
Maintaining Dynamic Channel Profiles on the Web

Haggai Roitman, David Carmel, Elad Yom-Tov
IBM Haifa Research Lab

Haifa 31905 Israel
{haggai,carmel,yomtov}@il.ibm.com

ABSTRACT
This work addresses a novel problem of maintaining channel pro-
files on the Web. Such channel maintenance is essential for next
generation of Web 2.0 applications that provide sophisticated search
and discovery services over Web information channels. Maintain-
ing a fresh channel profile is extremely difficult due to the the dy-
namic nature of the channel, especially under the constraint of a
limited monitoring budget.

We propose a novel monitoring scheme that learns the channels’
monitoring rates. The monitoring scheme is further extended to
consider the content that is published on the channels. We describe
a novelty detection filter that refines the monitoring rate according
to the expected rate of novel content published on the channels. We
further show how inter-channel profile similarities can be utilized
to refine the channel monitoring rates.

Using real-world data of Web feeds we study the performance
of the monitoring scheme. We experiment with several monitor-
ing policies over a large set of Web feeds and show that a policy
based on learning the monitoring rate of the channels, combined
with novelty detection, outperforms alternative channel monitoring
policies. Our results show that the suggested content-based pol-
icy is able to maintain high quality channel profiles under limited
monitoring resources.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

Keywords
Web Monitoring, Web feeds, Channel Profiles

1. INTRODUCTION
The number of diverse information channels available on the

Web is rapidly increasing. It spans many different knowledge do-
mains such as news, stock and market reports, auctions, and more
recently channels containing data gathered from Blogs or Wikis.
Recent advances in Web technology, such as the improved access
capabilities to channels and the availability of new data delivery

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

mechanisms for disseminating the channel content, have resulted
in the emergence of more advanced client-side Web applications.
These applications require sophisticated manipulation of channels
on the Web including the discovery, search, and recommendation
of relevant channels. Such applications include various Web 2.0
mashups, and situational applications in general, which integrate
data that is gathered from several different, possibly inter-related,
channels. An imperative task for developers of such applications
is to locate relevant channels that will maximize the benefit gained
from their applications.

A crucial step toward the support of such advanced services over
channels is the ability to capture the essence of each Web chan-
nel. This can be done using channel profiles. A channel profile is a
compact representation of the channel content, which can be used
to summarize and capture the main characteristics of the content
published on this channel. Profiles can simplify the way relevant
channels can be located and can be used to match application re-
quirements against the available set of channels managed by the
system.

Maintaining channel profiles is challenging due to several rea-
sons. First, channel content is usually dynamic, as in the case of
Web feeds where the content is continuously changing, sometimes
at a daily or even hourly rate. Because the profiles of such channels
may continually change over time, capturing the dynamic trends of
the channel content is extremely difficult.

Second, the majority of channels on the Web are available nowa-
days for access via pull-only protocols, while most servers refrain
from supporting push protocols due to scalability issues. Previ-
ous work on novelty detection in data streams (e.g., [29]), and data
stream summarization (e.g., [21]), assume that the stream of up-
dates to a channel is pushed into the system. By contrast, in a pull
based scenario each channel is required to be actively monitored
in order to maintain enough snapshots to construct a fresh and re-
liable profile of its content. The freshness of maintained profiles
therefore directly depends on the rate at which channels are mon-
itored. Moreover, different channels may have different rates at
which novel content is being published on them [17]; thus we can
expect that profiles of different channels may change at a different
(possibly even non-regular) rate.

Third, in the pull-based scenario, channels may be volatile, mean-
ing that novel content published over time has a limited lifespan
during which it is available on the channel. Such data volatileness
is very common in Web feeds, where channels have a limited ca-
pacity for the number of feed entries that are maintained on the
feed. Such limitation is further determined by the feed popularity
and the feed provider update policy [15] (e.g., an overwrite pol-
icy for which the provider maintains only the last newest entries of
the feed). Therefore, monitoring the channel profiles in a pull set-

151

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

ting is challenging, where it is hard to predict the moments when
novel content, which may result in a significant profile change, is
published on such volatile channels and is still available for access.

Finally, channel monitoring can be constrained, either due to lim-
ited system resources such as bandwidth, memory, or CPU, or due
to monitoring restrictions set by the channel providers themselves
(termed “politeness constraints” in [9]) due to heavy workloads im-
posed by multiple client access. Therefore, the number of channels
that can be monitored in parallel is further limited and requires ef-
ficient utilization of the allocated resources for the maintenance of
fresh profiles. Traditional monitoring solutions rely solely on the
model of raw update events, where the rate of actual content change
is neglected. Thus, such solutions may consume superfluous re-
sources and, therefore, may fail to scale.

Many previous works have studied the monitoring of dynamic
Web data sources such as Web channels. Our work differs from
previous works in several aspects. Most current Web monitoring
solutions derive monitoring rates based solely on the “raw” update
rates of Web channels, while we consider also the rate of content
change published on these channels to improve the monitoring pol-
icy. For this purpose, we suggest a learning scheme based on nov-
elty detection for Web channels in pull-only settings. More specif-
ically, our main contributions can be stated as follows.

• We suggest a novel profiling model for channel content that
can be used for channel search and discovery.

• We formally define the problem of maintaining dynamic pro-
files of channels’ content. We provide several evaluation
measures for those profiles quality.

