
Manoj Chavda Peter T. Wood 
Department of Computer Science Department of Computer Science 

University of Cape Town University of Cape Town 
Rondebosch 7700, South Africa Rondebosch 7700, South Africa 

manoj@cs.uct.ac.za ptw@cs.uct.ac.za 

Abstract 

We describe the design, implementation and user 
evaluation of QUIVER, a graph-based visual query 
language for object databases. The design goals of 
QUIVER include compliance to standards, compre- 
hensive representational power, and consistency 
of visual representation. Compliance to standards 
is achieved through QUIVER queries being trans- 
lated to OQL, the standard query language pro- 
posed by the Object Data Management Group 
(ODMG). Comprehensive representational power 
is gained by QUIVER supporting a significant num- 
ber of object database constructs, including ob- 
jects, literals, attributes, relationships, structures, 
collections, operations, (aggregate) functions, and 
subqueries. Consistency of visual representation 
is pursued by assigning similar visual represen- 
tations to constructs with similar functionality, as 
well as by minimising the use of text in QUIVER 
queries. The language is implemented as a visual 
front-end to the 02 object database system. Re- 
sults of a user evaluation suggest that users tid it 
easier to formulate correct queries in QUIVER than 
in OQL. 

1 Introduction 

A large number of visual query languages for 
databases have been described in the literature over 

Towards an ODMG-Compliant Visual Object Query Language 

the years, each language employing a particular vi- 
sual representation and being designed for a par- 
ticular data model. For example, graph-based 
representations are used in GOOD [GPVdBVG94], 
Gql [PK95], GraphLog [CEH+94], Hyperlog [PL94], 
VDM/VDL [Orm92], and VQL [MK93], while visual query 
languages for object databases include OdeView [DGJS95], 
OOQBE [SlT91], OQD [KM93], and VQL [VAo93]. In 
this paper, we describe the design, implementation and 
evaluation of a new graph-based visual query language 
for ODMG-compliant object databases called QUMZR (an 
acronym for “Querying in an Interactive Visual EnviRon- 
ment “). 

In 1993, the Object Database Management Group 
(ODMG) released their first draft of a standard for object 
databases, called ODMG-93 [Cat96], which included the 
defmition of an Object Query Language (OQL). This query 
language was essentially the same as that used in the 02 ob- 
ject database [Deu90], which was also called OQL. Queries 
constructed in QUIVER are translated into OQL, and evalu- 
ated by the 02 server. The answers to a query are displayed 
by the 02 application O&ook. QUIVER maintains a very 
loose coupling with 02, making it easy for QUIVER to query 
other ODMG-compliant databases. 

Graphs seem like a natural representation for object 
databases, a claim supported by the many forms of object di- 
agrams used in object-oriented modeling. Indeed, QUIVER 
is part of a larger project to provide a consistent environment 
in which to visualize object database schemas, queries and 
instances. The desire to be able to visualize object database 
instances requires that we have visual representations for 
all ODMG object model constructs. 
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Figure 1 shows an example of a QUIVER query. The 
schema of the object database being queried defmes objects 
such as students and courses. Each course object has an 
attribute called name, while an operation (method) called 
courses-by-marks is defined on student objects. This 
operation takes as input two integer parameters, min and 
max, and returns the collection of courses for which the 
student scored between min and max. The collection of all 
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Figure 1: Did any students score between 75 and 100 in CSC2OOW? 
student objects is called Students. The QUIVER query in 
Figure 1 determines whether any students scored between 
75% and 100% in the course CSC2OOW. 

In general, a QUIVER query is a nested, mixed graph, 
comprising nodes, (undirected) edges and (directed) arcs. 
The graph can be nested because a node may have other 
nodes (and possibly arcs) included in it. In the query & of 
Figure 1 two of the nodes are ob#ct nodes, represented by 
shaded circles. Although not indicated in Q, the lefthand 
object node represents a student object, while the righthand 
object node represents a course object. Each object node 
is included in a rounded rectangle which represents a col- 
lection. The inclusion is represented by an arc, but the arc 
remains invisible. The three non-shaded circles in & repre- 
sent literal nodes, labeled 75,100 and “CSC2OOw”. The 
lefthand collection node represents the extent called Stu- 
dents, while the righthand one represents the result of the 
courses-by-marks operation. The operation itself is rep- 
resented as a solid square. Since invocation of an operation 
requires input and produces output, there are data-fiow arcs 
(represented by dashed arcs) into and out of the operation 
node in Q. The input to the operation is a structure node 
(represented by a rectangle) which includes two structure 
element nodes (represented by squares). The associations 
between the student object node and its courses-by-marks 

operation, between the course object and the value of its 
name attribute, and between the structure element nodes 
and their values are all represented as labeled arcs. Finally, 
the ordering between the two structure element nodes is 
represented by another invisible arc called an adjoinment 
XC. 

