
RRXS: Redundancy reducing XML storage in relations

Yi Chen1, Susan Davidson1, Carmem Hara2, and Yifeng Zheng1

(yicn@cis.upenn.edu, susan@cis.upenn.edu, carmem@inf.ufpr.br, yifeng@cis.upenn.edu)

1University of Pennsylvania� 2Universidade Federal do Parana, Brazil

Abstract

Current techniques for storing XML using relational
technology consider the structure of an XML docu-
ment but ignore its semantics as expressed by keys or
functional dependencies. However, when the seman-
tics of a document are considered redundancy may be
reduced, node identifiers removed where value-based
keys are available, and semantic constraints validated
using relational primary key technology.

In this paper, we propose a novel constraint defini-
tion called XFDs that capture structural as well as
semantic information. We present a set of rewriting
rules for XFDs, and use them to design a polynomial
time algorithm which, given an input set of XFDs,
computes a reduced set of XFDs. Based on this al-
gorithm, we present a redundancy removing storage
mapping from XML to relations called RRXS. The
effectiveness of the mapping is demonstrated by ex-
periments on three data sets.

1 Introduction

Over the past several years, formalisms for capturing
structural and semantic constraints in XML have been
developed. The earliest examples of these were DTDs
and schema graphs [20, 14], which capture structural
constraints. More recently, keys [7], foreign keys [21]
and functional dependencies [3] have been proposed to
capture semantic constraints, and various aspects of these
proposals have found their way into XMLSchema [21].

There has also been tremendous interest in using rela-
tional databases to store XML documents [11, 13, 20, 6],
thus leveraging a well-developed technology for data

�Research supported by NSF DBI-9975206, NSF IIS-9977408.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

bib

“04719
42073” “Harry

Potter”

“7.37”

“Low
Price”

name
book webpage

name
book webpage

vendor vendor

“www.
lowprice
.com”

“amazon”

title price
ISBN

1

2

4

“04719
42073” “Harry

Potter”

“12.00”
title price

ISBN
“www.
amazon
.com”

3

5
6

7

8
10

9

11

12
13

14

15

Figure 1: Book vendors document

management and query processing. While most of these
proposals use structural constraints to produce the rela-
tional mapping, they ignore semantic constraints. The
result is that validating updates in the relational repre-
sentation of an XML document can be very inefficient,
since semantic constraints must be checked using stored
procedures. In contrast, [9] takes into account KEY and
KEYREF constraints [21], and maps these XMLSchema
semantic constraints to primary keys and foreign keys in
“key relations” in the relational mapping. In this way,
XML key and keyref constraints can be efficiently en-
forced using relational primary and foreign keys. How-
ever, it does not consider other types of semantic con-
straints in XML, such as functional dependencies.

In this paper, we consider the problem of providing a
mapping from XML to a relational database taking struc-
tural as well as a broad class of semantic constraints into
account. As an example, consider the XML tree repre-
sentation of a book vendors document shown in figure 1.
Given this document and our understanding of its seman-
tics, we may wish to state the following constraints:

C1: Each vendor has exactly one name and webpage.

C2: Each vendor is identified by its name.

C3: Each book has exactly one ISBN, title and price.

C4: If two books have the same ISBN, they must have
the same title.

C5: Each book sold by a particular vendor is identified
by its ISBN.

<!ELEMENT bib(vendor*)>
<!ELEMENT vendor(name, webpage, book*)>
<!ELEMENT book(ISBN, title, price)>
<!ELEMENT name(#PCDATA)>
<!ELEMENT webpage(#PCDATA)>
<!ELEMENT ISBN(#PCDATA)>
<!ELEMENT title(#PCDATA)>
<!ELEMENT price(#PCDATA)>

Figure 2: Book vendors DTD

The first and third constraints are structural constraints,
as captured by the DTD of figure 2. The second con-
straint is an example of anabsolutekey, where the key is
defined over the whole document, and the fifth is an ex-
ample of arelativekey, where the key is defined within
some context, in the terminology of [7, 21]. The fourth
constraint is an example of a functional dependency [3],
and cannot be expressed as a key constraint.

Given this structural and semantic information, a good
relational design for this document would beVen-
dor(name, webpage), with fnameg as primary key;
Book(ISBN, title), with fISBNg as primary key; and
Sells(name, ISBN, price), with fname, ISBNg as pri-
mary key.

However, none of the relational storage strategies de-
signed to date would produce this design. For example,
the hybrid inlining strategy of [20] would produceVen-
dor(ID, name, webpage), with fIDg as primary key; and
Book(parent-ID, ID, ISBN, title, price), with fIDg as pri-
mary key. Here,ID can be thought of as the XML node
identifier (id), andparent-IDas the node id of the par-
ent node. Similarly, the strategy of [9] would produce
Vendor(VID, name, webpage), with fVIDg andfnameg
as two keys,Book(VID, ISBN, BID, title, price), with
fVID, ISBNg andfBIDg as two keys. Although infor-
mation about XML keys has been captured as primary
keys in the relational design, internal node ids are still
used and the redundancy associated with book titles has
not been eliminated. Furthermore, these two approaches
fail to separate the entityBookfrom the relationshipSell
between entitiesBookandVendor.

The strategy adopted in this paper, RRXS, is to produce a
relational design which preserves structural and semantic
constraints of the XML data while reducing redundan-
cies. First, we interpret structural constraints, keys and
user-defined functional dependencies as special forms of
XML functional dependencies(XFDs). Using a sound
set of rewrite rules for XFDs, we then remove redundant
XFDs. Finally, by mapping paths in XFDs to relational
attributes we get a set of relational functional dependen-
cies and produce a relational storage for the XML data
which preserves the content and structure information of
the original XML document (up to order), removes re-
dundancy as indicated by the XFDs, reduces the use of
internal node IDs, and allows XFDs to be efficiently en-

forced using relational primary key constraints.

The contributions and outline of this work are:

1. A novel constraint definition, XFDs, that can cap-
ture structural constraints, key constraints [7, 21],
as well as the functional dependencies of [3] is in-
troduced in section 2;

2. A set of rewriting rules for XFDs is presented in
section 3;

3. A polynomial time algorithm to reduce the input set
of XFDs is proposed in section 3;

4. A constraint-preserving mapping into relational
storage that preserves information and reduces re-
dundancy is discussed in section 4: and

5. Experimental evaluation which shows the effective-
ness of RRXS using three real data sets with differ-
ent features is presented in section 5.

We close by reviewing related work and discussing di-
rections for future research.