• Using the proposed measures, we explore solutions for chan-
nel profile maintenance and propose efficient and effective
monitoring policies for a single channel as well as for multi-
channel monitoring. Our policies continuously decide which
channels to monitor over time, considering both the update
rate as well as the novel content rate of the channels data.
We further refine the channel monitoring rates by utilizing
inter-channel profile similarities.

• Using real world Web feeds, we report on the performance
of our policies with respect to the proposed measures. We
show that by taking the content update rate of the channels
into consideration, we are able to significantly save the mon-
itoring resources required by the policy while maintaining a
high profile quality.

The rest of the paper is organized as follows. We begin with a
motivating example in Section 2 that demonstrates the significance
of dynamic channel monitoring on the Web. Section 3 discusses re-
lated work. In Section 4 we present our profile model and formally
define the problem of maintaining channel profiles. Section 5 dis-
cusses different monitoring solutions for a single channel, while
Section 6 discusses the monitoring problem for the multi-channel
case. Finally, Section 7 concludes and Section 8 discusses future
directions.

2. MOTIVATION
As a motivating example, we consider an application of a simple

profile management system for Web channels. Figure 1 illustrates
the simple architecture of such system. The system consists of five
components: pull protocol adapters, a monitor, a profiler, a search
index, and a service API. The system monitors channels and ac-
cesses the content published on the channels using the pull-protocol

Figure 1: Example application of a profile management system
for channels on the Web

adapters (e.g., using HTTP GET calls). The content gathered by the
monitor is delivered to the profiler that is responsible for updating
the channel profile and generating a fresh profile for the channel’s
content. The profile is then updated in the search index. The system
exposes a convenient service API for clients to search and locate
relevant channels for their application needs. The system can fur-
ther match the client requirements (which might be submitted also
as a user-profile to the system) against the current channel profiles
available in the system to recommend relevant channels that can
satisfy the client’s needs.

Clients of such a system may consist of various mashup applica-
tions1 that need to discover the most relevant channels to be used
as inputs and outputs of the different mashup components. Other
clients may consist of different Web feed readers that search for
relevant feeds according to their user profile, which describes the
user’s information interests. Moreover, the system can recommend
new sources for clients, helping them discover new relevant chan-
nels that they would not be aware of otherwise.

The monitoring component of the system has a limited amount
of available resources for the task of maintaining fresh channel pro-
files; thus, it is required to efficiently monitor the channels to max-
imize the system’s ability to cope with the management of multiple
channels. To do so, the monitor has to estimate the rate at which
each channel should be monitored and how to schedule the limited
allocated monitoring system resources in the most efficient way.
In what follows, we describe monitoring policies tailored for this
specific task, i.e., maintaining good representative channel profiles
that best reflect the channel content, under the constraints of limited
computational resources.

3. RELATED WORK
The Web is very dynamic, causing any representative repository

of Web pages to become out-of-date over time. Maintaining a fresh
repository of Web pages is challenging and many Web monitoring
solutions have been suggested [3, 7, 12, 14, 18, 19, 24, 23, 22, 26,
27]. Such solutions usually rely on a model of updates to the data
sources monitored. Using a given update model, a Web monitoring
policy has to decide when and how much to monitor each of its data
sources. Therefore, the efficiency of any Web monitoring solution
strongly depends on the the efficiency of the update model.

Several works study update models for dynamic data sources
such as Web channels (e.g., [6, 8, 11]). These works rely mostly
on update independence assumptions and provide update models
that are usually based on Poisson processes. To overcome model-
ing errors during on-line monitoring, adaptive solutions have also
been suggested (e.g., [3, 14]). These approaches rely on feedback

1Many examples of such applications are available at
http://www.webmashup.com/.

152

gathered during active monitoring of the data sources.
While some Web monitoring solutions provide generic policies

(e.g., [18, 24, 23]) that are application-independent, others provide
domain-specific solutions (e.g., [27, 26] for Web feeds). Some
monitoring solutions consider user-centric approaches (e.g., [19,
27, 24, 23]), where user data delivery requirements are also taken
into consideration, either explicitly (e.g., in the form of user profiles
[22, 24, 23]) or implicitly (e.g., by deriving user-reading patterns
[27]).

The recent study of Ntoulas et al. [17] on the evolution of the
Web suggests that search engines (and other applications), which
depend on content that is available for access via pull-only proto-
cols, should consider both the update patterns of Web pages and
the content that such updates contribute. Ntoulas et al. further
measured the content change of Web pages using cosine similarity.
This study has shown that the content of Web pages may change at
a different rate than the page actual update rate.

3.1 Our Contributions
Our work extends the important observation made by Ntoulas et

al. [17] and is targeted at maintaining the profiles of dynamic Web
channels. It differs from previous works in several important as-
pects that are unique to this specific task. Current Web monitoring
solutions derive monitoring rates based solely on the “raw” update
rates of Web channels (e.g., [18, 26]), while we consider also the
rate of content change published on these channels to improve the
monitoring rates. For this purpose, we suggest a learning scheme
based on novelty detection for Web channel monitoring in a pull-
only setting. Both traditional novelty detection solutions (e.g., [1,
16, 29]), and state-of-the-art news summarization (e.g., [21]), news
filtering (e.g., [2, 10]), and topic tracking (e.g., [20]) solutions as-
sume that the complete stream of update events is available via
push into the system. Furthermore, the main focus of these solu-
tions is on efficient data filtering and novelty detection methods,
where load shedding techniques can be applied in order to control
the amount of pushed data to be consumed by the system (e.g.,
[28]). A pull-only setting is much more challenging, mainly due
to the additional possibility of incompleteness of the processed
data, which is generally attributed to the data volatileness proper-
ties. Such data volatileness is closely coupled with the maintenance
policy of the data source. It is further worth noting that pulling data
directly from the data source imposes additional computational re-
sources. In the presence of limited such resources, any monitoring
solution is required to make efficient decisions on how to optimally
schedule the data monitoring tasks.

