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Abstract. Imprecise data exist in databases due to their unavailability or to data/ 
schema incompatibilities in a multidatabase system. Partial values have been used 
to represent imprecise data. Manipulation of partial values is therefore necessary 
to process queries involving imprecise data. In this article, we study the problem of 
eliminating redundant partial values that result from a projection on an attribute 
with partial values. The redundancy of partial values is defined through the in- 
terpretation of a set of partial values. This problem is equivalent to searching a 
minimal semantically-equivalent subset of a set of partial values. A semantically- 
equivalent subset contains exactly the same information as the original set. We 
derive a set of useful properties and apply a graph matching technique to develop 
an efficient algorithm for searching such a minimal subset and therefore elimi- 
nating redundant partial values. By this process, we not only provide a concise 
answer to the user, but also reduce the communication cost when partial values 
are requested to be transmitted from one site to another site in a distributed envi- 
ronment. Moreover, further manipulation of the partial values can be simplified. 
This work is also extended to the case of multi-attribute projections. 

Key Words. Imprecise data, minimal elements, multidatabase systems, partial val- 
ues, bipartite graph, graph matching. 

1. Introduction 

Imprec i se  data,  or  nullvalues, in da tabase  systems reflect the real world p h e n o m e n o n .  
Null values  were  originally adop ted  to represen t  "va lues  unknown at  p resen t"  in 
da tabase  systems. Codd  (1979) p ionee red  the work  on extended relat ional  a lgebra  to 
manipu la te  null values. Since then, incomple te  informat ion  in relat ional  da tabases  
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has been extensively studied (Grant, 1977; Lipski, 1979; Imielifiski and Lipski, 
1981; Biskup, 1983; Liu and Sunderraman, 1990, 19,91). Update semantics of null 
values in relational databases have been discussed (Bancilhon and Spyratos, 1981; 
Abiteboul and Grahne, 1985), as well as the relationship between null values and 
functional dependencies (Lien, 1979; Vassiliou, 1979, 1980; Imielifiski and Lipski, 
1983). Codd (1986, 1987) divided null values into applicable and inapplicable null 
values. An inapplicable null value denotes an attribute that is not applicable to a 
given object (e.g., if Mary has not married yet, then lVlary's spouse can be recorded 
as an inapplicable null value). For a concise review of handling null values by 
algebraic approaches, see Maier (1983). 

The concept of applicable null values has been generalized to the concept of 
partial values by Grant (1979). Instead of being treated as an atomic value, an 
attribute value in a table is considered a nonempty subset of the corresponding 
domain. A partial value is represented as an interval such that exactly one of the 
values in the interval is the "true" value of the partial value. In our work, however, 
a partial value is considered to correspond to a finite set of possible values such 
that exactly one of the values in that set is the "true" value of the partial value. 
Therefore, an applicable null value is a partial value that corresponds to the whole 
domain of the corresponding attribute (e.g., if we do not know Mary's age, then 
it can be recorded as an applicable null value, which can be regarded as a partial 
value [0,...,120] if the domain of age is {0,...,120}). However, if we know Mary's 
age is either 25 or 28, then it can be recorded as a partial value (Motro, 1990; Tsai 
and Chen, 1993). Lipski (1979) presented a general discussion for manipulating 
imprecise information, including partial values. We discussed the implementation 
of a division operation over partial values (Tseng et al., 1993b) and we studied some 
aggregate operations over partial values (Tseng et al., 1993c). 

In addition to manipulating incomplete data, partial values are also important 
in resolving the semantic discrepancies in multidatabase systems. DeMichiel (1989) 
employed partial values to resolve domain mismatch problems in multidatabase 
systems, and proposed an algebraic approach to operate on partial values. In this 
approach, data imprecision comes from data incompatibilities in a multidatabase 
system. 

Suppose we want to integrate the following relations located in different sites 
in a multidatabase system. 

CS-Researchers Taiwan-Scientists 

name specialS, I name specials I 
Frank DB 26 Frank CS 26 

Jesse AI 30 Jesse CS 30 

Annie SE 28 Andy CS 25 

Site 1 Site 2 
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Assuming that Computer Science (CS) consists of three subareas, i.e., database (DB), 
artificial intelligence (AI), and software engineering (SE), we can use partial values 
to resolve the mismatched domain, specialty. That is, the relation Taiwan-Scientists 
can be transformed into 

Taiwan.Scientists ~ 

name specialty [age [ 
Frank [DB, AI, SE] 26 

Jesse [DB, AI, SE] 30 

Andy [DB, AI, SE] 25 

We can now integrate CS-Researchers and Taiwan-Scientists ~ into the following re- 
lation, Taiwan-CS-Scientists, for global multidatabase queries. 

Taiwan-CS-Scientists 

name I  peci t  
Frank DB 26 

Jesse AI 30 

Annie SE 28 

Andy [DB, AI, SE] 25 

We further generalize the concept of partial values into probabilistic partial 
values (Tseng et al., 1993a) to resolve more interoperability problems, and to join 
relations on incompatible keys (Tsai and Chen, 1993) in multidatabase systems. 

In this article, we study the problem of eliminating redundant partial values that 
may result from a projection on an attribute with partial values. The redundancy 
of partial values is defined by interpreting a set of partial values. This problem is 
equivalent to searching a minimal semantically-equivalent subset of a set of partial 
values. A semantically-equivalent subset contains exactly the same information as 
the original set. We derive a set of useful properties and apply a graph matching 
technique to develop an efficient algorithm to search such a minimal subset and 
therefore eliminate redundant partial values. 

The motivation of this work is as follows. When a non-key attribute is projected, 
the set of values in that attribute will be obtained. For example, consider the following 
relation, Employees. 

Employees 
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If we issue the command 7rsalary(Employees), then the answer is 

7r salary (Employees) 
salary 

30k 

35k 

20k 

Note that duplicate values have been eliminated. However, when partial values 
are allowed to appear in the projected attribute, how can we determine redundant 
partial values such that they can be eliminated? 

Let the relation Employees contain partial values in the attribute salary as follows. 

Employees 
. . ~  salary . ~  

30k 

[2Ok, 3Ok] 

[2Ok, 35k] 

[30k, 35k] 

If we issue the command 7rsataru(Employees), according to our algorithm, the 
answer can be one of the followings. 

7r salary(Employees) 
salary 

20k 

30k 

[2Ok, 35k] 

7rsataTu(Employees) 

salary 
20k 

30k 

[30k, 35k] 

These two answers contain the same information as the original attribute salary. 
More precisely, because they each correspond to the following two possible sets of 
definite data (exactly one of the sets is correct), and so does the original attribute, 
they are both semantically-equivalent to the original attribute. 

