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Abstract

In this paper, we report our success in building
efficient scalable classifiers in the form of
decision tables by exploring capabilities of
modern relational database management
systems. In addition to high classification
accuracy, the unique features of the approach
include its high training speed, linear scalability,
and simplicity in implementation. More
importantly, the major computation required in
the approach can be implemented using standard
functions provided by the modern relational
DBMS. This not only makes implementation of
the classifier extremely easy, further
performance improvement is also expected when
better processing strategies for those
computations are developed and implemented in
RDBMS. The novel classification approach
based on grouping and counting and its
implementation on top of RDBMS is described.
The results of experiments conducted for
performance evaluation and analysis are
presented.

1. Introduction

Classification is a process of finding the common
properties of data objects that belong to the same class. It
has a wide range of applications, such as credit approval,

customer group identification, medical diagnosis, etc. The
problem has been studied extensively by researchers in
various fields, such as statistics, machine learning, and
neural networks [WK91].  During the recent surge of
KDD research, classification becomes one of the most
studied data mining problems [AIS93b]. Techniques
developed earlier were re-examined in the new context
[AGI+92, LSL95, MAR96, SAM96, WIV98, LHM98].
Since classification algorithms developed in machine
learning and statistics assume that the training set resides
in memory, most of the recent work is devoted to develop
scalable classifier for training set whose size is much
larger than the size of memory.

The work reported in this paper is motivated by the
following observations.

First, most existing scalable classification algorithms
[MAR96, SAM96, WIV98] are decision tree based
[Quin93]. Decision tree based algorithms consist of two
phases: tree building and tree pruning. During the tree-
building phase, the training set is split into two or more
partitions using an attribute (the splitting attribute). This
process is repeated recursively until all (or most of) the
examples in each partition belong to one class. Both the
selection of the splitting attribute and the splitting points
involve operations with high computational cost such as
scanning the data, sorting and subset selection.
Furthermore, since such operations are required at each
internal node, they become the performance bottleneck of
scalable classification [MAR96].

Second, although most work on scalable classification
algorithms originated from the database researchers, the
database technology developed during the past decades
has not been fully explored in developing efficient
scalable classifiers. Recently, researchers have started to
focus on issues related to integrating data mining with
databases. Agrawal et. al. addressed issues of tightly
coupling a mining algorithm with a relational database
system from the system point view [AS96]. They propose
to use  user-defined functions (UDFs) in SQL statement
to push parts of the computation required by data mining
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algorithms into the database system.  Wang, Iyer and
Vitter reported their experience in mining classification
rules in relational databases using UDFs [WIV98]. Since
UDFs are not native functions to DBMS, the performance
benefit that the relational DBMS can provide may still be
limited.

Finally, in order to meet the challenge posed by on-
line analytical processing (OLAP) of large volume of
data, efficient processing of data aggregation and
summarization has been a research hit in recent years.
Extensions to RDBMS functionality, operations and the
related process strategies have been proposed [GCB+97,
AAD+96, ZDN97]. The results have been quickly
integrated into the commercial products. For example,
IBM DB2 extended the traditional GROUP BY functions
to include GROUP BY GROUPING SETS, GROUP BY
CUBE, GROUP BY ROLLUP [Cham98].  Although such
data aggregation and summarization are basic operations
of a classification process, those new developments have
not attracted much attentions from the data miners yet.

Based on the above observations, we developed a new
approach, GAC (Grouping And Counting), for scalable
classification. Like any classification process, the input of
GAC is a training set, a set of objects with known classes,
often in the form of (n+1)-tuples, (a1, a2, ..., an, ck ), where
ai is a value from the domain of attribute Ai , Ai ∈ { A1, A2,
..., An } ,  and  ck ∈ {  c1, c2, ..., cm }  is the class label.  The
output of GAC, a GAC-classifier, is a table, decision table
with n+3 columns, (A1,  A2, ..., An, Class, Sup, Conf ).
Each row in the table,  (a1i,  a2i, ..., ani, ci, supi, confi ),
represents a classification rule

if (A1 = a1i) and (A2 = a2i) and … and (An= ani)
      then class = ci   (supi, confi)
where supi, and confi give the support and confidence of
the rule. The support of the rule denotes how popular is
the rule and the confidence of the rule is the conditional
probability, P(class = ci  | (A1 = a1i) ∧ (A2 = a2i) ∧ … ∧
(An= ani)).  The value of aki , (1 ≤ k ≤  n), could be a
"don't care" value, denoted by a special token ANY in our
paper. In such case, term (Ak = aki) can be dropped from
the rule.

The process of generating the decision table is rather
simple and can be implemented using the powerful
grouping and counting facilities provided by modern
relational DBMS, such as IBM’s DB2.  After proper
grouping and counting, the statistical information about
class distribution over attribute values is obtained in a
candidate decision table. The final decision table is
obtained by pruning the entries in the candidate table.

The unique features of our approach include the
following.

1.  Compared to existing scaleable classifiers, the new
approach not only provide as high classification
accuracies as other approaches, such as naïve Bayesian
classifier [DH73], Bayesian classifiers [FGG97], decision
trees [Quin93], and classifiers based on associations

[LHM98,MW99],  but also improves the classification
speed in the order of magnitudes. It also achieves the
linear scalability with respect to the number of training
samples within the tested range up to ten millions
samples.  We are able to obtain such drastic performance
gain because we shifted away from the traditional record-
at-a-time paradigm to the set-oriented relational
paradigm. The main computation required, the grouping
and counting over a large data set can be completed by
executing a single SQL statement. With the current
technique, such SQL statement can be executed rather
efficiently even for large training set.