The objective of previous solutions in the literature is to maxi-
mize a quality measure given in terms of “single-page-snapshot”,
such as a single-page data freshness. Our objective is to maintain
a high quality channel profile that represents a window of several
pages provided on the channel.

Most existing Web monitoring solutions require an update model
as input, while we learn such a model on-line. Furthermore, assum-
ing that updates to a channel are independent is usually an unreal-
istic assumption for our problem. Instead, we suggest an adaptive
learning scheme based on reinforcement learning techniques for
deriving a monitoring rate on-line, where we learn the rate of con-
tent change rather than just raw updates. We further incorporate
inter-channel profile similarities in our learning scheme to refine
more the monitoring rates.

To the best of our knowledge, this is the first work to consider the
problem of maintaining channel profiles on the Web. We propose a
novel solution for this problem based on a content-oriented learning
approach. We identify channel profiles as a fundamental tool for

the development of next generation of Web 2.0 applications that
provide advanced search and discovery services over information
channels and go beyond existing solutions in the literature.

4. DEFINITIONS
In this section we provide definitions for the main concepts de-

scribed in this work.

4.1 Web Channels
Let T represent an epoch of time, and let T ∈ T denote a time

moment in T . We denote C = {C1, C2, . . . , Cn} a set of n chan-
nels, where each channel C ∈ C is defined as an infinite stream
of update events C = (e1, e2, . . .), starting from the beginning of
epoch T . We assume textual streams, where each update event
e ∈ C contains a text message. We further denote life(e) the pe-
riod of time during T on which update event e is available on the
channel.

For a given time T ∈ T , and a channel C ∈ C, a channel snap-
shot at time T (denoted CT)) is given by the set of update events
available on the channel at time T ; that is:

CT = {e|e ∈ C ∧ (T ∈ life(e))}
Let W be a time window in T .2 Given a channel C ∈ C, we

further denote CW the union of channel snapshots during the time
window W :

CW = ∪T∈W CT

4.2 Channel Profiles
A channel profile represents the textual content of the channel

events belonging to the channel snapshot CT . Due to the dynamic
nature of channels, channel snapshots captured during different
times may differ, resulting in a possible difference in the corre-
sponding channel profiles.

In this work we adopt the Bag Of Words (BOW) model for rep-
resenting the channel content. Given a vocabulary of terms D =
{t1, t2, . . . , tm}, the channel profile, at given time T , is then de-
fined as a weight vector:

P (CT) = (wt1 , wt2 , ..., wtm)

Each weight wt corresponds to a unique term t ∈ D, which may
appear in the textual content of the channel events. If CT content
does not contain term t, then wt = 0. Each term can be either a
word, a phrase, or a lexical affinity.3

Similarly, given a window W of k last events captured on the
channel (i.e., a window of size k), we define P (CW) as the profile
representing the content of those events.

The channel profile is therefore a compact representation of the
channel content at a given time and is used to capture the relative
importance of each of the terms in the channel at time T (or during
a time window W).

An increase in profile window size results in more content that
is accumulated over a longer period of time, and therefore, it may
require more resources such as in-memory. Furthermore, the pro-
file window size has an important role from a user’s point of view.
A user that prefers generality (i.e., a wide perspective of the con-
tent published on the channel for a long time) would require a large
window size to satisfy these needs. On the other hand, a user that

2Such time window can be defined also in terms of number of
events.
3A lexical affinity is a pair of closely related words found in prox-
imity to each other in the text [5].

153

prefers specificity (i.e., a narrow perspective of the current content
published on the channel) would require a small window size.

4.2.1 Web Feed Profiles
Web feeds are usually used by content providers to publish con-

tent on the Web. Those feeds are dynamic channels, supported by
pull-only protocols (e.g., available for access through HTTP GET
calls), where the set of published items on each feed changes over
time and items are volatile in most cases.

A Web feed, such as RSS or Atom feed, is an XML file that
contains a set of feed items, where each item links to some Web
resource (e.g., an HTML file), and contains summarized details of
the resource such as title and description. The items that are pub-
lished on the feed over time comprise the dynamic feed channel.
Therefore, we treat every new item published on feed C as an up-
date event e ∈ C. The set of terms appearing in the item text (title
and description) comprise the item bag of terms, B(e).

We determine the terms’ weights in a Web feed profile using the
well-known tf -idf weighting scheme [25]. Given CW , the set of
items that are available on feed C during the time window W , the
term frequency of a term t, tf(t, CW), is the number of occur-
rences of t in CW . To calculate the inverse document frequency
of a term t, idf(t), we first count all items gathered from the feeds
C ∈ C, from the beginning of the epoch until the end of the time
window W , denoted CW (T). We then count the number of items
in CW (T) that include at least one occurrence of term t, Ct

W (T).

Then the idf of term t is calculated by idf(t) = log
(
|CW (T)|
|Ct

W
(T)|

)
.4

Finally, the weight of each term t in the profile P (CW) is given by
wt = tf(t, CW) · idf(t).