71"salary (Employees) 
salary 

20k 

30k 

7r salary(Employees) 
salary 

20k 

30k 

35k 
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This elimination process has not been studied in previous works concerning 
partial values. By this process, we provide a concise answer to the user, and 
we reduce the communication costs of data transmission requests in a distributed 
environment (i.e., our work can be used for query optimization in a distributed 
database system). Moreover, we simplify further manipulation of the partial values 
(i.e., processing an operation involving sets of partial values with redundancies is 
cumbersome). 

This article is organized as follows: In Section 2, basic concepts and some 
definitions are stated. In Section 3, we first sketch our approach, then elaborate 
on the properties of a set of partial values. The algorithm developed to eliminate 
redundant partial values is presented in Section 4. Section 5 provides a generalization 
of this work for the case of multi-attribute projections. In Section 6, we conclude 
and discuss relevant work. 

2. Basic Concepts and Definitions 

Partial values model data imprecision in databases in the sense that, the true value of 
an imprecise datum can be restricted in a specific set of possible values (DeMichiel, 
1989), or an interval of values (Grant, 1979). In our work, a partial value is 
represented by a set of possible values, in which exactly one of the values is true. 
These kinds of partial values are also known as disjunctive data (Motro, 1990). In 
the following, we follow the definition of a partial value given by DeMichiel (1989), 
which is formally stated as follows. 

Definition 2.1 A partial value, denoted 77 = [al, a 2 , . . . ,  an], associates with n 
possible values, a l ,  a2, • • •, an, n > 1, of the same domain, in which exactly one 
of the values in 77 is the "true" value of 77. 

For a partial value 77 = [al, a2, .  • •, an], a function u is defined by DeMichiel 
(1989), where u maps the partial value to its corresponding finite set of possible 
values; i.e., /2(77) = {aa, a 2 , . . . ,  an}. Notice that an applicablenullvalue (Codd, 
1986), R, can be considered a partial value with u(R)  = D, where D is the whole 
domain. We use 77 and u(77) interchangeably when it does not cause confusion. 
For example, v E 77 if v E u(77). 

The cardinality of a partial value 77 is defined as I u(77) I by DeMichiel (1989). 
When the cardinality of a partial value equals 1 (i.e., there exists only one possible 
value, say d, in the partial value), then the partial value [d] actually corresponds to 
the definite value d. On the other hand, a definite value d can be represented as a 
partial value [d]. Besides, a partial value with cardinality greater than 1 is referred 
to as a proper partial value (DeMichiel, 1989). 

For any two proper partial values, say 771 and 772,771 ~ 772 even if//(771) ://(772). 
This is because the true value of 771 may not be the same as the true value of 772. 
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Definition 2.2 If the proper partial values, 971, 7/2, • • . , r/k, k _> 2, are elements of 
a set of partial values, ~ ,  and u(r/1) : u(r/2) . . . . .  = u(r//~), then we say 
r/l, r/2, • • •, r / i - l ,  r/i+1, • • . ,  r/k are quasi-duplicates of r/i, 1 < i < k. 

~I ~2 

By Definition 2.2, if (I) = {[a, b], [a, b]} then r/1 is a quasi-duplicate of r/2, and 
vice versa. 

Definition 2.3 An interpretation, a = (al,  a 2 , . . . ,  am), of a set of partial values, 
= (r/ l ,  r / 2 , . . . ,  r/m}, is an assignment of values from ff such that ai E r/i, 1 _< 

i_<m. 

By Definition 2.3, for a set of partial values ff = {r/l, r / 2 , . . . ,  r/m}, 971 X 772 X 
• " " × r/m is the set of all interpretations of ft. 

Definition 2.4 For an interpretation o~ = (al, a2, • • • :. am) of a set of partial values 
= {r/l, 7 /2 , . . . ,  r/m), the valueset of o~ is denoted So = Ul_<i_<m{tzi}. 

Definition2.5 For allinterpretations, oLj, 1 < j  <_p,p = I r/ll × [r/2l × . . .  x I zlm l, 
of a set of partial values (I) = {r/l, r / 2 , . . . ,  r/m}, the farnily ofvaluesets of • is 
denoted .T'(ff) = LJl_<j_<p{sc, j }. If • = ~ then define .T'(~) = 0. 

.)r(@) is a mapping for characterizing the information content of a set of 
partial values in terms of the various definite sets it represents. By this, we have 
the following definition• 

Definition 2.6 For a set of partial values ~ : { 9 7 1 ,  r / 2 ,  • • • , r/m} if we have .T'(ff -- 

~ )  : . F ( ~ )  for some ~ C ~ ,  then those partial values in ~) are said to be 

redundant in (I) with respect to • -- ~.  

~1 172 ~13 

Example 2.1 Suppose there is a set of partial values (I) = { [a],  [b], [a, b]}; then 
there are two interpretations, ol 1 = ( a ,  b ,  a )  and ce2 = (a, b, b), and the value sets 
of o~ 1 and ce2 are S~ 1 = {a} U {b} U {a} = {a, b} and So, 2 = {a} LJ {b} U 
{b} = {a, b}. Therefore, the family of value sets of • is 

.T'(~) = {Sa,}U{Sa2)= { { a ,b } }U ( {a ,b } )=  {{a, b } } .  

rll  r/2 

r/3 = [a, b I is redundant in • with respect to • -- {r/3} = { [a],  [b] }, for we 
h a v e  - = [ ]  

Note that, in Example 2.1, if we delete r/1 (respectively, r/2)jnstead of r/3 from 
• , then the value set {b} (respectively, {a}), which does not belong to .T'((I)), will 
be derived in .T'(~ - -  { r / l } )  (respectively, .T'(~ -- {r/2}))i 



VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 495 

Definition 2. 7 A partial value ~ in a set • is necessary in • if the deletion of 
from • makes .T'(~ -- {~}) # .T'(~). 

In Example 2.1, ~]1 and ~2 are necessary in ft. 
In this article, we derive properties of a set of partial values, ~ ,  and develop a 

polynomial time algorithm to find a minimal subset of if, if**, such that .T'(ff**) = 
. jr( if) .  We call if** a minimal sufficient subset of ~ ,  because ~** is sufficient to 
generate exactly the same family of value sets of ft. Therefore, if** and • are 
semantically-equivalent. That is, if* = ~ -- qb** is redundant in d9 with respect 
to ~**. For a set of partial values q5, the minimal sufficient subset of • may not 
be unique. For example, suppose q5 = {[a], [a, b], [b, c], [a, c]}. There are two 
minimal sufficient subsets of ~ ,  namely q5~* and ff~*, where ~ *  = {[a], [a, b], [b, 
c]} and ~ *  = {[a], [b, c], [a, c]}, because .T'(~) = . T ' ( ~ * )  = . T ' ( ~ * )  = {{a, 
b}, {a, c}, {a, b, c} }. 

