
Manoj Chavda Peter T. Wood
Department of Computer Science Department of Computer Science

University of Cape Town University of Cape Town
Rondebosch 7700, South Africa Rondebosch 7700, South Africa

manoj@cs.uct.ac.za ptw@cs.uct.ac.za

Abstract

We describe the design, implementation and user
evaluation of QUIVER, a graph-based visual query
language for object databases. The design goals of
QUIVER include compliance to standards, compre-
hensive representational power, and consistency
of visual representation. Compliance to standards
is achieved through QUIVER queries being trans-
lated to OQL, the standard query language pro-
posed by the Object Data Management Group
(ODMG). Comprehensive representational power
is gained by QUIVER supporting a significant num-
ber of object database constructs, including ob-
jects, literals, attributes, relationships, structures,
collections, operations, (aggregate) functions, and
subqueries. Consistency of visual representation
is pursued by assigning similar visual represen-
tations to constructs with similar functionality, as
well as by minimising the use of text in QUIVER
queries. The language is implemented as a visual
front-end to the 02 object database system. Re-
sults of a user evaluation suggest that users tid it
easier to formulate correct queries in QUIVER than
in OQL.

1 Introduction

A large number of visual query languages for
databases have been described in the literature over

Towards an ODMG-Compliant Visual Object Query Language

the years, each language employing a particular vi-
sual representation and being designed for a par-
ticular data model. For example, graph-based
representations are used in GOOD [GPVdBVG94],
Gql [PK95], GraphLog [CEH+94], Hyperlog [PL94],
VDM/VDL [Orm92], and VQL [MK93], while visual query
languages for object databases include OdeView [DGJS95],
OOQBE [SlT91], OQD [KM93], and VQL [VAo93]. In
this paper, we describe the design, implementation and
evaluation of a new graph-based visual query language
for ODMG-compliant object databases called QUMZR (an
acronym for “Querying in an Interactive Visual EnviRon-
ment “).

In 1993, the Object Database Management Group
(ODMG) released their first draft of a standard for object
databases, called ODMG-93 [Cat96], which included the
defmition of an Object Query Language (OQL). This query
language was essentially the same as that used in the 02 ob-
ject database [Deu90], which was also called OQL. Queries
constructed in QUIVER are translated into OQL, and evalu-
ated by the 02 server. The answers to a query are displayed
by the 02 application O&ook. QUIVER maintains a very
loose coupling with 02, making it easy for QUIVER to query
other ODMG-compliant databases.

Graphs seem like a natural representation for object
databases, a claim supported by the many forms of object di-
agrams used in object-oriented modeling. Indeed, QUIVER
is part of a larger project to provide a consistent environment
in which to visualize object database schemas, queries and
instances. The desire to be able to visualize object database
instances requires that we have visual representations for
all ODMG object model constructs.

Permission to cop without fee all or part of this material is granted
provided that the copies are not made or disnibutedfor direct commercial
advantage, the VLDB copyrightnotice and the tttle ofthepublication and
its date appeal; and notice is given that copying is by permission of the
Vply Large Doto Bose Endowment. To copy otherwise# or IO republish,
quires ofee and/or specialpermissionfim the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

Figure 1 shows an example of a QUIVER query. The
schema of the object database being queried defmes objects
such as students and courses. Each course object has an
attribute called name, while an operation (method) called
courses-by-marks is defined on student objects. This
operation takes as input two integer parameters, min and
max, and returns the collection of courses for which the
student scored between min and max. The collection of all

456

Figure 1: Did any students score between 75 and 100 in CSC2OOW?
student objects is called Students. The QUIVER query in
Figure 1 determines whether any students scored between
75% and 100% in the course CSC2OOW.

In general, a QUIVER query is a nested, mixed graph,
comprising nodes, (undirected) edges and (directed) arcs.
The graph can be nested because a node may have other
nodes (and possibly arcs) included in it. In the query & of
Figure 1 two of the nodes are ob#ct nodes, represented by
shaded circles. Although not indicated in Q, the lefthand
object node represents a student object, while the righthand
object node represents a course object. Each object node
is included in a rounded rectangle which represents a col-
lection. The inclusion is represented by an arc, but the arc
remains invisible. The three non-shaded circles in & repre-
sent literal nodes, labeled 75,100 and “CSC2OOw”. The
lefthand collection node represents the extent called Stu-
dents, while the righthand one represents the result of the
courses-by-marks operation. The operation itself is rep-
resented as a solid square. Since invocation of an operation
requires input and produces output, there are data-fiow arcs
(represented by dashed arcs) into and out of the operation
node in Q. The input to the operation is a structure node
(represented by a rectangle) which includes two structure
element nodes (represented by squares). The associations
between the student object node and its courses-by-marks

operation, between the course object and the value of its
name attribute, and between the structure element nodes
and their values are all represented as labeled arcs. Finally,
the ordering between the two structure element nodes is
represented by another invisible arc called an adjoinment
XC.

