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Abstract 

Efficient user-adaptable similarity search more 
and more increases in its importance for multime- 
dia and spatial database systems. As a general sim- 
ilarity model for multi-dimensional vectors that is 
adaptable to application requirements and user 
preferences, we use quadratic form distance func- 
tions di(x, y) = (x-y) . A (X -Y)~ which have 
been successfully applied to color histograms in 
image databases [Fal+ 941. The components ati of 
the matrix A denote similarity of the components i 
andj of the vectors. Beyond theEuclidean distance 
which produces spherical query ranges, the simi- 
larity distance defines a new query type, the ellip- 
soid query. We present new algorithms to 
efficiently support ellipsoid query processing for 
various user-defined similarity matrices on exist- 
ing precomputed indexes. By adapting techniques 
for reducing the dimensionality and employing a 
multi-step query processing architecture, the 
method is extended to high-dimensional data spac- 
es. In particular, from our algorithm to reduce the 
similarity matrix, we obtain the greatest lower- 
bounding similarity function thus guaranteeing no 
false drops. We implemented our algorithms in 
C++ and tested them on an image database con- 
taining 12,000 color histograms. The experiments 
demonstrate the flexibility of our method in con- 
junction with a high selectivity and efficiency. 
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1. Introduction 

In recent years, an increasing number of database appli- 
cations has emerged for which efficient support for similar- 
ity search is substantial. The requirements of modern infor- 
mation retrieval, spatial database and image database 
systems cannot be satisfied by the classic exact and partial 
match queries which specify all or some of the object fea- 
tures that have to fit exactly to the query features. The im- 
portance of similarity search grows in application areas 
such as multimedia, medical imaging, molecular biology, 
computer aided engineering, marketing and purchasing as- 
sistance, etc. [Jag 911 [AFS 931 [GM 931 [Fal+ 941 
[FRM 941 [ALSS 951 [BKK 971 [BK 971. Due to the im- 
mense and even increasing size of current databases, a high 
efficiency of query processing is crucial. 

In this paper, we present a general technique for efficient 
similarity search in large databases that supports user-spec- 
ified distance functions. The objects may be represented as 
high-dimensional vectors such as histograms over arbitrary 
distributions. Typical examples are color histograms which 
are obtained from images, shape histograms of spatial ob- 
jects for geometric shape retrieval (e.g. section coding 
[BK 97]), multidimensional feature vectors for CAD ob- 
jects and many others. In general, one- or multidimensional 
distributions can be characterized by histograms which are 
vectors or matrices that represent the distributions by dis- 
crete values. 

For many applications concerning similarity search, the 
Euclidean distance of feature vectors is not adequate. The 
square of the Euclidean distance of two N-vectors x and y is 
defined as following: 

ducdXs Y) = tx-Y) tX-YIT = Cr=, txi-Yi)’ 

The basic assumption of the Euclidean distance is the 
independence of the dimensions, i.e. there is no influence of 
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one component to the other. This fact does not reflect corre- 
lations of features such as substitutability or compensabili- 
ty. Therefore, it is recommended to provide similarity 
search techniques that use generalized distance functions. 
A distance model that has been successfully applied to im- 
age databases [Fal+ 941 and that has the power to model 
dependencies between different components of feature or 
histogram vectors, is provided by the class of quadratic 
form distance functions. Thereby, the distance measure- 
ment of two N-vectors is based on an N x N-matrix 
A = [au] where the weights aij denote similarity between the 
components i and j of the vectors: 

d;(x,y) = (x-Y).A+-~)~ = 

= c:=,Iz;=, 
‘ij * Cxi - Yi) (‘j - Yj) 

This definition also includes the (squared) Euclidean 
distance when A is equal to the identity matrix, as well as 
(squared) weighted Euclidean distances when the matrix A 
is diagonal, A = diag(w,, . . . . We) with wi denoting the 
weight of dimension i. 

Section 2 contains some application examples which il- 
lustrate the relevance of adaptable distance functions, and a 
discussion of related work. In section 3, we present an effi- 
cient technique for similarity search in low-dimensional 
data spaces for a new query type, the ellipsoid query. 
Section 4 extends the method for efficient similarity query 
processing to high-dimensional spaces by employing tech- 
niques to reduce the dimensionality which leads to a multi- 
step query processing architecture. Section 5 presents the 
results from experimental evaluation, and section 6 con- 
cludes the paper. 