Although the schema of interest to a user is not (yet) 
displayed graphically, the user is guided by pop-up menus 
during the formulation of a query on a schema. For exam- 
ple, clicking on the object node button ( 
node button (0) in Figure 1 will bring up a menu of all 
object types or all named items, respectively, defined in the 
current schema. A user typically starts composing a query 
from a named item, such as the extent named Students. 
To select a property of an object, the user clicks first on the 
placeproperty arc button (\). Now clicking on an object 
node will display a menu of its properties. 

From Figure 1 we see that QUIVER supports objects, 
literals, structures, collections (sets, bags, arrays and 
lists), attributes and operations. In addition, QUIVER sup- 
ports relationships, aggregate functions and subqueries, 
as well as various constraints such as equality, in- 
equality and subset. Hence, while languages such as 
GraphLog [CEH+94], GOOD [GPVdBVG94], Hyperlog 
[PL94] and VQL [VA6931 advocate a minimal set of vi- 
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sual constructs, a distinguishing feature of QUIVER is the 
richness of its visual constructs. 

Despite this richness, QUIVER does not currently sup- 
port all OQL constructs. For example, there is no visual 
counterpart to the group by or order by constructs of 
OQL. In addition, negation and universal quantification are 
not supported, although universal quantifiers are used in the 
translation of subset constraints which are incorporated in 
QUIVER. 

Another distinguishing feature of QUIVER is its minimal 
use of text. The use of text is limited to names defined in the 
schema being queried. In particular, unlike in a number of 
proposed languages [PL94, KM93, MK93], there is no need 
to use variables in QUIVER queries, nor is output identified 
textually. 

In the next section we cover background material and 
related work. We first provide an overview of ODMG- 
93 in Section 2.1, before surveying a number of related 
visual query languages in Section 2.2. In Section 3, we 
present the design of the QUIVER query language, guided by 
a taxonomy of visual query constructs. The implementation 
of QUIVER is described in Section 4. We focus, in particular, 
on the translation of QUIVER queries to OQL. In Section 5, 
we present a user evaluation comparing QUIVER queries and 
OQL queries in terms of the speed of query construction and 
the ease with which correct queries can be formulated. The 
results of the evaluation allow us to conclude that users 
find it easier to construct correct queries in QUIVER than in 
OQL. Finally, concluding remarks and directions for future 
work are discussed in Section 6. 

2 Background 
2.1 ODMG93 

In this subsection we give very brief overviews of the ob- 
ject model proposed by the Object Database Management 
Group (ODMG) and its object query language (OQL). 

The basic modeling primitive in the ODMG object model 
is the object. Objects have state and behaviour, and can 
be categorized into tpes. All objects of a certain type 
have common behaviour and a common range of states. In 
our university database example, there are objects of type 
Person, Student,Course and Department. The extent of 
a type is the set of all instances of that type. In our example, 
the name of each extent is simply given by the plural of the 
name of its associated type; hence Students is the extent 
of objects of type Student. 

The state and behaviour of an object are collectively 
referred to as its characteristics. The state of an object 
is defined by the values of a set of pmperties, which are 
either attributes of the object (with literal values), or &a- 
tionships between the object and one or more others (with 
object values). In our example, each object of type Per- 
son or Course has an attribute name, whose value is a 
string. A Student object has a relationship takes which is 

a set of Course objects, while a Course has a relationship 
is-taken-by (which has as value a set of Student objects). 

The behaviour of an object is defined by a set of opera- 
tions. In our example, Student objects have an operation 
courses-by-marks, which takes as input two integer pa- 
rameters, min and max, and returns a set of Course objects. 

Objects may be organized into a graph of subtypes and 
supertypes. A subtype inherits all of the characteristics of its 
supertypes, and may define additional characteristics. For 
example, Student is a subtype of Person, and so inherits 
the name attribute. 