Although the schema of interest to a user is not (yet)
displayed graphically, the user is guided by pop-up menus
during the formulation of a query on a schema. For exam-
ple, clicking on the object node button (
node button (0) in Figure 1 will bring up a menu of all
object types or all named items, respectively, defined in the
current schema. A user typically starts composing a query
from a named item, such as the extent named Students.
To select a property of an object, the user clicks first on the
placeproperty arc button (\). Now clicking on an object
node will display a menu of its properties.

From Figure 1 we see that QUIVER supports objects,
literals, structures, collections (sets, bags, arrays and
lists), attributes and operations. In addition, QUIVER sup-
ports relationships, aggregate functions and subqueries,
as well as various constraints such as equality, in-
equality and subset. Hence, while languages such as
GraphLog [CEH+94], GOOD [GPVdBVG94], Hyperlog
[PL94] and VQL [VA6931 advocate a minimal set of vi-

457

sual constructs, a distinguishing feature of QUIVER is the
richness of its visual constructs.

Despite this richness, QUIVER does not currently sup-
port all OQL constructs. For example, there is no visual
counterpart to the group by or order by constructs of
OQL. In addition, negation and universal quantification are
not supported, although universal quantifiers are used in the
translation of subset constraints which are incorporated in
QUIVER.

Another distinguishing feature of QUIVER is its minimal
use of text. The use of text is limited to names defined in the
schema being queried. In particular, unlike in a number of
proposed languages [PL94, KM93, MK93], there is no need
to use variables in QUIVER queries, nor is output identified
textually.

In the next section we cover background material and
related work. We first provide an overview of ODMG-
93 in Section 2.1, before surveying a number of related
visual query languages in Section 2.2. In Section 3, we
present the design of the QUIVER query language, guided by
a taxonomy of visual query constructs. The implementation
of QUIVER is described in Section 4. We focus, in particular,
on the translation of QUIVER queries to OQL. In Section 5,
we present a user evaluation comparing QUIVER queries and
OQL queries in terms of the speed of query construction and
the ease with which correct queries can be formulated. The
results of the evaluation allow us to conclude that users
find it easier to construct correct queries in QUIVER than in
OQL. Finally, concluding remarks and directions for future
work are discussed in Section 6.

2 Background
2.1 ODMG93

In this subsection we give very brief overviews of the ob-
ject model proposed by the Object Database Management
Group (ODMG) and its object query language (OQL).

The basic modeling primitive in the ODMG object model
is the object. Objects have state and behaviour, and can
be categorized into tpes. All objects of a certain type
have common behaviour and a common range of states. In
our university database example, there are objects of type
Person, Student,Course and Department. The extent of
a type is the set of all instances of that type. In our example,
the name of each extent is simply given by the plural of the
name of its associated type; hence Students is the extent
of objects of type Student.

The state and behaviour of an object are collectively
referred to as its characteristics. The state of an object
is defined by the values of a set of pmperties, which are
either attributes of the object (with literal values), or &a-
tionships between the object and one or more others (with
object values). In our example, each object of type Per-
son or Course has an attribute name, whose value is a
string. A Student object has a relationship takes which is

a set of Course objects, while a Course has a relationship
is-taken-by (which has as value a set of Student objects).

The behaviour of an object is defined by a set of opera-
tions. In our example, Student objects have an operation
courses-by-marks, which takes as input two integer pa-
rameters, min and max, and returns a set of Course objects.

Objects may be organized into a graph of subtypes and
supertypes. A subtype inherits all of the characteristics of its
supertypes, and may define additional characteristics. For
example, Student is a subtype of Person, and so inherits
the name attribute.

Individual objects or collections of objects can be given
names meaningful to end-users. For example, the name
Vice-Chancellormightbe assignedtotheappropriate
person object in a university database.

The ODMG object query language (OQL) provides
declarative access to objects. The version we use here
is that which is compatible with 02 OQL [02T94]. Be-
low we give two simple examples of OQL queries. The
first example shows an OQL query equivalent to that in
Figure 1:

exists x in Students:
exists y in x.courses-by-marks(75,lOO):
(y.name = llCSC200Wt')

(1)
The second example shows an OQL query which involves
structured output, a nested subquery, and the use of an
aggregate function:

select struct
(student: x.name,
courses: (select y.name

from y in x.takes
where count(x.takes) > 4))

from x in Students
G-9

In this query, the output is a bag of tuples, each with two
named components. The first component is a string rep-
resenting a student name, while the second is the bag of
course names taken by the student, as long as the student
takes more than four courses.

