
Concurrent Garbage Collection in 02

Marcin Skubiszewskit* Patrick Valduriezi

f INRIA, Rocquencourt
78153 Le Chesnay, France

FirstName.LastName@inria.fr

*Os Technology
7, rue du Pam de Clagny
78000 Versailles, France

http:/Avww.o2tech.fr

Abstract

ing is modified in the system while the GC is examining it
in order to determine which objects are garbage.

We describe a concurrent garbage collector (GC)
for object-oriented databases. Our GC uses a new
synchronization mechanism (mechanism that al-
lows the GC to operate concurrently with ordinary
users of the database), called CC-consistent cuts.
A GC-consistent cut is a set of virtual copies of
database pages. The copies are taken at times
such that an object may appear as garbage in the
cut only if it is garbage in the system. Our GC
examines the copies, instead of the real database,
in order to determine which objects are garbage.

More sophisticated GCs can execute concurrently with
the applications. This implies that objects in the system
may be modified at any time while the GC is examining
them, and that the GC must implement a synchronization
mechanism-a mechanism that ensures the correctness of
garbage collection in spite of the modifications.

The synchronisation mechanism that is both the oldest
known and the most widespread today is called write bar-
riers. It was introduced by Dijkstra et al. [5]. See Jones
and Lins [9] or Wilson [14] for a complete description of
the state of the art concerning write barriers.

GC-consistent cuts are easy to implement by
already-existing code that implements consistent
read-only transactions. Our GC scales up. Unlike
other scalable GCs, it does not require the user
to explicitely partition the database into loosely-
connected subsets, and does not introduce code
that must run all the time, hereby avoiding to slow
down the system while the GC is not running.

1 Introduction

When a write barrier is used, the GC makes no effort to
obtain a consistent view of the system (each object is seen in
the state in which it happens to be when the GC looks at it).
Instead, the system notifies the GC of every pointer modifi-
cation performed while the GC is running. For this purpose,
user code is instrumented, or virtual memory mechanisms
are used to detect writes, or, in systems with logging, the
log is made available to the GC and analyzed by it. The
notifications are used by the GC to build a list of objects that
were reachable at some point during the garbage detection
process, yet that risk being improperly seen as unreachable.
The GC considers all objects in the list as reachable; this is
sufficient to ensure correctness.

Automatic garbage collection is widely recognized as a fun-
damental mechanism that relieves software developers from
dealing with memory deallocation. Unfortunately, garbage
collectors (GCs) tend to be highly obtrusive, and to impose
inconvenient synchronization requirements upon the rest of
the system. Unsophisticated GCs block all other activities
in the system, because they are based on the simplistic idea
that the correctness of the GC depends on the fact that noth-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Baye Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

In this paper, we focus on concurrent garbage collection
in object-oriented databases. When used in this context, the
existing garbage collection methods exhibit three problems.
First, they are complicated to implement, and interact with
the rest of the system in a nonmodular way. The complex-
ity is due to a large extent to the fact that a GC-specific
synchronization mechanism is needed, in addition to the
standard mechanisms that already exist in the DBMS. The
lack of modularity results from the fact that the GC, and par-
ticularly its synchronization mechanism, depends on many
implementation details of the underlying system.

Second, the code that implements existing GCs degrades
the performance of the system, by its mere existence: GC-
specific tests are performed and GC-specific information
is gathered all the time, even while the GC does not run.
For example, Amsaleg et al. [l] have measured the over-

356

head caused by their GC to be between 0.6 % and 5.8 %,
depending on situations.

Third, the existing GCs do not scale up in the context of
databases. A solution to this problem consists in dividing
the storage into partitions, and in collecting the partitions
separately [1, 111. But this solution has serious drawbacks.
It creates a new system administration burden: objects must
be placed in partitions in a way that minimizes the number
of inter-partition pointers. It degrades the performance
of the system: the system must maintain tables listing all
inter-partition pointers, and this requires every write to a
pointer variable to be accompanied with instructions that
test whether the value written points to a remote partition,
and that update the tables if necessary.

In order to address these problems, we have developped a
new concurrent garbage collector for DBMS. This garbage
collector has been implemented in 02, a commercial object-
oriented DBMS [2]. To the best of our knowledge, no other
concurrent GC has ever been implemented in an industrial
DBMS, although many industrial garbage collectors exist
in other contexts, and are concurrent.

Our work is based on a new synchronization mechanism,
named CC-consistent curs. This mechanism is essential for
keeping the implementation simple and modular, and for
avoiding performance degradation of the whole system.
GC-consistent cuts resemble the synchronisation mecha-
nism normally used for consistent reads of a database. To
implement them, it is sufficient to modify in a minor way
the already-existing code that implements consistent reads.
GC-consistent cuts cause no observable performance degra-
dation while the GC is not executing.

The theoretical foundations of GC-consistent cuts can be
found elsewhere [12,131. Work [121 contains formal proofs
of all the facts about GC-consistent cuts that we quote in
this paper.

Scalability is obtained in our GC by a surprisingly sim-
ple technique, that consists in ordering accesses to database
pages in a way that minimizes swapping. This is efficient,
because swapping is the major source of performance prob-
lems when collecting garbage in a large database.