While the tf of a given term t in the profile represents a the tem-
porary local importance of the term in the channel during the given
time window, the idf of a term represents its global importance by
considering also the occurrence of the term in items that appeared
on the different channels during the history. Since channel profiles
are used to represent the dynamic textual content of the channel,
common terms appearing in many channel items are less important
in representing the channel content in a given time frame. There-
fore, common terms (with low idf value) will be weighted lower
compared to the rarest terms.

Table 1 provides an illustration of the top-10 terms (both key-
words and lexical affinities) of the CNN Politics Web feed5 profile
that were captured during a period of 10 days in July 2007. We ob-
serve that the profile stayed quite stable during the first week and
had minor changes; starting from the eighth day the profile changed
remarkably. This example shows that some channel profiles are dy-
namic and might have a varying rate of content change over time.

4.3 Measures
We now define two measures over channel profiles. The first is a

profile similarity, which is used to evaluate the similarity between
two channel profiles. The profile similarity will be used to eval-
uate how the channel content is changed over time, by measuring
the difference between channel profiles in different time periods.
The second is a channel cohesion measure that further can be used
to compare different channels with regard to the average rate of
change of their content over time.

4Note that the term’s idf for channel profiles is different than the
static term’s idf in classic IR tasks, where the entire collection of
data is given in advance. For channel profiles, the global number of
occurrences of a term in the different channels can only be approx-
imated dynamically and is affected by the monitoring process.
5http://rss.cnn.com/rss/cnn allpolitics.rss

4.3.1 Profile Similarity
Given a pair of channel profiles P1, P2, we define the similarity

between the two profiles as their vector space model cosine simi-
larity:

sim(P1, P2) =
P1 · P2

‖P1‖‖P2‖ (1)

It is worth noting that the similarity between profiles of the same
channel in two different time windows reflects the amount of changes
in content of the channel over time.

4.3.2 Channel Cohesion
Channel cohesion measures the cohesion of the textual content

in the channel over time. A channel with a low cohesion is one
for which new published events dynamically change the channel
content as reflected by the corresponding channel profile. Such a
low cohesive channel will require a higher monitoring rate in order
to keep its profile up to date.

A higher cohesive channel is a one where new items cause only
minor change in its profile. This is typical of channels with many
duplicate (or near duplicate) items or when items are focused on
the same topic for a long period of time. For such channels, a low
monitoring rate will suffice.

DEFINITION 1 (CHANNEL COHESION). Given a channel C ∈
C, the channel cohesion during the epoch T = [T1, T2] is calcu-
lated as:

coh(C, T) =
1

T2 − T1

∫ T2

T1

sim (P (CT) , P (CT+dT)) dT (2)

Channel cohesion measures the average profile similarity in a
given time period [T1, T2]. If the channel profiles significantly dif-
fer over the time period, the cohesion will be low. In practice, one
can approximate the cohesion metric to measure the relative pro-
file change per update event. Given N update events that occurred
during epoch T , and assuming that the initial profile is empty (all
terms weights are zero), Equation 2 is modified to:

coh(C, T) =
1

N

N∑
i=1

sim(P (CWi−1), P (CWi)) (3)

where CWi−1 is the channel without event ei and CWi is the chan-
nel after adding event ei.

Figure 2 shows the cohesion of 40 Web feeds monitored during
two months by our experimental system. We see high variance;
where the range of cohesion values is between 0.76 to 0.91, with
an average of 0.82. We also make an interesting observation from
Figure 2. As we go from the left side of Figure 2 (with the lowest
cohesion values) to the right side of Figure 2 (with highest cohesion
values) we observe feeds that, judging by their titles, have a more
focused topic, resulting in higher cohesion values. These results
suggest that the cohesion measure can be used to further identify
which channels are more stable than others with regards to the rate
of profile change. This observation motivates the exploration of
new policies for maintaining channel profiles that also consider the
cohesion of the channel content, in addition to standard approaches
that only consider update rate. Such monitoring policies will be
addressed in the rest of the paper.

4.3.3 Channel Monitoring Policy
A monitoring policy’s task is to maintain accurate channel pro-

files by deciding which channels to probe6 at any given time. A
6A probe is a channel pull action (monitoring).

154

Days Web feed profile’s Top-10 terms
1 gonzales, debate, cnn, ”al qaeda”, senate, ”debate youtube”, questions, house, youtube, appears
2 gonzales, debate, senate, ”al qaeda”, house, qaeda, ”white house”, appears, contradict, ”appears contradict”
3 gonzales, testimony, senate, ”al qaeda”, house, between, obama, ”white house”, alberto, ”alberto gonzales”
4 gonzales, testimony, senate, obama, house, alberto, ”alberto gonzales”, ”white house”, contradiction, fbi
5 gonzales, testimony, obama, house, senate, alberto, ”alberto gonzales”, ”white house”, contradiction, fbi
6 gonzales, testimony, obama, house, senate, alberto, ”alberto gonzales”, ”white house”, white, contradiction
7 gonzales, testimony, alberto, ”alberto gonzales”, obama, general, attorney, ”attorney general”, ”attorney gonzales”
8 brown, roberts, home, justice, maine, chief, ”chief roberts”, ”chief justice”, ”home maine”, ”justice roberts”
9 home, roberts, chief, ”chief justice”, brown, justice, maine, ”chief roberts”, fbi, ”justice roberts”
10 home, justice, roberts, chief, ”chief justice”, brown, stevens, health, ”chief roberts”, maine, fbi

Table 1: The top-10 terms of the CNN Politics Web feed profile captured over ten days in July 2007. Note that the profile is quite
stable during the first week, but changes remarkably on the eighth day.