Further examples of OQL queries will be presented
in Section 4.1 which describes the translation of QUIVER
queries to OQL.

2.2 Related Visual Query Languages

In this section, we review visual query languages which are
either graph-based [GPVdBVG94, PK95, CEH+94, PL94,
Orm92, MK93], or designed for object databases [DGJS95,
STT91, KM93, VAij93]. Of these, two have been named
VQL, one by Mohan and Kashyap [MIS93], and the other
by Vadaparty et al. [VAd93]. We will refer to them as
MK-VQL and VAO-VQL, respectively.

Of the above languages, only MK-VQL [MK93] is
both graph-based as well as implemented on an object

458

database. While OQD is also graph-based, no mention
is made of its implementation in [KM93]. Although
GOOD [GPVdBVG94] and Hyperlog [PL94] are both de-
tined in terms of objects, neither is in fact implemented
on an object database system GOOD is implemented
on a relational database system, while Hyperlog is im-
plemented on a functional database system. Gql [PK95]
and VDM/VQL [Orm92] are designed for the functional
data model, although they could probably bc applied to
object databases. GraphLog [CEH+94] is implemented
on a deductive database system. OdeView, OOQBE and
VAO-VQL [VA0931 are all form- or table-based rather than
graph-based languages. Since MK-VQL [MK93] is imple-
mented on an in-house object database system, QUIVER is
the only ODMG-compliant graph-based query language, as
far as we are aware.

Languages such as GraphLog, GOOD, Hyperlog and
VAO-VQL advocate a minimal set of visual constructs
for achieving substantial expressive power. In contrast,
QUIVER permits a large number of visual constructs. For
example, neither structures nor collections are modeled ex-
plicitly in GraphLog, GOOD or Hyperlog, while operations
are not provided for by GraphLog, Hypcrlog or VAO-VQL.
Although Gql provides a fairly rich set of constructs which
bear a number of similarities with those of QUIVER, it too
does not support structures, collections or operations.

The ability to nest nodes inside other constructs is a
feature QUIVER shares with GraphLog and Hyperlog. In
addition, the use of boldface to indicate output in QLJ~VER
has been borrowed from GraphLog. However, the use of
data-flow arcs to allow a consistent representation of the
computations performed by operations, aggregate functions
and (sub)queries is unique to QUIVER.

As stated in the Introduction, there is no need to use
variables in QUTVER, nor is output specified textually. In
contrast for example, variables are needed in Hypcrlog in
order to equate items, while output is specified textually in
OQD. Variables are used both for certain equality tests and
for output in MK-VQL.

Recursion is provided in GraphLog, Hyperlog, GOOD
and MK-VQL, while negation is provided in all the lan-
guages mentioned above. Neither recursion nor negation
have yet been implemented as part of QUIVER, although we
see no difficulty in doing so. Our ideas on how incorporate
these features into QUIVER are given in Section 6.

3 The QUIVER Query Language
In this section, we describe the syntax of a QUIVER query;
the semantics are defined in terms of a translation to OQL
which is presented in Section 4.1. We begin with an infor-
mal discussion of the syntax, aided by another example of
a QUIVER query.

A QUIVER query is a graph comprising nodes, arcs and
edges. Each node, arc and edge has an associated visual

t t

structure

node “%P
array

Cdlecabn
list
bag
set

, inclusion

/

ctwactedsti - Ysn

/
data-flow

/
node L structure element derefemcing

\

\ adjoinment

Figure 2: Hierarchy of visual types in QUIVER.
representation and denotes a QUIVER query construct. For
example, nodes represented visually as shaded circles de-
note objects. The hierarchy of all QUIVER visual query
constructs is shown in Figure 2, where instantiable types
are shown upright and abstract types are shown italicised.
For simplicity, we have classified all arcs and edges as arcs
in the diagram.

As mentioned, one of the goals of the QUIVER language
is that it should be consistent; similar query concepts should
be represented by similar visual constructs. The types in
Figure 2 are grouped by their functional similarity, each
type within a group having a similar visual representa-
tion. For example, all computation nodes are represented
as rectangles, all node derefcrencing arcs are represented
as solid, labeled arrows, and all composite nodes include
other nodes.