2. Problem Characterization 

There are two types of queries that are relevant for simi- 
larity search: First, range queries are specified by a query 
object q and a range value E, defining the answer set to con- 
tain all the objects s from the database that have a distance 
less than E to the query object q. Second, k-nearest neighbor 
queries for a query object q and a cardinal number k specify 
the retrieval of those k objects from the database that have 
the smallest distances to q. 

We are faced with the general problem of similarity 
search in large databases whose objects are represented by 
vectors of any arbitrary dimension N, e.g. histograms or 
feature vectors. The similarity between two objects x and y 
is measured by quadratic form distance functions, 
u’i(x, y) = (x-y) A . (x - Y)~, where the similarity ma- 
trix A may be modified by the user at query time, according 

to the user-specific or even query-specific preferences. The 
N x N-matrix A is only required to be positive definite, i.e. 
z . A . zT > 0 for all z E !KZN, z # 0, in order to obtain non- 
negative distance values. Since current and future databas- 
es are assumed to be very large, similarity query processing 
should be supported by spatial access methods (SAMs). If a 
SAM has already been precomputed, and if reduction of 
dimensionality has been applied to the vectors, it should be 
employed. 

From the examples below, we observe that the dimen- 
sionality of the histograms may range from a few bins to 
tens and hundreds of bins (e.g. 256 colors in image databas- 
es). Therefore, a method for similarity search also has to 
provide efficient support for searching in high-dimensional 
data spaces. 

2.1 Adaptable Distance Functions 

The following examples illustrate the relevance of gen- 
eralized distance functions. The first one is taken from 
[Haf+ 951 who developed techniques for efficient color his- 
togram indexing in image databases within the QBIC (Que- 
ry By Image Content) project [Fal+ 941. Consider a simpli- 
fied color histogram space with three bins (red, orange, 
blue), and let x, y, and z be three normalized histograms of a 
pure red image, x = (1, 0, 0), a pure orange image, 
y = (0, 1, 0), and a pure blue image, z = (0, 0, 1). The Eu- 

clidean distance deuclid of x, y, and z in pairs is */z , whereas 

the histogram distance dA for the application-specific 

matrix A 
1.0 0.9 0.0 

red,orange,blue = 0.9 I.0 0.0 yields a similarity of [ 1 0.0 0.0 1.0 

,,/i?? for x and y, and a distance of fi for z and x as well as 

for z and y. Thus, the histogram distance dA provides a 

more adequate model -for the characteristics of the given 
color histogram space. 

In our second example, let us consider three histograms 
u, b, and c over an ordered space (cf. figure 1). Although c 
is closer to b than to a, which may reflect a higher similarity 
of the object c to b than to a, the Euclidean distance neglects 
such relationships of vector components. In such a case, a 
distance matrix A = [uij] seems to be adequate which is 
populated in a more or less broad band along the diagonal, 
i.e. whose weights uij depend on the distance Ii-j1 be- 
tween the histogram bins i and j. 

For our last example, we assume an image similarity 
search system that supports a variety of different user pref- 
erences. For instance, user 1 requires a strong distinction of 
the hues, whereas user 2 only looks for images with a simi- 

507 



Figure 1: Sample histograms of three similar 
distributions over an ordered space 

lar lightness but does not insist on the same hues. User 3 
may be interested in pictures having the same mossy green 
while all the red and orange hues count for being similar. In 
order to obtain adequate distance functions, for each of the 
various preferences, a different matrix has to be composed 
that has suitable weighting factors at the appropriate posi- 
tions. To provide an optimal support for all possible user 
profiles, the similarity retrieval system should support effi- 
cient query processing for various matrices. 

2.2 Related work 

Recently, various methods have been proposed concern- 
ing feature-based similarity retrieval [AFS 931 [GM 931 
[FRM 941 [ALSS 951 [Kor+ 961 [BK 971 [BKK 971. Typi- 
cally, the architecture follows the multi-step query process- 
ing paradigm [OM 881 [BHKS 931 which in general pro- 
vides efficient query processing, in particular when 
combined with a PAM or a SAM. However, these methods 
are restricted to manage only the Euclidean distance in the 
filter step, i.e. in the feature space. 

In the QBIC (Query By Image Content) project 
[Fal+ 941, algorithms were developed for image retrieval 
based on shape and color. Two of the proposed algorithms 
use color histogram similarity [Haf+ 951. The histogram 
distance function is defined as a quadratic form function 
do&, y) = (x-y) . A . (x - Y)~ (see above). Since the 
dimensionality of the color histograms is 256, filter steps 
are used to efficiently support similarity query processing. 