The paper is organised as follows. In Section 2, we de-
scribe the assumptions under which our garbage collector
works, and the requirements that it satisfies. These assump-
tions and these requirements are those of 02; they are sat-
isfied in most object-oriented DBMS. In Section 3, we de-
scribe the principles according to which our GC works: the
synchronization mechanism (namely GC-consistent cuts)
and the garbage collection algorithm. Section 4 describes
the implementation of our GC, and Section 5 discusses per-
formance results obtained with this implementation. Sec-
tion 6 summarises our contribution.

2 Problem Formulation

In this section, we describe the assumptions about the
DBMS that are used by our garbage collector and state the
requirements that we impose upon the garbage collector.

2.1 Transactions and pages

A database execution is a sequence of transactions executed
during a time period. Each transaction locks the data to
which it has access, in either read only or read-write mode.
By monitoring locks, an observer can learn which data are
read or modified by any given transaction. This knowledge
is an essential prerequisite for building GC-consistent cuts
of a database.

We assume that transactions are atomic and serializable
171. Serialisability means that everything happens as if
the transactions were executed sequentially, in some spec-
ified order. In reality, transactions may be executed con-
currently, and serialisability is implemented by the locking
mechanism, which permits concurrent execution only when
it is indistinguishable from a sequential one. Serialisability,
and the resulting apparent lack of concurrency, allows us
to depict each transaction as a fictitious atomic (thus, null-
duration) event, that takes place at the time when the real
transaction commits.

We assume that the database is divided into pages. For
every object z, P(z) denotes the page to which z belongs.

2.2 Reachability

We use a model of reachability based on the fact that before
accessing an object, user code (in our case, a transaction)
must first access a pointer to it. This model is commonly
used in object-oriented systems, including for example 02
and ObjectStore [lo].

The database is assumed to contain a fixed set of inde-
structible objects called roots. Pointers to roots are system
constants, to which all transactions have access. Moreover,
every transaction has access to pointers to the objects that
it has created. Outside of these two cases, objects can only
be accessed by a transaction once this transaction has read
a pointer to the object, from a pointer field in another ob-
ject present in the database. We assume that unambiguous
rules exist to determine which parts of an object are pointer
fields. In 02, for example, this is accomplished using type
information present in the object’s header.

There are no other possibilities for a transaction to obtain
a pointer value. For example, it is illegal to perform pointer
arithmetic or to store pointers in places other than pointer
fields of objects.

An object is said to be reachable at a given time t iff it
exists and the first transaction that will take place after t can
access it according to the rules above. The following is a
correct characterization of reachability.

Definition 1 (reachability and garbage in databases)
The reachable objects in a database execution E at time
t form the smallest set such that (i) roots are reachable and,
recursively, (ii) if at time t object x is reachable and object
y exists and x contains a pointer to y, then y is reachable
at time t.

An object is garbage at time t if it exists but is not reach-
able at this time.

357

PO

Pl

P2 f
6 i time i

>

Figure 1: Example of a database execution.
We allow user code to explicitly delete objects. A de-

struction is considered as a special case of a write access to
the object. It can therefore only take place in a transaction
that has access to a pointer to the object, and has locked
for writing either the object or a bigger entity (usually, the
page) to which the object belongs.

2.3 Requirements Regarding the GC

Our GC is concurrent. It is required to be safe and com-
plete. Safety means that only garbage objects are deleted.
All garbage collectors must be safe. Completeness means
that the GC will delete all the objects that are garbage when
its execution begins. No similar guarantee is required about
the objects that become garbage while the GC is already in
operation (such objects are guaranteed to be deleted by the
next execution of the GC). The lack of completness is a
serious drawback, that we are not willing to accept. (It is
sometimes accepted, but only in contexts where complete-
ness cannot be provided [4,3].)

2.4 Summary

The problem can be stated as follows. We consider an
object-oriented DBMS, where transactions are atomic and
serialisable, and where the database is divided into pages.
We assume that each transaction T in the DBMS has only
access to root objects, to objects created by T, and, re-
cursively, to objects pointed to by pointer fields of objects
accessed by T. Objects that exist, but cannot be accessed
by future transactions because of the rules above are called
garbage.

Under these assumptions, we want to design a garbage
collector that is concurrent (works without interrupting
the normal operation of the database), safe (only deletes
garbage objects) and complete (deletes all the objects that
are garbage when the GC starts operation).

3 The Garbage Collector-principles

In this section, we describe our garbage collector. First, we
introduce the notation. Then, we introduce GC-consistent
cuts, which our GC uses as its synchronization mechanism.
Finally, we describe the GC itself and the algorithm that
builds GC-consistent cuts.

3.1 Graphical Notation and Transaction Clock

We graphically represent database executions as follows
(see Figure 1). Time flows from left to right. Each page
is represented by a thin horizontal line. Each transaction
is considered as a null-duration event and represented by
a thick black vertical line. If a transaction reads a page,
the corresponding lines cross; if it also writes the page, an
arrow is drawn at the crossing. For example, the leftmost
transaction on the figure reads and writes page 0, reads page
1, and does not access page 2.