3. Eliminating Redundant Partial Values 

The computational complexity of .T'(ff) is exponential (Definition 2.5). Therefore, 
a brute force method to compute ~** is also exponential. In the following, we 
develop a polynomial time algorithm to compute ~** based on certain properties. 

Our approach can be sketched as follows. We start with finding some necessary 
elements in • that correspond to all minimal elements (Suppes, 1960) of ~ .  In set 
theory, we call x a minimal element of a set A if and only if (1) x E A, (2) x is a 
set, and (3) for every other y C A, y ~ x. These minimal elements are then used 
as a kernel to find the upper bound of .T'(~), .T'* (ffP), through a deterministic graph 
(defined be low) . .T '*(~)  contains all possible value sets which may be generated 
from ~.  By .T'*(~), we derive some useful properties for searching a minimal 
sufficient subset. Finally, the matching technique in graph theory (Bondy and Murty, 
1976) is employed to develop an efficient algorithm to achieve the goal. 

3.1 Finding All Minimal Elements of 

Minimal elements are necessary and must be included in ~** to ensure .T'(ff) = 
.T'(~**). We prove all minimal elements are necessary in ¢ by the following 
lemma. Notice that quasi-duplicates are ignored here. They will be considered in 
the matching process discussed in Section 4. 

Lemma 3.1 For a set of partial values ~ = ( ~ 1 , ~ 2 ,  . . .  ,~m} without quasi- 
duplicates, if r/k is a minimal element of • (i.e., ~i ~ ~Tk, Vi ~ k), then ~k is 
necessary in ~ .  

Proof." We distinguish two cases: 
Case1: m = 1. Thenwe  have ~ = {z/t} a n d . F ( ~ )  5~ 0. Bu t . T ' (~ - -  {~/1}) = 

0. Therefore, ~h is necessary in ~ .  
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Case 2: m > 1. I f r / i  ~ r/k, Vi 5~ k, then we have r/i--r/to • 0, Vi ¢ k. 
Therefore, there exists an interpretation, o/  = (at,  a ~ , . . . ,  a Ik_l, aS+l, ' ' '  , a~m), 

! 
o f ~  -- { r /k} , suchtha ta~  E r/i -- r/k, V i ¢  k That is, a i ~ r/k, V i  7 ~ 
k. Because the value set of oz' is Sa, = Uv i Ck {a~}, we have Sa, fq r/k = 0. 
But, for all interpretations, aj  = (al j ,  a2j,. . . ,  a k j , . . . ,  amj), 1 <_ j < I 
r/1 I X I r/2 I X " ' "  X ]r/m I, of if, we have akj E r/k and the corresponding 
value sets Sat = Ul<_i_<m{aij}. That is, akj E (Sai 71 r/k) 7 ~ 0, 1 
J -< [ r/1 I x I r/2 ] x . . .  x I r/m I, which implies S a~ ¢ Sa,,  Vj. Therefore, 
S,~, C (.T'(~ -- {r/k }) -- .T '(~))  7 ~ 0, which completes the proof. [] 

We denote .Ad(~)  = {r/k I r/i ¢ r/k, r/i, r/k E ~ ,  Vi 5~ k} to be the set 
of all minimal elements of • which contains no quasi-duplicates. Note that .Ad ( ~ )  
may be just a subset of the set of all the necessary e, lements of ~ .  For example, if 

= {[a], [b], [a, b], [b, c]} then .Ad(~)  = {[a], [b]}. However, by Definition 2.7, 
[b, c] is also necessary in ~ .  In some cases, .Ad(~)  contains all necessary elements 
of ~ .  For example, if ff = {[a], [b], [a, b]}, then .Ad(~)  = {[a], [b]} contains all 
the necessary elements of ~ .  Besides, ,Ad(~)  ¢ O, V~  ¢ O. 

If we consider a partial value r/i to be subsumed by another partial value r/j 
if r/j C_ r]i, .Ad(~)  can be obtained from ff by eliminating all subsumed partial 
values. In fact, all minimal elements of • subsume the other non-minimal elements. 

By Lemma 3.1, the following corollaries can be obtained. 

Corollary 3.1 Any partial value of cardinality 1 in a set of partial values • is a 
necessary element of ~ .  

Proof." Directly from Lemma 3.1. [] 

Corollary 3.2 If all the partial values in a set of partial values • have the same 
cardinality and there is no quasi-duplicate in ~ ,  then . M ( ~ )  = ~ .  

Proof" Directly from Lemma 3.1. [] 

Corollary 3.3 For all r/i C ~ -- .Ad (tb), ff contains no quasi-duplicates, there exists 
an element r/j E .Ad(~)  such that r/j C r/i. 

Proof." Since r/i C ~ -- .A4(~),  by Lemma 3.1 there exists at least an r/x C ~ ,  such 
that r/x C r/i. Now we choose r/z to have the minimum cardinality in ~ ,  say r/j, 
such that r/j C r/i. That is, there is no element in • which is a proper subset of 
r/j. Therefore, by Lemma 3.1, r/j must be an element of .A4(~).  This completes 
the proof. [] 

Because minimal elements of • cannot be eliminated, they are used as a kernel 
for finding the upper bound of .T'(~),  .T'* (~ ) .  First, we identify .Ad ( ~ )  by applying 
Lemma 3.1 to ft. We summarize the procedure of finding .Ad(~)  by the following 
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procedure Find.All_Minimal_Elements. 

Procedure. Find.All_Minimal_Elements: (Finding .Ad ( i f)  of ~ . )  

Input: A set of partial values, ~ ,  which contains no quasi-duplicates. 

Output: .Ad (~) .  
1. .Ad(q5) = 0; 

2. for each r/i E • do { 

3. if (I r/i I = =  1) then .Ad(~)  = .A,4(~) (_J {r/i};/*Corollary 3.1"/ 
4. else { 

5. minimal = t r u e ; / *  a flag * /  

6. for each r/j C ~ ,  r/j 7 ~ r/i, do 
7. if (r/j -- r/i = 1~) then { 
8. minimal = false; 

9. break; / .  exit the inner for loop * /  

10. } 
11. if (minimal) then .Ad(~)  = .Ad(~)  t.J {r/i}; 

12. } 

13. } 
14. Output(.Ad (~) ) ;  

Recall that .Ad(q5) is defined on the set ff which contains no quasi-duplicates. 
In other words, if we want to apply Find.All_Minimal_Elements to find a subset 
of necessary partial values for an arbitrary ~ ,  we need to eliminate all the quasi- 
duplicates in g9 first. Therefore, Corollary 3.3 can be stated in a more general form 
as follows. 