As a primary approach for an index-based filter step, 
[Fal+ 941 uses a concept of average colors: for each color 
histogram X, the average color xaVs is computed which is a 
three-dimensional vector since also the color space has 
three dimensions. The authors show that the average color 
distmx d&(x, y) = (xavg - yavg) . (xavg - yavgJT scaled 
with a factor AA that depends on the matrix A, represents a 

lower bound for the histogram distance, i.e. 
h,d&(x, y) I d&(x, y) . This lower-bounding property 
guarantees no false drops when using the average color dis- 
tance in the filter step. The three-dimensional average color 
vectors are managed by using an R*-tree, and a consider- 
able performance gain has been obtained. The computation 
of the index only depends on the color map that is assigned 
to the histogram bins, but not on the similarity matrix A. 
Therefore, the index maybe precomputed without knowl- 
edge of any query matrix A. In other words, at query pro- 
cessing time, the method may fall back on an available in- 
dex for arbitrary (previously unknown) user-specified 
similarity matrices. However, the dimensionality of the in- 
dex is fixed to three, i.e. the dimensionality of the underly- 
ing color space. Thus, the average color method may not 
profit from advances in high-dimensional indexing meth- 
OdS. 

As a generalization of davg, [Haf+ 951 introduce a scal- 
able k-dimensional distance function dk in order to operate 
with a k-dimensional index in the filter step. The k-index 
entries are obtained by a dimension reduction such that dk is 
equal to the Euclidean distance. As shown by the authors, 
again the fundamental lower-bounding property 
di(x, y) 5 d&,(x, y) holds, thus preventing the filter step 
from producing false drops. Contrary to the average color 
approach, this method provides more flexibility. The pa- 
rameter k may be tuned in order to obtain an optimal filter 
selectivity and query processing performance with respect 
to the technical and application-specific environment. 
However, the main disadvantage of the method is its depen- 
dency on the similarity matrix A. In particular, the reduction 
of the high-dimensional histograms to k-dimensional index 
entries is done by using a symmetric decomposition of the 
similarity matrix A. Thus, when the query matrix A chang- 
es, the complete index would have to be recomputed in gen- 
eral. In other words, the method only supports the pre- 
defined similarity matrix for a given index. 

In our approach, we efficiently support similarity pro- 
cessing and provide both, flexibility for the user to modify 
the similarity matrix, and scalability for the access method 
to use an optimal dimensionality of the underlying index 
structure according to the technical and application-specif- 
ic environment. 

3. Similarity Query Processing in Low 
Dimensions 

A key technique to efficiently support query processing 
in spatial database systems is the use of point access meth- 
ods (PAMs) or spatial access methods (SAMs). Although 
our method works with a variety of PAMs and SAMs, in 
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this paper, we focus on access methods that manage the sec- 
ondary storage pages by rectilinear hyperrectangles, e.g. 
minimum bounding rectangles (MBRs), for forming higher 
level directory pages. For instance, this paradigm is real- 
ized in the R-tree [Gut 841 and its derivatives, R’-tree 
[SRF 871, R*-tree [BKSS 901, as well as in the X-tree 
[BKK 961, which has already been used successfully to 
support query processing for dimensionalities up to 16. 

classic Euclidean weighted Euclidean general quadratic 
distance function distance function distance function 

Figure 2: Typical shapes of query ranges {p 1 d@, q) < E } 
for various distance functions d and a fixed query range E. 

Up to now, similarity query processing using PAMs and 
SAMs supports only the Euclidean distance where query 
ranges are spherical, and weighted Euclidean distances 
which correspond to iso-oriented ellipsoids. However, que- 
ry ranges for quadratic form distance functions 
di(p, q) = (p - q) . A . (p - q)T for positive definite que- 
ry matrices A and query points q lead to arbitrary oriented 
ellipsoids (cf. figure 2). We call the new query type an e/lip- 
soid query and present efficient algorithms for ellipsoid 
query processing in the following. 

3.1 Ellipsoid Queries on Spatial Access Methods 

Both, similarity range queries and k-nn queries, are 
based on the distance function for query objects ellip,(A) 
and database objects p. When employing SAMs that orga- 
nize their directory by rectilinear hyperrectangles, an addi- 
tional distance function mindist is required (cf. [HS 951 
[RKV 951 [BBKK 971 [Ber+ 971) which returns the mini- 
mum distance of the query object e/lip,(A) to any iso-ori- 
ented hyperrectangle box. 

As a generalization of mindist, we introduce the opera- 
tion disrunce(A, q, box, E) which returns the minimum dis- 
tance dmin = min{di(p, q) I p E box} from ellip,,, to box 
if dmin 1 E , and an arbitrary value below E if d,, < E . The 

relationship of distance to the operations intersect and 
mindist is shown by the following lemma. 