When talking about a database execution, we use a spe-
cial real-valued global clock called transaction clock. This
clock takes value 0 at some time before the first transaction.
Then, in an execution including n transactions, it takes each
integer value t E [l . . n - l] at some time between the t-
th and the t + 1-th transaction. Value n is taken at some
time after the n-th transaction. For every t, during the t-tb
transaction the value of the clock is strictly included be-
tween t - 1 and t. (We do not assume that the DBMS has
access to the transaction clock; we only use the clock as a
theoretical tool for talking about the DBMS.)

Two elements in Figure 1, namely cameras and very
thick gray lines, are explained below.

3.2 Cuts

When the contents of page i at time t is recorded for the
needs of the GC, the recording is called a snapshot and noted
(i, t). Since we consider transactions as atomic events, we
only take into account the possibility of taking snapshots
between transactions, i.e. at integer times: for (i, t) to be
a snapshot, t must be an integer. A cut is a collection of
snapshots taken during an execution, containing one and
only one snapshot of each page.’ For example, Figure 1
shows a cut composed of three snapshots (represented by
cameras), namely (O,O), (2,1) and (1,3).

We say that an event happens during a cut C iff it hap-
pens between the times when the first snapshot and the last
snapshot in C are taken, inclusively.

In order to verify the reachability of objects in a cut, we
proceed exactly as if the cut was a current state of the system
at some time t. In other words, to define reachability in a
cut, we substitute in Definition 1 the words “at time t” with
words “in cut C.” This leads to the following definition.

Definition 2 (presence, reachability and garbage in cuts)
Let C be a cut. An object x is present in C ifsC contains a
copy of x, i.e. if the snapshot of P(x) in C is taken when x
exists; otherwise, x is absent from C.

Objects reachable in C form the smallest set such that
(i) roots are reachable in C and, recursively, (ii) if object x
is reachable in C and a copy of x present in C contains a

1 Elsewhere [12, 131 we define cuts in a more general way: a cut may
contain more than one snapshot of the same page. This generalization is
not useful to describe our garbage collector.

358

pointer to object y and y is present in C, then 3 is reachable
in C.

An object x is garbage in cut C iff it is present in C and
is not reachable in C.

3.3 GC-consistent Cuts

We define now two properties that a cut must satisfy in
order to be used by a safe and complete garbage collector;
Section 3.4 explains why these properties are important.
Then, we define GC-consistent cuts, a category of cuts that
satisfy the two properties.

Definition 3 (cuts exhibiting all garbage) A cut C of a
database execution E exhibits all garbage iff every object
that is constantly garbage in E during C, is garbage in C.

This property is satisfied by all cuts.

Definition 4 (cuts containing no false garbage) A cut C
of database execution E contains no false garbage iff every
object that is never garbage in E during C, is not garbage
in C.

This property is not satisfied by all cuts. Figure 2 shows
a counterexample: the object X is constantly reachable in
an execution while a cut is being taken, and is garbage in
the cut.

Before defining GC-consistent cuts, we must define
paths.

Definition 5 (path) Let E be a database execution, con-
sisting of n transactions: we assume that the database con-
tains m pages. A path in E is a function H that goes from
the set of integer times of the transaction cLock to the set of
pages (in symbols: H : (0, n} + (0, m - 1)) and
that satisjies, for every t > 0 belonging to its domain, one
of the following conditions:

2. H(t) = H(t - 1)

2. or the transaction that takes place between times t - 1
and t holds locks that allow it to read page H(t - l),
and to write page H(t).

A path represents the way in which a pointer present at
the end of a database execution E in some page i may have
been successively copied during E in order to reach this
page. According to Definition 5, H(t - 1) and H(t) either
are equal (this corresponds to the situation where a pointer
value is not copied) or are chosen so that the transaction that
takes place between times t - 1 and t has the possibility to
copy a pointer from page H (t - 1) to page H (t) . The latter
means that the transaction is allowed to read page H(t - 1),
and to write page H(t).

In Figure 1, two example paths are represented by very
thick gray lines (other paths exist in this execution, we just
chose to represent these two as examples). The lower one
is straight. This corresponds to a constant path-a path that

stays in the same page during the whole execution. The
upper one shows that a pointer value located in page 1 at
time 3 might be there because between times 2 and 3 it was
copied there from page 0, after being copied from page 1 to
page 0 between times 0 and 1.

Definition 6 (GC-consistent cut) Let E be a database ex-
ecution. A cut C of E is GC-consistent ifSit crosses every
path, i.e. #for each path H in E there exists some time t
satisfying (H(t), t) E C.

GC-consistent cuts contain no false garbage. This fact
implies that an anomaly similar to the one in Figure 2 cannot
happen with a GC-consistent cut.

3.4 The Garbage Collection Algorithm

Our garbage collector is based on a classical method called
murk and sweep. This method consists in dividing the
work of the GC into two clearly distinct phases, respec-
tively called marking and sweeping. While marking, the
GC determines which objects are reachable. For this pur-
pose, all the reachable objects are examined, according to
the rules in Definition 1: roots are declared reachable; re-
cursively, the objects that are pointed from within reachable
objects are declared reachable; all other objects are consid-
ered as garbage. The marking phase of our GC only reads
the database, and does not write it. (In other GCs, the mark-
ing phase writes objects: a special bit (the mark) is set in
the objects that are found to be reachable. In the context of
databases, however, it is more efficient to keep a separate
list of reachable objects, stored outside of the database.)

