly approaching zero) as 
possible so as to bound the tail some percentile. 

Unfortunately, this desired result is not self-guaranteed. Namely, 
if preloading requests are initiated too aggressively, they may lead to 
high contention for tertiary storage drives. The net effect could be 
that speculative requests are served at the expense of delaying pend- 

ing requests. Therefore, in spite of a high disk hit rate, a performance 
problem may arise if the response time of disk misses, i.e., explicit 
client requests that end up having to be served from tertiary storage, 
deteriorates. TO avoid such adverse effects, our algorithm performs a 
benefit-penalty comparison for each preloading candidate and in& 
ates the speculative request only if its benefit exceeds the penalty that 
it incurs on pending requests. Let Tmig denote the average migration 
time from tertiary storage, i.e., the time between an explicit client re- 
quest to a document and the arrival of the document on disk from 
where it can be delivered to the client; this time may include volume 
exchanges. The benefit of a preloading request within the time hori- 
zon t can be defined as its expected number of accesses Nspec(d,t) 
times the response time Tmig that it would have if it is not preloaded: 

benefit (d) := i$&d,t) * TmiR (4.2) 

On the other hand, pending requests are potentially delayed by an 
additional speculative preloading request; this is the penalty of initi- 
ating the preloading. Obviously, we would not want to cause a vol- 
ume exchange merely for speculative requests; rather we should start 
serving a speculative request only when the required volume is on- 
line anyway. This time point depends on the tertiary storage schedu- 
ling policy, but fortunately we need to assess the penalty of the pre- 
loading request only when we are about to serve it, which is exactly 
when its volume becomes online, so that our considerations do not 
depend on the scheduling policy. Let Npend be the total number of 
pending requests to off-line volumes at the time when we consider 
serving a speculative request. Each of these requests is delayed by 
the extra time it takes to tranfer the speculative document from terti- 
ary storage (into memory and then onto disk). Let Rtc,,rs denote the 
effective transfer rate of the tertiary storage, taking into account head 
positioning delays on a volume but no volume exchanges. Then the 
penalty of speculatively preloading document d is given by: 

penalty (d) := Npend * (size(d) / R,,,) (4.3) 

Finally, tertiary storage drive contention is taken into account by 
initiating only such speculative requests, based on the weight rank- 
ing, whose benefit exceeds the penalty. Requests that have been initi- 
ated but, at the time when they are about to be served, turn out to have 
a penalty that is higher than the benefit, are cancelled. 

4.2 Scheduling of Volume Exchanges 
Because of the very high delay incurred by volume exchanges, 

any reasonable tertiary storage scheduling policy must attempt to 
batch requests for the same volume so as to limit or even minimize 
the unproductive time wasted by volume exchanges. This holds for 
both pending and speculative requests, but pending requests are crit- 
ical in terms of response time so that they should not be postponed 
too much for the benefit of batching. The scheduling policy that we 
advocate therefore keeps two queues qPen,j and qspec of volume IDS 
for which explicit, pending requests and speculative preloading re- 
quests have been issued. As long as the qP& queue is not empty, tho- 
se volumes are loaded into drives which have pending requests. Nat- 
urally, preference should be given to volumes v with a high number 
of pending requests, Npend(v). On the other hand, setting volume pri- 
orities only on this basis would cause the danger of request starva- 
tion. Thus, to prevent starvation, volumes are actually loaded into 
drives in descending order of the product Nn,rr<t(v)*Tw&v) where 
Tw,ir(v) is the longest waiting time among all pending requests for 
volume v. Once a volume is loaded into a drive, all pending and spe- 
culative requests are combined and reordered for being served by a 
SCAN-like pass on the volume. It is at this point when the benefit 
and penalty of serving a speculative request are re-assessed and spec- 
ulative requests may be cancelled (see Section 4.1 above). Requests 
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that arrive during the pass and whose position on the volume have 
already been passed are held back in their queue until the next time 
when the volume is loaded (which may be right after finishing the 
current pass if there is no contention for drives). 

