
A STEP Towards Realizing Codd’s Vision of Rendezvous
with the Casual User

Michael J. Minock
Umeå University, Department of Computing Science

SE-901 87 Umeå, Sweden

mjm@cs.umu.se

ABSTRACT
This demonstration showcases the STEP system for natural
language access to relational databases. In STEP an ad-
ministrator authors a highly structured semantic grammar
through coupling phrasal patterns to elementary expressions
within a decidable fragment of tuple relational calculus. The
resulting phrasal lexicon serves as a bi-directional grammar,
enabling the generation of natural language from tuple rela-
tional calculus and the inverse parsing of natural language
to tuple calculus. This ability to both understand and gen-
erate natural language enables STEP to engage the user in
clarification dialogs when the parse of their query is of ques-
tionable quality. The STEP system is nearing completion
and will soon be field tested in several domains.

1. INTRODUCTION
The databases that back the ‘deep web’ are typically ac-

cessed through either forms based or navigational point and
click interfaces. And while this is often sufficient for simple
databases with very well circumscribed uses, these interfaces
quickly become cumbersome for more complex domains and
uses. In this paper we reopen the old question of whether
natural language interfaces (NLIs) offer a way to overcome
such difficulties. Historically such efforts have aroused great
interest [4, 1, 5]. In fact Codd himself designed and par-
tially implemented the RENDEZVOUS system in which
users could access databases via relatively unrestricted natu-
ral language. In Codd’s system, and in the system described
here, special emphasis is placed on query paraphrasing and
in engaging users in clarification dialogs when there is diffi-
culty parsing user input.

The primary argument in favor of NLIs is that people al-
ready know natural language and therefore presumably re-
quire very little or no training to access relevant information.
While it can also be argued that forms and navigation based
interfaces require very little training, it must be noted that
this is only so for rather simple databases (or views). Once
the conceptual complexity (roughly the number of tables)

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

goes beyond a certain bound, these systems have difficulty
supporting ad hoc queries from casual users. Natural lan-
guage also has the special advantage that it is relatively easy
to express negation (e.g., “projectors not built in Asia”),
logical quantification (e.g., “distributors with every InFocus
projector in stock”) or superlative queries(e.g., “3 brightest
projectors under $2000 and over 3000 contrast”). In addi-
tion NLIs, in principle at least, enable meta-level questions

about the structure and nomenclature of the database (e.g.,
“What does DLP mean?”). Finally NLIs give the capability
for users to participate in dialogues where they build up a
context and make anaphoric references to previous content
(e.g., “What is its shipping time?”).

Considering all of these desirable features of NLIs, why
aren’t they typically available on today’s web? The an-
swer to this question is not immediately forthcoming and
requires a look back. Work began in the late 70’s and con-
tinued through the 80’s toward building NLIs to databases
and by the end of the 80’s two dominant approaches had
emerged: the semantic grammar approach and the trans-

portable systems approach. Semantic grammar approaches
(e.g., [15]) build grammar rules based directly on the tables
in the underlying database. Their advantage is that, given
enough time, one can actually build fairly robust solutions
for closed domains. A disadvantage is that building them is
tedious and error prone. Furthermore the effort is not trans-
portable to new database domains. Transportable systems
(e.g.,[6]) arose as a response to the tedious configuration re-
quirements of semantic grammar based systems. The idea
is to use large scale domain-independent grammars, devel-
oped in the linguistics community, to map user requests to
intermediate logical form. Using translation knowledge, the
logical form is then translated to a logical query expressed
in the vocabulary of the relations of the actual database.
Hence building an interface over a new database requires a
set of domain-specific lexical entries and the specification of
translation knowledge, but does not require new linguistic
syntax rules to be defined. Sidestepping the fact that ob-
taining domain-specific lexicons and translation knowledge
may be difficult, transportable approaches were trumpeted
as superior to semantic grammars in the late 80’s. Large
scale grammar work in linguistics dovetailed nicely with the
transportable approach, and plans were drawn up to fully
develop and commercialize the results.

Had expectations been fulfilled, NLIs to databases would
by now be in wide use. Clearly something went wrong.