2. Our approach, GAC, can be implemented using
standard data aggregation and summarization functions
supported by RDBMS. As such the speed of building a
decision table mainly depends on how the underlying
DBMS process those operations. Whilst our experimental
results indicate the current implementation such as in
DB2 provides surprisingly good results, further
performance improvement can be expected when better
processing algorithms are developed and implemented in
DBMS. Another benefit of avoiding UDFs is that the
implementation becomes much easier. This can be seen
clearly if we compare our implementation with MIND, a
scalable miner for database implemented using user
defined functions [WIV98].

3.  Although our approach bears some similarities
with those association rule based classification algorithms
[AMS97, Bay97, LHM98, MW99], our approach avoids
the Apriori-based frequent rule set finding [AIS93a],
which requires to transform the training data into to
transactional database and to scan the data repeatedly.
The performance comparison with CBA [LHM98]
indicates that our approach is more than 10 times faster.

The remainder of the paper is organized as follows.
Section 2 describes the grouping and counting based
classification approach in general. Section 3 presents the
detailed implementation of the approach on top of
relational database management systems. The results of
our performance evaluation are presented in Section 4. A
brief discussion on related work is presented in Section 5.
Section 6 concludes the paper.

2. Decision Table and Its Generation

In this section, we introduce a new type of classifier,  the
decision tables and a grouping-and-counting based
approach that generate decision tables for given data sets.
The related issues will also be discussed.

2.1 An Illustrative Example

Before we formally describe the grouping and counting
based classification approach, we use a mini-training data
about car insurance shown in Table 2.1 to illustrate the
basic idea. The table consists of three columns, two
attributes, age-group and car-type, and a class label risk.
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The objective of the classification problem is to find the
rules that can be used to determine the class of a customer
based on their age group and the types of cars they own.

Table 2.1: An example training set

age-group car-type risk
young family high
young sport high
middle sport high

old family low
middle family low

From the training samples in Table 2.1, we can obtain
the class population for each combination of attribute
values by grouping and counting as shown in Column 2 –
5 of Table 2.2. For easy reference, we added the row
number as the first column. Column 6 and 7 are derived
from Column 2- 5 and will be explained later. In this
table, the grouping attributes of each row consist of one or
more attributes and the class label. Row 1-4, 5-7 and 8-12
are grouped on (age-group, risk), (car-type, risk), and
(age-group, car-type, risk), respectively.  Column 5, c-
count (class count), contains the total number of tuples
whose attribute values are the same as the grouping
attribute values. For example, c-count = 2 for Row 1
means that there are two tuples with age-group =
“ young”  and risk = “ high”  in the training set; and c-
count = 1 for Row 2 means that there are only one tuple
with age-group = “ middle”  and risk = “ high” , and so on.

Table 2.2: Results of grouping and counting
row
No.

age-
group

car-
type risk

c-
count

g-
count conf

1 young high 2 2 1.00
2 middle high 1 2 0.50
3 middle low 1 2 0.50
4 old low 1 1 1.00
5  Family high 1 3 0.33
6  Family low 2 3 0.67
7  sport high 2 2 1.00
8 young Family high 1 1 1.00
9 young sport high 1 1 1.00
10 middle sport high 1 1 1.00
11 middle Family low 1 1 1.00
12 old sport low 1 1 1.00

From Column 2-5, two additional columns,  g-count
(group count) and conf (confidence), can be computed:
Column g-count contains the number of tuples in the
same group, i.e., tuples with the same attribute values
(exclusive of class label). For example, g-count = 2 in
Row 1 means that there are two tuples with age-
group=“ young”  and g-count=1 of Row 8 indicates that
there is only one tuple with age-group=“ young”  and cat-
type=“ family” .  Note that if the original table is sorted on
grouping attributes, the value of g-count can be obtained
after reading all the rows in the same group.  The figures
in the last column, conf, is obtained by dividing the two

counts,  conf = c-count/g-count. That is, the value of conf
represents the conditional probability for a tuple having
the indicated class label given its attribute values. In our
example, conf =1.00 for Row 1 means that, if the value of
attribute age-group of a tuple is young, the probability
that the tuple belongs to class risk=” high”  is 100%. In
other words, rows in Table 2.2 can be interpreted as
classification rules with certain level of support and
confidence. For example, the first row in Table 2.2
represents the following rule:

age-group = “ young”  
�

 risk = “ high”

with 100% confidence and 40% (2/5) support from the
training data in Table 2.1.

The confidence of certain row is quite low. For
example, the confidence of second row is only 0.50. That
is, given a tuple with age-group = “middle” ,  we are not
able to tell the class labels. There is another type of rows,
such as Row 8. It represents the following rule
  (age-group=” young” ), (car-type = “ family” ) �  risk = “ high”

with confidence equal to 1.00. However, this rule is
redundant since if we already have the rule generated
from Row 1.

If we delete all those rows in Table 2.2 with
confidence less than 1.0 and rows that represent
redundant rules, we obtained Table 2.3. The first three
columns are the attributes and class label as in the training
data. Column sup is the support of the rule represented by
the row, obtained by dividing the c-count in Table 2.2 by
the total number of tuples in the training data, 5 in our
example.  Last column is the confidence explained above.
We name the table as a decision table, as each row in the
table represents a rule that can be used to determine the
class of a sample with given attribute values.  In our
example, the table contains the following rules.

age-group = “ young”  �  risk = “ high”   (40%, 100%)
age-group = “ old”  �  risk = “ low”   (40%, 100%)
car-type = “ sport”  �  risk = “ high”   (20%, 100%)
(age-group =” middle”  ), (car-type = “ family” )
           �  risk = “ low”   (20%, 100%)

2.2 Decision Tables

In this subsection, we define decision table and discuss
how it can be used to classify unknown sample.