Figure 2: The cohesion values measured for 40 different Web feeds during two months from July to August 2007

channel monitoring task is considered to consist of several costs
such as opening a TCP/IP connection to the Web channel provider,
capturing its current snapshot by downloading its content, refresh-
ing the channel profile, and updating the index. We further assume
a constrained monitoring setting where the monitoring policy is al-
lowed to probe up to M < n channels in parallel at each time
T ∈ T . The policy objective is therefore to maximize the quality
of the channel profiles by selecting which M channels to probe at
any given time, under the defined constrained setting.

4.3.4 Monitoring Quality
Given a channel C ∈ C, we denote the optimal profile at time

T ∈ T , P opt(CT) as the profile obtained by monitoring the chan-
nel after each update event in the channel. Given a channel mon-
itoring policy pol, we further denote P pol(CT) as the profile ob-
tained by the monitoring policy at time T , which in general will be
sub-optimal due to some missing non-monitored events caused by
policy decisions. The profile monitoring quality obtained by policy
pol over the set of channels C, is given by:

Q(C, pol) =
1

n

∑
C∈C

[
1

|T |
∫

T∈T
sim(P opt(CT), P pol(CT))dT

]

(4)

This quality measure provides an indication of how good the pol-
icy pol is with respect to the optimal policy. It measures the average
similarity between the optimal profiles obtained by the optimal pol-
icy, to the profiles obtained by pol, over time and over the full set
of channels.

4.4 Experimental Data and Simulation Setup
We conclude this section with a description of our experimental

data that was used to evaluate the monitoring policies proposed in
this work with respect to the quality measure described above.

For our experiments, we used a collection of real world Web
feed data from 132 feeds, taken from different domains such as
news (e.g., CNN news), technical data (e.g., Apple technical sup-
port), and academic publications (e.g., Wiley publications)7. We
monitored the feeds extensively during a period of three months
from July to October 2007. We extracted a total of 68400 unique
feed items. The average number of extracted items per feed is 560.
The average update rate is 0.284 events per hour with a standard
deviation of 0.537.

The monitoring policies proposed in this work were evaluated
using a controlled simulation environment. The simulator recon-

7The collection is available on request directly from the authors.

155

structs the exact on-line dynamic behavior of each Web feed ac-
cording to the publication date of the feed items. Evaluated policies
are required to select up to M out of n channels for monitoring at
every time moment during the simulation runtime, where both M
and n are configurable system parameters. Given that the policy
has selected a certain feed for monitoring, the current snapshot of
the feed at the time of monitoring is given back as feedback, simu-
lating the pull-only access to the Web feed.

For each policy-channel pair, the simulator dynamically main-
tains, the channel profile as maintained by the policy during mon-
itoring runtime. To record the quality obtained by the policy, the
simulation further maintains the optimal channel profiles, which
are calculated according to the complete stream of update events
to the channels. Other parameters can be also given as configura-
tion parameters to the simulator, some of which will be discussed
in the next section, e.g., the profile window size W .

The simulator was implemented in Java and is based on open
source packages, such as ROME feed parser8 and Apache’s Http-
Client9, to download and to extract the feed items from the Web
feed. We further used the Juru search system [4] to parse and pro-
file the Web feed content. The simulation experiments were run on
a dual-core machine with 2GB RAM and Windows Server Edition
OS.

5. SINGLE CHANNEL MONITORING
This section describes our proposed framework for single chan-

nel monitoring. In this simplified case, the number of channels to
monitor by the policy, in Equation 4, is reduced to n = 1.

We distinguish between off-line and on-line channel monitoring.
In the off-line case we follow [6] to apply a policy that monitors
the channel in a uniform monitoring rate with respect to the aver-
age update rate of the channel. For the on-line case we provide an
adaptive learning scheme to derive the channel update rate, which
is used to derive a monitoring rate as in the off-line case. We experi-
mentally show the effectiveness of the learning scheme to converge
to the same uniform monitoring rate as determined in the off-line
case.

We further extend the policy to consider the content published
on the channel. This extension estimates the rate of novel update
events that appear on the channel. This work shows that monitor-
ing based on the novel update rate provides a high quality channel
profile with significant reduction in the system resources required
for the monitoring task.

5.1 Off-line Monitoring
In the case of off-line monitoring for a given channel C ∈ C, the

set of all update events e ∈ C and their corresponding content is
known in advance for a given epoch T . This mode is, of course,
only possible in retrospect. In practice, only the on-line case is
a realistic one, for which the set of update events is unknown in
advance.

Let θC(T) denote the update rate for channel C at time T ∈ T
and let λC(T) denote the monitoring rate of channel C at that same
time. The off-line monitoring rate of channel C ∈ C is derived as
the average update rate in the epoch T ; That is, given that channel
C has N update events during T , then for each time T ∈ T the off-
line monitoring rate is determined as the uniform rate λoff

C (T) =
N
|T | .

It is worth noting that the off-line (uniform) monitoring rate λoff
C (T)

8http://rome.dev.java.net
9http://jakarta.apache.org/httpcomponents/httpclient-3.x/

serves as a first order approximation to the real (non-uniform) up-
date rate of the channel θC(T).