2 Functional Dependencies for XML

As in relational databases, functional dependencies for
XML (XFDs) are used to describe the property that the
values of some attributes of a tuple uniquely determine
the values of other attributes of the tuple [1]. The dif-
ference lies in that attributes and tuples are basic units in
relational databases, whereas in XML data, they must be
defined using path expressions.

After giving the definition of paths and XFDs, we show
how they can be used to capture structural as well as se-
mantic constraints.

2.1 Paths and XFDs

We adopt an unordered tree model for XML data, where
the leaves can be either an element node which has a text
value, or an attribute node.

The path language used in XFDs for XML tree naviga-
tion allows traversal along the child (/) and descendant
(//) axis. In addition, variables can be used to bind to
path expressions, and can appear at the beginning of path
expressions. Our path language,XP f=;==g, is defined by
the following grammar:
PL1 ! ljPL1=PL1jPL1==PL1

PL2 ! �j=PL1j==PL1

PL! PL2jPL2=value()
XP f=;==g ! PLj$x=PL
where l denotes an XML node label (element tag or
attribute name),� denotes the empty path,value() re-
trieves the value of the context node (only applicable for

a leaf node), and$x is a variable bound to a path expres-
sion inPL.

We call path expressions without variable bindings
variable-free path expressions. A variable-free path ex-
pression is asimple pathif it does not contain “//”.

Definition 2.1: An XFD � is of the following form:
$v1 in P1 f, $v2 in $v1=P2g
$vf(1)=Q1; : : : ; $vf(n)=Qn !
$vf(n+1)=Qn+1 : : : ; $vf(n+m)=Qn+m

wheref(k) 2 f1; 2g; 1 � k � n+m. Here, thedepen-
dentvariable$v2 is optional (indicated by curly braces),
in which casef(k) 2 f1g. P1, andP2 are expressions in
PL, whereas theQi’s are simple paths.

Two variables are necessary to model relative keys [7].
We limit the number of variables to avoid complexity.

For example, using the variable bindings $x in //vendor,
$y in //book, $z in $x/book, the constraints from the in-
troduction would be expressed as follows:

C1: $x! $x/name, $x/webpage
C2: $x/name/value()! $x
C3: $y! $y/ISBN, $y/title, $y/price
C4: $y/ISBN/value()! $y/title/value()
C5: $x, $z/ISBN/value()! $z

Note that we have simplified the example by presenting
all variable definitions first, but notice that each XFD in-
volves at most two variables.

An “attribute” for XML, called aP-attribute, is defined
by a path expression$v=Q that occurs on the left-hand
or right-hand side of some functional dependency. The
value of a P-attribute is the set of nodes or values in
an XML instance which are obtained by evaluating the
simple pathQ with respect to the node to which the
variable$v is bound (denoted$v[[Q]]). For example,
referring to figure 1, if$x is bound to node2, then
$x[[=name=value()]] = f\LowPrice"g.

The set of P-attributes in an XFD group together val-
ues to form a “tuple” for an XML instance, named an
X-tuple. For example, forC2, if $x = 2 then the tu-
ple corresponding tof$x=name=value(), $xg would be
(\LowPrice"; 2).

Given an XML instance, the set of all valid variable bind-
ings for an XFD is defined as follows:f($v1; $v2)j$v1 2
[[P1]]; $v2 2 $v1[[P2]]g, where[[P1]] denotes thatP1 is
evaluated with respect to the root of the document. If the
XFD has single variable thenv2 is omitted. For example,
referring to figure 1, the set of all valid variable bindings
for C5 is f(2,4), (9, 11)g, while those forC4 aref(4),
(11)g.

A functional dependency is defined on the P-attributes
of an X-tuple, and intuitively must hold on the set of all
X-tuples formed by valid variable bindings.

Note that P-attributes are “expandable” in the sense that
all variables can be removed. For example, given the
previous definitions of$x and $z we can expand path
expression$z/ISBN as follows:
$z/ISBN = $x/book/ISBN = //vendor/book.

Definition 2.2: Given a P-attributep, expand(p) is de-
fined as the path expression obtained by repeatedly sub-
stituting variables with the path expressions they are
bound to.

To define what it means for an XFD to hold in an XML
instance, we test P-attribute equality “=” with respect to
the path expression it is bound to. Specifically, we use
node equalitywhen the P-attribute ends with a label and
value equalitywhen the P-attribute ends with “value()”.
First, we introduce the following notation:

Definition 2.3: For p 2 PL, NodePath(p) = q, if p =
q=value(); andp otherwise.

Definition 2.4: Given an XML instanceT and an XFD
�, � holds inT if and only if
(1) For every valid variable binding (x1, x2) for �,
jxf(k)[[NodePath(Qk)]]j = 1; 1 � k � n+m; and
(2) For any two variable bindings (x1, x2) and (y1, y2),
if xf(k)[[Qk]] = yf(k)[[Qk]]; 1 � k � n
thenxf(k)[[Qk]] = yf(k)[[Qk]]; n+ 1 � k � n+m

We call the first condition thesingleton condition.

2.2 Types of XFDs

There are two basic types of XFDs: structural and se-
mantic. Structural XFDs are used to capture the tree
structure of an XML document and certain types of
schema information. Semantic constraints are used to
capture deeper knowledge of the data.

2.2.1 Structural XFDs

Since XML documents are trees, each node in the tree
except the root has a unique parent node. If a node la-
beled byl0 has a parent labeled byl, theunique parent
constraint is expressed as:
$x in //l, $y in $x/l’, $y! $x

The unique childconstraint is based on the particular
structure of an XML tree, and is used to distinguish be-
tween “one” or “many” occurrences of a child label. If a
node labeled byl has only one child labeled byl0 then:
$x in //l, $x! $x/l’
ConstraintC1 is an example of a unique child constraint.

The leaf nodeconstraint specifies that leaf nodes have
exactly one value. Thus for every leaf node labeled byl
we have: $x in //l, $x! $x/value()

Note that functionvalue() is only defined for leaf nodes.

In our example, nodes labeled bytitle are leaves. The
corresponding functional dependency is expressed as:
$x in //title, $x! $x/value()

Although producing structural XFDs by hand is te-
dious, they can be automatically generated by parsing
the schema (XML DTD or XML-Schema) of the input
XML data. If this schema information is not available,
data mining techniques could be used to generate those
constraints [11]. There is also an interesting interplay
between structural XFDs and semantic XFDs, since the
definition of XFDs poses some restrictions on the struc-
ture of the data. We will revisit this issue later.

2.2.2 Semantic XFDs

Semantic XFDs include the key constraints of XML-
Schema [21] as well as the functional dependencies of
[3]. C2; C4; C5 are examples of semantic constraints.