Lemma 1. The function distunce(A, q, box, E) fulfills the 

following correspondences: 

(i) ellip.intersects (box, E) 5 distunce(A, q, box, E) 2 E 

(ii) ellip.mindist (box) = distunce(A, q, box, 0) 

Proof. (i) The estimation distunce(A, q, box, E) I E holds 
by definition if and only if the minimum distance dmi,, of 
ellip to box is lower or equal to E. On the other hand, 
dmin < E is true if and only if the hyperrectangle box inter- 
sects the ellipsoid ellip of level E. (ii) Since dmin 2 0, 
distunce(A, q, box, 0) always returns the actual minimum 

dmin = min{ di(p, q) I p E box} which is never less than 
E = 0.0 

For range query processing, only intersection has to be 
tested. Lemma 1 helps to improve the runtime efficiency, 
since the exact value of mindist is not required as long as it 
is smaller than E (cf. figure 3). 

Figure 3: Problem ellipsoid intersects box for two 
different similarity matrices A, and A, 

3.2 Basic Distance Algorithm for Ellipsoids and Boxes 

For the evaluation of distunce(A, q, box, E) , we com- 
bined two paradigms, the steepest descent method, and iter- 
ation over feasible points (cf. figure 4). 

For the steepest descent, the gradient Veihp(pi) of the 
ellipsoid function d2 A, ,,i,,(p) = p . A . pT at pi is deter- 
mined (step 4). In step 7, the linear minimization returns 
the scaling factor s for which p + sg is minimum with re- 
spect to the ellipsoid; this holds if V,i, fp + sg) . g = 0. 
The steepest descent works correctly and stops after a finite 
number of iterations (step 9) [PTVF 921. 

The feasible points paradigm is adapted from the linear 
programming algorithm of [BR 851. The basic idea is that 
every point that is visited on the way down to the minimum 
should belong to the feasible region which is the box in our 
case. The algorithm ensures the feasibility of the visited 
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method distance(A, q, box, E) + float; 
0 box := box.move (- q); 
1 p. := box.closest (origo); 
2 loop 
3 if (d:, ,&pi) I E ) break, 
4 g := - Vellip (Pi) ; 

5 g := box.truncate (pi, g); 
6 if (Igl = 0) break, 
7 S :=- Vellip(Pj)*g/Vellip(g)*g; 
8 pi+, := box.closest (pi + s*g); 
9 if (d:, otigo(PJ = d:, otigo(~i + J ) break 
10 endloop 
11 return di, oego(pi) ; 
end distance; 

II consider difference vectors p = x - q, x E box 

// ‘closest’ with respect to the Euclidean distance 

// ellipsoid is reached 
// descending gradient of the ellipsoid at p 
// gradient truncation with respect to the box 
Ii no feasible progress in the truncated gradient direction 
// linear minimization from p along the direction g 
/I projection of the new location p onto the box 
II no more progress has been achieved 

/I return final ellipsoid distance 

Figure 4: The basic algorithm distance(A, q, box, E) iterates over feasible points pi within 
the box until E or the constrained minimum of the ellipsoid is reached 

points by the closest point operation provided for the box 
type. As well as the starting point, all the points that are 
reached by the iteration are projected onto the box (steps 1 
and 8). For any point p, this projection yields the closest 
point of the box according to the Euclidean distance. Since 
the boxes are rectilinear, the projection is simple: For each 
dimension d, set p[dj to box.lower[dl if 
p[d] < box.lower[d], and set it to box.upper[dl if 
p[ d] > box.upper[d] . Nothing has to be done if already 
box.lower[d] Ip[d] I box.upper[d] . 

In order to proceed fast from the current point pi to the 
desired minimum, we decompose the gradient g into two 
components g = gfeclsible + glecrving) and reduce g to the direc- 
tion gferrsible that does not leave the box when it is affixed to 
p (step 5). For rectilinear boxes, the operation boxtruncate 
(p, g) is easily performed by nullifying the leaving compo- 
nents of the gradient g: For each dimension d, set g[dl to 0 
if g[d] < 0 and p[d] = box.lower[d] , or if g[d] > 0 and 
p[dl = box.upper[d] . 