Corollary3.4 For all r/i E • -- .Ad(~),  there exists an element r/j C .A4(~) ,  such 
that r/j _C rli. 

Proof." For an r/i C ff -- .A4(~),  we distinguish two cases: 

Case 1: r/i is a quasi-duplicate of an r/j C .A4(~).  Then Y(r/i) = u(r/ j)  and 
r/j C r/i holds. 

Case 2: r/i is not a quasi-duplicate of any r/j E .hal(g).  Then, by following the 
same proof in Corollary 3.3, we have rlj C r/i and r/j C r/i holds. [] 

3.2 Finding the Upper Bound of .~'(~) 
Based on .Ad(@), the upper bound of .T'(ffg), .T'*(@), can be derived by a deter- 
ministic graph defined as follows. 

Definition 3.1 A deterministic graph (DG) is denoted by a 3-tuple (Q ~ ,  ~), where 
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Q is a finite set of states, 
is a finite input alphabet, and 

is a transition function mapping Q x ~  to Q. That is, 6(q, a) is a state 

for each state q and input symbol a. 

A DG can be represented by a directed graph with the vertices of the graph 
corresponding to the states of the DG. If there is a transition from state q to state 
p on input a, then there is an arc labelled a from state q to state p in the directed 
graph. 

To derive the upper bound of .T'(~), we employ a DG ( ~  E,  di), with Q = 
.T'*(~), ~ = U v m ~  r/i; 6 defined as  ~(Si,aj) : Sk C .F*(~) ,  where Sk = SiU 
{aj}, V Si C .T'*(~) and aj E E. Initially, we compute .T'(.Ad(~)) by Definition 
2.5 and then work toward .F*(~)  by applying fi to all the elements of .T'(.Ad(~)), 
which iteratively generates new states fi(Si, aj), V Si ~ .F( .Ad(~))  and aj E ~.  
These new states are used again to generate other new states. Therefore, repeating 
this process will monotonically increase the number of states. However, as ~ and 

are all finite, there exists a least fixed point (Ullman, 1988) such that at that point 
no more new states can be generated. As a matter of fact, the least fixed point is 
reached after ~ is generated as a new state. When the least fixed point is reached, 
we have the maximum number of states which may be generated from ~.  Procedure 
Find_Upper_Bound_of_T'(~) illustrates this process. 

Procedure Find_Upper_Bound_of_T'(~): (Finding the .T'*(~).) 
Input: .Ad (~) .  

Output: .T* (~) .  
l. Compute .T'(.hd(ff)) by Definition 2.5; 

2. Q =  .~(.Ad(ff)); 
3. repeat { 

4. c=la l ;  
5. for each Si E Q do 

6. for each aj C ~ do/* ~ : UvmE,~ r/i */ 

7. Q = Q U{~(Si, aj)}; 

8. c ' = l a l ;  
9. } until (c = = c~);/* the least fixed point is reached */ 
10..T'*(ff) = Q; 
11. Output(.T'* (if)); 

The following example illustrates this process. 

~i  ~2 ~3 ~4 ~5 

Example 3.1 Let • = {[a, b], [a, c], [b, c], [a, b, d], [a, c, d]}; then we have 
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Figure 1. The deterministic graph of Example 3.1 

it, b, c, d 

a,b a,c b,c 

~/1 ~2 ~3 

.A4(~) -= {[a, b], [a, c], [b, c]} and 

.T'(.A4 (69)) = { { a , b } , { a , c } , { b , c } , { a , b , c } } .  

By the deterministic graph model, we can derive 

= 

{ {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d} }. 

Figure 1 depicts the DG (Q~,  6), where Q = .T*(6~), ~ = {a, b, c, d},  and 
6 is as shown in the directed graph. Note that the shaded nodes are elements in 

[ ]  

Lemma3.2 For all 69', .A/[(~) C ~ '  C ~, .T'(~') C f ' * (~ ) .  

Proof: Since .A4(~) C_ ~' ,  for any value set S' C .T'(~'), there exists an SC 
.T'(.M(ff)) such that SC S'. By d~' C ~,  we have E'  = Uum~,, rli C E. 
Therefore, by the procedure Find_Uppe~_Bound..of.ff(6~), for any S' G .T'(~ -/3 we 
obtain S t E .T'*(~). That completes the proof. [] 

Corollary 3.5 .T'( ¢~ ) Q .T* ( d~ ). 

Proof." Directly from Lemma 3.2 when ~l = <b. [] 
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Figure 2. The relationship among f(.M(ff)), .Y'(~'), .Y'(ff), and f*(~) .  

( 
3.3 Properties of a Set of Partial Values 

In the following, we show that for any Ct, .hd(gg) C ¢ '  C ~,  .)r(.A4(~)) C 
.T'(~ t) C .T'(~) C .T'*(~). Figure 2 illustrates this. 

Lemma3.3 5t"(.A4(69)) C .T'(~) C .T'*(~). 

Proof." Because .T'(qS) C .T'*(~), we only have to show that for any value set 
SE,.T'/ .Ad(~)/,  S is also in .T'(ffp). Let .AA(~) == { ~ , ~ , . . .  ,rlL} and ff = 
{ffl,zl2,~.. ,r/k, f fk+x,r /k+2, . . . ,~m),  where k =  [ .M(~ )  [ and m = [ ~  [. By 

M(~) ~-~(~) 
Corollary 3.4, for all ~i, k +1  < i < m, there exists an r/~ , 1 _< j _< k; such 
that r/~ C_ r/i. Therefore, for any interpretation a '  = (a~, a ~ , . . . ,  a~) of .M(~ ) ,  
we can find a corresponding interpretation a = (a~, a ~ , . . . ,  a~, ak+l, ak+2, • • •, 

! I am) for ~ such that ai = aj if ~/) C r/i. Then the value set of a t is equal to that 
of a.  That is, for any SC .T'(.Ad(~)), S is also in .T'(~). This completes the 
proof. [] 

By Lemma 3.3, we conclude the following corollary. 