Figure 1 introduced examples of nodes representing ob-
jects, literals, structure elements, structures, collections and
operations, as well as inclusion arcs, data-flow arcs, a prop-
erty arc, an operation arc, structure element arcs, and an
adjoinment arc. As another example, consider the query Q
in Figure 3. Query Q ftnds students who take more than
four courses, in each case returning the name of the student
along with the bag of names of the courses the student takes.
Three other constructs from Figure 2 are used in Q: a tknc-
tion node labeled count(), a (sub)query node represented
by the large rectangle, and an inequality arc labeled with >.

Being a computation node, a function node is repre-
sented as a rectangle, although since the computation is
hidden from the user, the rectangle is filled in. On the
other hand, a query node is both a computation node and
a composite node (see Figure 2). Hence, it is represented
as a rectangle which includes the nodes and arcs specifying
the computation (see Figure 3). For the outer query, this

459

c
Figure 3: Finding students who take more than four courses
(using a subquery).
bounding rectangle is not necessary and has been omitted
in our examples.

Like an operation node, a function node has data-flow
arcs entering and leaving it. Queries do not require an
incoming data-flow arc as their input is implicitly the entire
database. However, subqueries do require an outgoing data-
flow arc to a node representing the output type of the query
(see Figure 3).

Output for a query & is specified by boldface nodes (and
possibly arcs). A query containing no bold nodes, such as
that in Figure 1, is interpreted simply as a constraint, and
therefore produces a Boolean value as output. On the other
hand, the bold subgraph of the outer query & of Figure 3
specifies that the output of Q is a collection of structures,
each having a Student object as its first component and a
collection of strings as its second component.

Arcs in & can be labeled, while edges, inclusions and
adjoinments cannot. Each node in Q can have a pair of
labels m and n, displayed as m : n, where m is thep@x of
the node label and n is the sum. In order not to clutter the
query graph, abbreviated labels are also supported. With
abbreviated labels, only the prefix of each label is displayed,
as shown in the examples in Figures 1 and 3. The prefix of
the label indicates the name of the object, literal or collec-
tion, if a name has been defined in the schema. Otherwise,
the prefix of the label is empty for an object or collection
node, while for a literal node it is either empty or the value
of the literal. The suffix of the label always indicates the
type of the construct represented by the node.

3.1 Syntactic Restrictions

A QUIVER query is a nested, mixed graph Q =
(N, A, E, I, J), where N is a set of nodes, A is a set of
arcs, E is a set of edges, I is a set of inclusions, and J
is a set of adjoinments. An arc a is an ordered pair (21, V)
of nodes, while an edge e is an unordered pair {u, V} of
nodes. An inclusion is analogous to an arc in that it is an
ordered pair (u, V) of nodes. However, the subgraph of Q
induced by I, denoted Qr, is restricted to being a forest.
An adjoinment is also an ordered pair (u, V) of nodes. The
subgraph of Q induced by J, denoted QJ, is restricted to

being a set of disjoint paths.
Let Q = (N, A, E, I, J) be a QUIVER query. We say

that node w is included in node u if either (u, V) E I or
there is a node w such that (u, w) E I and v is included in
w. A node u is maximal if it is not included in any node.
In other words, a maximal node is the root of some tree in
&I. Each tree in &I is called an inclusion group.

Because Q = (N, A, E, I, J) is a nested, mixed graph,
we need to extend the usual definitions of connectedness and
connected components. If (21, V} E E, (u, V) E A, (v, u) E
A, (u, V) E I, (v, u) E 1, (u, V) E J, or (v, U) E J, we say
that u and v are connected. If u and v are connected and v
and w are connected, then u and w are also connected. The
connected relation is an equivalence relation which induces
a partition of Q into disjoint connected components.

If, after deleting any output collection node used to col-
lect answers, a query Q has more than one connected com-
ponent, then Q is interpreted as a disjunctive query. All
components must either be Boolean queries or must have
output subgraphs (defined below) whose root nodes are of
the same type.

For simplicity, let us assume from now on that query
Q comprises only a single component. We have seen that
queries can be nested inside one another, each query node
being the root of a query inclusion group. The 0lcfermoSt
subquery of Q, denoted Qo, is the subgraph of Q inducedby
those nodes which are not included in any query node. For
example, the outermost subquery QO in Figure 3 comprises
all nodes (and their incident arcs) except those included
in the subquery rectangle. Note that QO excludes the arc
labeled takes.

Given a query node q in Q, the subquery associated
with q , denoted Qq, comprises the subgraph induced by the
nodes v of Q such that (q, V) is an inclusion in Q, along
with any arc (u, v) or edge {u, v} where (q, u) is not an
inclusion in Q. For example, the subquery associated with
the query node in Figure 3 comprises all the nodes and arcs
included in the query rectangle, as well as the arc labeled
takes (and the student object node at its tail). Thus the
student object node is in both the outermost subquery and
the inner subquery.