Since the evaluation of both, the ellipsoid value 
di, ,,ti,,(p) = p A . pT , and the gradient vector 
Lip (~1 = 2 . A pT t requires O(N’) time for dimen- 
sionality N, the overall runtime of distunce(A, q, box, E) is 
O(#iter . N2) where #iter denotes the number of iterations. 
Note that our starting point p. E box is closest to the query 
point in the Euclidean sense. Thus, if A is a diagonal matrix, 
the algorithm immediately stops within the first iteration, 
which guarantees a runtime complexity of O(N2) . For the 
non-Euclidean case, we typically obtained #iter close to 1 

and never greater than 8 from our experiments over various 
dimensions and query matrices. 

4. Effkient Similarity Search in High 
Dimensions 

In principle, the algorithms presented above also apply 
to high-dimensional feature spaces. In practice, however, 
efficiency problems will occur due to the following two ob- 
stacles (cf. [Fal+ 941): First, the quadratic nuture offhe dis- 
tance function causes an evaluation time per object that is 
quadratic in the number of dimensions. Second, the curse of 
dimension&y strongly restricts the usefulness of index 
structures for very high dimensions. Although access meth- 
ods are available that efficiently support query processing 
in high dimensions, such as the X-tree [BKK 961, the lower 
dimensionality promises the better performance. 

A key to efficiently support query processing in high- 
dimensional spaces is the paradigm of multi-step query pro- 
cessing [OM 881 [BHKS 931 [BKSS 941 in combination 
with techniques for reducing the dimensionality 
(cf. [Fal+ 941). In [Kor+ 961, index-based algorithms for 
similarity query processing are presented that guarantee no 
false drops if the feature distance function is a lower bound 
of the actual object distance function. Adapting these tech- 
niques, we use a reduced similarity function as feature dis- 
tance for which we prove a greatest lower bound property 
thus even ensuring optimal filtering in the reduced data 
space. 
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4.1 Reduction of Dimensionality 

A common technique for indexing high-dimensional 
spaces is to reduce the dimensionality of the objects in or- 
der to obtain lower-dimensional index entries. A variety of 
reduction techniques is available: The data-dependent Kar- 
hunen-Ldve transform (KLT) as well as data-independent 
methods such as feature sub-selection, histogram coarsen- 
ing, Discrete Cosine (DCT), Fourier (DFT), or wavelet 
transforms (cf. [Fal+ 941). 

All these techniques conceptually perform the reduction 
in two steps: First, they map the N-vectors into a space of 
the same dimensionality N using an information-preserving 
transformation. Second, they select r components (e.g. the 
first ones, or the most significant ones) from the trans- 
formed N-vectors to compose the reduced r-vectors that 
will be managed by using an r-dimensional index. 

Every linear reduction of dimensionality can be repre- 
sented by a N x r-matrix R when including the truncation 
of N - r components. Thus, the reduction can be per- 
formed in O(N . r) time. As an example, consider the KLT 
that is based on a principal component analysis of the vec- 
tors in the database. By sorting the components according 
to their decreasing significance, the first positions of the 
transformed N-vectors carry the highest amount of infor- 
mation and are selected to form the reduced r-vectors. The 
linear reduction to k dimensions from [Haf+ 951 depends 
on the similarity matrix A and is determined by a decompo- 
sition of A. Note that also feature sub-selection is a linear 
reduction technique which can be represented by an 
N x r-matrix R containing N - 1 zeros and a single 1 .O in 
every of its r columns. 

As a final and illustrative example, let us consider coars- 
ening of histograms, i.e. reducing the resolution of a histo- 
gram by joining bins. For instance, an N-vector 

(x i, . . ., x~) is mapped to the corresponding r-vector 

(xl+..‘+xi,,xi,+‘+...+xi* )..., x. I,-,+ l + . . . ++I simply 

by summing up the values of neighboring histogram bins. 
This method is a linear reduction technique which is repre- I...1 o... . . . OT 

sented by an N x r-matrix R = o...o l...l o... . ..o 1 1 . . . . . . 

O... . ..o l...l 

whose entries almost are zero. If a component i of the 
N-bins contributes to the component j of the r-bins, the en- 
try rii of the matrix R is set to one. 

Although for the KLT, the original N x N transforma- 
tion matrix may be given, in general, only the truncated 
N x r reduction matrix R will be available. Obviously, such 

a reduction matrix cannot be inverted. However, our algo- 
rithm requires a certain kind of ‘inversion’, which we will 
introduce now. For a given N x r reduction matrix R, let us 
define the B-complemented N x N-matrix RB by append- 
ing an arbitrary N x (N - r) -matrix B to the right of R. For 
instance, B may be the N x (N - r) null matrix, leading to 
the 0-complementation R” . 