1358

1.1 Problems with NLIs to Databases
From a human factors point of view, the primary problem

with NLIs to databases is that the linguistic and conceptual
coverage of a system is not obvious. A typical pattern is
that the user first overestimates the coverage offered by the
system and then, after the system fails, the user revises their
appraisal of what the system ‘knows about’ downward. The
problem is that failure can be due to linguistic limitations,
not just missing database content. Empirical work suggests
that linguistic limitations are more serious because they can
lead users to incorrectly assume that some content is not
covered by the database when it in fact is [13]. In such cases
the user’s understanding of the system becomes confused
and they experience frustration trying to reconcile it.

Another factor that has limited the usefulness of such in-
terfaces is their inability to handle informal register. One
example that has been extensively documented is the ten-
dency for ‘and’ to actually mean logical ‘or’ in the informal
register. As in, “list the projectors built by InFocus and
Mitsubishi,” not meaning the projectors manufactured by
both InFocus and Mitsubishi.

Users, especially when interacting with a computer, prefer
brevity over grammatical correctness. Thus in many cases
their requests are simply noun phrases or their request con-
tain anaphoric references or rely on context. These are very
significant challenges, especially for transportable systems
which are based on theoretical idealizations of language, not
the kind of slop that real users use.

A final problem of particular relevance to the database
community is the manifest inability of NLIs to insure se-
mantic correctness of user queries and operations. Although
Codd advised the community to include an accurate paraphrase-
and-verify step [4], it seems that developed systems seldom
take this requirement seriously and instead simply translate
the user’s query to SQL, applied it and then presented the
answers, perhaps along with the SQL. This not only gives
a user qualms about trusting the system, it also completely
precludes the possibility of using NLIs to conduct updates
or other side-effecting operations.

For better or worse, the database and computational lin-
guistics communities drifted away from NLIs for databases.
First, it was not clear how to overcome the above difficul-
ties, especially if one was to adhere to the transportable
approach. Second, linguistic efforts were more profitably
applied toward developing large scale grammars and other
resources that would become very useful in information re-
trieval. Third, modern WIMP (Windows, Icons Menus and
Pointers) based interfaces were satisfying many, but not all,
of the demands that NLIs to databases were meant to satisfy.
Finally, there were exciting opportunities, such as object-
oriented databases that lured away the database talent. As
time passed there were many more areas that grabbed the
attention. In short, NLIs to databases were largely aban-
doned as the database and computational linguistics com-
munity embraced other exciting possibilities.

2. OVERVIEW OF STEP
The system STEP [9, 11, 10] (Originally, Schema Tuple

Expression Processor) takes a fresh look at this old prob-
lem. Unlike all other work in the area, STEP uses a bi-
directional grammar to paraphrases logical queries back to
the user in natural language. In other words, the user is al-

Schema

ODBC

DBMS

Browser

Subsumption Hierarchy

Phrasal Lexicon

WordNet/ispell/
perl

Theorem Prover
SPASS

CGI

STEP SERVER

Figure 1: STEP system architecture

ways informed of how the system interpreted their question
or request. Like Codd, we assume that systems that do not
accurately paraphrase queries back to the user are, in prac-
tice, near worthless; users must be able to verify the seman-

tic correctness of their requests or operations. In addition
STEP also supports natural language updates to databases
[11] and tools to efficiently integrate STEP with arbitrary
databases. Administrators are assumed to understand pri-
mary and foreign keys, SQL and tuple calculus, but are not
assumed to have a deep background in linguistics.

The primary linguistic knowledge that guides both query
analysis as well as query paraphrasing is a phrasal lexicon,
a highly structured semantic grammar. STEP exploits the
decidability of the Schönfinkel-Bernays class [2] of first-order
logic to decide query emptiness and containment. Such
properties are fundamental to our representation and pro-
cessing of linguistic and relational knowledge. Furthermore
the availability of fast theorem provers (e.g., [16]) make such
calculations feasible in real time.

Figure 1 shows the architecture of STEP , which is written
in LISP and runs under CLISP on both the Linux and Win-
dows platforms. It runs as a server that is called through
CGI from a web browser and employs spell checkers, reg-
ular expression based extractors and WordNet to prepro-
cess user supplied strings. STEP issues satisfiability queries
to the SPASS theorem prover [16] and relational queries
to back-end databases via ODBC. At start-up time STEP
compiles the phrasal lexicon into a subsumption hierarchy
and materializes attribute value maps from the database.
The system is then ready to accept browser-submitted re-
quests, which it can typically answer in under a second.