Corollary 3.6 For all ~ ' ,  .A4(qS) C ~t C ~,  .T'(.A4(~)) C .T'(~') C .T'(~) C 

Proof." We need to prove .T'(.A/I(~)) C .T'(~ t) and .T'(~ t) C .T'(~). The proof 
! of f ( . A 4 ( ~ ) )  C .T'(~ ) is similar to that of Lemma 3.3, except that • is replaced 

! l l I I by • and • = {~1,~/=,~.. ,~k, ffk+l,~/k+/, . . .  , ~ } ,  where k =  [ M ( ~ )  [ and 

z=l 'l. 
Also, the proof of .T'(~') C_ .T(~)  is similar to that of Lemma 3.3, except 

that .Ad(~) is replaced by ~t. [] 
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The following theorem states under what conditions .Ad(ffP) can be used as a 
minimal sufficient subset of ft. 

Theorem3.1 E E .T'(.A/[(~)) if and only if .T'( .M(ff) )  = .T'(~) = .T'*(~).  

Proof." If .T'(.Ad(~)) = .T'(~) = .T'*(~) then, by E C .T'*(~), we have E E 
~ : ( M ( ~ ) ) .  

Conversely, by Lemma 3.3 we only have to show that .T'*(q~) C_ .T'(.Ad(ffp)) 
if E E .T(.A4(~)).  That is, for any value set S~ .T(.Ad(ff)), we want to 
show that S ~ .T'*(~). By E E .T'(.A4(~)), we have S 5~ E. We now claim 
that there is an ~/i C .Ad(qb), such that z/i C E -- S. If this is not true, 
then ~/.M S ¢  ~, V~/j E .AA(~). Let E be the value set of an interpretation. 
o~ = ( a l , a2 , . . .  ,ak) of .hal(if), where k =  I .AA(~) 1, we can obtain another 

t t . . .  a t interpretation, a '  = (al,a2, , ~), of .h/l(6p) by letting 

! 
aj = aj ifaj E S, Vj = 1, 2 , . . . ,  k 

t a j E r l j f q S  i f a j E E - S ,  V j = l , 2 , . . . , k .  

Then, the value set of ce' is SE .T'(.A4(qb))--a contradiction. Hence, the claim 
follows. That is, for all the interpretations of .A4(~), o ~ j =  (alj ,azj , . . . ,  
ai j , . . .  ,akj), where k =  [ .A4(~) I, we have aij E ~li C (E -- S)  and the corre- 
sponding value set So~j = Ul<t<k{atj} ~S. Therefore, all the Sat E .T'(.AA(~)) 
contain an element of E -  S. Recall that .T'*(qb) is generated from .~(AA(~))  by 
the transition function 6, which is defined as ~(Si,aj) =Si U {aj}, Si E .T*(gP) 
and aj E E. Thus, by the definition of 6, all the new states generated from any 
value set in .T'(.Ad(ffP)) contain an element of E - S ,  no matter how many times 
the transition function ~ is applied. That is, S cannot be an element of .T'* (~) .  
Hence, .T'*(~) C .T'(.AA(~)) and the theorem follows. [] 

The following theorem provides a more general property for a minimal sufficient 
subset of ~.  

Theorem3.2 For all ~t, ..hA(D) C ~t C ~,  E E .T'(ffp') if and only if .T'(~') = 
7 ( ¢ )  = 7" (~) .  

Proof." If .)r(~,) = .T'(@) = .T'*(@) then, by E E .T'*(@), we have E E .T'(@'). 
Conversely, by Lemma 3.3 we have to show only that .T'*(cI,) C .T'(~') 

if E E .T'(cb'). That is, for any value set S~ .T(@t), we want to show that 
S~  .T'*(@). By E E 9r (~ ' ) ,  we have S ¢ E .  Similar to the proof in Theorem 3.1, 
we can claim that there is an ~7i E ~t,  such that ~/i C E- -  S. 

That is, for all the interpretations of ~ ,  o~j = (alj,a2j,... ,aij, . . .  ,akj), 
where k = ] @' [, we have aij E ~li C (E--S)and the corresponding value set 
S ~  = Ut<t<k{alj} ¢S. Therefore, all the S~j E .~(@') contain an element of 
E--S, which implies all the value sets in .T'(.AA(~)) contain an element of E - S .  
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Similar to the proof in Theorem 3.1, we know S cannot be an element of .T'*(~).  
Hence, .T'*(~) C . f ' (~ ' ) ,  which completes the proof. [] 

From Theorem 3.1, if E E .T'(.AA(~b)), then the minimal sufficient subset 
of  ~ ,  if**, is .AA(ff). Theorem 3.2 provides another property to determine ~** 
when ~ ~ .T'(~A,4(ff)); i.e., for a minimal subset of ~ ,  ~ ' ,  where .AA(dg) C ~ ' ,  
and ~ C .T'(~ ~) then ~** = ~t.  Later, we will discuss how to find ~** when 

3.4 Matching in a Graph 

To efficiently determine if E E f f ( .AA(~) )  or E E .~'(ff ') ,  the bipartite matching 
technique in graph theory can be used. In the following, some terminologies about 
a graph are given (Bondy and Murty, 1976). 

A graph G is denoted G = (V, E), where V, also denoted V(G), is the set of 
vertices and E, also denoted E(G), is the set of edges in the graph. An edge (x, 
y) is said to join the vertices x and y. If (x, y) C E then x and y are adjacent or 
neighboring vertices of G. For any set S C V, we define the neighbor set of S in G, 
denoted N(S), to be the set of all vertices adjacent to the vertices in S. Two edges 
that do not share a common vertex are said to be independent. A set of pairwise 
independent edges is called a matching. A matching of maximum cardinality in a 
graph G is called a maximum matching. Also, a bipartite graph G = (V,E) is one 
whose vertex set V can be partitioned into two subsets X and Y, such that each edge 
in G joins a vertex in X and a vertex in Y. Finally, a subgraph of G is any graph H 
such that V(H) C V(G) and E(H) C E(G). 

Definition 3.2 Let S = { $ 1 , $ 2 , . . .  ,Sn} be a family of sets and s = { s l , s 2 , . . . ,  
sin). The membership graph orS overs is a bipartite graph G = (V,E) = (X U Y, 
E), where 

S = s = ( S l , S 2 , . . . , s m }  , 

Y = S = {S1,S2,. . . ,Sn},  and 

E = {(si,Sj)Isi ESj, 1 _<i<m, 1 .<j<n}. 

Definition 3.3 For a bipartite graph G = (XLJY, E), I s l  _< IY I, we say that there 
is a complete matching M from X to Y if there is a matching of cardinality ] X I; that 
is, each vertex in X is adjacent to a distinct vertex in Y. 