Whenever a drive is unused with regard to the explicitly issued 
pending requests, the scheduling policy loads a volume solely for 
serving speculative requests. The volume selection policy that we 
advocate here is to give preference to volumes with a high number of 
expected accesses. For each volume we simply sum up the expected 
number of near-future accesses (formula (3.6)) for all preloading 
candidate documents that reside on the volume, and maintain a 
queue of volumes in descending order of this total number of ex- 
pected accesses. We refer to this algorithm as the MEAT (most ex- 
pected accesses top-priority) policy. So the results from our stochas- 
tic model (see Section 3) are not only useful for initiating preloading 
requests, they also serve as a heuristics for scheduling volume ex- 
changes. 

4.3 Fine-‘liming of the Lookahead Time Horizon 

So far it may appear that the migration policy crucially depends on 
a proper setting of the lookahead time horizon t that plays a promi- 
nent role in predicting the benefit of a speculative request. It is indeed 
true that a careless choice of this fine-tuning parameter can cause ad- 
verse performance etfects: setting it too small means that even highly 
likely but speculative requests are recognized too late, and setting it 
too high would overestimate the benefit of speculative requests and 
may cause high contention for tertiary storage drives. In particular, 
the second case may lead to situations where a volume is loaded info 
a drive solely on behalf of speculative requests and an explicit pend- 
ing request that is issued a second later is delayed for a long time as 
the speculative request queue for the volume in the drive may be very 
long. Furthermore, if secondary storage space is scarce and the pre- 
loading is too aggressive, the preloaded documents may cause the re- 
placement of documents that turn out to be (re-) used earlier than the 
preloaded ones. 

Fortunately, there is a simple rationale for setting the lookahead 
time horizon. Consider the average time period between two succes- 
sive points where the same volume is loaded into a drive; this metric 
can be measured online and will be denoted as Ttoa,j. A speculative 
request can be served “conveniently” (i.e., at low marginal cost) 
when the corresponding volume resides in a drive, and such a specu- 
lation will eventually turn out to be a good decision if the preloaded 
document will be explicitly requested within the time Ttoad (i.e., until 
the same volume is accessible again). Otherwise, if the speculatively 
requested document turns out to be not used at all within time Ttond, 
then loading it now would be a waste of cache space and it should 
better be loaded upon the next opportunity when the required vol- 
ume is accessible, which will be T toad time units later. This consider- 
ation shows us that Tload is an upper bound for the lookahead time of 
the access predictor. Conversely, if a document that is expected to be 
accessed within time Ttoad is not preloaded, it would eventually be- 
come a pending request and penalize the client response time as that 
pending request would likely have to wait for the volume to be 
loaded again into a drive. So T),,,t is indeed a reasonable canonical 
choice for the lookahead time. 

5 Implementation of the Bookkeeping 
In this section we discuss the implementation and the overhead of 

the bookkeeping for the access predictions, the preloading and re- 
placement of documents, and the tertiary storage scheduling. We 
consider both consumption of memory space and CPU time. 

We keep moving-average statistics for all state transition probabil- 
ities of the CTMC (i.e., a dynamically aging counter of how frequent 
a transition from di to di occurs) and all state residence times (i.e., the 
total residence time of the last z visits to di where z is a fine-tuning 
parameter which we set to 50). In principle, this incurs space over- 
head that grows quadratically with the number of documents. How- 
ever, the transition probability matrix P of the CTMC is typically 
very sparse provided that the workload exhibits spatial locality, 
which has been observed for Web server traces [ABC0961 and is a 
reasonable assumption for other document-archive applications, 
too. All the statistical information is kept in hash tables indexed on 
state i. 