Definition. Decision table for data set D with n
attributes A1,  A2, ..., An is a table with schema R (A1,  A2,
..., An , Class, Sup, Conf ). A row Ri = ( a1i, a2i, ..., ani , ci,
supi, confi ) in table R represents a classification rule,

age-group car-type ris k s up conf
young ANY high 0.40 1.00

ANY sport high 0.40 1.00
old ANY low 0.20 1.00

middle family low 0.20 1.00

Table 2.3: The decision table for the sample data
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where  aij  (1 ≤ j ≤ n) can be either from DOM(Ai) or a
special value ANY, ci ∈ {  c1, c2, ..., cm } , minsup ≤ supi ≤
1, and  minconf ≤ confi ≤ 1 and minsup and minconf are
predetermined thresholds. The interpretation of the rule is
if (A1 = a1) and (A2 = a2) and … and (An= an) then class
= ci  with probability  confi and having support supi ,
where aj ≠ ANY, 1 ≤ j ≤ n.

Example:  Table 2.3 is the decision table for data
given in Table 2.1 with minsup = 0.20 and minconf =
1.00.

Since a row in a decision table represents a
classification rule, we will use these two terms
interchangeably in this paper.

Definition. A tuple t = (a1, a2, ..., an , ck ) matches Ri =
( a1i, a2i, ..., ani , ci, supi conf i )  if for all aj  , (1 ≤ j ≤ n),
either aji = ANY or aj = aji . If tuple t matches Ri and ck = ci

we say that tuple t is covered by Ri, or Ri covers t.
Example: (young, family, high) matches and is

covered by (young, ANY, high, sup, conf).
Given  Ri = ( a1i, a2i, ..., ani , ci, supi, confi )  and Rj = (

a1j, a2j, ..., anj , cj, supj, conf j ), we say Rj is redundant if all
the tuples covered by Rj are covered by Ri .

Lemma.  Given two rules, Ri = ( a1i, a2i, ..., ani , ci,
supi, confi )  and Rj = (a1j, a2j, ..., anj , cj, supj, confj ),  If
(1) ci = cj, and (2) alj = ali for all 1 ≤ l ≤ n if ali  ≠ ANY,
then rule Rj is redundant.

Proof: Let (a1k, a2k, ..., ank, ck ) be a tuple covered by
Rj. Based on the definition, we have  alk = alj for all 1 ≤ l ≤
n if alj  ≠ ANY and ck = cj .

(1)  Since we are given ci = cj, we have ci = cj  = ck .

(2)  Since alj = ali for all 1 ≤ l ≤ n if ali  ≠ ANY, we
have alk = alj = ali  for all 1 ≤ l ≤ n if ali  ≠ ANY.

Therefore, (a1k, a2k, ..., ank, ck ) is covered by Ri . Since
any tuple covered by Rj is covered by Ri, Rj is redundant.

 Example:  Given (young, ANY, high), (young, family,
high) becomes redundant.

2.3 GAC: Generating Decision Table by Grouping
and Counting

In this subsection, we describe GAC, a decision table
generation algorithm based on grouping and counting.
The input is a training data set, D, consisting of N tuples,
each of which is an (n+1)-tuple, (a1, a2, ..., an, ck ), where
ai is a value from the domain of attribute Ai , DOM(Ai)
and Ai ∈ { A1, A2, ..., An } ,  and ck ∈ {  c1, c2, ..., cm }  is the
class label. We assume that all the attributes are
categorical. Those non-categorical attributes are
discretized using any appropriate existing discretization
algorithms [FI93].  The output of GAC is a decision table.
GAC consists of two major steps: grouping and counting
and table pruning.

2.3.1 Grouping and counting

With a given training data set D (A1,  A2, ..., An, Class),
the grouping and counting phase generates a table that

contains all possible entries in the decision table. We call
this table a candidate decision table. In addition to the
original columns in the data set, the candidate decision
table has one more column, count, whose value is the
number of tuples in the training data covered by the
corresponding row in the table.  That is, the candidate
decision table has schema (A1,  A2, ..., An, Class, Count).
The computation in this phase is rather straightforward.
Tuples in the training data set are grouped based on their
attribute values and class labels. For each grouping, the
number of tuples that belong to each class is counted and
recorded in the count column. For those non-grouping
attributes, we use a special value ANY in the candidate
decision table.

2.3.2 Table pruning

The size of the candidate decision table is usually large.
Not all its rows should be used to form rows in the
decision table. A row in the candidate table will be pruned
if the classification rule it represents

1.  is not statistically significant; or
2.  has low confidence; or
3.  is redundant.

The significance of a rule is measured by its support.
With the given training data, the support of a rule, sup, is
the number of tuples covered by the rule divided by the
size of the data set. For a rule to be statistically
significant, its support should be greater than a threshold,
minsup, a parameter set by the system or user. Setting
proper support threshold can prevent the problem of
overfitting and increase the ability to handle noise data.  If
the threshold is set to less than 1/N, where N is the total
number of tuples in the training data, then every tuple can
be a classification rule even as it correctly classifies at
least one sample. However, some tuple with very low
support could be noise in the data.