During the sweeping phase, the collector deletes the ob-
jects that have been classified as garbage during the marking
phase. Reachable objects are left intact.

If the GC is concurrent, a synchronization mechanism
must be used during the marking phase. Otherwise, the GC
may incorrectly classify reachable objects as garbage, and
delete them. Amsaleg et al. [l] describe several example
situations in which this occurs. For instance, consider the
database execution shown in Figure 2, and a mark-and-
sweep GC that examines the root Rl at time 0, and RO at
time 1. Under these assumptions, the GC will believe that
no pointers to object X exist in RO or in RI, and that X is
garbage. X will therefore be deleted, even though, in fact,
it is reachable.

The sweeping phase does not need a synchronization
mechanism: here, the concurrency between the GC and the
other clients of the database poses no problem, because the
sweeping phase of the GC only accesses garbage objects,
while the other clients only access reachable objects.

Our GC uses a GC-consistent cut as its synchronization
mechanism. During the marking phase, a GC-consistent
cut C of the database is built; concurrently (i.e. while C
is being built), the GC performs marking in C, according
to Definition 2. The list of garbage objects is explicitely
built. Sweeping is performed once marking is finished, and
consists in deleting (directly from the database, not from the

359

PO

PI

.
$8 .

0 1

Figure 2: An

System at time 0

Part0

H @i&r;;7
Part1

System at time 1

al RO 0

F Part 0 (time 1)

@jr;;-)

1 Part 1 (time 0)

The Cut

obiect that is reachable
cut) the objects that weredeclared garbage by the marking
phase.

To explain why this scheme is correct, i.e. why it causes
the GC to be safe and complete, observe that once an ob-
ject in the database becomes garbage, transactions do not
have access to pointers to it, and therefore cannot make it
reachable or delete it. A garbage object will therefore stay
garbage until it is deleted by the GC.

When combined with the fact that GC-consitent cuts
exhibit no false garbage, this observation implies that every
object that is garbage in C is also garbage in the database at
some time during C, and stays so until it is deleted by the
GC. This, further combined with the fact that the GC will
only delete objects that are garbage in C, implies that the
GC is safe.

To establish completeness, it suffices to combine the
observation above with the fact that cuts exhibit all garbage,
and to deduce that every object that is garbage when the GC
starts operation is garbage in C, and, as such, is deleted.

3.5 Building a GC-consistent Cut

Usually, the number of paths in an execution grows expo-
nentially with the number of transactions. For this reason,
it would be impracticable to directly use Definition 6 to
build GC-consistent cuts. Instead, we define the notion of
captured page.

Definition 7 (captured page) Let C be a set of snapshots
in some execution E. We say that C captures page i at time
t ifffor every path H in E such that H(t) = i, for some
time t’ 5 t we have (H(t’), t’) E C.

This definition means that C captures page i at time t iff
C contains a snapshot, taken at time t or before, of every
path H that goes through page i at time t. Intuitively, C
captures page i at time t iff every pointer that is present in
i at time t is recorded in some snapshot in C taken at time
t or before (pointers to roots and pointers to newly created
objects are excluded from this rule).

For example, in Figure 1, page 2 is trivially captured at
time 1, because snapshot (2: 1) belongs to the cut. Page 0 is
captured at time 0 for the same reason, but is not captured at
time 1 since at times 0 and 1, no snapshots are taken of the
path {(l,O), (O,l), (0,2), (1,3)}, repsesented by a thick
gray line.

We can characterize GC-consistent cuts as follows.

in the execution, and garbage in a cut.
Theorem 1 (characterization of GC-consistent cuts) A
cut C is CC-consistent ifSat the time when the last snapshot
in C is taken, C captures all pages.

Theorem 1 can be used as a foundation for a practical
algorithm that builds GC-consistent cuts. It suffices that the
algorithm ensures the following:

(a) A snapshot of every page is taken at some time.

(b) Once a page is captured, it cannot become noncaptured
later.

Condition (a) implies that every page is captured at some
time. This fact and condition (b) imply together that pro-
gressively, all the pages will become captured. Then, the
algorithm can be stated as follows.

1. Initially, no snapshots exist.

2. If the marking process requests access to a page that
does not have a snapshot, take a snapshot of this page
immediately.

3. If a transaction writes a page that has a snapshot, then
immediately before the transaction commits, take a
snapshot of every page read or written by this transac-
tion which does not yet have a snapshot.

4. When the marking process is terminated, halt.

A complete proof of correctness for this algorithm is pro-
vided in [12]. Here, let us just observe that rule 2 causes
condition (a) to be satisfied, because the marking process
requests access to all pages. Condition (b) holds thanks to
rule 3, which insures that once a page has a snapshot, it will
only receive information from pages that also already have
snapshots.

4 The Garbage Collector-Details and Im-
plementation

Let us recall that the objectives for our GC are simplicity,
modularity and performance. Modularity means that we
want the interactions between the GC and the rest of the
system to be done according to well-defined rules, and to
be as simple as possible. Concerning performance, our most
important goals are scalability, and the absence of negative
influence upon the performance of the system while the GC
is not running.