Individual objects or collections of objects can be given 
names meaningful to end-users. For example, the name 
Vice-Chancellormightbe assignedtotheappropriate 
person object in a university database. 

The ODMG object query language (OQL) provides 
declarative access to objects. The version we use here 
is that which is compatible with 02 OQL [02T94]. Be- 
low we give two simple examples of OQL queries. The 
first example shows an OQL query equivalent to that in 
Figure 1: 

exists x in Students: 
exists y in x.courses-by-marks(75,lOO): 
(y.name = llCSC200Wt') 

(1) 
The second example shows an OQL query which involves 
structured output, a nested subquery, and the use of an 
aggregate function: 

select struct 
(student: x.name, 
courses: (select y.name 

from y in x.takes 
where count(x.takes) > 4)) 

from x in Students 
G-9 

In this query, the output is a bag of tuples, each with two 
named components. The first component is a string rep- 
resenting a student name, while the second is the bag of 
course names taken by the student, as long as the student 
takes more than four courses. 

Further examples of OQL queries will be presented 
in Section 4.1 which describes the translation of QUIVER 
queries to OQL. 

2.2 Related Visual Query Languages 

In this section, we review visual query languages which are 
either graph-based [GPVdBVG94, PK95, CEH+94, PL94, 
Orm92, MK93], or designed for object databases [DGJS95, 
STT91, KM93, VAij93]. Of these, two have been named 
VQL, one by Mohan and Kashyap [MIS93], and the other 
by Vadaparty et al. [VAd93]. We will refer to them as 
MK-VQL and VAO-VQL, respectively. 

Of the above languages, only MK-VQL [MK93] is 
both graph-based as well as implemented on an object 
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database. While OQD is also graph-based, no mention 
is made of its implementation in [KM93]. Although 
GOOD [GPVdBVG94] and Hyperlog [PL94] are both de- 
tined in terms of objects, neither is in fact implemented 
on an object database system GOOD is implemented 
on a relational database system, while Hyperlog is im- 
plemented on a functional database system. Gql [PK95] 
and VDM/VQL [Orm92] are designed for the functional 
data model, although they could probably bc applied to 
object databases. GraphLog [CEH+94] is implemented 
on a deductive database system. OdeView, OOQBE and 
VAO-VQL [VA0931 are all form- or table-based rather than 
graph-based languages. Since MK-VQL [MK93] is imple- 
mented on an in-house object database system, QUIVER is 
the only ODMG-compliant graph-based query language, as 
far as we are aware. 

Languages such as GraphLog, GOOD, Hyperlog and 
VAO-VQL advocate a minimal set of visual constructs 
for achieving substantial expressive power. In contrast, 
QUIVER permits a large number of visual constructs. For 
example, neither structures nor collections are modeled ex- 
plicitly in GraphLog, GOOD or Hyperlog, while operations 
are not provided for by GraphLog, Hypcrlog or VAO-VQL. 
Although Gql provides a fairly rich set of constructs which 
bear a number of similarities with those of QUIVER, it too 
does not support structures, collections or operations. 

The ability to nest nodes inside other constructs is a 
feature QUIVER shares with GraphLog and Hyperlog. In 
addition, the use of boldface to indicate output in QLJ~VER 
has been borrowed from GraphLog. However, the use of 
data-flow arcs to allow a consistent representation of the 
computations performed by operations, aggregate functions 
and (sub)queries is unique to QUIVER. 

As stated in the Introduction, there is no need to use 
variables in QUTVER, nor is output specified textually. In 
contrast for example, variables are needed in Hypcrlog in 
order to equate items, while output is specified textually in 
OQD. Variables are used both for certain equality tests and 
for output in MK-VQL. 

Recursion is provided in GraphLog, Hyperlog, GOOD 
and MK-VQL, while negation is provided in all the lan- 
guages mentioned above. Neither recursion nor negation 
have yet been implemented as part of QUIVER, although we 
see no difficulty in doing so. Our ideas on how incorporate 
these features into QUIVER are given in Section 6. 

3 The QUIVER Query Language 
In this section, we describe the syntax of a QUIVER query; 
the semantics are defined in terms of a translation to OQL 
which is presented in Section 4.1. We begin with an infor- 
mal discussion of the syntax, aided by another example of 
a QUIVER query. 