Confidence of a rule represents the conditional
probability of a tuple having the specified class label
given its attribute values.  By accepting a rule with
confidence larger than a threshold, minconf, we actually
allow that among a group of tuples with the same set of
attribute values, (1-minconf) percentage of them have
their class labels different from the class label for the
group. That is, the threshold reflects our requirement of
class purity. The appropriate value of minconf also
depends on the application. For example, if training data
contain noise, high minconf may result in no qualifying
classification rules.

The third type of rows to be pruned from the candidate
decision table is redundant rows, that is, the rows covered
by the others in the table.

The main computational task for the second phase is
to calculate the support and confidence for each row in
the candidate decision table and remove entries that
belong to the above three categories. Since the candidate
decision table contains the counts for the number of tuples
covered by a row in the table, the support is easy to
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calculate. Let’s define a group as the tuples with the same
non-ANY attribute values but different class labels. Then,
we need only count the number of tuples of a group in
order to calculate the confidence for the tuples in the
group. Let the candidate decision table be sorted on (A1,
A2, ..., An, Class) in ascending order;  and the special
value ANY is the minimum among all possible attribute
values. It is obvious that a tuple can be only covered by
tuples in the same group or the tuples in the previous
groups in the sorted order. The decision table can be
generated group by group as follows
(1) Tuples in the same group are read from the candidate

decision table. The total number of tuples in the
group is counted.

(2) The support and confidence for each tuple is
calculated by definition.

(3) Tuples whose support or confidence is less than the
specified threshold are discarded.

(4) Tuples with sufficient large support and confidence
are checked against tuples already in the decision
table. Redundant tuples are discarded. None
redundant tuples are inserted into the decision table.

(5) Continue with the next group until all the tuples in
the candidate decision table are processed.

2.3.3 An optimization

To reduce the size of the candidate decision table, we
introduce one extra-step to determine the first attribute of
the rules using methods that are used to determine the
splitting attribute in decision tree based algorithms.
Information gain is used as the goodness function of
selecting the splitting attribute.

Assume attribute A has k distinct values. We will have
k groups, D1, D2, …, Dk, if we group the training data
tuples based on the values of A. The information gain for
such a grouping is

where E(X) is the entropy of a set of tuples, count(ci, X) is
the number of tuples in X that belong to class ci, 1 ≤ i ≤
m, and |X| is the total number of tuples in X. We choose
among all the attributes the one that gives the largest
information gain as the splitting attribute. In the first
phase, we group and count tuples for groups with this
attribute and others. That is, if there are four attributes, A,
B, C, and D and C is the attribute giving the largest
information gain among them, we only count for groups
based on the values of (C, A), (C, B), (C, D), (C, A, B),
(C, A, D), (C, B, D), and (C, A, B, D). Other groups, such
as (A, B), (A, B, D), etc. will not be considered.

2.4 The Algorithm

Based on previous discussion, our algorithm, GAC, can be
summarized as in Figure 2.1. The algorithm takes TrainD,
the training data, and two thresholds, minsup and minconf,
as input. The best splitting attribute is obtained by calling
function BestSplitAttr that selects the best splitting
attribute using information gain. Function
CandidateDTable takes the training data and the splitting
attribute as its input and generates the candidate decision
table. The candidate decision table is pruned to form the
decision table by calling function PrunDTable that takes

minsup and minconf as input parameters.

2.5 Classification Using Decision Tables

The decision table generated is to be used to classify
unseen data samples. To classify an unseen data sample, u
(a1u, a2u, ..., anu), the decision table is searched to find
rows that matches u. That is, to find rows whose attribute
values are either ANY or equal to the corresponding
attribute values of u. Unlike decision trees where the
search will follow one path from the root to one leaf node,
searching for the matches in a decision table could result
in none, one or more matching rows.
One matching row is found: If there is only one row, r i(
a1i, a2i, ..., ani , ci, supi, confi )  in the decision table that
matches u (a1u, a2u, ..., anu), then the class of u is ci .
More than one matching row is found: When more than
one matching rows found for a given sample, there are a
number of alternatives to assign the class label. Assume
that k matching rows are found and the class label,
support and confidence for row i is ci, supi and confi,
respectively. The class of the sample, cu, can be assigned
in one of the following ways.
(1) based on confidence and support:

}|{ max
1

confconfcc
j

k

j
iiu

=
== . If there are ties in

confidence, the class with highest support will be
assigned to cu. If there are still ties, one randomly
picked from them will be assigned to cu.

Algorithm GAC (TrainD: table, minsup, minconf: real)

1 begin
2 bestSplitAttr := BestSplitAttr (TrainD);
3 candDTable := CandidateDTable (TrainD,

bestSplitAttr);
4 decisionTable := PrunDTable (candDTable,

minsup, minconf);
5 end.
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Figure 2.1: The main algorithm that generates the
decision table for a given data set.
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(2) based on weighted confidence and support:

)}(|{ max
1

supsup jj

k

j
iiiu confconfcc ∗=∗=

=
. The

ties are treated similarly.
Note that, if the decision table is sorted on (Conf, Sup), it
is easy to implement the first method. We can simply
assign the class of the first matching row to the sample to
be classified. In fact, our experiments indicated that this
simple method provides no worse performance than
others.
No matching row is found: In most classification
applications, the training samples cannot cover the whole
data space. The decision table generated by grouping and
counting may not cover all possible data samples. For
such samples, no matching row will be found in the
decision table.  To classify such samples, the simplest
method is to use the default class. However, there are
other alternatives. For example, we can first find a row
that is the nearest neighbour (in certain distance metrics)
of the sample in the decision table and then assign the
same class label to the sample.  The drawback of using
nearest neighbour is its computational complexity.