When we refer to the output subgraph 0 of a query Q,
we are referring to the subgraph induced by the bold nodes
and arcs (including inclusions and adjoinments between
bold nodes) of Qc. Nested subqueries in Q may or may not
have output subgraphs of their own, but these are not part
of 0. If 0 is empty, then Q is called a Boolean query (for
example Figure 1).

There are a number of restrictions on the syntax of an
output subgraph 0. For our purposes, 0 must be acyclic,
with exactly one node of indegree zero, which we call the
mot of 0. We call the nodes with outdegree zero in 0 the
leaves of 0.

The final syntactic restriction on a subquery Q involves
the notion of the reachability of nodes in Q. All nodes in

460

Q, except possibly the root of 0, must be reachable. There
are three sources (or roots) of reachability. A node 21 is
reachable in Q, and a reachability mot for Q, if u is

1. a named object, literal or collection node, or

2. a literal node with a value label, or

3. a reachable node which is at a level less than Q, or

4. a reachable query node.

A query node is reachable if all the non-bold nodes in Q(
are reachable. Reachability can also be passed from the tail
to the head of an arc. Space does not permit us to enu-
merate the rules for reachability here; they can be found
in [Cha96]. Instead, as an example of establishing reacha-
bility, consider the query Q of Figure 1. The collection node
labeled Students in Q is reachable by virtue of (1) above,
while the literal nodes labeled 75,100 and CSC2OOW are
reachable by virtue of (2). Since Students is reachable,
so is the object node included in Students. Now we can
establish that the input structure node is reachable, followed
by the operation node, and the collection node c represent-
ing the output of the operation. Finally, we determine that
the object node included in c is reachable.

Let Q be a subquery graph with output subgraph 0.
The pattern subgraph P of Q is the subgraph induced by
the non-bold arcs, edges, inclusions and adjoinments in Q.
For Q to be syntactically correct, P and 0 must have as
intersection the leaves of 0. In Figure 3, P and 0 have the
nodes which are the targets of the bold arcs labeled student
and courses in common. If there are any nodes in Q that
are neither reachable nor bold, then Q is not syntactically
correct. The order in which nodes in Q are determined to
be reachable also provides an order for translating Q into
OQL, as described in the next section.

4 Implementation of QUIVER

Figure 4 presents a diagrammatic view of the various com-
ponents which make up the QUIVER application, where the
arrows between components represent the flow of data. The
shaded boxes represent external components which were
not part of the QUIVER development. For example, 01
(from 02 Technology [Deu90]) is used as the persistent
store of QUIVER, O&ook is used as the data presenter, and
DOT [RN931 is used for graph layout. In this paper, we
present only the query translation algorithm in Section 4.1.

QUIVER is implemented using Tcl/Tk [Ous94] and
C++. Tcl/Tk is used for the the graphical user inter-
face, while C++ is used for the query translation as well as
for calling and managing the interfaces between the vari-
ous components. In all, QUIVER comprises approximately
15,000 lines of Tel /Tk code and about 10,000 lines of
C++ code.

Figure 4: The components comprising QUIVER.

4.1 Query Translation

In this section, we define the semantics of QUIVER queries
in terms of a translation to OQL. Through necessity, many
details are omitted, a more complete description being given
in [Cha96]. Here we simply present the pseudo-code for the
algorithms used for query translation, Algorithms 1 and 2,
and illustrate their use with a single example.

For simplicity, we assume that Q~JNER query Q com-
prises only a single connected component. Given a QUIVER
query Q, the translation of Q to an OQL expression p(Q),
obtained by calling translateQuery (Algorithm 1) with the
outermost subquery QO of Q, consists of four phases.
Firstly, the se1 ec t clause of p(Q) is generated from the
output subgraph 0. Secondly, the set ofvariable bindingsin
the from clause ofp(Q) is generated from F, the subgraph
of the reachability forest R needed to show the reachability
of each leaf node in 0. Thirdly, the subgraph W induced
by arcs in R which are not in F is used to generate further
variable bindings in the where clause of p(Q). Finally,
the subgraph C induced by arcs in the pattern subgraph P
which are not in R is used to generate conditions to be tested
in p(Q). Of course, the output subgraph 0 may be empty,
in which case only the third and final phases generate out-
put, but without the keyword where. Similarly, either W
or C may be empty. The four subgraphs 0, F, W and C
form a partition of the arcs of Q.