5.2 On-line Monitoring
In the on-line case, due to the volatile nature of the channels

(and especially in the case of Web feeds), the rate at which we
monitor the channel determines how many update events may be
captured. With limited system resources for channel monitoring,
the monitoring rate should be selected wisely – maximizing the
profile quality while minimizing the monitoring rate.

In on-line monitoring, the next monitoring time is derived from
the current on-line monitoring rate. We denote Tprev the last time
that the channel was monitored and λon

C (Tprev) be the current on-
line monitoring rate. Thus, we choose to monitor the channel again
at time T = Tprev + 1

λon
C

(Tprev)
.

5.2.1 Learning On-line Monitoring Rate
We now provide an adaptive scheme based on Reinforcement

Learning for deriving the monitoring rate of a channel. For this
purpose we use Boltzman Learning [13].

Equation 5 provides the iterative learning rules that we use, as-
suming that the learning process starts at the beginning of epoch T .
Let λon

C (0) = λ0 be the initial monitoring rate, selected arbitrarily,
and let Tprev = 0 denote the beginning time of epoch T . Let CW ′

denote the set of captured update events between two consecutive
probes to channel C that occurred at times Tprev and T respec-
tively, where we define W ′ = [Tprev, T] and |W ′| = (T −Tprev).
Then the learning rule is given by:

λon
C (T) = αT · λon

C (Tprev) + (1− αT) · |CW ′ |
|W ′|

αT = α0 · exp
−T
G

(5)

αT is a learning parameter that controls the tradeoff between
the amount of exploitation and exploration of the learning process.
The larger αT is, the more we rely on the current monitoring rate
λon

C (Tprev) learned from history (exploitation) and the less we rely
on the (local) observed rate (exploration). The G parameter con-
trols the rate of learning where larger values imply a slower learn-
ing process. For our experiments we set α0 = 0.1 and G = 100,
chosen by trial and error using the full set of Web feeds.

Figure 3(a) compares the relationship between the off-line moni-
toring rate and the on-line monitoring rate derived from the experi-
mental data described above. The off-line monitoring rate λoff

C (T)
was determined as described in Section 5.1, using the full set of
events captured on the channel during a two-month period. The
on-line monitoring rate λon

C (T) was learned for the same period
using Equation 5. Each point in Figure 3(a) corresponds to the
off-line and the on-line monitoring rates as determined for one of
the channels. We observed that the on-line rates are highly cor-
related (Spearman correlation ρ = 0.96) with the off-line rates.
This demonstrates that the on-line monitoring rate, as learned by
the learning scheme, converges to the off-line monitoring rate. Fig-
ure 3(b) shows the learning curve of the on-line rate over time for
the CNN Top-Stories Web feed10 illustrating such convergence.

Note that the off-line rate expresses the average rate of updates
on the channel, while the on-line rate continuously adapts to the dy-
namic update rate of the channel. When the update rate is changed
over time, the on-line rate will adapt to those changes in a local
manner. This might explain the (few) outliers in Figure 3(a).

5.3 Channel Monitoring Based on Novelty De-
tection

10http://rss.cnn.com/rss/cnn topstories.rss

156

Figure 3: (a) The relationship between off-line and on-line
monitoring rates of the Web feeds. The diagonal line repre-
sent equal values of the two update rates (45 degree slope). The
strong correlation (Spearman ρ = 0.96) demonstrates the con-
vergence of the on-line monitoring rates to the off-line monitor-
ing rates. (b) A typical learning curve of the on-line monitoring
rate for the CNN’s Top-Stories Web feed.

We now present a channel monitoring scheme based on novelty
detection. The idea behind this scheme is based on the observation
that many new events are redundant in terms of providing novel in-
formation and do not cause any significant change to the channel
profile. Moreover, the rate of new novel events differs from channel
to channel therefore it is beneficial to learn the update rate of novel
events and then use it as the monitoring rate for the channel. Since
novel update rate is usually smaller than the complete update rate,
and since a policy based on the novel update rate is expected to pro-
vide high quality channel profiles (as will be shown in Section 5.4),
we can save valuable system resources.

5.3.1 Novelty Detection Scheme
Our novelty detection scheme works as follows. Similarly to

Section 5.2.1, let CW ′ denote an ordered set of captured update
events between two consecutive probes to channel C that occurred
at times Tprev and T respectively (hence, W ′ = [Tprev, T]). Fur-
thermore, let coh(C, T) be the cohesion calculated given the last N
captured events on the channel up to time T ∈ T , as determined by
Equation 3. We first calculate for each event ei ∈ CW ′ its marginal
influence on the channel cohesion, given by:

∆eicoh(C, T) = sim(P (CWi−1), P (CWi))

We further determine the standard deviation of the channel cohe-
sion using the following unbiased estimator:

σcoh(C,T) =

√√√√ 1

N − 1

N∑
i=1

(∆eicoh (C, T)− coh (C, T))2 (6)

Figure 4: Flow diagram of the on-line monitoring process based
on novelty detection.

Then, we disregard any event ei ∈ CW ′ if its similarity to the
current profile is high. That is:

∆eicoh(C, T) ≥ coh(C, T) + β · σcoh(C,T) (7)

Otherwise, the event is considered novel following its dissimilarity
to the channel profile and its potential for significant influence on
the profile.