360

4.1 Overview

Our GC is implemented by three agents: the cutting agent
that builds a GC-consistent cut, the marking agent that
performs marking, i.e. lists the objects that are garbage in
the cut, and the sweeping agent, that deletes from the system
the objects previously listed as garbage. The cutting agent
and the marking agent run concurrently with each other.
The sweeping agent runs when the two other agents have
finished. All the agents run concurrently with the ordinary
users of the system.

The implementation of the agents is guided by the prop-
erties of Oz. 0s is a centralized, client-server object-
oriented DBMS. A central process called 02 Server man-
ages all the data, all the logs and all the locks in the system.
Other processes, called clients, request data and locks from
the server, and perform transactions on behalf of the users.

02 uses data shipping, as opposed tofunction shipping:
user code is always executed in the clients, and not directly
in the server. As a consequence, the server is relatively
simple. For example, it does not contain code able to create
or delete objects, or to determine the type of an object, or
to locate pointer fields in an object; such code is present in
the clients.

Data are served by whole pages. Each page contains 4
kilobytes of data. Locks are normally granted on whole
pages, but are de-escalated to single objects whenever nec-
essary. The addresses of objects are stored on 64 bits. Each
address contains a 4%bit page ID, representing the page
where the object belongs, and a small positive integer called
slot number. Inside each page, slot numbers are allocated
consecutively, starting from 0, as objects are created in the
page. The slot numbers corresponding with objects that
exist at a given time do not necessarily remain consecutive,
because objects may be deleted.

4.2 The Marking Agent

Principle

Marking is done according to Definition 2. Accordingly,
the marking agent successively examines all the reachable
objects, In order to remember which objects have already
been examined, and which ones still need to be, the agent
uses three color marking, a method introduced by Dijkstra et
al. [5]. According to Dijkstra, at any given time an object
has one of three colors. The colors have the following
semantics.

black The object is known to be reachable and has already
been examined.

gray The object is known to be reachable, but has not been
examined yet.

white The object is not known to be reachable.

With this semantics, when marking begins, the roots are
gray and all other objects are white. Marking consists in

repeating the following operation as many times as possible,
i.e. as long as there are gray objects left.

1. Select a gray object z.

2. Examine z, and color gray all the white objects that
are pointed by pointer fields in x.

3. Color z black.

When marking is over, all the reachable objects have been
detected as such and examined, and are therefore black.
Garbage objects are white.

Details

The marking agent is implemented as an 02 client process.
It accesses the database through an application programmer
interface similar to the one used by ordinary clients.

The fact that marking is done in a cut, rather than in the
real database, is invisible to the marking agent: the agent
requests access to objects in an ordinary manner, and the
server, knowing that the requests come from the marking
agent, responds by serving objects from the cut, rather than
from the database.

To remember which objects are black or, respectively,
gray, the agent uses hashtables hashed on page IDS. For
each page ID, the table stores a bitmap that tells which
objects in the page are black (respectively, gray). These
bitmaps are easy to manage and small, because objects
inside a page are identified by small and usually consecutive
integers. There is no similar hashtable for white objects:
objects that are not black or gray, are white.

The goal of the marking agent is to build a list of garbage
objects. For this purpose, having a list of reachable objects
is not sufficient: the marking agent also needs to know
which objects are present in the cut (remember that an
object is garbage in the cut iff it is present in the cut, and
not reachable). For this purpose, the agent uses the fact that
in 02, the header of every page contains the list of slots
used in the page, i.e. of slots that actually contain objects.

For every page p, the agent retrieves from the header of
p the number mpr representing the highest slot number used
in this page, and the slot numbers in the interval [O..m,] that
are unused (because the corresponding objects have been
deleted). mP is memorised in a hashtable. The unused
slots are marked black, i.e. are treated as if they contained
reachable and already-examined objects. This may seem
surprising, but is correct, because the marking agent only
needs to know two things about each slot: whether the slot
contains an object that needs to be examined, and whether
the slot contains a garbage object. And the answers to
these questions are the same for an empty slot and for
a slot containing a reachable object that has already been
examined: in both cases, the slot does not contain a garbage
object or an object that needs to be examined.

To summarise, the marking agent examines every reach-
able object in the database in order to find inside pointers

361

to other objects, and it examines the header of every page
to find which slots in the page contain objects.

These operations may be performed in any order. We
choose to order them so as to reduce swapping. For this pur-
pose, we follow two rules. First, the agent tries to perform
all the work concerning a given page at the same time. Sec-
ond, whenever possible, the agent elects to perform work
on pages present in the client’s cache; non-cache-resident
pages are brought to the client only when there is currently
no work to be done on pages in cache, i.e. when no gray
objects are present in the cache and when all the pages in
the cache have already had their headers examined.

4.3 The Cutting Agent

Principle

The cutting agent can build several cuts simultaneously.
Besides GC-consistent cuts, it implements atomic curs and
causal cuts. An atomic cut represents the state of the
database at a given time. 02 uses atomic cuts for consis-
tent reads of the database. Causal cuts are an experimental
feature, they are described elsewhere [121.

GC-consistent cuts are implemented according to the
algorithm quoted in Section 3.5. Atomic cuts are build
according to the following rule: for an atomic cut taken at
time t, take snapshots of all the pages in the system at time
t.