A QUIVER query is a graph comprising nodes, arcs and 
edges. Each node, arc and edge has an associated visual 
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Figure 2: Hierarchy of visual types in QUIVER. 
representation and denotes a QUIVER query construct. For 
example, nodes represented visually as shaded circles de- 
note objects. The hierarchy of all QUIVER visual query 
constructs is shown in Figure 2, where instantiable types 
are shown upright and abstract types are shown italicised. 
For simplicity, we have classified all arcs and edges as arcs 
in the diagram. 

As mentioned, one of the goals of the QUIVER language 
is that it should be consistent; similar query concepts should 
be represented by similar visual constructs. The types in 
Figure 2 are grouped by their functional similarity, each 
type within a group having a similar visual representa- 
tion. For example, all computation nodes are represented 
as rectangles, all node derefcrencing arcs are represented 
as solid, labeled arrows, and all composite nodes include 
other nodes. 

Figure 1 introduced examples of nodes representing ob- 
jects, literals, structure elements, structures, collections and 
operations, as well as inclusion arcs, data-flow arcs, a prop- 
erty arc, an operation arc, structure element arcs, and an 
adjoinment arc. As another example, consider the query Q 
in Figure 3. Query Q ftnds students who take more than 
four courses, in each case returning the name of the student 
along with the bag of names of the courses the student takes. 
Three other constructs from Figure 2 are used in Q: a tknc- 
tion node labeled count(), a (sub)query node represented 
by the large rectangle, and an inequality arc labeled with >. 

Being a computation node, a function node is repre- 
sented as a rectangle, although since the computation is 
hidden from the user, the rectangle is filled in. On the 
other hand, a query node is both a computation node and 
a composite node (see Figure 2). Hence, it is represented 
as a rectangle which includes the nodes and arcs specifying 
the computation (see Figure 3). For the outer query, this 
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c 
Figure 3: Finding students who take more than four courses 
(using a subquery). 
bounding rectangle is not necessary and has been omitted 
in our examples. 

Like an operation node, a function node has data-flow 
arcs entering and leaving it. Queries do not require an 
incoming data-flow arc as their input is implicitly the entire 
database. However, subqueries do require an outgoing data- 
flow arc to a node representing the output type of the query 
(see Figure 3). 

Output for a query & is specified by boldface nodes (and 
possibly arcs). A query containing no bold nodes, such as 
that in Figure 1, is interpreted simply as a constraint, and 
therefore produces a Boolean value as output. On the other 
hand, the bold subgraph of the outer query & of Figure 3 
specifies that the output of Q is a collection of structures, 
each having a Student object as its first component and a 
collection of strings as its second component. 

Arcs in & can be labeled, while edges, inclusions and 
adjoinments cannot. Each node in Q can have a pair of 
labels m and n, displayed as m : n, where m is thep@x of 
the node label and n is the sum. In order not to clutter the 
query graph, abbreviated labels are also supported. With 
abbreviated labels, only the prefix of each label is displayed, 
as shown in the examples in Figures 1 and 3. The prefix of 
the label indicates the name of the object, literal or collec- 
tion, if a name has been defined in the schema. Otherwise, 
the prefix of the label is empty for an object or collection 
node, while for a literal node it is either empty or the value 
of the literal. The suffix of the label always indicates the 
type of the construct represented by the node. 

3.1 Syntactic Restrictions 

A QUIVER query is a nested, mixed graph Q = 
(N, A, E, I, J), where N is a set of nodes, A is a set of 
arcs, E is a set of edges, I is a set of inclusions, and J 
is a set of adjoinments. An arc a is an ordered pair (21, V) 
of nodes, while an edge e is an unordered pair {u, V} of 
nodes. An inclusion is analogous to an arc in that it is an 
ordered pair (u, V) of nodes. However, the subgraph of Q 
induced by I, denoted Qr, is restricted to being a forest. 
An adjoinment is also an ordered pair (u, V) of nodes. The 
subgraph of Q induced by J, denoted QJ, is restricted to 

being a set of disjoint paths. 
Let Q = (N, A, E, I, J) be a QUIVER query. We say 

that node w is included in node u if either (u, V) E I or 
there is a node w such that (u, w) E I and v is included in 
w. A node u is maximal if it is not included in any node. 
In other words, a maximal node is the root of some tree in 
&I. Each tree in &I is called an inclusion group. 