Each time a session changes its state by requesting the next docu- 
ment di, the expected numbers of near-future accesses to other docu- 
ments change according to equation (3.5). At this point, the state- 
transition graph of the Markov chain is traversed, starting from di 
and always proceeding along the highest-probability transition of 
the state with the currently highest probability of being reached from 
di. During this traversal, upon each visit of a state j its Eii(t) value is 
incremented by the product of the mean residence time and the accu- 
mulated probability of reaching j within time t (see formula (3.4)). 
The procedure is terminated when the probability of reaching a state 
within the lookahead time t drops below a specified threshold 6 
(which we have set to 0.01). Note that this stopping threshold allows 
us to bound the computational overhead of the traversal. Further 
note that the entire computation is incremental in that it reuses inter- 
mediate results to the most possible extent. Finally note that the com- 
puted Eij(t) values are actually session-independent; thus they are 
kept and reused for all subsequent access predictions of other ses- 
sions, as long as the basic statistical parameters, the transition proba- 
bilities and the state residence times, do not change much. In real ap- 
plications, we would expect exactly such quasi-stable base 
parameters with major shifts occurring only occasionally on a long- 
term scale. 

The algorithms for generating preloading requests and deciding 
on cache replacements are driven by two sorted lists, I,,, and lter, 
which keep the document IDS and the weights of all documents that 
reside on secondary storage and all relevant documents that reside on 
tertiary storage, respectively. Both lists are sorted by weight. The size 
of I,,, obviously depends on the number of disk-resident documents 
and should incur only negligible space overhead. The size of It,,, on 
the other hand, is bounded by considering only documents for which 
at least one session is predicted to access the document within time t 
(with probability above the aforementioned threshold 8). In addi- 
tion, the requirement that benefit(d) > penalty(d) should hold for a 
document d to be preloaded can be exploited to further prune the list 
Iter, as this inequation yields a lower bound on N,,,,(d,t) and thus 
weight(d) for document d to be relevant at all. Note that this consid- 
eration leads to the nicely adaptive effect that the overhead of the 
migration algorithm’s data structures is automatically reduced when 
the load in terms of explicit, pending requests becomes very high. 

The overhead of the tertiary storage scheduling algorithm, MEAT, 
is negligible. We merely have to track the values of Npc,,d and Tw;iit 
on a per volume basis. 

6 Prototype Architecture 
In this section we describe the architecture and some implementa- 

tion details of our document archive prototype. Figure 2 shows the 
general architecture of the system, with data structures depicted by 
ovals and dynamically adjusted control parameters depicted by 
hexagons. At the top level, the system consists of the Session Man- 
ager that maintains information about the state of active sessions, the 
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Figure 2: Architectural overview of the prototype system 

Migration Manager for predicting and scheduling document ac- 
cesses, and the Storage Manager. 

The Session Manager tracks the arrivals of new sessions and the 
current state of the active sessions, and also decides that a session is 
terminated by means of a timeout and then discards all session-spe- 
cific bookkeeping information. The Migration Manager organizes 
the migration of documents between tertiary storage and secondary 
storage and the transfer to the requesting client. The most important 
submodule of the Migration Manager is the Weight Watcher which 
implements the access predictions and manages the sorted lists lter 
and Isec. Each new request of a session as well as session arrivals and 
departures are signalled to the Weight Watcher which then updates 
the document weights as described in Section 5. Each time a volume 
becomes loaded into a drive, the Weight Watcher is requested to gen- 
erate speculative requests. 

Finally, the StorageManager provides a block-oriented interface 
to the secondary storage disks and the tertiary storage jukebox and 
maintains directory information such as address mapping tables. 
Free space is managed by a first-fit allocation algorithm for both 
disks and tertiary storage volumes. The Storage Manager can inter- 
act with real devices, or it can use simulated devices from a library of 
detailed device models based on the CSIM simulation package 
[DevSim,CSIM]. The simulated devices include controller caching, 
realistic seek times, rotational latencies, head switch times, and so on 
[RW94]. In this paper we have considered only simulated devices for 
better reproducibility and statistical confidence of the performance 
results. 