The agent implements snapshots as virtual copies:
adding a snapshot to a cut consists in setting a copy-on-
write flag on the corresponding page. An actual copy is
made only if and when the page is subsequently modified
by a transaction.

Implementation outline

We only describe the most important among the implemen-
tation choices that concern the cutting agent.

0s Server can run either with or without multithreading.
The cutting agent is implemented as a set of C++ objects in
the server; even when multithreading is used, there are no
threads in the server dedicated to the agent.

A method of the cutting agent, called not i f yCommi t,
is invoked before every commit. Symmetrically, method
not i f yEndComi t is invoked at the end of every com-
mit.

While executing not i f yCommi t, the cutting agent de-
termines which snapshots need to be taken immediately be-
fore the corresponding commit (for a GC-consistent cut,
this determination is made according to the algorithm in
Section 3.5). Copy-on-write flags are set accordingly. The
agent then checks whether the transaction that is going to
commit will modify pages that have the copy-on-write flag
set. If this is the case, copies of these pages are taken, and
only then the server is allowed to proceed with the commit.

In agreement with our theoretical model, the cutting
agent is built upon the assumption that each transaction is

an atomic and instantaneous event, that executes immedi-
ately after the corresponding call to not i f yCommi t . The
agent also assumes that pages in stable storage are, at any
given time, in a state that takes into account all the modifi-
cations brought by previously-committed transactions (that
is, by transactions for which notifyCornmi t has been
called), and no other changes.

These assumptions hold when multithreading is not used.
In this case commits are indeed executed in sequence, im-
mediately after the corresponding not i f ycommi ts, and
between a call to not i f yConxni t and the end of the corre-
sponding commit, the server does nothing besides executing
the commit. The locking mechanism of 02 guarantees that
everything happens as if the transactions themselves were
executed in sequence, in the same order as the commits.

02 implements a policy called no force, no steal [8],
according to which pages stored in stable storage faithfully
represent the current state of the database.2

With multithreading, the situation is more complicated,
because the cutting agent may read a page out of stable stor-
age while commits are in progress. To ensure correctness
despite of this form of concurrency, the agent sometimes
delays taking snapshots, so as never to read a page that is
in the process of being modified, i.e. that is written by a
transaction that has already called not i f yCommi t, and
has not yet called not i f yEndCommi t . Symmetrically,
while a page is being read by the agent, the commits that
write this page are not allowed to proceed until the reading
of the page is complete.

4.4 The Sweeping Agent

The sweeping agent is simple. Its operation is driven by
the hashtable of black objects, produced by the marking
agent. For each page p mentionned in the hashtable, the
agent deletes all the objects that were garbage in the cut, i.e.
the objects with slot numbers less than or equal to mP, and
which are not marked as black. Destructions are grouped
together into transactions.

The agent groups destructions into transactions. In the
current implementation, it sweeps 100 pages per transac-
tion. This number is not critical, but it should not be too
low or too high; otherwise, either the overhead generated by
transaction commits becomes significant, or, respectively,
too much log space is needed.

4.5 Status of the Implementation

The implementation described here will be part of a future
release of 02. An early version of our garbage collector is

20ur GC can be implemented in a DBMS that does not follow the
no force, no steal policy. In this case, however, constructing a snapshot
is more complicated than simply copying a page out of stable storage.
For example, in Exodus 161 pages in stable storage may contain changes
brought by uncommitted transactions, and an undo log exists that makes it
possible to suppress these changes if necessary. In Exodus, we would need
to use the undo log to obtain snapshots, in addition to the pages stored in
stable storage.

362

already available, as part of version 4.6 of 0s. This version
is not concurrent, but incorporates several ideas described
in this paper. Most notably, in order to minimise swapping
it performs marking as described in Section 4.2.

5 Performance results

Performance measurements of the GC are currently in
progress. This section provides the results that have been
obtained so far.

In line with previous work (e.g. [1, 1 l]), we run several
experiments that allow us to measure performance proper-
ties of the garbage collector. We attach more attention to
marking than to sweeping, because marking is the hard part
of garbage collection, and because in our GC only marking
uses truly novel methods, that are worthy of being investi-
gated. Our experiments measure the scalability of the GC,
the ability of the marking agent to minimize swapping, and
the sweeping speed (the speed at which garbage is deleted).

All the experiments run on a Sun UltraSpam 1 under
Solaris 2.5. Data in our databases are distributed among
three disks attached to the machine through a fast wide
SCSI bus. The disks have an average seek time of 9.5 ms.
The machine has 128 megabytes of RAM. We use objects
that contain 160 bytes of user data. Each database page can
contain up to 23 such objects (the page size is 4 kilobytes).

5.1 Preliminary Observations

We observed that when 0s Server and the marking agent
(which is executed in a client process) run on the same
machine, the client process uses 35 to 50% of the avail-
able CPU time, and 0s Server uses less than 10%. This
observation confirms the common-sense idea that in a data-
shipping DBMS, most CPU time is spent in the client. The
processor is idle for at least 40% of time because pages
need to be fetched from disk, and since marking is a simple
process, the time spent waiting for disk pages dominates
the computing time.