It should be noted, however, that XFDs are not suffi-
ciently general to capture the absolute and relative keys
of [7], since P-attributes must evaluate to singleton sets
of simple values. In contrast, the keys of [7] can eval-
uate to arbitrary sets of tree values, and the definition
of satisfaction uses non-empty sets of values rather than
equality. The reason for this restriction is because we
are interested in generating a relational design for the
XML document, and first-normal form prevents the use
of complex values for attributes.

3 Reducing XFDs

We now turn to the implication problem: Given a set of
XFDs, what others can be inferred and how?

Definition 3.1: An XFD ' : X ! Y is logically implied
by a set of functional dependenciesF , writtenF � ',
if and only if ' holds on every instance that satisfies all
dependencies inF , that is,' holds whenever all XFDs
in F hold.

This problem is typically addressed by finding a set of
inference rules, e.g. Armstrong’s Axioms for functional
dependencies in relational databases, and proving that
they are sound and complete. Compared to the relational
counterpart, however, the task of finding such a set of in-
ference rules for XFDs is much more difficult. This is be-
cause XFDs are based on path expressions (P-attributes)
while relational FDs are defined on attribute names. Path
expressions can interact with each other, and variable
bindings are involved in the path expressions. We there-
fore give a set of rules that are sound but not known to
be complete, and use the term “rewrite rules” rather than
inference rules to make this point explicit.

3.1 Rewrite rules

Rewrite rules for XFDs must reason about variables as
well as P-attributes. The first three extend Armstrong’s
Axioms (reflexivity, augmentationand transitivity), to
use path expressions instead of simple attributes.Con-
tainmentconsiders the relationship between path expres-
sions. Singleton-pathexploits structural constraints im-
posed by the definition of XFDs. The remaining two
rules,variable-moveandvariable introduction and elim-
ination, handle variable bindings. Before introducing the
axioms, we must therefore define path containment.

Definition 3.2: Given p; q 2 XP f=;==g, let pvf=
expand(p), qvf= expand(q). Thenp is contained inq,
denotedp � q, if and only if:
(1) Either bothpvf andqvf end in “value()” or neither
do; and
(2) For any XML treeT ,
[[NodePath(pvf)]] � [[NodePath(qvf)]].

Path expressionp is containedin q w.r.t a DTDD, de-
notedp �D q, if p � q holds for any XML treeT that
conforms toD.

Definition 3.3: Path expressionp is equivalentto q, de-
notedp � q, if and only if p � q andq � p.

Path expressionp is equivalentto q w.r.t a DTDD, de-
notedp �D q, if and only if p � q andq � p holds for
any XML treeT that conforms toD.

For example, //vendor� /bib/vendor does not generally
hold. However, if an XML tree conforms to the DTD
D of figure 2, then //vendor�D /bib/vendor. Since
/bib/vendor� //vendor always holds, and this implies
/bib/vendor�D //vendor, we conclude that /bib/vendor
�D //vendor.

The rewrite rulesL for XFDs follow. We assume the
variables used are$v1 and an optional$v2, where$v1 in
=P1 and$v2 in $v1=P2, unless specified otherwise. We
will also frequently use the XFD$v ! $v=Q , which
means that “$v=Q is known to exist and to be unique,
and Q is a simple path.”

1. Reflexivity.
(a) Variable Reflexivity: $v ! $v

(b) Path Reflexivity:
$vf(k) ! $vf(k)=Qk,
f(k) 2 f1; 2g for 1 � k � n,
NodePath(Qk)= NodePath(Q0

k)
=)
$vf(1)=Q

0
1; :::; $vf(n)=Q

0
n ! $vf(l)=Q

0
l, 1 � l � n

Note thatNodePath is used to allowQ0
i to either add or

drop “value()”.

2. Augmentation.
$vf(1)=Q1; :::; $vf(n)=Qn ! $vf(n+1)=Qn+1,

$vf(n+2) ! $vf(n+2)=Qn+2,
f(k) 2 f1; 2g 1 � k � n+ 2
=)
$vf(1)=Q1; :::; $vf(n)=Qn; $vf(n+2)=Qn+2 !
$vf(n+1)=Qn+1; $vf(n+2)=Qn+2.

3. Transitivity.
$vf(1)=Q1; : : : ; $vf(n)=Qn !
$vf(n+1)=Qn+1; : : : ; $vf(n+m)=Qn+m,
$vf(n+1)=Qn+1; : : : ; $vf(n+m)=Qn+m !
$vf(n+m+1)=Qn+m+1; : : : ; $vf(n+m+l)=Qn+m+l,
f(k) 2 f1; 2g; 1 � k � (n+m+ l)
=)
$vf(1)=Q1; : : : ; $vf(n)=Qn !
$vf(n+m+1)=Qn+m+1; : : : ; $vf(n+m+l)=Qn+m+l.

4. Containment.
$vf(1)=Q1; : : : ; $vf(n)=Qn ! $vf(n+1)=Qn+1,
f(k) 2 f1; 2g, 1 � k � n+ 1
$v01 in P 0

1, $v02 in $v01=P
0
2,

expand($v01) � expand($v1),
expand($v02) � expand($v2)
=)
$v0f(1)=Q1; : : : ; $v

0
f(n)=Qn ! $v0f(n+1)=Qn+1

Note that if an XFD only has one variable,$v2 and$v02
are not used.

The intuition behind this rule is that if an XFD holds on a
set of X-tuplesS, then it holds on any subset ofS.

5. Singleton-path.
(a) Defined by XFDs:
$vf(1)=Q1; : : : ; $vf(n)=Qn ! $vf(n+1)=Qn+1

=)
$vf(k) $ $vf(k)=NodePath(Qk)
and$vf(k) ! $vf(k)=Qk; 1 � k � n+ 1

(b) Defined by variables:
$v1 ! $v1=P2=Q,
$v2 ! $v2=Q
=)
$v1 ! $v1=P2

The intuition is that, by definition, any P-attribute in an
XFD must exist and be unique.

6. Variable-move.
(a) First-Variable-move:
$v1 in P1=P2 f, $v2 in $v1=P3g,
$v01 in P1 f, $v02 in $v01=P2=P3g,
$v01 ! $v01=P2,

$vf(1)=Q1; : : : ; $vf(n)=Qn ! $vf(n+1)=Qn+1

()
$v0f(1)=Q

0
1; : : : ; $v

0
f(n)=Q

0
n ! $v0f(n+1)=Q

0
n+1

Q0
k =

(
P2=Qk f(k) = 1

Qk f(k) = 2
1 � k � n+ 1

Curly braces are used to indicate omitted expressions for
the one-variable case.