7 Experimental Evaluation 
In this section we present simulation results on the performance 

and overhead of our vertical migration policy. We restrict ourselves 
to studies with synthetic workloads whose key parameters have been 
derived from current Web applications; in contrast to trace-based 
studies, this gives us higher statistical confidence and the ability to 

systematically vary certain parameters so as to obtain insights on 
workloads that are expected for future applications. We compare 
three different policies, all of which use the MEAT policy for the 
scheduling of volume exchanges: 

l MCMin (MC-based -ration policy for Rear-line storage): the 
integrated vertical migration policy that we have developed in 
this paper, based on the CTMC model. 

l TEMP: a replacement-only algorithm with no preloading at all, 
which selects replacement victims based on the temperature of 
documents (i.e., heat I size). The heat of a document reflects its 
stationary access probability, and is dynamically estimated by 
tracking a moving average of the interarrival times of the last 20 
requests to a document. This method can be viewed as a straight- 
forward generalization of the LRU-K buffering algorithm 
[OOW93, WHMZ94] to the case of variable-size buffering gran- 
ules. 

l TEMP-P: this algorithm extends TEMP by additionally preload- 
ing those documents from tertiary storage whose estimated tem- 
perature exceeds the lowest temperature among the currently 
disk-resident documents. Like MCMin, the preloading is subject 
to a comparison of benefit vs. penalty (see Section 4.1) but with 
N spec based on stationary access probabilities only. 

7.1 Experimental Testbed 
The experiments have been carried out on the prototype system 

described in Section 6 with simulated secondary and tertiary storage 
devices. The parameters of the devices used throughout all experi- 
ments are given in Table I; these devices reflect today’s commodity 
SCSI disks and low-end magneto-optical jukeboxes. 

Table 1: System parameters of the simulation testbed 

I Tertiary Storage 1 
Parameter Value 

Number of Drives I I 
Average Seek Time 
Average Rotational Latency 
Transfer Rate 
Controller Cache Size 
Number of Volumes 
Volume Exchange Time 

J 
2s ms 

IO ins 
3.4 MBytes/s 
I MByte 
8 
10 see 

We have considered an archive with 20,000 documents; docu- 
ment sizes are exponentially distributed with mean 500 KBytes. 
Thus, the total archive size is approximately 10 GBytes. The docu- 
ments are allocated randomly across the volumes of the tertiary stor- 
age library. We have analyzed the Web-server traces of two virtual 
museums to characterize the skewness of transition probabilities and 
the distribution of state residence times. We have incorporated these 
observations in a synthetic workload that we believe is realistic for 
large archives and also allows us to investigate a wide spectrum of 
different workloads. The synthetic workload is generated as follows: 

l The documents are first arranged into a tree with constant fanout 
4. This tree serves as a skeleton for generating the state transitions, 
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Figure 3: Response time results for the four workloads 

which themselves are not tree-based and may even have cycles. 
For each document di (i.e., node in the tree) the transition proba- 
bilities to all other documents (including ancestors in the tree) are 
generated by a Gamma distribution with a coefficient of variation 
greater than 1 (namely, 1.5, to be specific) [A1190]. This captures 
a skewed ranking of the transition probabilities from di to all other 
documents which starts with document d4i-2 and proceeds by 
document number modulo the total number of documents. This 
means that the highest-probability transition out of di leads to its 
leftmost child in the tree, and transitions to ancestors are less like- 
ly than to nodes further down in the tree. For leaf documents the 
highest-probability transition target is chosen randomly among 
all documents. 

l The skewness of the transition probabilities out of a document di 
is determined by the expectation value of the Gamma distribution 
from which the transition probabilities are drawn. We assume that 
these values are exponentially distributed among the documents 
and generate this parameter of the document-specific Gamma 
distribution accordingly. The mean value for this exponential dis- 
tribution is set to 6, where the value 6 would imply that 90 percent 
of the probability mass among a document’s outgoing transitions 
is covered by the 16 most probable transitions of a document. The 
fictitious documents dN+I through dN+c (see Section 3.2) are 
treated separately as their successors represent the “entry” docu- 
ments of new sessions; the mean value for the Gamma distribu- 
tion associated with these states is set to 2, which implies that 90 
percent of the probability mass among the outgoing transitions is 
covered by the 6 most probable successor states. 

l The state residence times are exponentially distributed with the 
document-specific mean values drawn from a uniform distribu- 
tion. New sessions arrive according to a Poisson process with rate 
h (i.e., exponentially distributed interarrival times with mean 
I/h). 

l The duration of a session is specified in terms of the number of 
requests that a session is going to issue; this number is generated 
according to a normal distribution. 