To generate the fragments of the OQL expression cor-
responding to F, W and C, we call a procedure transfate-
QueryFragment, shown as Algorithm 2. In fact, this pro-
cedure has to generate slightly different strings depending
on whether it is called with F, W or C, but we do not dis-
cuss these details here. In addition, we have not included
pseudo-code for the procedures translateOutput called in
Algorithm 1 or translate,& called in Algorithm 2. We
have rather used an example to illustrate their operation.

Consider the query Q of Figure 3 which is translated as

461

translateQueryFragment(Q)

translate@erv(Q)
Input: QUIVER query Q .
Output: OQL string S.
Method:

1. for each unprocessed node u in Q with name or value v do
2. hegin
3. append“var(u) in bag(v)” to S
4. mark u processed
5. end
6. while the set of processed nodes changes do
7. heglll
8. for eachunpmcessedarc (u, II) in Q such that u is pmcesseddo
9. hgia
10.
11.
12.
13.
14.
15.
16.
17.
18. mark q processed
19. end
20. end

translate.4rc((u, v))
mark (u, v) and IJ pmcessed

end
for each unprocessed, translatable query node q in Q do

bein
append“var(q) in bag (“to S
trm.dareQuery(Q -q)
append “I” to S

1. s := T := empty string
2. Mark all nodes and arcs in Q as unprocessed.
3. Assign variable names to each node in Q.
4. Let 0 be the output subgraph and P be the pattern subgraph of Q.
5. Let R be the breadth-first spanning forest of P based on reachability.
6. Let F be the subforest of R establishing reachability of leaves of 0.
7. Let W be the subforest of R induced by arcs not in F.
8. Let C be the subgraph of P induced by arcs not in R.
9. If0 is not empty
10. then
11. k@
12. lf mot of 0 is reachable
13. then append‘lelement (select” to S and“) “to T
14. else
15. begin
16. append “selec t” to S
17. if mot of 0 is a set then append “di s tint t” to S
18. end
19. fransla2eOupU(O)
20. append “f rom” to S
21. translateQueryFragmen~(F)
22. if W U C not empty then append “where” to S
23. end
24. if W is not empty
25. then translateQueryFragmeni(W)
26. if C is not empty
27. then translateQw~Fragmeni(C)
28. else append”true” to S
29. appendT to S
30. U some node or arc in Q is not processed then fail

Algorithm 1: Pseudocode for query translation.

Algorithm2: Pseudo-code for translating a query fragment.
follows:
select struct (

student: VARZ-1, courses : VAR4-2)
from VARl-2 in bag(Students) ,

VARlJ in VARl-2,
VARZ-1 in bag (VARl-1. name) ,
VAR3-1 in bag(

select VAR6-1
from VAR5-2 in bag (VARl-1. takes) ,

VAR5-1 in VAR52,
VAR6-1 in bag (VAR5-1. name)

where
exists VAR8-1 in bag (count (VAR3-2)) :

(exists VAR9-1 in bag(b) :
(VAR8-1 > VARS-1))) ,

VAR4-2 in bag (VAR3-1)

(3)
The translation of Q begins by assigning a variable name,
derived from a numbering of the inclusion groups in Q, to
each node in Q. For example, the node at the head of the
arc labeled student is assigned the variable VAR2-1, while
that at the head of the arc labeled courses is assigned the
variable VAR4-2. The select part of expression (3) is
generated from the output subgraph 0 of Q .

Since all of the nodes in the pattern subgraph of the
outermost subquery in Q are needed to establish the reach-
ability of the output nodes, there is no where clause in
the outermost OQL expression in (3) above. For the from
clause, assume that the collection node cl labeled Students
is assigned the variable VARL2, while the object node 01
included in cl is assigned the variable VARL1. Since cl is
named, line 3 of Algorithm 2 binds VARlZ to Students
usingVARl_2 in bag(Students).

Now 01 is reachable, so translatdr in Algorithm 2

462

binds VARL1 to objects included in VARU, using

VARl-1 in VAN-2

Next the output object node (VAR2-1) becomes reachable
and is bound to VARL1. name.

The final part of Algorithm 2 which needs to be ex-
plained is that dealing with the translation of subqueries.
As can be seen on line 16 of Algorithm 2, subqueries are
translated by a recursive invocation of the procedure trans-
luteQuery. However, a subquery can only be translated if
its corresponding query node is trunslutuble. We say that a
query node p is trunslutuble if all those nodes, which are in
both Qq and another subquery, have been processed. This
ensures that the variables corresponding to these nodes have
been bound in the OQL expression by the time the subquery
is translated. These nodes now become roots of reachability
for the subquery.