Recall that we calculated class population for
individual attributes in function BestSplitAttr to determine
the best split attribute. With such information, we can use
a Naïve-Bayesian based approach to determine the class
as follows.  Let u (a1u, a2u, ..., anu) be an uncovered
sample, and  P (ck | u)  be the  probability that u belongs
to class ck ∈ {  c1, c2, ..., cm } . According to Bayes
theorem, we have

 That is,

 With independence assumption we have

since

For a given training data set, D, P (aiu ∧ cj ) and P (cj)  can
be approximate by the number of occurrences:

Note that coun t(aiu ∧ cj) and count(cj) have been obtained
in computing the information gain and determining the

best splitting attribute. Therefore we can classify u into
class ck  such that P (ck | u) is the maximum for 1 ≤k ≤ m.
Experiments conducted indicated that classifying samples
that do not have matches in the decision table using this
approach provides higher classification accuracy than
other ways listed.

3. Implementing GAC on Top of RDBMS

The approach described in Section 2 was motivated by the
recent extensions of RDBMS capabilities. Traditionally,
relational database management systems provide
aggregate functions (MIN(), MAX(), AVG(), SUM(),
COUNT()) and the GROUP BY operator to produce
aggregates over a set of tuples. With applications of
relational databases in on-line decision support systems,
more complex aggregate functions and operators are
required and proposed [GCB+97]. For example, recent
releases of IBM DB2 provide a more powerful GROUP
BY operator, which makes it possible to build a GAC
classifier using SQL query language for the required
major computation – the grouping and counting. In this
section we describe in detail how SQL can be used to
implement a classifier.

3.1 GROUP BY Operator In DB2

The traditional GROUP BY operation operates on a set of
attributes. The semantics of the GROUP BY operator is to
partition a relation (or sub-relation) into disjoint sets
based on the values of the grouping attributes, the
attributes specified in the GROUP BY clause. Aggregate
functions are then applied to each of such sets. For
example, SQL query

SELECT risk,  count(*)  FROM insurance
GROUP BY risk

partitions the relation insurance based on the values of
insurance.risk, and counts the number of each partitions
and produces a table with two columns, risk and the
count.  If the relation contains instances as shown in
Table 2.1, the query will produce an output relation with
two tuples (high, 3), (low, 2).

DB2 extended the GROUP BY operator to allow
complex grouping requirements with grouping-sets and
super-groups. A grouping-sets specification allows
multiple grouping clauses to be specified in a single
statement. By applying query

SELECT age-group, car-type, risk, count(*) as count
FROM insurance
GROUP BY GROUPING SETS   (age-group, car-type), risk

to our sample insurance table. We can obtain the
following table:

P
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P
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For super-grouping, DB2 supports two super-groups,
ROLLUP and CUBE. A CUBE grouping is the n-
dimensional generalization of the GROUP BY operator.
It can be viewed as a series of grouping-sets, i.e., all
permutations of attributes in the GROUP BY CUBE
clause are computed along with the grand total.
Therefore, the n elements of a CUBE translate to 2n

grouping-sets. For example, a GROUP BY CUBE (age-
group, car-type, risk) query computes 8 grouping-sets:
(age-group, car-type, risk), (age-group, car-type), (age-
group, risk), (car-type, risk), (age-group), (car-type),
(risk), and (), where GROUP BY () computes the
aggregate function over the entire table. In addition to
simple grouping-sets and super-groups, DB2 also
supports the combination of such simple grouping. When
simple grouping attributes are combined with other
groups, they are "appended" to the beginning of the
resulting grouping sets. When super-groups are
combined, they operate like multipliers on the remaining
groups, forming additional grouping set entries according
to the definition of the super groups. For instance,
GROUP BY age-group, CUBE (car-type, risk) will
produce groups (age-group, car-type, risk), (age-group,
car-type), (age-group, risk), and (age-group).

3.2 Building Decision Tables Using GROUP BY
Operators

With the above introduction, we can see that the grouping
and counting over the training data can be fully
implemented using GROUP BY operator provided by
DB2.  However, GROUP BY CUBE is an expensive
operation, especially when the number of attributes of the
cube is large. More importantly, resource requirement for
the computation is high. On the other hand, most
classification rules do not involve all attributes A1, A2, …,
and An. In order to improve efficiency, the basic algorithm
shown in GAC is modified in such a way that the decision
table is constructed in iterations. In each iteration, a
number of attributes are used to generate entries in the
decision table.  To control the number of attributes used
in cube computation, two system parameters,
initCubeSize and maxCubeSize, are introduced to denote
the number of attributes used in the first iteration and the
maximum number of attributes to form cubes,
respectively. The first parameter provides a mechanism to

adjust the training speed. Intuitively, with large
initCubeSize, less number of iterations will be required
for training but each iteration takes longer time since
large cube is to be computed. The second parameter is
mainly determined by the system resource. The training
process ends when the desired classification accuracy is
achieved, or the predetermined training time limit is
reached.

The algorithm is outlined in Figure 3.1. We assume
that the discretized training data set is stored in a
relational database as a table with schema (A1, A2, …, An,
class). Two input parameters, minsup and mincof are
given based on the application and the quality of the data.
Another parameter minerror is used to control the training
process. First, the attributes are sorted based on the
information gain (line 2). The first attribute in the list, the
one with highest information gain is chosen as the
splitting attributes. Function SelectAttrs selects a set of
attributes to generate decision table entries in each
iteration (line 4). The decision table entries are generated
as described in the previous section (line 5-6). The up-to-
date decision table is applied to the training data set to
check the error rate (line 7). The process repeats until the
error is smaller than the required minimum error, or
training time limit is reached (line 8). In the following
subsections, we explain the details of the major functions.