(b) Second-Variable-move:
$v1 in P1, $v2 in $v1=P2=P3,
$v01 in P1, $v02 in $v01=P2,
$v02 ! $v02=P3,

$vf(1)=Q1; : : : ; $vf(n)=Qn ! $vf(n+1)=Qn+1

()
$v0f(1)=Q

0
1; : : : ; $v

0
f(n)=Q

0
n ! $v0f(n+1)=Q

0
n+1

Q0
k =

(
Qk f(k) = 1

P3=Qk f(k) = 2
1 � k � n+ 1

Note that this only applies to two-variable XFDs.

The intuition is that variables can be moved along single-
ton paths to create new XFDs.

7. Variable introduction and elimination.
$v2=Q1; : : : ; $v2=Qn ! $v2=Qn+1

()
$v02 in =P1=P2
$v02=Q1; : : : ; $v

0
2=Qn ! $v02=Qn+1

As an example of these rules, suppose we have:
�1: $x in //vendor, $x! $x/name,
�2: $y in //vendor/name , $y! $y/value(),
Using variable-move with�2, we can infer the XFD
�3: $x in //vendor , $x/name! $x/name/value().
By applying transitivity to�1 and�3, we now get:
�4: $x in //vendor, $x! $x/name/value().
This use of variable-move and transitivity is very com-
mon.

As another example, suppose we have:
�1: $z in //book ,
$z/ISBN/value()! $z/title/value()
Using containment, we can infer the following XFD:
�2 : $y in //vendor/book,
$y/ISBN/value()! $y/title/value().
This is becauseexpand($y)� expand($z).

Theorem 3.1: L is sound for XFDs defined over XML
data. That is, if an XFD' can be inferred from a set of
XFDs F usingL (written F `L '), then for any XML
instance in whichF holds' will also hold (F � ').

3.2 XFD inference

The mapping algorithm in the next section relies on an
input set of XFDsG that are redundancy-reduced. We
therefore give a polynomial time algorithm,infer (algo-
rithm 1), which given an XFD� : X ! Y and a set
of XFDsF , determines whether or not� can be inferred
from F usingL. Given an initial set of XFDs, we then
use this algorithm to detect which XFDs can be elimi-
nated and which ones can be simplified by eliminating
P-attributes on their left hand sides, thereby derivingG.

In infer, reflexivity is applied in lines 5-6; reflexivity,
augmentation and transitivity in lines 26-27; containment
in line 19; variable-move in line 22; singleton-path in
lines 5, 7 and 22; and variable introduction and elimina-
tion in lines 19 and 22. We assume each XFD (1) has
a single P-attribute on its right-hand side; and (2) that
the variable on the right-hand side either appears on the

left-hand side, or the variables on the left hand side are
dependent variables.

As an example ofinfer, suppose we have a set of XFDs
F : f�1; �2; �3g and an XFD':
$x in //vendor, $y in $x/book, $z in //book
�1: $x, $y/ISBN/value()! $y
�2: $x! $x/name
�3: $z/ISBN/value()! $z/title/value()
': $x, $y/ISBN/value()! $y/title/value()
Using infer, we initialize S= f$x, $y/ISBN/value()g
since $x and $y/ISBN/value() appear in�1 (reflexivity,
line 6) and they satisfy the singleton condition. After
processing�1 and�2, we add $y and $x/name toS (re-
flexivity and transitivity, lines 26-27) resulting in the set
S=f $x, $y/ISBN/value(), $y, $x/nameg. When process-
ing �3, since //vendor/book� //book, we can infer
�4: $z’ in //vendor/book,
$z’/ISBN/value()! $z’/title/value()
using containment. Applying variable introduction and
elimination (line 19), we have:
$y/ISBN/value()! $y/title/value().
Using reflexivity and transitivity (line 26-27), we can
now add $y/title/value() toS and conclude that� can
be inferred byF usingL.

There are two subtleties in algorithm 1: the boundl (line
4), and the marking of P-attributes inS (lines 21 and
24). The motivation behindl is that there are certain con-
straints (e.g. unique child) that can generate arbitrarily
long P-attributes. Consider the following example:
$x’ in //a, $x in /a
�: $x’ ! $x’/a
'1: $x! $x/a/a/a
'2: $x! $x/b
SupposeF = f�g and we want to check ifF `L '1
Initially S= f$xg (reflexivity). By containment, variable
move and transitivity, we can expandS to f$x, $x/ag. To
see this, let $y in //a/a. By containment, $y! $y/a. Us-
ing variable move, we get $x/a! $x/a/a, and can there-
fore add $x/a/a toS (transitivity). Repeating this set of
steps, we can also add $x/a/a/a toS. At this point we
can stop because the target has been reached. However,
checkingF `L '2 would causeS to expand infinitely.
We therefore need to know when we can safely stop, i.e.
we need a bound on the length of paths that are “useful”
to add toS.

Since P-attributes are added toS by the input constraint
X ! Y or by transitivity from XFDs inF , it is clear that
l must be at least as long as the maximum simple path
length in a P-attribute inF orX ! Y . We must also ac-
count for the fact that variable-move increases the simple
path length of a P-attribute using simple paths in the vari-
able definitions. We therefore definelength($x=P) to
be the number of labels inNodePath(expand($x=P)).

The motivation behind marking P-attributes inS by
(�; v) is to avoid unnecessary recalculations. Observe

that fors 2 S and� 2 F , s can be constructively used
in � at most twice, once for each variable in�. To see
this, suppose thats = $x0=R matches two different
P-attributes$x=P and$x=Q in the left hand side of�,
each using the same variable. Then$x0=R � $x=P and
$x0=R � $x=Q. SinceP andQ are simple path, this
meansP = Q, a contradiction.

Algorithm 1
1: function infer
2: input: (F , ' : X ! Y)
3: output: True, ifF `L '; False, otherwise.
4: let l = maxflength($v=Q) j $v=Q is a P-attribute of some

XFD in F or'g
5: if 8$v=Q 2 X satisfies the singleton conditionthen
6: S = X
7: if 9$v=P 2 X andP does not end withvalue() then
8: S = S [f$vg
9: end if

10: else
11: return false
12: end if
13: if Y 2 S then
14: return true
15: end if
16: repeat
17: B0 = Null
18: for each XFD� : A! B 2 F do
19: if 8$v=Rj 2 A, 9$v0=Rj 2 S not marked by

(�; $v), andexpand($v0) � expand($v) then
20: B0 = replace each$v with $v0 in B
21: Mark $v0=Rj by (�; $v) if the variable ofB is $v,

or $v is the dependent variable.
22: else if8$v=Rj 2 A, 9$v0=R0

j 2 S not marked by
(�; $v), expand($v0=R0

j) � expand($v=Rj), and
the path betweenR0

j andRj satisfies the singleton
conditionthen

23: B0 = replace each$v with $v0 and adjust the path
under$v0.