Let Cnov
W ′ denote the set of remaining detected novel events that

pass the novelty filter.
The parameter β is a threshold parameter that is used to control

the amount of filtering for novelty detection. It controls the trade-
off between monitoring rate and profile quality. A high β means
low filtering – most events will be considered novel. Conversely, a
low β will cause only a few events to be considered as novel, but
this will, in turn, cause insufficient monitoring followed by degra-
dation in channel quality.

5.3.2 Applying Novelty Detection for Monitoring
Using the novelty detection filter for off-line monitoring is straight-

forward - apply the filter on the complete set of events and calculate
the off-line monitoring rate while considering only novel events.

In the on-line case, Figure 4 shows a flow diagram of the process
of updating the on-line monitoring rate using the novelty detection
filter. The different equations involved in the calculation are also
given next to their relevant components.

Starting from the leftmost component, suppose that N1 new up-
date events are captured between two consecutive monitoring times
Tprev and T , which are kept in the buffer CW ′ in Figure 4. Further,
suppose that prior to time T a total of N2 events were captured, thus
resulting in a total of N = N1 + N2 events at time T . Then, we
update Equation 3 to maintain the channel cohesion value on-line:

coh(C, T) =
1

N


N2 · coh(C, Tprev) +

N∑

i=N2+1

sim(P (CWi−1), P (CWi
))




(8)
The coh(C, Tprev) value is taken from the History component

in Figure 4 that maintains both the last calculated channel cohe-
sion value and the novel monitoring rate, and is updated after every
monitoring probe. The Novelty Filtering component uses the previ-
ous and the new cohesion values to calculate the standard deviation
of the channel cohesion using Equation 6. It then applies the fil-
tering rule of Equation 7 on the new N2 update events captured at
time T . The output of this component Cnov

W ′ is then used to de-
rive the observed novelty update rate at time T , which is combined
with the history learned rate (λnov

C (Tprev)) according to the adap-
tive rules of Equation 5, where CW ′ ← Cnov

W ′ . This provides the
current monitoring rate λnov

C (T).
It is worth noting that by using this on-line scheme we reduce

157

Figure 5: Effect of the threshold β on monitoring quality (off-
line analysis)

the expensive complexity in maintaining channel cohesion, where
we consider only the current buffer of captured events in [Tprev, T]
for novelty detection filtering.

5.4 Performance Analysis
Our performance analysis study provides empirical evidence that

using the proposed content-based scheme of Section 5.3.2 com-
pared to the content-free scheme of Section 5.2.1, we can main-
tain high quality channel profiles with a significant savings in the
number of probes required for this task. For example, the proposed
content-based scheme reduces the number of times it probes chan-
nels by 50% while losing no more than 5% in quality.

For this purpose we ran the simulation using the full set of Web
feeds. Each feed was monitored twice, once using the content-
free monitoring scheme and once using the content-based mon-
itoring scheme. We measured the quality obtained by applying
each monitoring scheme on each feed according to Eq. 4. In ad-
dition, we recorded the total number of probes made by monitoring
each feed according to each scheme. Using these two measures
we further calculated for each feed the ratio of quality loss and
probe cutoff (gain) between the two monitoring schemes as fol-
lows. Given a feed C ∈ C, let Q(C, free) and K(C, free) de-
note the quality and number of probes of the content-free scheme,
and let Q(C, content) and K(C, content) denote the quality and
number of probes of the content-based scheme. We then calculate
the quality loss as Qloss(C) = 1− Q(C,content)

Q(C,free)
and probe cutoff

as Kcutoff (C) = K(C,free)
K(C,content)

− 1.

5.4.1 Novelty Filtering Threshold Analysis
We first studied the effect of the filtering threshold β on profile

quality. Figure 5 shows the effect of different β values on chan-
nel profile quality in the off-line case. We observe that increas-
ing β increases the average quality per channel (feed). Obviously,
larger β values imply that more events are considered novel and
thus the corresponding monitoring rate is larger and increases qual-
ity. Moreover, for β ≥ 0.1 the average quality among the differ-
ent monitored channels is at least 95% from optimal. Finally, the
98-percentile curve of the channel profiles quality shows that for
β ≥ 0.25 at least 98% of the monitored channels have at least 95%
of the optimal profile quality.

Using the same off-line case, we further explored the novelty
detection scheme’s trade-off between monitoring quality and sav-
ing monitoring resources. We measured the relative cutoff in the
number of probes compared to the loss in quality resulting from
the cutoff. Figure 6 shows the loss in the average quality of the
channel profiles as well as the average gain due to less probes, as a

Figure 6: Quality loss versus the gain in cutting the number
of probes as a function of the filtering threshold parameter β
(off-line analysis).

Figure 7: Sensitivity analysis of the quality loss with respect to
different profile window size W , in on-line setting using β =
0.1.

function of β. We can clearly see a small loss in quality compared
to significantly fewer probes for reasonable β values. For instance,
for β = 0.1, we lost 5% in average profile quality while cutting
down a third of the probes (50% gain).

5.4.2 Profile Window Size Analysis
We further evaluated the effect of the profile window size W in

terms of the number of update events considered for profile calcu-
lation on the quality-budget trade-off in the on-line monitoring set-
ting. In this experiment we fixed the threshold parameter β = 0.1
that we learned in the off-line analysis.

Figure 7 shows results of this evaluation. We observe that the
quality loss is directly affected by the profile window size W . As
the window size increases, the profile provides a wider perspective
of the channel and therefore there is less chance of missing update
events and deviating from the optimal profile; hence the quality loss
is reduced.