3.2.1 Determining the first splitting attribute

As in algorithm GAC, we select an attribute as the
splitting attribute based on information gain to reduce one
attribute in the computation of cube, which is an
expensive operation. We also use entropy to facilitate
attribute selection in each iteration. Therefore, we sort the
attributes on their entropy in descending order. The first
attribute on the list is chosen as the split attribute
explained in the previous section. The algorithm is
outlined in Figure 3.2. The major computation is to
calculate the class population among different attribute
values. The SQL statement (line 3-6) performs this task.
After obtaining these counts, entropy for partitioned data
using each of the attributes is compared (line 7-8). The

Algorithm GAC-RDB (TrainD: table, minsup, minconf,
minerror: real)

1. begin
2. sortedAttrList:= SortAttr (TrainD);
3. repeat
4. curAttrs:= SelectAttrs (sortedAttrList);
5. candDTable := CandidateDTable (TrainD, curAttrs);
6. decisionTable := PrunDTable (candDTable, minsup,

minconf);
7. error := EstimateError(TrainD, decisionTable);
8. until error  ≤ minerror or timeout
9. end.

 Figure 3.1: GAC-RDB: A decision table generation algorithm.

age-group car-type risk count
middle - high 1
middle - low 1

old - low 1

young - high 2
- family high 1

- family low 2

- sport high 2
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attributes are then sorted in the descending order of their
entropy.

As discussed in Section 2, the query results, i.e., the
class population of each attribute value is saved to
classify samples uncovered by decision table entries.

3.2.2 Selecting attributes

Given initCubeSize and maxCubeSize, Function
SelectAttrs (line 4 in Figure 3.2) selects attribute set,
curAttrs, for generating decision table entries as follows:
1. For the first iteration, top initCubeSize attributes in

the sortedAttrList are selected as curAttrs.
2. After each iteration, attributes that contribute to

decision table entries are inserted into a set, denoted
as relevantAttrs, whose size is denoted as R

3. When R is smaller than initCubeSize, RelevantAttrs
and top (initCubeSize  - R) attributes in the
sortedAttrList form the set of curAttrs. If  R is larger
than initCubeSize, curAttrs will be formed by the
relevantAttrs and next attribute in the  sortedAttrList.

4. After R reaches maxCubeSize, curAttrs will be
formed by the top maxCubeSize of attributes in
relevantAttrs and next attribute in the sortedAttrList.

That is, the current set of attributes used in each
iteration is selected in the greedy fashion based on the
entropy of attributes. The number of attributes selected is
limited to (maxCubeSize+2).

This process is indeed a type of feature selection
process [LM98]. However, it selects relevant features for
a subspace defined by curAtts in each iteration, while
most feature selection algorithms select relevant features
based on entire training data. In most cases, not all
classification rules involve all relevant features.
Therefore, we can generate the whole decision table
iteratively using different set of attributes.

3.2.3 Generating candidate decision table

Function CandidateDTable (line 5 in Figure 3.2)
generates the candidate decision table with schema of (A1,

A2, …, An, class, count ) by executing the following SQL
query:

SELECT    A1, A2, …, An, class, count(*)
FROM TrainD
GROUP BY  Ak, CUBE  (A1, A2, …, Ak-1, Ak+1…,

An),  class
ORDER BY  A1, A2, …, An

where Ak is the splitting attributes.  Since the results
obtained from the SQL query in Figure 3.2, line 3-6, may
also be candidate classification rules, they are inserted
into the candidate decision table. Since the candidate
decision table will be processed by PrunDTable,  it need
not be stored on the disk. It can stay in the SQL common
area.

3.2.4 Pruning the decision table

Implementation of Function PrunDTable is quite
straightforward as described in the previous section. The
decision table has one more field, conf, than the candidate
decision table, with values equal the count of the rule
divided by the sum of all counts of the rules from the
same group. Therefore, the tuples in the candidate
decision table are processed group by group. If a new
tuple read is covered by the current group, it is inserted
into the current group for processing and the count for the
group is increased. When a tuple starts a new group, the
old group is processed,  i.e.,  tThe confidence of each rule
in the group is computed. If the support and confidence of
the rule are above the thresholds, and the rule is not
covered by any other rules, the rule is inserted to the final
decision table with its confidence.

4. A Performance Study

A comprehensive performance study has been conducted
to evaluate the approach and our implementation. In this
section, we describe those experiments and their results.
All experiments reported in this section were performed
on an HP Omnibook 3000 notebook computer with
233MHZ CPU running Microsoft Windows NT 4.0 and
IBM DB2 version 5.0.

4.1 Classification Accuracy

Classification accuracy is one of the basic performance
metrics for any classification algorithms. In their recent
paper Meretakis and Wüthrich compared the
classification accuracy of a set of classification methods
[MW99] using a set of data from the UCI Repository
[MM96]. We tested our system using the same data sets.
The continuous attributes are discretized using the MLC
discretizer based on entropy discretization [FI93,
KJL+94].  To be comparable with the other methods, the
size of training set and testing set follow what given in
[MW99]. In most cases, 10-fold cross-validation is used.
The results of our system are shown in Table 4.1, along
with other five other classifiers with different approaches:

Function SortAttr (TrainD: relation);
1. begin
2. obtain the class population for each attribute values

by executing SQL query
3. SELECT A1, A2, …, An, class, count(*)
4. FROM TrainD
5. GROUP BY GROUPING STES
                                   ( (A1, class), (A2, class), …, (An, class))
6. ORDER BY A1, A2, …, An

7. for each attribute Ai ∈ {  A1, A2, …, An}  do
8. Compute entropy E(Ai);
9. Sort attributes on E(Ai) into sortedAttrList ;
10. return sortedAttrList;
11. end.