The following two theorems can be used to determine whether ~ C .T'(.A/I ( ~ ) )  
or E E . ~ ( ~ ' ) ,  where .AA(dg) C ~ '  C ~.  

Theorem 3.3 ~ C .T'(.A,4(~)) if and only if, for the membership graph of .AA(~) 
over ~ ,  G = ( ~  t..J .A.4(~), E), there is a complete matching from ~ to .AA(~). 

Proof." Let M = { ( a l ,  7 1 ) ,  ( a 2 ,  r /2 ) , .  • • , (as, ~/s)} be a complete matching from E 
to .,AA(~) = (~/1, r / 2 , . . . ,  r/s, ~ / s + l , . . . ,  r/k} in G = ( ~  t_J ..AA(~), E), where s = 
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I ~ ] and ~ = {al,  a 2 , . . . ,  as}. Then we have ai ~ rli, 1 < i < s. Therefore, 
we can find an interpretation of .A4(~),  oz = ( a l , a 2 , . . .  ,as, a s + l , . . . ,  a/~), such 
that its value set S = Ul<i<k {ai} = ~ G .T'(.A4(ff)). 

Conversely, if ~ = {al,  a 2 , . . . ,  as} ~ .T'(.A4(~)) then there exists an 
interpretation of.A4 (if) ,  o~ = (al,  a 2 , . . . ,  as, a s+l , . .  •, ak), such that a i ~  ~i, 1 < 
i < s. That is, M = {(al,  r/l), (az, ~/~), . . . ,  (as, ~s)} is a complete matching from 

to .A4(~)  in the membership graph G = (~  U .A4(~) ,  E). [] 

Theorem 3.4 For all ~ ' ,  .A4(~) C_ if '  C_ ~ ,  ~ E . ~ ( ~ ' )  if and only if, for the 
membership graph of ~ over ~ ,  G = (E U fit, E), there is a complete matching 
from E to ff~. 

Proof." By replacing .A4(ff) by ff~, the proof is the same as that of Theorem 3.3. [] 

In some cases, there may not be 
membership graph G = ( ~  U ~ ,  E). 
explore how to determine if** in this 
an important theorem as follows. 

a complete matching from ~ to • in the 
That is, E ~ .T'(~). In the following, we 

situation. We start with a useful lemma and 

Lemma 3.4 For all SC ~ and .A4(~) C_ ~ '  C ~ ,  S~ ) r ( f f , )  if and only if 

• there is no complete matching from S to ~ in the membership graph of ~ 
over S, G = (S U ~  I, E) or 

• there is an ~7i E ~ ,  such that r/iN S = 0. 

Proof." We prove the following equivalence statement of this lemma: For all SC_ 
and .A4 (if)  C if '  C_ if, SC .T'(~')  if and only if 

• there is a complete matching from S to ~ in the membership graph of ff~ 
over S, G = (S U ~  ~, E) and 

• for all r/i E ~ ' ,  uiN S ~ 0. 

Suppose M = ( (a l ,  71), (a2, ~/2),. • •, (as, ~/s)}, where s = I S I and S = ( a l ,  
a 2 , . . . ,  as}, is a complete matching in G = (S U ~  ~, E) and ~ifq S ~ 0, ~/~i E ff~. 
Then choose the interpretation oZ = (aid a 2 , . . . ~  ass as+l~. . .~  ak), where k = 
[ if '  1, of fig' such that ai E ~iN S, i = s + 1 , . . . , / ¢  That is, Sa, = S E .T'(~') .  

Conversely, if S C .T'(~ ~) then there is an interpretation a ~ = (al ,  a2, • • •, as, 
a s + l , . . . ,  ak) of ~ ,  such that ai C ~i, 1 < i < s, and aj C ~/jfq S ~ 0, s + l  < 
j < k: That is, M = {(al,  zh), (a2, r12),.. . ,  (as, ~s)} is a complete matching in G 
= (S U ~ ' ,  E) and ai @ (~ifq S) 5~ 0, 1 < i < /~ [3 

Hall (1935) gave a necessary and sufficient condition under which there is a 
complete matching M from X to Y for a bipartite graph G = (X U Y, E). 
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Figure 3. The partitions of ~ and ~. 

M~ ~,  

Theorem 3.5 Let G = (X U Y, E) be a bipartite graph; then there exists a complete 
matching from X to Y if and only if I N(S) I --> I S I, V S C X, where N(S) is the 
neighbor set of S. [] 

If there is a matching M = {(al, rh), (a2, r12) . . . .  ,(as, r/s)}, where s = IMI, 
in a membership graph G = (~  U ~,  E), then denote M1 = Ul<i<s  {ai} and 
M2 = Ul<i<s {r/i}. The following theorem states how to determine if** when 
there is not a complete matching from ~ to ~.  

Theorem 3.6 If M* is a maximum matching in the membership graph G = (~  tA ~ ,  
E), then .T'( .hd(~) U M~) = .T'(~). 

Proof." Denote ~ '  = .hd(~)tA M~. We distinguish two cases: 
Case 1: [M* I = [ ~ [. That is, M* is a complete matching from ~ to 

ft. Because .hal(if) C ~ '  C ~,  by Theorem 3.2 and Theorem 3.4, we have 

Case 2: [M* [ < [ E I. That is, there is no complete matching from ~ to 
• . Therefore, according to M* and ~1, E can be partitioned into M~ and ~--M~ 
and ff can be partitioned into ~l and f f - - ~ .  I f ~ - - q b  t = ~ then ~l = qb, 
which implies .T'(~') = .T'(~) and the theorem follows. In the following, we prove 
the case for qb -- ~t  5~ ~- First, we claim that it is impossible for G to have an 
edge (a, b) such that a E ~ - - ~ 1  and b E • -- ~1. Otherwise, a larger matching 
M** =M*U {(a, b)} can be obtained (Figure 3), which violates the condition that 
M* is a maximum matching. That is, for all ai E ~ - M ~  and ~/j C ~ -- ~t ,  
ai  

Because .T'(~ t) C .T'(~), we have to show only .T'(~) C .T'(qS'). That is, 
for any S ~ .T'(ff'), we want to show that S ~ .T'(q5). For any S ~ .T'(~'),  we 
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distinguish three cases as follows. Note that S cannot be M~, for M~ E .T'(qb'). 