We have considered four workloads which differ in their session 
arrival rate and the distribution of mean residence times. The work- 
load LOW-SLOW has low session arrival rate and high state resi- 
dence times, whereas workload LOW-FAST has lower residence 
times. The workloads HIGH-SLOW and HIGH-FAST both have 
higher session arrival rate but differ in their residence times. The 
workload parameters are listed in Table 2. 

Table 2: Workload parameters for the simulation experiments 

Mean session length 
Standard deviation of ses- 
sion length 

24 requests 

12 requests 

Min. mean residence time 30s 110s 1 30 s 110s 
Max. mean residence time 180s 160s 1180s 160s 

7.2 Experimental Results 
The response time results for the three policies under comparison 

are shown in Figure 3 for each of the four different workloads. The 
charts show the mean response time of client requests as a function of 
the secondary storage cache space which is varied from 20 MBytes 
(0.2 percent of the archive size) to 200 MBytes (2 percent of the ar- 
chive size). 

Overall, it is evident that the newly developed MCMin policy con- 
sistently outperforms the other two policies. It improves the mean re- 
sponse time by up to a factor of 2. The highest gains are achieved for 
the LOW-SLOW workload, as this has the lowest utilization of the 
jukebox drives on behalf of explicit, pending requests and thus has 
the largest potential for preloading benefits. With 200 MBytes sec- 
ondary storage space, MCMin achieves a disk hit rate of 68.1%, 
compared to 27.1% and 30.6% of the TEMP and TEMP-P methods, 
respectively. For all three methods, the disk arm utilization is less 
than 15 percent, whereas the jukebox drive is highly utilized, name- 
ly, by 99.6 percent with MCMin versus 77.3 and 99.8 percent with 
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TEMP and TEMP-P, respectively. Note that the full utilization of the 
jukebox drives is exactly desirable if it contributes to shorter client 
response times by using idle time for preloading. 

8 Concluding Remarks 
The vertical migration method for storage hierarchies presented in 

this paper is based on an integrated, quantitative assessment of the 
benefits and costs that arise in the cache replacement decisions, the 
initiation of speculative prefetching, and the scheduling of tertiary 
storage devices. The key to this reconciliation of the different aspects 
is the continuous-time Markov chain model that we havedeveloped 
for predicting near-future accesses and its underlying mathematical 
theory. We believe that analytic models of this kind deserve much 
more attention for their ability to drive online decisions in the re- 
source management of large-scale information systems. Note that 
the developed method is completely self-reliant in that it does notre- 
quire any intervention by human administrators or tuning experts. 
All input parametersare automatically estimated by means of online 
statistics. Furthermore, although the method includes a number of 
control parameters that may be fine-tuned, we have providedsimple, 
practically viable guidelines for choosing appropriate, robust values 
for these parameters. 

The gains for the other workloads are less impressive as the higher 
jukebox utilization prevents more preloading, and for the same rea- 
son the relative improvements become smaller with increasing cache 
size. Note that in these cases, where preloading is less attractive, the 
MCMin method automatically throttles the preloading activity 
based on its benefit-penalty computation (see Section 4.1); this is 
what makes it a robust, practically viable method. Figure 4 compares 
the MCMin response time (mean values depicted by filled bars and 
80th percentiles by hatched bars) for small and large cache size to the 
performance that is achieved when the benefit-penalty comparison 
is switched off. The importance of this component of our integrated 
policy is evident. 