Because Q = (N, A, E, I, J) is a nested, mixed graph, 
we need to extend the usual definitions of connectedness and 
connected components. If (21, V} E E, (u, V) E A, (v, u) E 
A, (u, V) E I, (v, u) E 1, (u, V) E J, or (v, U) E J, we say 
that u and v are connected. If u and v are connected and v 
and w are connected, then u and w are also connected. The 
connected relation is an equivalence relation which induces 
a partition of Q into disjoint connected components. 

If, after deleting any output collection node used to col- 
lect answers, a query Q has more than one connected com- 
ponent, then Q is interpreted as a disjunctive query. All 
components must either be Boolean queries or must have 
output subgraphs (defined below) whose root nodes are of 
the same type. 

For simplicity, let us assume from now on that query 
Q comprises only a single component. We have seen that 
queries can be nested inside one another, each query node 
being the root of a query inclusion group. The 0lcfermoSt 
subquery of Q, denoted Qo, is the subgraph of Q inducedby 
those nodes which are not included in any query node. For 
example, the outermost subquery QO in Figure 3 comprises 
all nodes (and their incident arcs) except those included 
in the subquery rectangle. Note that QO excludes the arc 
labeled takes. 

Given a query node q in Q, the subquery associated 
with q , denoted Qq, comprises the subgraph induced by the 
nodes v of Q such that (q, V) is an inclusion in Q, along 
with any arc (u, v) or edge {u, v} where (q, u) is not an 
inclusion in Q. For example, the subquery associated with 
the query node in Figure 3 comprises all the nodes and arcs 
included in the query rectangle, as well as the arc labeled 
takes (and the student object node at its tail). Thus the 
student object node is in both the outermost subquery and 
the inner subquery. 

When we refer to the output subgraph 0 of a query Q, 
we are referring to the subgraph induced by the bold nodes 
and arcs (including inclusions and adjoinments between 
bold nodes) of Qc. Nested subqueries in Q may or may not 
have output subgraphs of their own, but these are not part 
of 0. If 0 is empty, then Q is called a Boolean query (for 
example Figure 1). 

There are a number of restrictions on the syntax of an 
output subgraph 0. For our purposes, 0 must be acyclic, 
with exactly one node of indegree zero, which we call the 
mot of 0. We call the nodes with outdegree zero in 0 the 
leaves of 0. 

The final syntactic restriction on a subquery Q involves 
the notion of the reachability of nodes in Q. All nodes in 
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Q, except possibly the root of 0, must be reachable. There 
are three sources (or roots) of reachability. A node 21 is 
reachable in Q, and a reachability mot for Q, if u is 

1. a named object, literal or collection node, or 

2. a literal node with a value label, or 

3. a reachable node which is at a level less than Q, or 

4. a reachable query node. 

A query node is reachable if all the non-bold nodes in Q( 
are reachable. Reachability can also be passed from the tail 
to the head of an arc. Space does not permit us to enu- 
merate the rules for reachability here; they can be found 
in [Cha96]. Instead, as an example of establishing reacha- 
bility, consider the query Q of Figure 1. The collection node 
labeled Students in Q is reachable by virtue of (1) above, 
while the literal nodes labeled 75,100 and CSC2OOW are 
reachable by virtue of (2). Since Students is reachable, 
so is the object node included in Students. Now we can 
establish that the input structure node is reachable, followed 
by the operation node, and the collection node c represent- 
ing the output of the operation. Finally, we determine that 
the object node included in c is reachable. 

Let Q be a subquery graph with output subgraph 0. 
The pattern subgraph P of Q is the subgraph induced by 
the non-bold arcs, edges, inclusions and adjoinments in Q. 
For Q to be syntactically correct, P and 0 must have as 
intersection the leaves of 0. In Figure 3, P and 0 have the 
nodes which are the targets of the bold arcs labeled student 
and courses in common. If there are any nodes in Q that 
are neither reachable nor bold, then Q is not syntactically 
correct. The order in which nodes in Q are determined to 
be reachable also provides an order for translating Q into 
OQL, as described in the next section. 