Case (1): S C M~. Because M* is also a complete matching in G* = (~1 U (b ~, E*), 
by Theorem 3.5 we know that I N(S*) I --> I S* 1, for all S* C M~. That implies 
[ N(S') I -> [ S' I, for all S' C_ S. Therefore, there is a complete matching M ~ C_ 
M* from S to ~ in the membership graph G ~ = (S Uq~ ~, E~), a subgraph of G*. 
Thus, by Lemma 3.4, S ~ .T'(@ ~) implies that there must be an z/i E @~ such that 
z/in s =  0. That is, for all the interpretations of @~, a j  = (alj,  a2j, • • • , ai j ,  • • • , 
akj) ,  where k = I q~ I, we have aij E z/i, aij ~ S, and the corresponding value 
set S~j = Ul<t<k {a t j }  5 ~ S. Therefore, all the Sc~j E .T'(@') contain an element 
aij ~ S, which implies that all the value sets in .T'(.Ad(6#)) contain an element 
aij ~ S. Similar to the proof in Theorem 3.1, we know S cannot be an element of 
.T'* (@), which implies S ~ .T'(~). 

Case (2): S C ~--M~i. We know that for a l la i  E ~--M~i and Z/j E ~ - - ~ l ,  
ai ~[ Z/j. Therefore, S ~ .T((I)), because elements in qb - ~ '  cannot contribute to 
any element of ~--M~i. 

Case (3): S f3 M~z ¢ 0 and S fq(E-M~)  :~ 0. By Lemma 3.4, for S ~ .T'(~'), 
either 

(a) There is no complete matching from S to qb t in the membership graph of 
~ l o v e r S ,  G ~ = ( S U B  I , E  ~)or 

(b) There is an z/i E q bl such that z/i n S = 0. 

If (a) holds, then I N(S' )  I < I s'  I in G' = (S U~ ' ,  E'), for some S t C S, which 
implies S ~ ~M~. By the Pigeonhole Principle (Lewis and Papadimitriou, 1981), we 
can find S" C S ~ such that S" contains at least two elements adjacent to only a 
common neighboring vertex z/z E if'. That is, [ S" [ > 2 and [ N(S") [ = 1 in 
G ~ = (S U ~  ~, E~). Because S ~ ~M~, we have either 

(1) S" C_ E - - ~  1 or 

(2) S"V1M~ ~ ¢ and S"M (~--M~) ~ ~. 

If (1) holds, then we also have IN(S") I < I S" [ in G" = ( S U ¢ ,  E"), because 
q5 -- ~t  contains no neighboring vertices of S". That is, there is no complete 
matching from S to • in G". By Lemma 3.4, S ~ .T'(~). 

If (2) holds, then we claim that there is only one element x in S", such that x E 
S"MM~. Otherwise, if there is more than one element in S " f 3 ~  1 then [N(S")[ > 1, 
which violates [ N(S  ~') [ = 1. Therefore, (x; z/x) E/14". We also claim that x has no 
neighboring vertices in • -- ~t. Otherwise, suppose z/v E (~  -- ~ )  is a neighboring 
vertex of x, and rti y is any element in S"N (~--M~), then a larger matching M** 
= (M* - {(x; z/z)}) U {(x; z/y), ~v, z/z)}, [M** [ = [M* [ +1 ,  can be obtained 
(Figure 4). This contradicts the assumption that M* is a maximum matching in G. 
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Figure 4. If flu E N({x}) in G, then M* can be augmented into M**, which 
is impossible. 

{ ( x , y . ) }  C M* 

@ 

{(X,~,),(y,i~)} C M** 

Therefore, IN(S") I = 1 <l  S" l is true in the graph G" = (S U~ ,  E ' ) ,  which 
implies there is no complete matching from S to ff in G ' .  Hence, S ~ .T'(q5). If 
(b) holds then, we have S ~ .T'(ff), similar to the proof in Case (1). For all the 
cases discussed above, we conclude that for any S ~ .T(~ ' ) ,  S ~ .T'(qS), neither. 
That is, .T'(~) C (~ ' ) .  That completes the proof. El 

4. Finding a Minimal Sufficient Subset 

Based on the properties discussed above, we develop an efficient algorithm to 
derive ~** in this section. As we have shown in the previous section, the bipartite 
matching technique plays an important role in our algorithm. Hopcroft and Karp 
(1973) developed an O(n 5/2) algorithm for finding a maximum matching in a bipartite 
graph, where n is the number of vertices. Due to this algorithm, Papadimitriou and 
Steiglitz (1982) relate this problem to the max-flow problem (Ford and Fulkerson, 
1962) for simple networks and prove that the matching problem for bipartite graphs 
can be solved in O(I V 11/2 • I E I)" Given an initial matching (including that 
which is empty), this algorithm gradually augments the matching process until no 
augmentation can be obtained. Thus, the resultant matching becomes maximum. 

By giving an initial matching, this matching algorithm will be used as a procedure 
in our algorithm as follows. Notice that a complete matching in a bipartite graph G 
is also a maximum matching in G. 

Algorithm 4.1 An Algorithm That Derives a Minimum Sufficient Subset of ~,  if**. 

Input: A Set of Partial Values, ft. 
Output: A Minimum Sufficient Subset of ~ ,  ~**. 

1. E = Ur ine+ ~+; 
2. Eliminate all quasi-duplicates of • and denote the resultant set ~ ;  
3. Call Find_All_Minimal_Elements(~'), which returns .hd(~ ' ) ;  
4. Find a maximum matching M* in membership graph G = 
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Figure 5. Relationship between M* and M.** 

M* M * *  

(s u M(e'), e) 
by giving an empty matching as the initial matching; 

5. If (1 M* [ = =  [ ~  [) then ( / *  Theorems 3.1 and 3.3 */ 
6. ~** = M ( ~ ' ) ;  
7. Output(Q**); Stop; 
8. } else { 
9. Find a maximum matching M** in membership graph G* = 

(E u E) 
by giving M* as the initial matching to ensure the minimality; 

10. @** = .A//(@0U M~*;/* Theorem 3.6 */ 
11. Output(@**); Stop; 
12. } 

Note that to ensure @** to be minimal, M* must be given as the initial matching 
when finding M** in Step 9. That ensures M~ C M~*. Notice that M* is not 
necessarily a subset of M**. For example, in Figure 5, M* = {(al, bl)} and M** 
= {(al, b2), (a2, bD}. M* ~ M** but M~ C M~*. In the following, we show how 
the algorithm works. 