24: Mark $v0=R0
j by (�; $v) if the variable ofB is $v,

or $v is the dependent variable.
25: end if
26: if B0 6= Null andjB0j � l then
27: S = S [fB0g
28: end if
29: if Y = B0 then
30: return true
31: end if
32: end for
33: until S does not enlarge
34: return false

Now, suppose� : $v1=P1; :::; $v2=P2 ! $v1=Q, ands
is $v0=R where$v0=R � $v1=P1. Then reusings to
match$v1=P1 will not add anything new toS as the
conclusion ($v0=Q) will remain the same. We there-
fore marks by (�; $v1). Similarly, if s matches$v2=P2
where$v2 is the dependent variable, the conclusion will
have been fixed by whatevers0 2 S was used to match
$v1=P1. We therefore marks by (�; $v2).

Lemma 3.2: Algorithm 1 runs in polynomial time.
Proof: Let n be the number of XFDs inF (this is also
the number of P-attributes on the right hand side of XFDs
in F) andm be the number of P-attributes inX . The crux
of the proof is thatjSj � (m + n)l, and that each XFD
in F is used at most2jSj times. Since each use of an
XFD marks at least one element inS , there are at most
2(m+ n)ln iterations of the repeat loop.

The complexity of the algorithm also depends on the path
language used and the presence (or absence) of a DTD.
ForPL, there is a linear-time containment algorithm in
the absence of DTD [18]. For the same path language
in the presence of DTD, [19] shows that the containment
problem is polynomial in the overall size of the DTD and
path expressions tested.

The (polynomial time) algorithm to compute a reduced
setG of a set of XFDsF , Reduce, is similar to the rela-
tional algorithm for finding the minimum cover of a set
of functional dependencies [5], but usesinfer instead of
attribute closure.

In the next section, we will discuss how to map XML
data into relations based on the reduced set of XFDs.

4 Constraint preserving relational storage

Our XML-to-relational mapping takes an XML
“schema”, i.e. a set of XFDs and an optional DTD, and
generates a normalized relational schema as well as the
instance transformation program. More formally:
Input : A set of XFDsF , and an optional DTDD.
Output : A target relational schemaR with a set of keys
K, and aredundancy reducing, constraint preserving
transformationM .

Redundancy reducingmeans that redundancy which can
be detected byF usingL is eliminated inR. As an ex-
ample, consider the sample XML data in figure 1, and
suppose the following XFD holds:
$x in //book , $x/ISBN/value()! $x/title/value()
This means that if there is a book node with an ISBN
value “0471942073” and a title value “Harry Potter”, we
can conclude that any other book node with the same
ISBN value will have the same title value. When we
store the XML tree into relations, this redundancy in the
XML document can be removed by creating a relation
which stores the relationship between ISBN and title ex-
actly once, and specifies ISBN as the key.

Constraint-preservingmeans that, for any XML treeT ,
F hold onT if and only ifK hold onM(T).

The transformationM will map an XML treeT which
conforms toD and satisfiesF to relationsM(T) which
conform to schemaR.

Algorithm 2
1: function RRXS
2: input: F , optional DTDD
3: output: R with K defined,M
4: G = Equivalence(F;D)
5: H = Reduce(G;D)
6: I = Shrink(H)
7: Map each distinct P-attributep in I to an attributepa
8: M = [8p2I(pa p)
9: LetA be the set of attributes obtained

10: Map I to functional dependenciesIR overA
11: Generate a 3NF relational schemaR over the attribute set

A according toIR
12: return R,M

4.1 Schema mapping algorithm: RRXS

The mapping algorithm RRXS is presented in algo-
rithm 2. We assume that every node is assigned a unique
node id to guarantee that the parent-child connections be-
tween nodes are preserved. However, if there are other
means to identify a node (for example, a semantic key
value), it is not necessary to keep the id for that node.
The removal of redundant node id is based on the fol-
lowing observation: ifX ! Y andY ! X then
X andY are functionally equivalent. IfY does not end
with “value()”, we can replaceY with X . The first step,
Equivalencewill recognize equivalent XFDs and equiv-
alent elements (an element is a set of P-attributes which
appear on the left or right-hand side of an XFD), then
group those elements into equivalence classes and output
G. In the second step, the reduced setH of G is com-
puted to remove redundant XFDs. Then for each equiv-
alence class,shrink removes unnecessary elements, pro-
ducing the set of XFDsI . During the fourth step, every
non-equivalent P-attributep in I is mapped into a rela-
tional attributepa to record the ids or values of the nodes
reachable byp, andI is mapped into a set of functional
dependenciesIR. Finally, a third normal form (3NF) tar-
get relational schemaR is generated based onIR. The
optional XML schema informationD can be used to au-
tomatically generate structural XFDs, and also used in
the path containment test in the reduced cover algorithm.

4.1.1 Equivalence

The intuition ofEquivalenceis that we try to find rela-
tionships between variables and P-attributes to recognize
redundant node ids. Equivalence consists of two steps:
(1) If two XFDs �1 and �2 satisfy �1 =) �2 and
�2 =) �1, then we choose the one that minimizes the
number of variables used for a given set of XFDs;
(2) If we have two XFDs�3: X ! Y and�4: Y !
X then we group elementsX andY into an equivalence
class.

There are several advantages to using equivalence classes
rather than the set of XFDs they represent. First, we re-

Algorithm 3
1: function Equivalence
2: input: F;D
3: output: G
4: ConstructC using the unique child and unique parent

XFDs in F
5: F 0 = F� the XFDs used to constructC
6: n = jF 0j
7: for i = 1 to n do
8: let �i beX ! Y
9: if 8Xk 2 X, 9 (X 0

k 2 C or X 0
k 2 �j ; i <

j � n) such that: expand(NodePath(X 0
k)) �

expand(NodePath(Xk)) then
10: if X ! Y ()X 0 ! Y 0 then
11: replace�i with X 0! Y 0

12: end if
13: end if
14: end for
15: for i = 1 to n do
16: let �i beX ! Y
17: if ((expand(X) 2 PL2 and jXj = 1) or expand(Y)

2 PL2) andinfer(F ,Y ! X) then
18: putX andY into the same equivalence classCi

19: remove�i
20: end if
21: end for
22: G = (F 0; C)
23: return G

duce the number of inferences performed. For example,
if Y is in the same equivalence class asX , we know
infer(F ,X ! Y)= True immediately without comput-
ing it twice. We therefore pass equivalence classes into
reduce. Second, ifY does not end with “value()”, we can
useX to representY and remove the redundant node ids
associated withY .