Returning to the translation of query Q of Figure 3, the
inner subquery becomes translatable once object node or
(VARU) has been processed. The subquery generates a
where clause in expression (3), since the function node,
its output node (VAR8-1) and the literal node (VAR9-1)
labeled 4 in Q are not needed to establish the reachability
of the output nodes of the subquery in Q.

The OQL expression (3) should be compared to the much
shorter expression (2) given in Section 2.1. The essential
difference is in the overhead of binding variables to named
collections or literals in (3). A rewriting optimization could,
of course, remove this overhead. Note also that the sub-
query appears in the from clause in expression (3), while
it appears in the select clause in expression (2).

The user can save the OQL expression generated by
QUIVER in a file by typing control-Q after formulating a
query. Another possibility, which we have not explored,
would be to display the OQL expression incrementally as
the user formulates their query.

5 A User Evaluation of QUIVER and OQL

In order to compare the usability of QUIVER and OQL,
we conducted a limited user evaluation. The evaluation
was performed by thirteen fourth-year computer science
students, each of whom was given a list of eight queries
to construct. The queries ranged from simple retrievals
to complex queries requiring both long path traversals and
subqueries.

The thirteen participants were divided into two groups:
seven participants in GROUP Q used QUIVER, while six
participants in GROUP 0 used OQL. None of the participants
had any prior experience with QUIVER or OQL, although
four participants in GROUP Q and three in GROUP 0 had
prior experience in using SQL from a typical undergraduate
database course. Two introductory lectures (one on QUIVER
and one on OQL) were presented to the participants.

Two hypotheses were tested. The first was that OQL
queries can be constructed as easily as QUIVER queries, in
other words, that GROUP 0 participants would attempt the
same number of queries as GROUP Q participants. The
second hypothesis was that GROUP Q participants would
construct a similar number of correct queries to GROUP 0
participants. The statistical test used for both hypotheses
was the Mann- Whitney-Wilcoxon procedure [Gib76]. This
test was chosen because the data arises from two indepen-
dent samples and, because of the small sample size, we
cannot assume that the data follows a normal distribution.

For the first hypothesis, let A&J represent the mean of
the number of queries attempted in GROUP Q, and MO
represent the mean of the number of queries attempted in
GROUP 0. The null hypothesis H is that MO = MQ , while
the alternative A is that MO > MQ. The results of our
evaluation show that we can conclude A only with 71%
confidence. Since this offers no convincing evidence that H
is false, we conclude that QUIVER queries can be constructed
just as easily as OQL queries.

For the second hypothesis, we wish to determine if par-
ticipants in GROUP Q obtained more correct queries than
participants in GROUP 0. For this purpose, participants’
queries were classsified as either correct, essentially correct
(a minor mistake or two), or incorrect. For this hypothe-
sis we used the ratio P of the number of queries classified
correct or essentially correct to the total number of queries
attempted. Let MQ represent the mean ratio of GROUP Q,
and MO represent the mean ratio of GROUP 0. The null
hypothesis H is that MQ = MO, while the alternative A is
that MQ > MO. The results of our evaluation show that we
can conclude A with 99.7% confidence. That is, it is easier
to construct correct QUIVER queries than it is to construct
correct OQL queries.

There are a number of possible sources of error in our
user evaluation. Firstly, participants were not selected vol-
untarily, nor did they all have identical backgrounds. Sec-
ondly, participants were taught QUIVER and OQL in only
one 45minute session each. Finally, a larger sample size
would have produced more accurate results.

Nevertheless, the results of the second hypothesis are
extremely encouraging, as they show that QUIVER does aid
the user in producing more correct queries. We believe this
is particularly the case for queries involving long paths of
references and for nested queries. In both cases, the visual
nature of QUIVER allows the user to see these constructs
more clearly. In addition, the fact that a QUIVER user does
not have to remember which variable ranges over which
collection may reduce the number of errors when compared
to an OQL user.

6 Conclusion
We have described the design, implementation and eval-
uation of QUIVER, a visual query language for ODMG-

463

compliant object databases. QUIVER is comprehensive
in the sense that it includes visual representations for a
large number of the modeling constructs found in object
databases. This is in contrast to many other visual query
languages which have concentrated on using a minimal
number of representations. Nevertheless, a serious attempt
has been made to provide a consistent organisation of the
QUIVER visual representations, as indicated by the taxon-
omy presented in Section 3.

Our user evaluation comparing QUIVER with OQL was
particularly encouraging, in that it showed that it is easier to
construct correct queries with QUIVER than it is with OQL.
This may be partly because keeping track of paths and the
ranges of variables is difficult in an OQL expression. In
QUIVER, the paths are visual and there are no variables.