4 Implementation of QUIVER 

Figure 4 presents a diagrammatic view of the various com- 
ponents which make up the QUIVER application, where the 
arrows between components represent the flow of data. The 
shaded boxes represent external components which were 
not part of the QUIVER development. For example, 01 
(from 02 Technology [Deu90]) is used as the persistent 
store of QUIVER, O&ook is used as the data presenter, and 
DOT [RN931 is used for graph layout. In this paper, we 
present only the query translation algorithm in Section 4.1. 

QUIVER is implemented using Tcl/Tk [Ous94] and 
C++. Tcl/Tk is used for the the graphical user inter- 
face, while C++ is used for the query translation as well as 
for calling and managing the interfaces between the vari- 
ous components. In all, QUIVER comprises approximately 
15,000 lines of Tel /Tk code and about 10,000 lines of 
C++ code. 

Figure 4: The components comprising QUIVER. 

4.1 Query Translation 

In this section, we define the semantics of QUIVER queries 
in terms of a translation to OQL. Through necessity, many 
details are omitted, a more complete description being given 
in [Cha96]. Here we simply present the pseudo-code for the 
algorithms used for query translation, Algorithms 1 and 2, 
and illustrate their use with a single example. 

For simplicity, we assume that Q~JNER query Q com- 
prises only a single connected component. Given a QUIVER 
query Q, the translation of Q to an OQL expression p(Q), 
obtained by calling translateQuery (Algorithm 1) with the 
outermost subquery QO of Q, consists of four phases. 
Firstly, the se1 ec t clause of p(Q) is generated from the 
output subgraph 0. Secondly, the set ofvariable bindingsin 
the from clause ofp(Q) is generated from F, the subgraph 
of the reachability forest R needed to show the reachability 
of each leaf node in 0. Thirdly, the subgraph W induced 
by arcs in R which are not in F is used to generate further 
variable bindings in the where clause of p(Q). Finally, 
the subgraph C induced by arcs in the pattern subgraph P 
which are not in R is used to generate conditions to be tested 
in p(Q). Of course, the output subgraph 0 may be empty, 
in which case only the third and final phases generate out- 
put, but without the keyword where. Similarly, either W 
or C may be empty. The four subgraphs 0, F, W and C 
form a partition of the arcs of Q. 

To generate the fragments of the OQL expression cor- 
responding to F, W and C, we call a procedure transfate- 
QueryFragment, shown as Algorithm 2. In fact, this pro- 
cedure has to generate slightly different strings depending 
on whether it is called with F, W or C, but we do not dis- 
cuss these details here. In addition, we have not included 
pseudo-code for the procedures translateOutput called in 
Algorithm 1 or translate,& called in Algorithm 2. We 
have rather used an example to illustrate their operation. 

Consider the query Q of Figure 3 which is translated as 
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translateQueryFragment(Q) 

translate@erv(Q) 
Input: QUIVER query Q . 
Output: OQL string S. 
Method: 

1. for each unprocessed node u in Q with name or value v do 
2. hegin 
3. append“var(u) in bag(v)” to S 
4. mark u processed 
5. end 
6. while the set of processed nodes changes do 
7. heglll 
8. for eachunpmcessedarc (u, II) in Q such that u is pmcesseddo 
9. hgia 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. mark q processed 
19. end 
20. end 

translate.4rc((u, v)) 
mark (u, v) and IJ pmcessed 

end 
for each unprocessed, translatable query node q in Q do 

bein 
append“var(q) in bag (“to S 
trm.dareQuery(Q -q) 
append “I” to S 

1. s := T := empty string 
2. Mark all nodes and arcs in Q as unprocessed. 
3. Assign variable names to each node in Q. 
4. Let 0 be the output subgraph and P be the pattern subgraph of Q. 
5. Let R be the breadth-first spanning forest of P based on reachability. 
6. Let F be the subforest of R establishing reachability of leaves of 0. 
7. Let W be the subforest of R induced by arcs not in F. 
8. Let C be the subgraph of P induced by arcs not in R. 
9. If0 is not empty 
10. then 
11. k@ 
12. lf mot of 0 is reachable 
13. then append‘lelement (select” to S and“) “to T 
14. else 
15. begin 
16. append “selec t” to S 
17. if mot of 0 is a set then append “di s tint t” to S 
18. end 
19. fransla2eOupU(O) 
20. append “f rom” to S 
21. translateQueryFragmen~(F) 
22. if W U C not empty then append “where” to S 
23. end 
24. if W is not empty 
25. then translateQueryFragmeni(W) 
26. if C is not empty 
27. then translateQw~Fragmeni(C) 
28. else append”true” to S 
29. appendT to S 
30. U some node or arc in Q is not processed then fail 

Algorithm 1: Pseudocode for query translation. 