Equivalenceis presented in algorithm 3. Note that each
“unique child” constraintX! Y 2 F will placeX and
Y into the same equivalence class, since the “unique par-
ent” Y ! X is always true. In this algorithm,C is the
set of equivalence classes created according to “unique
child” and “unique parent”, andF 0 is the set of XFDs
excluding those represented inC.

To illustrate, consider the book-vendor example in fig-
ure 3 with its DTD in figure 2. For clarification, we use
distinct variable names and put all the variable bindings
at the beginning. First, we rewrite the XFDs in figure 3
to minimize the number of variables needed. Since XFD
(2) can be rewritten as $x/name! $x/name/value() ,$n
is removed. Similarly we rewrite XFDs (3), (4), (5), (6)
and remove variable bindings$w, $I , $t, $p. Then we
process each XFD inF 0 to see if it can create or enlarge
equivalence classes. Sinceinfer(F ,$x/name/value()
! $x/name)= true, we enlargeC1 to f$x, $x/name,
$x/webpage, $x/name/value()g and remove (2). Now
XFD (7) can be obtained directly fromC1, and is
removed. When we process XFD (8), sinceinfer(F ,$z
! $x)= true and infer(F ,$z ! $z/ISBN/value()

Variable bindings:
$x in //vendor, $y in //book, $z in $x/book,
$n in //name, $w in //webpage, $I in //ISBN,
$t in //title, $p in //price

F = (F’=f(1)-(9)g, C=fC1, C2g)
“Unique parent” constraints:

(1): $z! $x
“leaf node” constraints:

(2): $n! $n/value() (3):$w! $w/value()
(4):$I! $I/value() (5):$t! $t/value()
(6):$p! $p/value()

User-defined semantic XFDs:
(7):$x/name/value()! $x
(8):$x, $z/ISBN/value()! $z
(9):$y/ISBN/value()! $y/title/value()
C1 = ffxg, fx/nameg, f$x/webpageg g
C2 = ffyg, fy/titleg,f$y/ISBNg, f$y/priceg g

Figure 3: XFDs for book vendor example

)= true, we create a new equivalence classC3:f$z, ($x,
$z/ISBN/value())g and remove XFDs (1) and (8). The
resulting setG of XFDs and equivalence classes are
shown below. (We omit variable bindings for brevity.)
(3):$x/webpage! $x/webpage/value()
(4):$y/ISBN! $y/ISBN/value()
(5):$y/title! $y/title/value()
(6):$y/price! $y/price/value()
(9):$y/ISBN/value()! $y/title/value()
C1 =ffxg, fx/nameg, f$x/webpageg,
f$x/name/value()gg
C2 = ffyg, fy/titleg, f$y/ISBNg, f$y/priceg g
C3 = ffzg, fx, $z/ISBN/value()gg

Using reduce, we can remove redundant XFDs inG. In
our running example, since XFD (4) and (5) can be in-
ferred by other XFDs andC, they are removed. The re-
duced set of XFDs is the following setH :
(3):$x/webpage! $x/webpage/value()
(6):$y/price! $y/price/value()
(9):$y/ISBN/value()! $y/title/value()
C1; C2; C3 are not changed.

4.1.2 Shrink

In this step, we remove redundant node ids in the equiv-
alence classes. The idea of shrink is based on the follow-
ing observation:
Lemma 4.1: LetX andY be path expressions. IfX !

Y andY ! X thenX andY are interchangeable.

The lemma is proven using reflexivity and transitivity.

If X andY are two elements in one equivalence class,
thenX ! Y andY ! X . To minimize node ids, we
choose one representative elementX , wherejX j = 1,
for each equivalence classCi, and useX to replace the

$x in //vendor, $y in //book, $z in $x/book
(3’): $x/name/value()! $x/webpage/value()
(6’): $y! $y/price/value()
(9’): $y/ISBN/value()! $y/title/value()
(10): $x/name/value(),$z/ISBN/value()! $z
(11): $z! $x/name/value(),$z/ISBN/value()

Figure 4: Minimal set of XFDs and variable bindings for
book vendor example

occurrences of other singleton elements ofCi which do
not end with “value()”. When possible, we chooseX
which is a semantic key (that is,X ends with “value()”).
However, if the semantic key is composed of more than
one P-attribute, we use a singleton elementX as the rep-
resentative in order to speed up joins between relations
when we store these P-attributes in relations. The shrink
algorithm is as follows:

1. If 9X = f$v=Pg 2 Ci whereP is a simple path
ending with “value()”, then use$v=P as the rep-
resentative ofCi; else selectX = f$v=Pg 2 Ci,
whereP is any simple path. Use$v=P to replace
the occurrences of other singleton elements$v=Q
in Ci, whereQ does not end with “value()”.

2. Replace$v0=Q 2 H by $v0=P , whereexpand($v’)
� expand($v) (containment rule).

3. If 9Y 2 Ci such thatjY j � 1, then add XFDsX
! Y andY ! X toH .

4. If 9Z 2 Ci such thatZ ends with “value()” and
Z 6= X , then addX ! Z andZ ! X toH .

Continuing with our example, we process each equiva-
lence class in turn. FromC1, we choose $x/name/value()
as the representative and replace all occurrences of $x,
$x/name, $x/webpage with it. Then we choose $y as the
representative of classC2, and replace $y/title, $y/ISBN,
$y/price with $y. ForC3, $z is the representative and we
generate $z! $x/name/value(), $z/ISBN/value() and
$x/name/value(), $z/ISBN/value()! $z . In this way,
we remove all equivalence classes and obtain the set of
XFDs and bindings shown in figure 4.

4.1.3 TransformationM

For each distinct P-attributep in I , we create a new rela-
tional attributepa. Two P-attributesp andq are distinct if
and only ifexpand(p) 6� expand(q). For P-attributep in I
ending with “value()”,pa records the values of the nodes
reachable byp; otherwise,pa records the node ids.

Let the set of attributes created beA. The transformation
M is a list of pairs of relational attributes and P-attributes
of form pa p.

Returning to our example, we generate a relational at-
tribute for each distinct path expression inI . For clari-
fication, the attribute name generated is the last label in
the corresponding path expression. The transformation
M is as follows:
name $x/name/value(),
webpage $x/webpage/value(),
bookID $y, $z
price $y/price/value()
ISBN $y/ISBN/value(), $z/ISBN/value()
title $y/title/value()

Note that since expand($y/ISBN/value()) � ex-
pand($z/ISBN/value()), they are mapped to the same
relational attributeISBN. Similarly, $y and $z are both
mapped to attributebookID.