Figure 3.2:  Function SortAttr that sorts attributes
in the order of entropy.
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(1) C4.5, Quinlan’s decision tree classifier C4.5 [Quin93],
(2) NB: a Naïve Bayes classifier [DH73],  (3) TAN, a
state of the art Bayesian network classifier that relaxes the
independence assumptions of Naïve Bayes by taking into
account dependencies among pairs of non-class attributes
[FGG97], (4) CBA, a classifier based on association rules
[LHM98], and (5) LB, a naïve Bayes classifier using long
items [MW99].

From Table 4.1, we can summarize the relative
performance of GAC as follows:

Ranking 1 2 3 4 5 6

# Data Sets 8 5 1 2 1 0

that is, comparing with other five classifiers, GAC-RDB
performs the best for 8 data sets and the second best for 5
data sets.  It never performs worst in other cases. Astute
readers may argue that the absolute accuracy rates listed
in Table 4.1 may not precisely reflect the performance
since they were not obtained using the same training and
testing data sets. However, from those figures, we are
confident to claim that GAC-RDB can provide at  least the
same level of accuracy as other popular classifiers.

4.2 Execution Speed And Scalability with Respect to
Number of Training Samples

The second set of experiments investigates the execution
speed and the scalability with respect to the number
training samples. This set of experiments used the
synthetic data and classification functions defined in

[AIS93b]. Each record in the data set consists of 9
attributes, including salary, commission, age, elevel, car,
zipcode, hvalue, hyears and loan.. There are 10
classification functions defined on these 9 attributes. To
compare with the results reported in the literature, we
present the execution speed on two functions, Function 5
and 10.   

Function 5
Class A: ((age<40) ^  (((50k≤salary ≤100k)) ?
                     (100k≤loan≤300k) :  (200k≤loan≤400k)))) ∨
               ((40≤age<60) ^ (((75k≤salary≤125k)) ?
                     (200k≤loan≤400k) : (300k≤loan≤500k))))  ∨
      ((age≥60) ^   (((25k≤salary ≤75k)) ?
                   (300k≤loan≤500k) : (100k≤loan≤300k))))
Function 10:

hyears < 20⇒ equity=0
hyears ≥ 20⇒ equity=0.1× hvalue × (hyeares-20)
disposable = (0.67 × ( salary +commission) –

                                           5000 × elevel + 0.2 ×equity –10k)
Class A:  disposable >0

Since GAC-RDB works with categorical attributes, the
non-categorical attributes are discretized first. We used a
simple equi-width method for discretization. As
mentioned earlier, feature selection algorithms are usually
used to select the relevant features before classification.
Since Function 10 has 5 relevant attributes (salary,
commission, ed_level, hyear, hvalue), we use data sets
consisting of these 5 attributes for both tests. The number
of training samples was varied from 0.5 to 10 million.
The elapsed time measured is shown in Figure 4.1.

From the figure, we can see that linear scalability is
achieved with respect to the number of training sample

Table 4.1: Classification accuracy of GAC and other classifiers as given in [MW99]

#attrs #classes # train # test C4.5 NB TAN CBA LB GAC
Australian 14 2 690           CV-10 0.843 0.857 0.852 0.855 0.857 0.883
Chess 36 2 2,130        1,065     0.995 0.872 0.921 0.981 0.902 0.944
Diabetes 8 2 768           CV-10 0.717 0.751 0.765 0.729 0.767 0.767
Flare 10 2 1,066        CV-10 0.812 0.795 0.826 0.831 0.815 0.843
German 20 2 1,000        CV-10 0.717 0.741 0.727 0.732 0.748 0.768
Heart 13 2 270           CV-10 0.767 0.822 0.833 0.819 0.822 0.838
Letter 16 26 15,000      500        0.777 0.749 0.857 0.518 0.764 0.800
Lymph 18 4 148           CV-10 0.784 0.819 0.838 0.773 0.846 0.839
Pima 8 2 768           CV-10 0.711 0.759 0.758 0.730 0.758 0.780
Satimage 36 6 4,435        2,000     0.852 0.818 0.872 0.849 0.839 0.847
Segment 19 7 1,540        770        0.958 0.918 0.935 0.935 0.942 0.943
Splice 60 3 2,126        1,064     0.933 0.946 0.946 0.700 0.946 0.956
Shuttle-small 9 7 38,661      934        0.995 0.987 0.996 0.995 0.994 0.998
Vehicle 18 4 846           CV-10 0.698 0.611 0.709 0.688 0.688 0.681
Voting Records 16 2 435           CV-10 0.957 0.903 0.933 0.935 0.947 0.956
Waveform-21 21 3 300           4,700     0.704 0.785 0.791 0.753 0.794 0.761
Yeast 8 10 1,484        CV-10 0.557 0.581 0.572 0.551 0.582 0.574
AVERAGE 0.810 0.807 0.831 0.787 0.824 0.834

Data set Accuracy Properties
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within the range tested. To see how the execution speed
compare to other algorithms, we obtained a copy of the
executable code of CBA [LHM98] and run Function 10.
By checking the log of CBA execution, we realized that
the time reported by the program, indicated by curve CBA
in Figure 4.2,  is only the sum of scanning the data set.
Furthermore, it does not include the time of transforming
the data set into transactional database, which takes more
than 300 seconds for 0.5 million tuples. It is reasonable to
assume that the transformation is linear to the number of
samples in the data set, the total elapsed time will then be
at least as what shown by the curve CBA-2 in Figure 4.2.
We can see that GAC-RDB is actually more than 10 times
faster than CBA. Moreover, CBA failed to complete its
execution for the data set of 5 and 10 million tuples in the
notebook we conducted the tests.