When the marking agent and 0s Server run on two iden-
tical machines, connected with a standard 10 Mbits/s Eth-
ernet, the execution times of the GC are multiplied by the
factor 3.5, as compared to the execution of both processes
on the same machine. This is easy to understand, because
in our experiments the disks and the CPUs are fast, and
the network is relatively slow. Moreover, because the 0s
Server uses very little CPU time, putting the server and the
marking agent on different machines brings practically no
parallelism that could compensate for the performance loss
due to the network.

The experiments described below are performed with the
marking agent and the server running on the same machine.

5.2 Scalability

To assess the scalability of our GC, we ran it on databases
of various sizes. Each database contains numerous objects

Pointers per object 1 with lists 1 3 1 2 1 3/2 I 1
Marking time I 495 I717 I 770 I 818 I915

Figure 4: Marking time vs. number of random pointers per
object, for a database of 21g - 1 = 524287 objects, stored
on 9 1 megabytes.
grouped into lists of 26CrOOO objects each. Locality is pre-
served: objects are listed in the order in which they are
stored on disk. All objects are reachable, therefore the task
of the GC consists exclusively in marking. We use a cache
of 4 megabytes, but this size is noncritical due to the good
locality of data.

Figure 3 shows the results. We have marked databases
containing up to 2.4 gigabytes of data, and at up to 12.8
million objects. The marking was done in almost-linear
time, at a speed of 169 kilobytes per second or 884 objects
per second.

These results are interesting, because previously-
published performance reports only concern garbage collec-
tion in small databases, containing less than 128 megabytes.
Our results are experimental evidence that garbage collec-
tion is practicable in real-world databases.

5.3 Swapping avoidance

We have measured the extent to which the marking agent
manages to avoid swapping by appropriately ordering its
work. For this purpose, we have built several databases
with exhibit no pointer locality, i.e. where the fact that a
given object z contains a pointer to some other object y
is not statistically correlated to the way in which x and y
are placed. Usually, the absence of pointer locality induces
heavy swapping.

Our databases differ from each other in the number of
objects that are simultaneously gray during marking. This
number is important for our ordering mechanism, because
work can only be performed on pages that contain gray
objects. The more objects are gray simultaneously, the
more likely it is that the marking agent will be able to order

. work so as to avoid swapping.
Our databases contain 21g - 1 small objects each, and

use 91 megabytes of storage each. A cache of 2 megabytes
is used. Pointers between objects are set up so that by
following them, we obtain a cycle that encompasses all
the objects in a pseudo-random order (in the experiments
where there is more than one pointer in each object, we
have several distinct cycles, corresponding with different
pointer fields in the objects).

We perform four experiments, varying the number of
pointers in each object. In our first experiment, each object
contains one pointer. In this case, the marking agent never
has more than one gray object: because there is only one
root, only one object is gray when marking begins; then,
the number of gray objects cannot increase: whenever the
marking agent visits a gray object o, o becomes black,
and at most one object (the one pointed by the pointer in
o) becomes gray. Therefore, the marking agent has no

363

20000

18000
$j 16000
g Q 14000

.c 12000
if! 10000
.-
-
F

8000

‘3

z

6000

4000

2000

0

Megabytes Objects Marking time
38.2 0.2M 2min 20s

0 500 1000 1500 2000 2500
Database size in megabytes

Figure 3: Marking time vs. size of a database. for simole databases,
choice concerning the order in which objects are visited:
the order is entirely determined by the pointers contained
in the objects, and because the pointers exhibit no locality,
the agent will swap heavily.

In the remaining three experiments, there is more than
one pointer in each object: respectively, 1 i pointers average
(one object out of two contains one pointer, the remaining
objects contain two pointers each), 2 pointers, and 3 point-
ers. Here, the number of gray object can increase while the
marking agent operates: for example, when the marking
agent visits a gray object o that contains two pointers, it
colors o in black, but up to two other objects (those pointed
to from within o) may become gray. As a result, many ob-
jects may be gray simultaneously. The higher is the average
number of pointers per object, the more rapidly the number
of gray objects will increase.

An extra experiment was performed under the name with
lists, with Locality. This is a mix of the experiment in Section
5.2, and of the experiment above, with three pointers per
object: the objects are grouped into lists that respect locality,
and also each object contains three pointers to other objects,
chosen in a pseudo-random way, with no locality.

In this experiment, the marking agent can perform well,
because, like in the experiment in Section 5.2, the lists
allow it to access objects in the most efficient order. But
because non-local pointers are present in objects, the agent
might follow these pointers instead of following the lists,
and perform badly. The purpose of this experiment is to
confirm that this will not actually happen.

The results of our experiments are shown in Figure 4.
The number labelled with lists represents the execution time
of the experiment with lists, with locality. This time is equal
to the marking time that results from the data in Figure 3
for an execution of the GC with lists, and without non-local
pointers. This equality implies that adding extra pointers
to the system is harmless for the performance of the GC,
even when these pointers are nonlocal, and therefore costly
to follow. The marking agent correctly chases to follow
the local pointers when it has the choice between local and

E .Z in .g

f
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of objects deleted

Figure 5: Sweeping times.
nonlocal pointers.

The other numbers represent execution times with var-
ious average numbers of pointers per object. They show
that the more pointers are present (and, correlatively, the
more gray objects exist simultaneously during garbage col-
lection), the faster the marking agent works.