Lemma 2. For any N x r reduction matrix R for which R” 
has a rank of r, a B-complementation RB can be computed 
that is non-singular, i.e. whose inverse ( RB)-’ exists. 

Proof. Let B be an orthonormal set of basis vectors that 
span the (N - r) -dimensional nullspace of the matrix R” . 
These vectors can be obtained from the Singular Value De- 
composition (SVD) of R” (cf. [EIVF 921). Since the 
0-complementation R” is assumed to have a rank of r, the 
B-complementation RB has the full rank of N and, there- 
fore, its inverse ( RB)-’ exists. 0 

Note, if R” would have a rank lower than r, the reduc- 
tion of dimensionality using the matrix R would produce 
redundancy which we neglect for the subsequent. 

4.2 Lower Bounding of Similarity Distances 

Let A, be an N x N positive definite similarity matrix. 
For readability, we denote the difference of two N-vectors s 
and q by s-q = AN = (a,, . . . . 6,)~ 3iN. Then, the 
AN-distance appears as dAN(s, q) = AN. A,. AZ. Note 
that the index only manages reduced entries sR and qR. In 
our notation, the difference vector is sR - qR = (s - q)R = 
A,R E ‘3’. Recall that R may be complemented by any 
matrix B and the reduced vector XR is obtained from xRB 
by truncating (nullifying) the last N - r components. 

Lemma 3. (Distance-Preserving Transformation At). 

For any non-redundant N x r reduction matrix R and any 

similarity matrix A,, there exists a B-complemented 

N x N-matrix RB for which the N x N -matrix 

A: = ( RB)-’ . A, . ( RBT)-’ preserves the A, -distance: 

d&t q) = dA;WB, qRB) 

Proof. According to Lemma 2, for every reduction matrix 
R, a B-complementation RB exists that is invertible. We 
use this particular RB and get: 
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d&sR’, qRB) = (ANRB) . A;. (ANRB)T = 

= AN. RB . (RB)-’ A,. (RBT)-’ . RET. A; = 

=AN.AN.A; =d&q).O 

The transformation of A, to Af, is the first step on our 
way to a filter distance function dAR(sR, qR) that lower- 
bounds the object distance function’ dAN(s, q) , as it is re- 
quired to guarantee no false drops. In the following, we 
present the reduction of the query matrix from dimension 
N x N to r x r which is performed in a recursive way from 
A, to A,-, , k = N, . . . . r + 1 , such that the lower-bound- 
ing property holds in each step: 

VAk~ 3’: A,-, .A,-, -A;-, SA,.A,$ 

However, beyond this weak lower-bounding property, 

we use a matrix A,-, that represents the greatest lower 

bound, i.e. the optimum of all reduced distance functions. 

For this purpose, we partition the matrix A, by splitting off 

the last column and row, resulting in A, = 
xi- 1 COlk 

[ I ro,“k iikk 

where Ak-1 is a (k-l)x(k-1)-matrix, ZikkE 31 is a 

scalar, and rowk, colz E Sk-’ are two row vectors which 

we combine to the row vector last, = i(rowk + col:) . 

Remember that reducing the dimensionality of a vector 
includes truncation of the component k. Therefore, we as- 

sume that 6, E 31 is not available. 

Lemma 4. (Greatest Lower Bound) 

For any positive definite k x k similarity matrix A,, the 

(k-l)x(k-I)-matrix A,-, = ik-l- 
(ht; . ht,) 

Gkk 
, 

which consists of aij = iiij- 
(?rik + ski)(ckj + zjk) 

for 
4zkk 

1 5 i, j 5 k - 1 , defines a distance function d*,-, which is 

the minimum and, therefore, the greatest lower bound of 

d,,,, for the case that the value of 6, E % is unknown: 

VAko Sk: Ak-,.Ak-,.AkT_, =min{Ak.Ak.A~/8k~ ‘%} 

Proof. Note that the matrix A,-, is well defined since 

i&k = (0 ,..., O,l).A,.(O ,..., O,l)T>O for any posi- 

tive definite matrix A,. By expansion of A,, followed by a 

quadratic complementation, we obtain: 

A,.A,. A; = 

+ &k(bstk . A:-, + ~kk~k)2 = 

= A,-, ,&ml- &-USt;. t-d,) . A;- I+ 
akk > 

+ &ZSt, . A;- 1 + &&k)2 = 
akk 

= A k-l .A .A;-, k-l + kk(btk. A:-, + iitkhk)’ . 