Algorithm2: Pseudo-code for translating a query fragment. 
follows: 
select struct ( 

student: VARZ-1, courses : VAR4-2 ) 
from VARl-2 in bag(Students) , 

VARlJ in VARl-2, 
VARZ-1 in bag (VARl-1. name) , 
VAR3-1 in bag( 

select VAR6-1 
from VAR5-2 in bag (VARl-1. takes) , 

VAR5-1 in VAR52, 
VAR6-1 in bag (VAR5-1. name) 

where 
exists VAR8-1 in bag (count (VAR3-2) ) : 

(exists VAR9-1 in bag(b) : 
(VAR8-1 > VARS-1) ) ) , 

VAR4-2 in bag (VAR3-1) 

(3) 
The translation of Q begins by assigning a variable name, 
derived from a numbering of the inclusion groups in Q, to 
each node in Q. For example, the node at the head of the 
arc labeled student is assigned the variable VAR2-1, while 
that at the head of the arc labeled courses is assigned the 
variable VAR4-2. The select part of expression (3) is 
generated from the output subgraph 0 of Q . 

Since all of the nodes in the pattern subgraph of the 
outermost subquery in Q are needed to establish the reach- 
ability of the output nodes, there is no where clause in 
the outermost OQL expression in (3) above. For the from 
clause, assume that the collection node cl labeled Students 
is assigned the variable VARL2, while the object node 01 
included in cl is assigned the variable VARL1. Since cl is 
named, line 3 of Algorithm 2 binds VARlZ to Students 
usingVARl_2 in bag(Students). 

Now 01 is reachable, so translatdr in Algorithm 2 
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binds VARL1 to objects included in VARU, using 

VARl-1 in VAN-2 

Next the output object node (VAR2-1) becomes reachable 
and is bound to VARL1. name. 

The final part of Algorithm 2 which needs to be ex- 
plained is that dealing with the translation of subqueries. 
As can be seen on line 16 of Algorithm 2, subqueries are 
translated by a recursive invocation of the procedure trans- 
luteQuery. However, a subquery can only be translated if 
its corresponding query node is trunslutuble. We say that a 
query node p is trunslutuble if all those nodes, which are in 
both Qq and another subquery, have been processed. This 
ensures that the variables corresponding to these nodes have 
been bound in the OQL expression by the time the subquery 
is translated. These nodes now become roots of reachability 
for the subquery. 

Returning to the translation of query Q of Figure 3, the 
inner subquery becomes translatable once object node or 
(VARU) has been processed. The subquery generates a 
where clause in expression (3), since the function node, 
its output node (VAR8-1) and the literal node (VAR9-1) 
labeled 4 in Q are not needed to establish the reachability 
of the output nodes of the subquery in Q. 

The OQL expression (3) should be compared to the much 
shorter expression (2) given in Section 2.1. The essential 
difference is in the overhead of binding variables to named 
collections or literals in (3). A rewriting optimization could, 
of course, remove this overhead. Note also that the sub- 
query appears in the from clause in expression (3), while 
it appears in the select clause in expression (2). 

The user can save the OQL expression generated by 
QUIVER in a file by typing control-Q after formulating a 
query. Another possibility, which we have not explored, 
would be to display the OQL expression incrementally as 
the user formulates their query. 

5 A User Evaluation of QUIVER and OQL 

In order to compare the usability of QUIVER and OQL, 
we conducted a limited user evaluation. The evaluation 
was performed by thirteen fourth-year computer science 
students, each of whom was given a list of eight queries 
to construct. The queries ranged from simple retrievals 
to complex queries requiring both long path traversals and 
subqueries. 

The thirteen participants were divided into two groups: 
seven participants in GROUP Q used QUIVER, while six 
participants in GROUP 0 used OQL. None of the participants 
had any prior experience with QUIVER or OQL, although 
four participants in GROUP Q and three in GROUP 0 had 
prior experience in using SQL from a typical undergraduate 
database course. Two introductory lectures (one on QUIVER 
and one on OQL) were presented to the participants. 