5.4 Concurrency

Preliminary measurements show that, as expected, the pres-
ence of the GC has no observable effect on the performance
of the system while the GC does not run. When the GC
executes in parallel with an ordinary client process, both
the GC and the client run twice slower than usual. This is
true both for the clients that only read the database and for
those that both read and write many pages, and therefore
force the cutting agent to take copies of these pages.

5.5 Sweeping time

We performed several sweeping experiments, removing one
out of every n consecutive objects from a region of size s.
We took n = 64,16,4,1 (in the latter case, all objects

364

are removed), and s = 25 MB, 6.25 MB. The experiments
are independent, and the database is rebuilt before each
experiment.

The results are represented in Figure 5. In the figure, the
z axis is labelled with $ (the fraction of objects removed)
instead of n. The times increase steeply when n changes
from 64 to 16, because for n = 64 only one page out of
three is modified by the GC, and for n = 16 all the pages
are (remember that there are 23 objects per page). From
n = 16 to n = 1, the times increase less rapidly, because
for these values all the pages in the region must be modified,
regardless of n.

6 Conclusion

We have proposed a novel solution for concurrent garbage
collection in object-oriented databases. The requirements
for our GC are that it must be safe (only delete garbage
objects), complete (delete all the objects that are garbage
when the GC starts operation) and concurrent (work with-
out interrupting the normal operation of the database). The
latter implies that objects in the system may be modified at
any time while the GC is examining them, and that the GC
must implement a synchronization mechanism-a mecha-
nism that ensures the correctness of garbage collection in
spite of the modifications.

We introduce and use a new synchronization mechanism,
named CC-consistent cuts. This mechanism simplifies the
implementation, because instead of being implemented sep-
arately, it can be supported by code that exists already
in many object-oriented DBMS, and that allows users to
perform consistent reads of the database. Unlike other
synchronisation mechanisms, GC-consistent cuts cause no
observable performance degradation while the GC is not
executing.

The correctness of our garbage collector has been for-
mally established. A complete description of the theory,
including proofs, is available separately [121.

Performance is improved and scalability is obtained in
our GC by properly ordering accesses to database pages,
in a way that minimizes swapping. This mechanism is
efficient, yet much simpler than partitioning, the technique
that is traditionally used to achieve scalability.

Our garbage collector has been implemented in 02,
a commercial object-oriented DBMS. To the best of our
knowledge, no other concurrent GC has yet been imple-
mented in an industrial DBMS. Performance measurements
based on the 02 implementation imply that the GC scales
up, that the mechanism for ordering accesses to pages ef-
ficiently reduces swapping, and that GC-consistent cuts do
not induce an excessive cost.

References

[11 Laurent Amsaleg, Michael Franklin, and Olivier Gru-
ber. Efficient incremental garbage collection for
client-server object database systems. In Proceedings

PI

[31

[41

151

WI

[71

VI

PI

[lOI

ill1

WI

u31

u41

of the 21th VLDB International Conference, Zurich,
Switzerland, September 1995.

Fransois Bancilhon, Claude Delobel, and Paris Kan-
nellakis. Building an Object-Oriented Database: the
02 Story. Morgan Kaufmann, 1991.

Hans-Juergen Boehm. Space efficient conservative
garbagecollection. ACMSIGPLANNotices (Proceed-
ings of SIGPLAN’93 Conference on Programming
Languages Design and Implementation), 28(6): 197-
206,1993.

Hans-Juergen Boehm and Mark Weiser. Garbage col-
lection in an uncooperative envitonment. Sojiware
Practice and Experience, 18(9):807-820,1988.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: an exercise in cooperation. Communica-
tions of the ACM, 21(11):966-975, November 1978.

EXODUS Project Group. EXODUS storage
manager architectural overview. Available from
ftp://ftp.cs.wisc.edu/exodus/sm/doc/
arch-overview.3.0.pq 1993.

Jim Gray and Andreas Reuter. Transaction process-
ing: Concepts and Techniques. Morgan-Kaufmann,
1993.

T. Harder and A. Reuter. Principles of transaction-
oriented database recovery. ACM Computing Surveys,
15(4):287-317, December 1983.

Richard Jones and Rafael Lins. Garbage Collection.
Wiley, 1996.

C. Lamb, G. Landis, J. Orenstein, and D. Weinred.
The ObjectStore database system. Communications
of the ACM, 34(10):50-63, October 1991.

Umesh Maheshwari and Barbara Liskov. Partitioned
garbage collection of a large object store. In ACM
SIGMOD International Conference on Management
of Data (to appear), volume 26, 1997.

Marcin Skubiszewski and Nicolas Porteix. GC-
consistent cuts of databases. Research Report 268 1,
INRIA, April 1996. Available from
ftp://ftp.inria.fr/INRIA/publicat
ion/RR/RR-268l.ps.gz.

Marcin Skubiszewski and Nicolas Porteix. Partly-
consistent cuts of databases. In Proceedings of Euro-
Par (to appear), 1997.

P. Wilson. Uniprocessor Garbage Collection Tech-
niques. In Int. Workshop on Memory Management,
volume 637 of L,NCS, pages l-43, St. Malo, France,
September 1992. Springer-Verlag.

365