The second term of the sum is a square, and therefore, its 
minimum is zero which will be reached for a certain 

6, E % . However, since 6, is assumed to be not available, 

we may only rely on the minimum, zero. Therefore, the first 

term of the sum, Ak-, . A,-, 
T Ak- , , represents the mini- 

mum of the left hand side, Ak . A, . Af , for all A, E Sk. 0 

4.3 Multi-Step Similarity Query Processing 

For multi-step similarity query processing, we adapt the 
algorithms of [Kor+ 961 for range queries and k-nn queries. 
In our case, we reduce the N-vectors s to r-vectors SR using 
an N x r reduction matrix R. In order to obtain an appropri- 
ate filter distance function, we also reduce the original 
N x N similarity matrix A, to the r x r query matrix A:. 
Since the lower-bounding propefiy holds, 
dAR(sR, qR) < d&, q) , the method prevents false drops. 
In addition, the greatest-lower-bound property ensures op- 
timal filtering for a given reduction R. 

In figure 5, we present our algorithm for matrix reduc- 
tion. We assume the inverse complemented reduction ma- 
trix ( RB)-’ to be precomputed (cf. Lemma 2). The Lemma- 
ta 3 and 4 ensure the correctness of the algorithm. From a 
geometric point of view, step 1 performs a rotation, and 
step 2 a projection (not intersection!) of the N-dimensional 
query ellipsoid to r dimensions according to the reduction 
matrix R. The overall runtime complexity is 0( N3) . 

Finally, figure 6 shows the adapted versions of the algo- 
rithm from [Kor+ 961 for multi-step similarity query pro- 
cessing which we call SIM,,,(A, q, E) for range queries 
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REDUCE-MATRIX (AN, (RB)-’ ) -> A; 

(1) Distance-preserving rotation (cfi Lemma 3): 

Transform A to AR - (RB)-I N N- . A,. (RBT)-* I 
(2) Projection (c$ Lemma 4): 

For k from N down to r + 1 , reduce A; to A:-, 

Figure 5: Algorithm to transform the original query 
matrix A, into the reduced query matrix A: 

and SIM,,,(A, q, k) for k-nn queries, where q denotes the 
query object. 

Algorithm SIM,,, (AN, A:, q, E) 

l Preprocessing. Reduce the quej point q to qR 

l Filter Step. Perform an ellipsoid range query on the 
SAM to obtain {sldA,(sR, qR) 5 E} 

l Refinement Step. From the candidates set, report the 
objects s that fulfill dAN(s, q) I E 

Algorithm SI&, (AN, A:, q, k) 
l Preprocessing. Reduce the query point q to qR 

l Primary Candidates. Perform an ellipsoid k-nn query 

around qR with respect to dAR on the SAM 
l Range Determination. For the primary candidates s, 

determine d,, = max { dAN(s, q) } 

l Final Candidates. Perform an ellipsoid range query 
{s(dA,(sR, qR) Id,,} on the SAM 

l Final Reh. Rank the final candidates s by dAN(s, q) , 

and report the top k objects 

Figure 6: Algorithms for range queries and k-nn queries 
based on a SAM (adapted from [Kor+ 961) 

5. Experimental Evaluation 

We implemented and evaluated our algorithms on image 
databases containing some 12,CKKl color pictures from com- 
mercially available CD-ROMs. We compare our method to 
the QBIC techniques which had been tested on a database 
of some 950 images [Haf+ 951 [Fal+ 941. According to the 
QBIC evaluation, we computed 64D and 256D color histo- 
grams for the images and used the formula 
A,[i, j] = exp(-o(djj/d,,)) to generate similarity ma- 
trices. Since our method supports query processing for a 

variety of similarity matrices on the same index, we instan- 
tiated query matrices A, for various values of 6. According 
to [Haf+ 951, we performed the symmetric decomposition 
A, = L, Lz and selected the first r columns of L, to ob- 
tain the reduction matrices R for various dimensionalities r. 
We managed the reduced data spaces by using X-trees 
[BKK 961. All algorithms were implemented in C++ and 
evaluated on an HP-735 running under HP-UX 9.01. 

Figure 7 demonstrates the selectivity of the filter step. 
For reducing the dimensionality, we used various r-indexes 
(k-indexes in [Haf+ 951) for the similarity matrix A,,, and 
the reduced dimensions r E { 3,6,9, 12,15}. We mea- 
sured the average selectivity of some 100 sample queries 
retrieving fractions up to 1% (120 images) of the database. 
Hardly, a user may visually handle more than this number 
of results. We simulated the method of [Haf+ 951 while de- 
composing the query matrix A,, to the reduction matrix. 
Additionally, we changed the query matrix to A, and A,, 
thus demonstrating the flexibility of our method without 
loss of efficiency. 

query matrix A10 
0,2,---------- 

dimensionality of index 
0 0.005 0.01 

query matrix Al 2 query matrix A8 

.rjg, !g 

0 0.005 0.01 0 0.005 0.01 

Figure 7: Selectivity of the filter step for various query 
matrices. The diagrams depict the fractions retrieved from 
indexes (y-axis) of dimensionality 3 to 1.5 depending on 
the fraction requested from all 12,000 images (x-axis). 