It is interesting to note that the preloading-enriched TEMP-P 
policy has virtually no advantage over the TEMP method. The rea- 
son is its inherent limitation to stationary access probabilities. Under 
high jukebox utilization, particularly with the HIGH-FAST work- 
load, TEMP-P would preload only documents that have very high 
stationary access probability, and these documents reside on secon- 
dary storage anyway. Under lower jukebox utilization, particularly 
with LOW-SLOW, on the other hand, it initiates many preloading 
requests, but these fail to fetch the relevant documents, namely, those 
that are actually fairly cold in terms of their stationary access proba- 
bility but have a high near-future access probability because a ses- 
sion currently resides in the document’s “proximity”. This nicely il- 
lustrates the fundamental superiority of our Markov-chain-based 
approach over a stationary probability model. Only in the 
HIGH-SLOW scenario, TEMP-P is able to obtain a small gain over 
TEMP. for in this case, the arrivals of new sessions benefit from the 
preloading of documents in the “proximity” of the “entry” docu- 
ments (which have a high stationary access probability). 

Additional experiments with variations of the workload parame- 
ters essentially confirmed these tindings and are omitted here for 
space limitation. We also investigated the bookkeeping overhead of 
the prototype implementation. The total space overhead of all book- 
keeping data was I .8 MBytes, and the CPU consumption for the pre- 
dictions (i.e., the Markov chain computations) per session step was 
I00 milliseconds on average on a Sparc20 (i.e., a low-end server). 
This is clearly a small price for achieving such substantial gains in 
terms of client response time. The CPU overhead can be reduced 
even further by keeping a small number of recently computed pre- 
dictions in a special lookup buffer; our experiments have shown that 
we can achieve an acceleration by approximately a factor of IO with a 
lookup buffer of I MByte for the synthetic workloads that we con- 
sidered. 

The experimental studies of this paper have shown significant per- 
formancegains, up to a factor of two in the client response time, at the 
cost of an acceptablebookkeeping overhead. Thus, it is promising to 
generalize the approach to other, more comprehensive settings: 

l Although the method can be carried over from jukeboxes with 
magneto-optical platters to tape library without any changes, we 
realize that the volume scheduling may pose more complex prob- 
lems with tapes. Particularly, policies that emphasize batching 
and perform a complete volume scan when a volume is loaded 
into a drive may incur unacceptable delays with modern tape re- 
cording techniques like serpentine recording, where a complete 
tape scan would take several minutes [HS96]. Therefore, the 
scheduling issues need to be reconsidered with tape libraries. 

l It is tempting to generalize our vertical migration method to an 
entire storage hierarchy with main memory and possibly distrib- 
uted memory [SW97, VLN97] considered in addition to secon- 
dary and tertiary storage. However, the bookkeeping overhead 
for the access predictions may then become a critical issue, as they 
require a substantial fraction of the managed resources them- 
selves, namely, main memory. Under these conditions, the book- 
keeping information should itself be subdivided and dynamically 
migrate between secondary and primary storage, and we could 
employ the weight of a document as the criterion for whether we 
should cache the information on a document’s outgoing transi- 
tions. Thus, the mathematical basis of our approach should pay 
off also at the meta level. 

254 



. The continuous-time Markov chain model upon which our meth- 
od is based may be used not only for vertical data migration, but 
also for data placement (e.g., clustering) on both secondary and 
tertiary storage devices and for horizontal data migration between 
devices at the same storage level, for example, for dynamic and 
incremental load balancing among disks. As Markov chain mod- 
els are substantially richer than the stationary-probability models 
that have mostly been suggested for these purposes [Wo83, 
TCG96, SWZ94]. improvements of performance could be ex- 
pected. 

Encouraged by the very positive results that we obtained for the 
architectural setting of the current paper, we have started investigat- 
ing the above issues. 