~1 ~2 7/3 ~4 ~5 ~]6 

Example 4.1 Let ffP = {[a, b], [b, c], [a, c], [a, c], [a, b, c], [a, c, d]}. We want to find 
@** such that .T'(~) = .T'(@**). By the algorithm, we obtain ~ = (a ,  b, c, d} and 

~I  T/2 ~/3 7/~ T/6 

~t = {[a, b], [b, c], [a, c], [a, b, c], [a, c, d]) inSteps 1 and 2, respectively. After Step 
~1 ~2 ~3 

3, we derive .A4(~ t) = {[a, b], [b, c], [a, c]}. After finding a maximum matching in 
the membership graph G = (E u.A4 (~/), E), we have one of the possible maximum 

~1 ~2 ~3 

matching M* = ((a, [a, b]), (b, [b, c]), (c, [a, c]) }. This is illustrated by Figure 6(a). 
The shaded nodes in Figure 6(a) are elements of M~. Because the cardinalities of 
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Figure 6(a). Maximum matching M* 

113 

(b) Maximum matching M**. 

ql 

% 

Tl 5 

% 

(a) (b) 

M* and ~ are not identical, we continue to find another maximum matching in G* = 
r/1 

( E U ~ ,  E) by giving M* as the initial matching. This produces M** = { (a, [a, b]), (b, 
772 ~3 r/8 ~/i r/~ r/a ~}s 

[b, c]), (c, [a, c]), (d, [a, c, d])}, which implies M~* = {[a, b], [b, c], [a, c], [a, c, d]}. 
Figure 6(b) depicts this. The shaded nodes are elements of M~*. 
Therefore, 

W1 W2 ~3 W6 

• *" = .A4(~') O M~" = {[a, b], [b, c], [a, c], [a, c, d]). 

A computation of .T'(69) and .T'(.A4(cb')U M~*) verifies the result: 

= 

= {{a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, 
{a, c, d}, {b, c, d}, {a, b, c, d} } .Box  

The procedure Find_All.Minimal_Elements takes O(n2), where n = I ~ '  I, to 
generate .A4(~'). Therefore, the time complexity of the algorithm is dominated 
by the procedure for finding a maximum matching. That is, the time complexity of 
the algorithm is O(I V 11/2 I E [), where I V  I =  I ~ I + I ~ I 
and ] E [ : Ev,7,e,~ I ~/i 1. In the worst case, this complexity is 0(n5/2), 
where n = ] V 1. Note that in this algorithm we do not need to generate .T'*(~) 
by Find_Upper_Bound_of _.T ( ~ ). 
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Figure 7. Two equivalent relations 

7rA1,A2 ..... Am(R) 

(a) 

~AIA2.. .Am(R) 
A1A2""Am 

711~Q721 ~Q " ' "  ~'QTml 

712 ~ 7 2 2  ~ " ' "  ~ 7 m 2  

71n 72n  " ' "  

(b) 

5. Extension on Multi-Attribute Projections 

In general, a projection may involve more than one attribute in a relation. To cope 
with the redundant tuple elimination under this case, the following definition is 
given. 

Definition 5.1 The cartesian product 7a X 7b of the partial values 7a = [al, a 2 , . .  •, 
am] and 7b = [bl, b 2 , . . . ,  bn] is the partial value 7a~b with U(7a~b) being a set 
of the ordered pairs (ai, bj) for every ai E 7a and bj E 7b. 

Example 5.1 The cartesian product 7a X 7b of the partial values 7a = [a, b, c] and 
7b = [x~ y] is the partial value 7a~b with U(7a~b) = {(a, x), (a, y), (b, x), (b, y), (c, 
x), (c, y)}. That is, 7axb = [(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)]. [] 

Consider the result of a projection 71A1 ,A2 ..... Am (R), m > 1, as Figure 7(a) depicts. 
The relation 7rA1,A2 ..... Am (R) then can be regarded as a relation 71-A1A2...A m (R) with 
the single attribute A1 A2 • • • Am. If the "true" value of a tuple of 71"A1 ,A2 ..... Am (R), 
7 1 j , 7 2 j , . . . , 7 m j  ~ is the m-tuple (al,  a 2 , . . . ,  am), ai E 7ij, where ai is the 

"true" value of 7ij; then the "true" value of 7U ~ 2j ~... ~ mj is also (a 1, a 2, • • •, a m), 

and vice versa. We know that a tuple of 7rA1,A2 ..... Am (R), 71j, 72j , .  • •, 7mj ~ can 

be considered as a tuple of 7rAiA2...Am(R ) with attribute value 71j><2j><...xmj ~ 

71j x 72j x • • • x 7mj. That is, the relations 71"A1,A2 ..... Am (R) and 7rA1A2...Am (R) are 
semantically equivalent and can be transformed to each other. Figure 7 illustrates 
this. By this transformation, a one-attribute relation can always be obtained and 
Algorithm 4.1 works as before. 

6. Conclusion 

Partial values have been used to represent imprecise data in databases. In previous 
work we studied extended algebraic operations on partial values (Tseng et al., 1993b, 
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1993c). In this article, we further consider the problem of eliminating redundant 
partial values which may result from a projection on an attribute with partial values. 
Our work provides a more concise answer for users and reduces the communication 
cost when partial values are requested to be transmitted from one site to another 
site in a distributed environment. Therefore, our work also contributes to query 
optimization in a distributed database system. 

Using the notion of interpretations over a set of partial values, we define necessary 
and redundant partial values. We then proceed to find a subset of the necessary 
partial values, which is the set of all minimal elements of 69, and derive properties 
for a set of partial values. In addition, the problem of searching a minimal sufficient 
subset of 69, 69"*, is converted into a bipartite grap]h matching problem. Based 
on the properties of partial values, we develop an efficient algorithm to find 69"* 
and eliminate the redundant subset 69 -- 69**. A very interesting duality in our 
algorithm is that searching a minimal sufficient subset in a set of partial values can 
be achieved by finding a maximum matching in a bipartite membership graph. 

For the union of two sets of partial values, 691 and 692, our work can be employed 
as follows. First, collect together all members of 691 and 692 to form another set 
69. Then, apply our work to eliminate redundant elements in 69. Imielifiski and 
Vadaparty (1989) and Imielifiski (1991) pointed out that if partial values are allowed 
to occur in databases, the data complexity of query processing jumps from PTIME 
to CoNP (Garey and Johnson, 1979). However, there are also some types of queries 
that have PTIME complexity. Our ongoing studies of query processing over partial 
values are intended to discover more PTIME algorithms from algebraic point of 
view. In our recent work (Tseng et al., 1993b, 1993c), we found that division (by 
restricting the divisor to be definite) and some aggregate operations over partial 
values---m/n, max, and count--can be done in PTIME. 
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