In all examples, the selectivity increases with the dimen- 
sionality of the index and is approximately 20% for r = 3, 
10% for r = 6, 5% for r = 9, and below 3% for r > 12. For 
the modified query matrices, the selectivity values change 
only slightly. 

Figure 8 indicates that the selectivity is affected by the 
technique for reducing the dimensionality which may be 
adapted to the application characteristics as an advantage of 
our approach. 
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Figure 9: Efficiency of multi-step query processing for 
120 k-nn queries with k = 12 which represents 0.1% of the 
data. The diagram indicates the number of candidates ob- 
tained from the filter step and the number of pages read 
from the index depending on the index dimensionality. 

Figure 8: Selectivity of the filter step for various 
techniques to reduce the dimensionality. The symmetric 
decomposition of the query matrix (SYMM) is compared 
to the Karhunen-Loeve Transform (KLT). 

Finally, we show the efficiency of the multi-step query 
processing technique, averaged over 120 k-nn queries with 
k = 12 on 256D histograms. Figure 9 depicts the number of 
candidates and the number of index page accesses depend- 
ing on the dimensionality of the index. A good selectivity of 
the filter step is important since each candidate will cause a 
page access in the refinement step, and the exact evaluation 
is expensive in 256D. Figure 10 depicts the overall runtime 
and its components depending on the index dimensionality. 
As expected, the refinement time decreases with the dimen- 
sionality due to the decreasing number of candidates. On 
the other hand, the time for the filter step increases with the 
index dimensionality. Acceptable runtimes (below 20 set) 
are achieved for dimensions r > 15, and the overall mini- 
mum (below 10 set) is reached for r = 30. We observe that 
the overall runtime does not significantly vary for a wide 
range of index dimensionalities. 

6. Conclusion 

In this paper, we address the problem of similarity 
search in large databases. Many applications require that 
the similarity function reflects mutual dependencies of 
components in feature vectors, e.g. of neighboring histo- 
gram bins. Whereas the Euclidean distance ignores correla- 
tions of vector components even in the weighted case, qua- 
dratic form distance functions fulfill this requirement 
leading to ellipsoid queries as a new query type. In addition, 

the similarity function should be adaptable to user prefer- 
ences at query time. While current index-based query pro- 
cessing does not adequately support this task, we present 
efficient algorithms to process ellipsoid queries using spa- 
tial access methods. The method directly applies to low- 
dimensional spaces, and the multi-step query processing 
paradigm efficiently supports similarity search in high-di- 
mensional spaces. Available techniques for reducing the di- 
mensionality apply to data vectors but have to be adapted to 
reduce the query matrix, too. We present an algorithm to 
reduce similarity matrices leading to reduced ellipsoid que- 
ries that are efficiently supported by the index. We prove 
that the resulting reduced similarity function represents the 
greatest lower bound of the original similarity function thus 
guaranteeing no false drops as well as optimal selectivity 
for any given reduction. 

80 
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rdimensionality of index 
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Figure 10: Overall runtime of multi-step query 
processing, divided into the times of filter and refinement 
step and averaged over 120 k-nn queries with k = 12, 
depending on the dimensionality of the index. 
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We implemented our algorithms and compared them to 
techniques which were developed in the QBIC project 
[Fal+ 941 [Haf+ 951. Our approach provides two advantag- 
es: It is not committed to a fixed similarity matrix after the 
index has been created, and the dimensionality of the index 
may be adapted to the characteristics of the application. In 
other words, query processing is supported for a variety of 
similarity matrices on any existing precomputed index. The 
experiments were performed on image databases contain- 
ing color histograms of some 12,000 images. The good ef- 
ficiency of our method is demonstrated by both, the high 
selectivity of the filter step as well as the good performance 
of ellipsoid query processing on the index. 

In our future work, we plan to investigate how various 
techniques for the reduction of dimensionality affect the 
performance of query processing. Additionally, we will ap- 
ply our method to other application domains such as geo- 
metric shape retrieval in CAD and 3D protein databases. 
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