We now map the XFDs to functional dependencies in the
target relational schemaR by replacing each P-attribute
in I with the relational attribute name it maps to. In our
example, this yields the following set of functional de-
pendenciesIR:
(3’): name! webpage
(6’): bookID! price
(9’): ISBN! title
(10): name,ISBN! bookID
(11): bookID! name,ISBN

Finally, we generate a third-normal form relational
schemaR overA usingIR [5]. In our example, we give
each resulting table a name according to its meaning to
yield the following:
Vendor(name, webpage)with fnameg as key.
Book(ISBN, title)with fISBNg as key.
Sell(name, ISBN, price, bookID)with fname, ISBNg
andfbookIDg as two sets of keys.

4.2 Instance mapping

The instance mapping takes an XML treeT which con-
forms to DTDD and satisfies the XFDsF as well as the
schema mapping outputM , and generates a relational
instanceM(T) which conforms to schemaR.

For example, to populate the relationSell(name, ISBN,
price, bookID), we first find the source of each attribute
usingM :
name $x/name/value(),
ISBN $y/ISBN/value(), $z/ISBN/value()
price $y/price/value()
bookID $y, $z
where variables$x, $y and$z are as defined in figure 4.
The instance mapping can be illustrated by the following
XQuery-SQL expression [11]:

for $x in //vendor,$z in $x/book ,$y in //book
where$y = $z

Book Auction Person

DTD

name

root

vendor

book

webpage

ISBN price

*

title

*

root

auction

seller priceNo.

name rating

*

@name

root

person

job

*
*

$x in // vendor $x in //auction $x in //person
User $x=name=value()! $x; $x=No:=value()! $x; $x=@name=value()! $x;

$x in //vendor, $y in //seller
Defined $y in $x=book $y=name=value()

$y=ISBN=value(); $x! $y; ! $y=rating=value()
XFDs $z in //book

$z=ISBN=value()
! $z=title=value()

Hybrid Vendor(ID, name, webpage) Auction(ID, No., price, Person(ID, @name,job,
Inlining Book(ID, ISBN, title, price, parentID) name, seller@rating) parentID)

Vendor(vid,name, webpage) Auction(aid, No., price, Person(id,@name, job,
X2R Book(bid, ISBN, title, price, pid) name, seller@rating) pid)

Vendor(name, webpage) Auction(No., price, Person(@name, job)
ICDE Book(ISBN,name, title, price) name, seller@rating)
RRXS Vendor(name, webpage) Auction(No., price, name) Person(@name, job)

Book(ISBN, title) Seller(name, rating) Parent(child@name, @name)
Sell(name, ISBN, price, bookID)

Figure 5: Result schemas

insert into Sell
values($x/name/value(),$y/ISBN/value(),
$z/price/value(),$y)

In the implementation of the mapping algorithm, we
build an automata for each path expression to identify
the node ids and values to be stored in attributes. Since
all these automatas can run in parallel, the instance map-
ping can be done by one traversal of the original XML
document [15].

Lemma 4.2: An XML documentT satisfies the set of
XFDsF if and only if the target relationsM(T) satisfy
the set of functional dependenciesIR.

5 Experimental Evaluation

To evaluate RRXS, we compare its performance with hy-
brid inlining [20]. We do not compare our technique
with that of LegoDB[6] since LegoDB focuses on tuning
an initial design based on expected queries, and thus rep-
resents a different design stage. The comparison is per-
formed in terms of the quality of the resulting schema,
the size of the mapped relational instances, and the time
to check XFDs mapped to relational integrity checks.

The experiments were performed on three data sets:

book [2], which has repeatedISBN, title information;
auction [24], which has several “single-child” con-
straints; andperson[23], which is recursive (see the top
of figure 5 for simplified versions of the DTDs).

All experiments were conducted on a 1.5GHz Pentium
4 machine with 512MB memory and one hard disk with
7200rpm running windows 2000. The DBMS is DB2
universal version 7.2 using high-performance storage.

Schema Generation.The first experiment tests the qual-
ity of the resulting schemas, and is summarized in fig-
ure 5. In addition to hybrid inlining, we compare the
RRXS schema with that produced by X2R [9], which ex-
tends hybrid inlining to capture XML keys, and the tech-
nique of [10] (termed ICDE), which represents a 3NF de-
composition of a universal relation based solely on XML
keys. The difference between our approach and the latter
two is the consideration of general XFDs as opposed to
XML keys. We observe the following about the schema
resulting from our method:

1. Some node ids (ID, parentID) generated by hybrid
inlining are removed. This was possible since in
all three schemas, as each instance node can be
uniquely identified using value information. Note
that X2R does not remove these node ids.

2. User defined XFDs are correctly used to eliminate

Filesize(KB) 259 519 779 1040 1300
Hybrid Inlining 248.85 475.57 702.3 930.1 1157

RRXS 134.07 194.96 255.5 316.4 377.1

Figure 6: Size of relations in KBs

Filesize(KB) 259 519 779 1040 1300
Hybrid Inlining 0.244 0.597875 1.04475 1.444625 19.1455

RRXS 0.16775 0.02645 0.0605 0.304875 0.061235

Figure 7: Time in seconds to check XFDs

redundancies. For example, in thebook schema,
there is abook“entity” relation with ISBN andtitle
information and asell “relationship” relation with
price information. As another example, in theauc-
tion schema there is a separateseller“entity” rela-
tion which captures theratingof each seller. Only
the sellernameis used in theauctionrelation. Note
that neither X2R nor ICDE removes this redundant
information.

3. The strategy works correctly for recursive data.
Note that ICDE fails to correctly capture parent in-
formation.

Resulting relational instances.The second experiment
tests the size of the resulting relational instances (see fig-
ure 6). Results for thebookschema are shown, with the
XML instance size varying from 250 KB to roughly 1250
KB. As can be seen, RRXS generates much smaller re-
lational instances than those of hybrid inlining due to re-
dundant information being captured by XFDs. The other
data sets have similar results and are omitted.

Constraint checking. The final experiment shows the
time needed to enforce the XFDs in the resulting rela-
tional design (see figure 7). The time is measured as the
difference between the total time to insert tuples one by
one into the database with checking turned on, and the
total time to insert tuples one by one into the database
with checking turned off. Each data point represents the
average of 8 runs, after dropping the minimum and max-
imum values. For hybrid inlining, each semantic XFD
is mapped by hand to a triggered procedure. Since in
RRXS each semantic XFDs is mapped to a primary key
constraint, the checking time is negligible. Again, we
only show results for the book schema since the other
data sets have similar results.