Figure 2 shows an instance of the web-based interface for
a projector database. Users enter their queries on the in-
put field and obtain answers in the area immediately below.
Note the sloppy user input and the automatically generated
query paraphrase. The picture of the projector helps inform
the user of the information in the database and the types
of conditions and constants that questions may employ. Fi-
nally there is an ‘example queries’ button that can give the
user a sample of the types of queries that may be asked
through the interface.

3. THE PHRASAL LEXICON
The phrasal lexicon is the primary configuration structure

that administrators must author to tie STEP to their do-
main database. In short, the administrator authors a set of

1359

Figure 2: Querying a digital projector database

entries to cover the domain schema. Although the presen-
tation in this paper will go into the details of these entries,
we have developed a web-base authoring tool that shields
the administrator from having to hand code such entries.

An entry associates a single elementary tuple calculus ex-
pression with a set of patterns, each pattern providing an
alternative way to linguistically express the elementary ex-
pression. We begin with a very simple example entry:

〈{x|Projector(x)} :
“[] projectors []”〉
“[] projs []”〉

In this entry the tuple calculus expression {x|Projector(x)}
is coupled with two patterns. One the normal way to refer
to a projector and the second an abbreviation that some
users might prefer.

In the following entry we see a more complex elemental
pattern that includes a template parameter, c.

〈{x|Projector(x) ∧ x.type = c} :
“[] projectors [of the type c]”
“[c] projectors []”〉

Note that, the placement of the phrases before or after the
main head ‘projectors’ says whether the phrase precedes or
follows the head. (e.g. “projectors of the type DLP” or
“DLP projectors”.).

In the next entry we see simple joins being introduced in
the elemental tuple expression.

〈{x|Projector(x) ∧ (∃y)(Company(y)∧

x.manufacturer = y.id ∧ ψ(y)} :
“[] projectors [built by GEN({y|Company(y) ∧ ψ(y)})”]〉

The special term GEN(...) stands a description of a query
where ψ(y) stands for an arbitrary tuple expression with the
free variable y. Such a definition provides for relative clauses
(e.g., “the projectors [built by [[Japanese] companies]]”).

Finally we note that very specific patterns of linguistic
use may be authored into the phrasal lexicon. Consider for
example:

〈{x|Projector(x) ∧ x.contrast > 5000∧
x.brightness > 5000} :

“[high performance] projectors []”〉

The above gives a detailed flavor of what entries look like.
In practice however, administrators use a GUI-based author-
ing tool in which they initially name relations, attributes
and joins, thus creating default entries. Since containment
over our fragment tuple calculus is decidable, we can com-
pile the entries into a subsumption hierarchy which organizes
the phrasal lexicon for processing, inspection and extension.
This hierarchy is instrumental in generating paraphrases,
but only certain patterns are flagged as being used in gen-
eration, thus enabling asymmetric configuration, in which
the language that can be recognized, is much broader that
the language that may be generated. Finally the hierar-
chically organized phrasal lexicon provides a structure that
administrators can navigate, edit and extend as they witness
coverage leaks and non-fluent paraphrases in the history of
user interactions.

1360

4. ANALYSIS AND PARAPHRASING
Our approach to question analysis is to reformulate it as

a classical state-space search problem. The initial state of
this search is the input sentence and the goal state is a query
expression that could have generated the input sentence. In-
termediate states have a query that accounts for a prefix of
the input sentence as well as the remainder of the sentence
yet to be parsed. States also have an accrued cost which
recaptures how much ‘fudging’ was required to match input
words with phrasal patterns. Solutions exceeding a certain
cost must be paraphrased back to the user for confirmation.
Solutions exceeding an even greater cost are deemed com-
plete failures. Semantically distinct solutions within a fixed
cost of the best solution are presented as rival parses. Again,
the presence of a theorem prover enables us to determine se-
mantic equivalence.

The paraphrasing model of STEP [10] works by semanti-
cally sorting a tuple calculus expression into the subsump-
tion hierarchy, fetching the patterns of its immediate par-
ents, calculating unifying substitutions and combining pat-
terns so that features agree. The resulting phrase consists
of a set of modifiers, followed by a single head, followed by
a set of complements. This process is complicated, however,
by the fact that generation may be recursive.