Two hypotheses were tested. The first was that OQL 
queries can be constructed as easily as QUIVER queries, in 
other words, that GROUP 0 participants would attempt the 
same number of queries as GROUP Q participants. The 
second hypothesis was that GROUP Q participants would 
construct a similar number of correct queries to GROUP 0 
participants. The statistical test used for both hypotheses 
was the Mann- Whitney-Wilcoxon procedure [Gib76]. This 
test was chosen because the data arises from two indepen- 
dent samples and, because of the small sample size, we 
cannot assume that the data follows a normal distribution. 

For the first hypothesis, let A&J represent the mean of 
the number of queries attempted in GROUP Q, and MO 
represent the mean of the number of queries attempted in 
GROUP 0. The null hypothesis H is that MO = MQ , while 
the alternative A is that MO > MQ. The results of our 
evaluation show that we can conclude A only with 71% 
confidence. Since this offers no convincing evidence that H 
is false, we conclude that QUIVER queries can be constructed 
just as easily as OQL queries. 

For the second hypothesis, we wish to determine if par- 
ticipants in GROUP Q obtained more correct queries than 
participants in GROUP 0. For this purpose, participants’ 
queries were classsified as either correct, essentially correct 
(a minor mistake or two), or incorrect. For this hypothe- 
sis we used the ratio P of the number of queries classified 
correct or essentially correct to the total number of queries 
attempted. Let MQ represent the mean ratio of GROUP Q, 
and MO represent the mean ratio of GROUP 0. The null 
hypothesis H is that MQ = MO, while the alternative A is 
that MQ > MO. The results of our evaluation show that we 
can conclude A with 99.7% confidence. That is, it is easier 
to construct correct QUIVER queries than it is to construct 
correct OQL queries. 

There are a number of possible sources of error in our 
user evaluation. Firstly, participants were not selected vol- 
untarily, nor did they all have identical backgrounds. Sec- 
ondly, participants were taught QUIVER and OQL in only 
one 45minute session each. Finally, a larger sample size 
would have produced more accurate results. 

Nevertheless, the results of the second hypothesis are 
extremely encouraging, as they show that QUIVER does aid 
the user in producing more correct queries. We believe this 
is particularly the case for queries involving long paths of 
references and for nested queries. In both cases, the visual 
nature of QUIVER allows the user to see these constructs 
more clearly. In addition, the fact that a QUIVER user does 
not have to remember which variable ranges over which 
collection may reduce the number of errors when compared 
to an OQL user. 

6 Conclusion 
We have described the design, implementation and eval- 
uation of QUIVER, a visual query language for ODMG- 
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compliant object databases. QUIVER is comprehensive 
in the sense that it includes visual representations for a 
large number of the modeling constructs found in object 
databases. This is in contrast to many other visual query 
languages which have concentrated on using a minimal 
number of representations. Nevertheless, a serious attempt 
has been made to provide a consistent organisation of the 
QUIVER visual representations, as indicated by the taxon- 
omy presented in Section 3. 

Our user evaluation comparing QUIVER with OQL was 
particularly encouraging, in that it showed that it is easier to 
construct correct queries with QUIVER than it is with OQL. 
This may be partly because keeping track of paths and the 
ranges of variables is difficult in an OQL expression. In 
QUIVER, the paths are visual and there are no variables. 

There is no doubt that QUIVER can be both improved and 
extended. The query language could be improved by in- 
troducing greater conciseness. Examples include removing 
the necessity for the output of subqueries to be duplicated 
(although this duplication is performed by the interface), 
and allowing paths to be specified by means of regular ex- 
pressions, as in G [CMW87]. This would allow recursive 
queries to be formulated in QUIVER, although the transla- 
tion could then no longer generate simply OQL. Another 
extension to QUIVER would be the introduction of negation, 
for which we are considering the use of crossed out arcs, as 
in GraphLog [ CEH+94], for example. 

The current translation of QUIVER queries could be made 
more efficient by not introducing variables for every node, 
and by recognising that certain special cases could be trans- 
lated without needing to resort to a se1 ect . . . from 
expression. 

Finally, a more extensive user evaluation of QUIVER 
may uncover further areas for improvement. For example, 
a number of users in our limited evaluation suggested that 
the simultaneous display of the OQL query while a QUIVER 
query was being constructed would be beneficial. 
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