References 
[A11901 A.O. Allen: Probubility, Statistics, and Queueing Theor) 
with Computer Science Applications, Academic Press, 1990 
[ABC0961 V. Almeida, A. Bestavros, M. Crovella, A. de Oliveira: 
Characterizing Reference Localit)r in the WWW, Int. Conf. on Paral- 
lel and Distributed Information Systems (PDIS), Miami Beach, 
1996 
[Be961 A. Bestavros: Speculutive Data Dissemination and Service 
in Distributed Information Systems, Int. Conf. on Data Engineering, 
New Orleans, 1996 
[CFKL95a] I? Cao, E.W. Felten, A.R. Karlin, K. Li: A Study of Inte- 
grated Prcfetching and Caching Strategies, ACM SIGMETRICS 
Conf., 1995 
[CFKL95b] P. Cao, E.W. Felten, A.R. Karlin, K. Li: Itnplementu- 
tion and Pecformance qflntegrated Application-Controlled Cach- 
ing, Prefitching and Disk Scheduling, Technical Report TR- 
CS95-493, Princeton University, 1995 
[CKS9] E.E. Chang, R.H. Katz: Exploiting Inheritance and Struc- 
ture Semantics for effective Clustering and Buffering in an Object- 
Oriented DBMS , ACM SIGMOD Conf., Portland, 1989 
[CR941 L.T. Chen, D. Rotem: Optimizing Storage of Objects on 
Mass Storage Systems with Robotic Devices, Int. Conf. on Extend- 
ing Database Technology (EDBT), Cambridge, UK, 1994 
[CH91] J.R. Cheng, A.R. Hurson: On The Perjormance Issues qf 
Object-Bused B@ering, Int. Conf. on Parallel and Distributed Infor- 
mation Systems (PDIS), Miami Beach, 1991 
[Co881 G. Copeland. W. Alexander, E. Boughter, T. Keller: Data 
Placement in Bubba, ACM SIGMOD Conf., Chicago, 1988 
[CKV93] K.M. Curewitz, P. Krishnan, J.S. Vitter: Practical Pre- 
,fetching via Data Compression, ACM SIGMOD Conf., Washing- 
ton, DC, 1993 
[CSIM] CSIMI7 Userk Guide, Mesquite Software Inc., Austin 
[DevSim] M. Gillmann, W. Gross: User’s Guide of DevSim- A Li- 
brary of Secondary und Tertiary Storage Device Simulations (in 
German), University of the Saarland, 1996 
[FC91] D.A. Ford, S. Christodoulakis: Optimal Placement of High- 
Probability Randomly Retrieved Blocks on CLV Optical Disks, 
ACM Transactions on Information Systems, 9(l), 1991 
[GK94] C.A. Gerlhof, A. Kemper: Prefetch Support Relations in 
Object Bases, Int. Workshop on Persistent Object Stores (POS), 
1994 
[GKKM93] C.A. Gerlhof, A. Kemper, C. Kilger, G. Moerkotte: 
Partition-Bused Clustering in Object Bases: From Theory to Pruc- 
tice, Int. Conf. on Foundations of Data Organization and Algorithms 
(FODO), Chicago, 1993 
[GMW94] L. Golubchik, R. Muntz, R.W. Watson: Analysis of Strip- 
ing Techniques in Robotic Storage Libraries, Technical Report, Uni- 
versity of California, Los Angeles, 1994 
[GP87] J. Gray, F. Putzolu: The 5 Minute Rule for Trading Memory 

for Disc Accesses and the 10 Byte Rule for Truding Memory for CPU 
Time, ACM SIGMOD Conf., San Francisco, 1987 