6 Related Work

Constraints for XML. The notion of keys for XML was
introduced in [7] which allows the key value of a node to
be a set of trees. Our XFDs can express the keys in [7]
when the key value is a single string value. This restric-
tion is influenced by how keys are being defined in XML-

Schema [21], and how they are being used in practice.
[3] proposes the concept of functional dependencies for
XML. In our work, the XFDs are expressed by variable
bindings and support certain regular expressions. [12]
considers a broad class of constraints for XML, includ-
ing XML keys and those implied by a schema (DTD or
XML-Schema). XFDs are a subset of the constraints of
[12], and borrows the idea of capturing structural and se-
mantic constraints in the same framework.

Reasoning about constraints for XML. [22] proposes
a sound and complete set of inference rules for unary
functional dependencies for XML defined in [3], where
the path expressions are variable-free simple path expres-
sions. [8] gives sound and complete axioms for reason-
ing over general XML keys defined in [7], and [10] a
more efficient set of axioms for a restriction of XML
keys. Our work generalizes this to XFDs, but our rewrite
rules are not known to be complete.

XML storage in relations. There has been significant
interest in mapping XML documents to relations for stor-
age [11, 13, 20, 6, 9]. Though constraints are closely
related to the schema design, earlier work [11, 13, 20]
only considered the structure of the XML document to
design a target relational schema. [6] gives an optimal
relational schema in a space of storage mappings accord-
ing to the content, structure and query workload for some
cost model of the XML data. The procedure is analo-
gous to the tuning procedure for physical database design
in the relational database. Our approach is analogous to
the initial stage of database design (normalization) based
on functional dependencies. [9] uses XML key/foreign
key information and hybrid inlining to design the target
schema design. The storage mapping in this paper ex-
tends that work by considering more general constraints,
XFDs, and is not tied to hybrid inlining.

Our work borrows from [17, 16] the idea of considering
structural and semantic constraints in a uniform frame-
work. However, their work address a much more general
question, how to use constraints in the target database to
optimize query processing in source. Our work is also
related to [3, 4], which consider normal forms for XML
data.

7 Conclusions

We have investigated the problem of how to design a
normalized relational schema for XML data and how to
automate the instance mapping. To achieve this goal,
we express structural and semantic XML constraints in
a uniform framework (XFDs), and develop a sound set
of inference rules to reason about them. A reduced set
of the input XFDs is used to guide the design of the tar-
get relational schema by translating XFDs to relational
functional dependencies and creating a third normal form
(3NF) decomposition. In this way, XFDs are mapped to
relational keys and efficient relational primary key tech-
nology can be used to validate semantic constraints. Ad-
ditionally, redundant information in the XML document
as expressed in XFDs is reduced in the relational design,
and the use of node ids is reduced wherever value-based
keys exist. Our approach is analogous to the initial stage
of relational database design based on functional depen-
dencies. Experiments show that the relational schema
generated by RRXS capture the semantics of the data
very well.

To achieve information lossless, documents must be
completely covered by XFDs.

Since the rewrite rules are not known to be complete, we
cannot argue that the algorithm is optimal in reducing re-
dundancy. In future work, we plan to develop a sound
and complete set of rules, and consider how the concep-
tual schema design can be refined according to the query
workload.

Acknowledgments. The authors would like to thank
Wenfei Fan for his input and advice.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Anonymous. bib. http://www.cs.wisc.edu/niagara/data/bib/.

[3] M. Arenas and L. Libkin. A normal form for XML docu-
ments. InProceedings of the 21th Symposium on Princi-
ples of Database Systems (PODS), pages 85–96, 2002.

[4] M. Arenas and L. Libkin. An Information-Theoretic
Approach to Normal Forms for Relational and XML
Data. InProceedings of ACM Symposium on Principles
of Database Systems (PODS), 2003.

[5] C. Beeri and P. A. Bernstein. Computational problems
related to the design of normal form relational schemas.
TODS, 4(1):30–59, 1979.

[6] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From
XML-Schema to Relations: A Cost-Based Approach to
XML Storage. InICDE, 2002.

[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML. In WWW10, pages 201–210, 2001.

[8] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Reasoning about keys for XML. InInternational Work-
shop on Database Programming Languages (DBPL),
2001.

[9] Y. Chen, S. B. Davidson, and Y. Zheng. Constraint Pre-
serving XML Storage in Relations. InWebDB, 2002.

[10] S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating
XML Constraints to Relations. InICDE, 2003.

[11] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semistructured data with STORED. InIn Proceedings
of the Workshop on Query Processing for Semistructured
Data and Non-Standard Data Formats, pages 431–442,
1999.

[12] A. Deutsch and V. Tannen. Containment and Integrity
Constraints for XPath Fragments. InKRDB, 2001.

[13] D. Florescu and D. Kossmann. Storing and querying
XML data using an RDBMS. InBulletin of the Technical
Committee on Data Engineering, pages 27–34, Septem-
ber 1999.

[14] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases . InProceedings of the 17th International Con-
ference on VLDB, 1997.

[15] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Pro-
cessing XML Streams with Deterministic Automata . In
The 9th International Conference on Database Theory
(ICDT), 2003.

[16] L. Popa and A. Deutsch and A. Sahuguet and V. Tannen.
A Chase Too Far? InProceedings of ACM SIGMOD In-
ternational Conference on Management of Data, Dallas,
USA, May 2000.

[17] L. Popa and V. Tannen. An Equational Chase for
Path-Conjunctive Queries, Constraints, and Views. In
International Conference on Database Theory (ICDT),
Jerusalem, Israel, January 1999.

[18] T. Milo and D. Suciu. Index structures for path expres-
sions. InICDT, 1999.

[19] F. Neven and T. Schwentick. XPath containment in the
presence of disjunction, DTDs, and variables. InThe 9th
International Conference on Database Theory (ICDT),
2003.

[20] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt, and J. F. Naughton. Relational databases for
querying XML documents: Limitations and opportuni-
ties. InThe VLDB Journal, pages 302–314, 1999.

[21] H. Thompson, D. Beech, M. Maloney, and N. Mendel-
sohn. XML Schema Part 0: Primer , May 2001.
http://www.w3.org/TR/xmlschema-0/.

[22] M. W. Vincent and J. Liu. Completeness and Decidability
Properties for Functional Dependencies in XML, 2003.
unpublished.

[23] X-Hive Corporation. census.xml. http://support.x-
hive.com/xquery/index.html.

[24] XMARK the XML-benchmark project, April 2001.
http://monetdb.cwi.nl/xml/index.html.