There is no doubt that QUIVER can be both improved and
extended. The query language could be improved by in-
troducing greater conciseness. Examples include removing
the necessity for the output of subqueries to be duplicated
(although this duplication is performed by the interface),
and allowing paths to be specified by means of regular ex-
pressions, as in G [CMW87]. This would allow recursive
queries to be formulated in QUIVER, although the transla-
tion could then no longer generate simply OQL. Another
extension to QUIVER would be the introduction of negation,
for which we are considering the use of crossed out arcs, as
in GraphLog [CEH+94], for example.

The current translation of QUIVER queries could be made
more efficient by not introducing variables for every node,
and by recognising that certain special cases could be trans-
lated without needing to resort to a se1 ect . . . from
expression.

Finally, a more extensive user evaluation of QUIVER
may uncover further areas for improvement. For example,
a number of users in our limited evaluation suggested that
the simultaneous display of the OQL query while a QUIVER
query was being constructed would be beneficial.

Acknowledgements

We are grateml to OzTechnology for the use of 02 during the
development of QUIVER, and to the Foundation for Research
Development for financial support.

References

[Cat961 R. G. G. Cattell, editor. The Object
Database Standard: ODMG-93, Release
2.2. Morgan Kauftnann, San Francisco,
1996.

[CEH+94] M. P. Consens, F. Ch. Eigler, M. Z. Hasan,
A. 0. Mendelzon, E. G. Noik, A. G. Ry-
man, and D. Vista. Architecture and ap-
plications of the Hys visualization sys-

[Cha96]

[CMW87]

[Deu90]

[DGJS95]

[Gib76]

[GPVdBVG94]

KM931

m931

[MK93]

[023941

[m921

tern. IBM Systems Journal, 33(3):458-
476,1994.

M. Chavda. Visually querying object-
oriented databases. Master’s thesis, De-
partment of Computer Science, University
of Cape Town, Rondebosch 770 1, South
Africa, 1996.

1. F. Cruz, A. 0. Mendelzon, and P. T.
Wood. A graphical query language sup-
portingrecursion. In&c. ACMSZGMOD
Int. Conf: on Management of Data, pages
323-330,1987.

0. Deux et al. ‘Ihe stop of Oz. IEEE
Pansactions on Knowledge and Data En-
gineering, 2(1):91-108, March 1990.

S. Dar, H. Gehani, V. Jagadish, and
J. Srinivasan. Queries in an object-
oriented graphical interface. Journalof vi-
sual Languages and Computing, 6(1):27-
52, March 1995.

J. D. Gibbons. In I. Olkin, editor,
Nonparametric Metho& for Quantitative
Analysis, chapter 4, pages 159-173. Holt,
Rinehart and Winston, 1976.

M. Gyssens, J. Paredaens, J. Van den Buss-
the, and D. Van Gucht. A graph-oriented
object database model. IEEE Zkansac-
tions on Knowledge and Data Engineer-
ing, 6(4):572-586, August 1994.

J. C. Kwak and S. Moon. Object query
diagram: An extended query graph for
object-oriented databases. In Prr~c. IEEE
Symposium on Visual Languages, pages
44-48,1993.

E. Koutsofios and S. C. North. DOT: a di-
rected graph layout engine. AT&T Bell
Laboratories, Murray Hill, NJ, October
1993.

L. Mohan and R. L. Kashyap. A visual
query language for graphical interaction
with schema-intensive databases. IEEE
Transactions on Knowledge and Data En-
gineering, 5(5):843-858, October 1993.

02 Technology. Object Query Language
OQL Manual, Version 4.5, November
1994.

L. Orman. A visual data model. Data
& Knowledge Engineering, 7(3):227-238,
February 1992.

464

[ous94] J. K. Ousterhout. Tel and the Tk Toolkit.
Addison-Wesley, 1994.

[PK95] A. Papantonakis and P. J. H. King. Syntax
and semantics of Gql, a graphical query
language. Journal of Kwal Languages
and Computing, 6(1):3-25, March 1995.

[PL94] A. Poulovassilis and M. Levene. A
nested-graph model for the representa-
tion and manipulation of complex objects.
ACM 7’Fansactions on Information Sys-
tems, 12(1):35-68, January 1994.

[SlT91] F. Staes, L. Tarantino, and A. Tiems. A
graphical query language for object ori-
ented databases. In Prvc. IEEE Work-
shop on Usual Languages, pages 205-
210,199l. .

[VA0931 K. Vadaparty, Y.A. Aslandogan, and
G. bsoyoglu. Towards a unified visual
database access. In Proc. ACM SIGMOD
Int. Conf: on Management of Data, pages
351-366, May 1993.

465