[HS96] B.K. Hillyer, A. Silberschatz: Random l/O Scheduling in 
Online Tertiar.y Storage Systems, ACM SIGMOD Conf., Montreal, 
1996 
[KPR92] A.R. Karlin, S.J. Phillips, P. Raghavan: Markov Paging, 
IEEE Symposium on Foundations of Computer Science, 1992 
[LLW<S] S.W. Lau, J.C.S. Lui, PC. Wong:‘A Cost-effective Near- 
line Stora,pe Server for Multimedia Svstem. Int. Conf.‘& Data Enei- 
neering, Taipeh, 19”95 
[MKK95] F. Moser, A. Kraiss, W. Klas: UMRP - A Buffer Manage- 
ment Strategy for Interactive Continuous Dam Flows in a Multime- 
dia DBMS, VLDB Conf., Zurich, 1995 
[ML971 M. Myllimaki, M. Livny: Relational ./oin.s,fi>r Data on Ter- 
tiary Storage, Int. Conf. on Data Engineering, Birmingham, UK, 
1997 
[Nel95] R. Nelson: Probability, Stochastic Processes. and Queueing 
Theory - The Mathematics of Computer Parfi~rmancc~ Modeling, 
Springer, 1995 
[NKT97] T. Nemoto, M. Kitsuregawa, M. Takagi: Simulation Stud- 
ies of the Cassette Migration Actrvities in a Scalable T%pe Archiver, 
Int. Conf. on Database Systems for Advanced Applications. Mel- 
bourne, 1997 
[OOW93] E.J. O’Neil, l?E. O’Neil, G. Weikum: The LRU-K Page 
Replacement Alporithm For Dutubase Disk Bufferine. ACM SIG- 
M6D Conf., Wishington, DC, 1993 ‘&’ “’ 
[PZ91] M. Palmer, S.B. Zdonik: Fido: A Cache that learns to,fetch, 
VLDB Conf., Barcelona, I99 I 
[PGG+95] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, 
J. Zelenka: Informed Prcfetching and Caching, ACM Symposium 
on Operating Systems Principles, I Y95 
[RW94] C. Ruemmler, J. Wilkes: An Introduction to Disk Model- 
ling, IEEE Computer 27(3), I994 
[Sa95] S. Sarawagi: Query Processing in Tertiury Memory Data- 
bases, VLDB Conf., Zurich, 1995 
[SSV96] P. Scheuermann, J. Shim, R. Vingralek: WATCHMAN: A 
Data Warehouse Intelligent Cache Manager, VLDB Conf., Bom- 
bay, 1996 
[SW971 M. Sinnwell, G. Weikum: A Cost-Model-Based Online 
Method for Distributed Caching. Int. Conf. on Data Engineering. 
Birming”ham, UK, 1997 I’ 

.A. 

[SWZ94] P. Scheu&mann, G. Weikum, F! Zabback: Disk Cooling in 
Parallel Disk Systems, IEEE Data Engineering Bulletin 17(3), 1994 
[SmiU] A.J. Smith: Long Term File Migration: Drvelopment and 
Evaluation of Algorithms, Communications of the ACM 24(8), 
1981 
[Sto91] M. Stonebraker: Managing Persistent Objects in a Multi- 
hvel Store, ACM SIGMOD Conf., Denver, I99 I 
[TG84] J.Z. Teng, R.A. Gumaer: Managing IBM Datubase 2 Bufs- 
ers to Maximize Petjtirmance, IBM Systems Journal 23(2), 1984 
[Tij94] H.C. Tijms: Stochastic Models -An Algorithmic Approach, 
John Wiley & Sons, I994 
[TCG96] i. Triantafillou, S. Christodoulakis, C. Geogiadis: Opti- 
mal Data Placement on Disks: A Comnrehensive Solution for Dif- 
,ferent Technologies, HERMES Technical Report, Multimedia Sii- 
terns Institute of Crete, 1996 
[TN911 M.M. Tsangaris, J.F. Naughton: A Stochastic Approach for 
Clustering in Object Buses, ACM SIGMOD Conf., Denver, IYY I 
[TN921 M.M. Tsangaris, J.F. Naughton: On the Pe~ftirmunce of Ob- 
ject Clustering Techniques, ACM SIGMOD Conf., San Diego, lYY2 
[VLN97] S. Venkataraman, M. Livny, J.F. Naughton: Memory 
Management for Scalable Web Dutu Servers, Int. Conf. on Data En- 
gineering, Birmingham, UK, I997 
[WZ86] H. Wedekind, G. Zoerntlein: Prefetching in Reultime Data- 
base Applications, ACM SIGMOD Conf., Washington, DC, 1986 
[WHMZ94] G. Weikum, C. Hasse, A. Moenkeberg. P. Zabback: 
The COMFORT Automatic Tuning Project, Information Systems 
lY(5), I994 
[Wo83] C.K. Wong: Algorithmic Studies in Mass Storage Systems, 
Computer Science Press, 1983 

255 