5. DEMONSTRATION
Our demonstration aims to showcase the functionality of

STEP across a variety of use cases. To accomplish this we
will demonstrate STEP over a digital projector database, a
student grades database and finally over a simulated database
for the financial services help desk domain. Each of these
interfaces shall be web accessible throughout the conference
and afterwards. VLDB delegates will be welcome to try out
the system to empirically determine its usefulness, scalabil-
ity and robustness.

In addition to introducing the above web sites, we will also
illustrate our web-based authoring tool which allows for the
rapid configuration of STEP over arbitrary databases. It
should be noted that a web-based STEP interface over a
geography database [8] has been available since 2004. In
this time we have had several thousand visitors pose geog-
raphy queries and have used such feedback to guide system
development.

6. SIGNIFICANCE
Since the late 80’s, the topic of NLIs to databases has been

somewhat dormant. While it is true that MicroSoft intro-
duced the EnglishQuery product in 1998, that product is
now discontinued and in our opinion it ‘failed’ because it
did not heed Codd’s advise to include a query paraphrasing
mechanism. While some noteworthy efforts have recently
addressed reducing NLI to database configuration costs [14,
12, 7], we believe that addressing issues of user acceptance
(see section 1.1) outweigh the benefits of reducing configu-
ration costs. In any case, STEP adopts an authoring tool
approach to reducing configuration costs.

While the development of database-backed speech systems
has been an active area, such systems typically map speech
to very simple propositional slot-value lists; only recently
have systematic efforts been undertaken to map to more ex-
pressive, though relationally incomplete, languages [3].

The introduction of a viable natural language interface to
database technology would be a highly significant event for
today’s web. Though our current focus is on natural lan-
guage interfaces to relational databases, in future work may
extend our approach to natural language access to semi-
structured data via XQuery/XPath [7]. Still what really
matters is to perfect our technology and designs so that
visitors prefer our NLI because it provides significant ad-
vantages over forms and navigational interfaces.

7. ACKNOWLEDGEMENTS
Thanks to Peter Olofsson and Alexander Näslund for de-

veloping STEP’s web-based authoring tool and to Anna
Hopfgarten for her authoring and design work.

8. REFERENCES
[1] I. Androutsopoulos and G. Ritchie. Database

interfaces. In Handbook of Natural Language

Processing, 209–240. Marcel Dekker Inc., 2000.

[2] P. Bernays and M. Schönfinkel. Zum
Entscheidungsproblem der mathematischen Logik.
Mathematische Annalen, 99:342–372, 1928.

[3] J. Boye and M. Wirén. Robust parsing and spoken
negotiative dialogue with databases. Natural Language

Engineering, to appear, 2007.

[4] E.F. Codd. Seven steps to rendezvous with the casual
user. In IFIP Working Conference Data Base

Management, 179–200, 1974.

[5] A. Copestake and K. Spärck Jones. Natural language
interfaces to databases. The Natural Language Review,
5(4):225–249, 1990.

[6] B. Grosz, D. Appelt, P. Martin, and F. Pereira. Team:
An experiment in the design of transportable
natural-language interfaces. AI, 32(2):173–243, 1987.

[7] Y. Li et al. DaNaLIX: a domain-adaptive natural
language interface for querying XML. In SIGMOD,
1165–1168, 2007.

[8] W. May. Information extraction and integration with
Florid: The Mondial case study. Technical Report
131, Universität Freiburg, Institut fr Informatik, 1999.

[9] M. Minock. A phrasal approach to natural language
access over relational databases. NLDB, 333–336,
2005.

[10] M. Minock. Modular generation of relational query
paraphrases. Research on Language and Computation,
4(1):1–29, 2006.

[11] M. Minock. Natural language updates to databases
through dialogue. NLDB, 203–208, 2006.

[12] R. Mooney. Learning semantic parsers: An important
but under-studied problem. In AAAI 2004 Spring

Symposium on Language Learning, 39–44, 2004.

[13] W. Ogden and P. Bernick. Using natural language
interfaces. Technical Report MCCS-96-299, CRL, New
Mexico State University, Las Cruces, 1996.

[14] A. Popescu, O. Etzioni, and H. Kautz. Towards a
theory of natural language interfaces to databases.
Intelligent User Interfaces, 149-157, 2003.

[15] D. Waltz. An English question answering system for a
large relational database. CACM, 21:526–539, 1978.

[16] C. Weidenbach et al. SPASS version 2.0. Conference

on Automated Deduction, 275–279, 2002.

1361