To compare with other scalable classifiers reported in
the literature, we reproduced the two performance figures
appeared in papers in Figure 4.3. Figure 4.3 (a) depicts
the performance of SLIQ with two functions, Function 5
and 10 [Mar96]. Figure 4.3 (b) is scalability results of
MIND for Function 2 reproduced according to Wang et.
al. [WIV98]. While our results on Function 5 and 10 are
given in Figure 4.1, the results on Function 2 are
presented in Figure 4.3 (c).

Since performance figures for SLIQ, MIND and
SPRINT were obtained running on IBM RS/6000

workstations running AIX, it is difficult to compare the
absolute numbers. We would like to point out one
important property of GAC-RDB. The classification speed
of GAC-RDB is independent on the complexity of
classification functions, as the major operation of GAC-
RDB, grouping and counting only depends on the number
of attributes, number of distinct values for each attribute
and number of tuples. Comparing Function 5 and 10, we
can see that Function 10 is non-linear which is more
complex than Function 5 where the hyperplanes
separating the classes are parallel to axis. With complex
classification functions, the decision-tree will usually
have more levels. Since the execution time of decision-
tree based algorithms is directly related to the number of
levels of the tree, classification of those functions requires
longer time. This is clearly shown in the SLIQ
performance for Function 5 and 10. On the other hand,
performance of GAC-RDB is not affected by the
classification functions.

Function 2 reported in MIND is the simplest function
among 10 classification functions: A sample belongs to
class if ((age<40) ^ (50k≤salary ≤100k)) ∨  ((40≤age<60)
^ (75k≤salary≤125k)) ∨  ((age≥60) ^ (25k≤salary ≤75k)).
Again, we can see that GAC-RDB performs well,
comparing to other two algorithms.
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4.3 Scalability With Respect to Number of Attributes

The third set of experiments was conducted to investigate
the scalability of GAC-RDB with respect to the number
of attributes. Function 5 and 10 were used in the
experiments. The training data and testing data contain
100,000 and 10,000 samples, respectively. The number of
attributes was varied from 9 to 400 by introducing extra
attributes into the data set. Although the classification
functions do not change when the number of attributes
increases, the tuple length of the data increases. More
importantly, with large number of attributes, it requires
more time to locate the relevant attributes. Therefore, the
training time is expected to increase. Figure 4.4 (a) and
(b) depicts the elapsed time when the number of attributes
increases from 9 to 400 for Function 10 and 5,
respectively. For each case, we used two initial cube
sizes, 2 and 4. The maximum cube size was set to 6.

 We can see that, when the number of attributes
increases, the elapsed time also increases. Comparing two
data sets, the elapsed time for Function 5 increases much
faster than that for Function 10 when the number of
attributes increases from 9 to 400. However, for both
functions, GAC-RDB provides near linear scale-up with
respect to the number of attributes of training data.

In Figure 4.4, we also present the effects of the initial
cube size on the training speed when the number of
attributes increases. It is interesting to notice the different
behavior of two functions. For Function 10, two curves
for the initial cube size of 2 and 4 are in parallel.  With
large initial cube size, the cube to be computed at the
beginning is large and it requires more computation time.
When a data set contains large number of attributes,
another factor will affect the speed of training. That is, the
iterations need to include all relevant attributes into the
decision tables. This can be seen from Figure 4.4 (b).
With small number of attributes, setting small initial cube
size has some advantage. However, when the number of
attributes becomes large, larger initial cube size (4) leads
to better performance. This also gives us some heuristics
in setting the parameter of initial cube sizes.

One last note is that, all the experiments reported in
this section were conducted on a notebook computer,
which is not a really appropriate environment for large-
scale computation tasks. For example, the resources are
too limited to compile SQL queries with CUBE
computation on large number of attributes. With more
resources, GAC-RDB is expected to perform better.

5. Conclusions

Classification is a classical problem. It has been well
studied by researchers from different areas. The book by
Weiss and Kulikowski [WK91] gives the most
comprehensive summary of the work in 1980s or earlier.
A paper by Agrawal et. al. [AGI+92] trigged another
round of interests in the classification problem, especially
in the context of knowledge discovery and data mining.
Since then, a large amount of work has been reported on
building scalable classifiers and integrating classification
into database systems to address the scalability problem.
Recently, classification algorithms based on association
rule mining were also introduced.

In this paper we described a novel approach to build
efficient scalable classifiers by exploring the capability of
relational database management systems that support
powerful data aggregation and summarization functions.
The approach is an elegant integration of all the recently
developed techniques. As the result, it is scalable with
respect to both the number of training samples and the
number of attributes. Furthermore, with more sophisticate
and efficient implementation of such data aggregate and
summarization functions in relational DBMS, even better
performance and scalability can be expected.

We are currently further refining the approach and
carrying on more comprehensive performance evaluation.
The issues related to feature selection, missing value and
noise handling will also be addressed.
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