Using the evaluation results presented in this section we con-
clude that the monitoring scheme based on novelty detection indeed
provides better utilization of the monitoring budget while produc-
ing high quality channel profiles. This observation will be sup-
ported in the next section that further explores the multi-channel
monitoring case.

6. MULTI-CHANNEL MONITORING
A monitoring policy is allowed to monitor at most M channels in

parallel. Thus, the profile quality obtained for multi-channel mon-

158

itoring depends on the policy’s on-line decisions of which chan-
nels to monitor over time. In the following we introduce a simple
classification scheme for multi-channel monitoring policies (Sec-
tion 6.1). We then introduce inter-channel profile similarities as a
means of further refining the monitoring rates (Section 6.2). Fi-
nally, we present an empirical evaluation study on the performance
of these policies (Section 6.3).

6.1 Monitoring Policies
We now define the importance of a channel during time to be

relative to its monitoring rate, as derived by the learning scheme
presented in Section 5. A channel with higher monitoring rate is
considered more important. Note that the relative importance of a
channel is changed dynamically over time according to the change
in the derived monitoring rate.

The monitoring policies can be classified according to two main
properties. The first property classifies the policies as either greedy
or fair. A greedy monitoring policy, such as those described in [18,
24], monitors the most M important channels at any moment in
time.11 A fair policy, on the other hand, selects M channels at ran-
dom, according to the distribution induced by the channel relative
importance values.

The second property relates to the policy attention to the con-
tent of the update events. A policy that ignores content is termed a
content-free policy while a policy that considers content is termed
a content-based policy. When the content is ignored, the monitor-
ing rates are learned as described in Equation 5. When the content
is also considered, the monitoring rate of each channel is calcu-
lated using the novelty detection filter. Since the monitoring rates
of the channels determine their relative importance, a certain chan-
nel might have different importance values under content-free or
content-based policies, due to the difference in monitoring rates.

Based on the classification described above, we experiment with
four policy types: content-free (greedy), content-free (fair), content-
based (greedy), and content-based (fair). The four policy types
represent a wide range of possible policies for multi-channel mon-
itoring.

6.2 Using Inter-channel Profile Similarities for
Refining Channel Monitoring Rates

We now proposed a regularization scheme that can be used to
further refine the channel monitoring rates based on inter-channel
profile similarities. Using this scheme, we can refine a channel’s
monitoring rate according to its profile similarity to other chan-
nels’ profiles without actually having to probe that channel. For
example, suppose a channel’s profile has high similarity with the
profile of another channel that has just been monitored (and there-
fore, its monitoring rate has been updated). Therefore, an increase
in the last channel’s monitoring rate will cause an increase in the
first channel’s monitoring rate as well.

For this propose we maintain an n×n similarity matrix S, where
a matrix entry Si,j corresponds to the average profile similarity
between channel Ci profile and channel Cj profile during a given

11It is worth noting that policies such as the ones of [18, 24] assume
the availability of a given update model, while we learn the model
on-line. Furthermore, we note that our monitoring rate learning
methods can be easily integrated with any other monitoring solu-
tion that requires an update model as input. Therefore, our analysis
for the multi-channel case also provides a proof of concept for the
ease of usage of our methods by a wide range of other possible
monitoring policies.

Figure 8: The average profile similarity matrix of 80 different
Web feeds calculated over a period of two months between Au-
gust to October 2007.

time period T , which is calculated as follows:

Si,j =
1

|T |
∫

T
sim(P (Ci,T), P (Cj,T))dT (9)

We then normalize every row i of matrix S by dividing each
entry Si,j by the total sum of values on that row.

Figure 8 provides an 3D illustration of a similarity matrix that
was calculated for about 80 different Web feeds over a period of
two months from August to October 2007. Only half of the matrix
is illustrated due to its symmetry. For clarity of presentation, we
also eliminated the matrix diagonal, which should of course be all
’1’. Table 2 further provides the highest average similarity values
that were recorded for different pairs of Web feeds. We also pro-
vide a definition of the relationship between each pair of Web feeds
as was determined by a human assessment, either an inclusion (de-
noted C1 ⊂ C2) or a similarity (denoted C1 ∼ C2). For example,
the content published on the NY-TIMES.TECHNOLOGY.Circuits
Web feed is almost completely contained in the content that is pub-
lished on the NY-TIMES.TECHNOLOGY Web feed (resulting in
very high profile similarity).

We now discuss how we use the similarity matrix S to refine
the monitoring rates. Let

−→
λC(T) = (λC1 , λC2 , . . . , λCn) denote

a vector of channel monitoring rates at time T , and let Snorm(T)
denote the normalized similarity matrix as calculated at time T .12

We then refine the monitoring rates as follows:

−→
λC
′(T) = Snorm(T)×−→λC(T) (10)

It is worth noting that a channel Ci whose profile is not simi-
lar to any of the other channel profiles will have Snorm

i,j 6=i = 0 and
Snorm

i,i = 1, and therefore, after applying Eq. 10 its monitoring rate
will remain unchangeable and depend solely on the channel’s own
update events (content). Otherwise, the channel shares some profile
similarity with other channels in the system and therefore its mon-
itoring rate is determined by the relative similarity its profile has
with the other channel profiles and the current channel monitoring
rates. As we will show later on in Section 6.3.2, such refinement
can further improve the quality of maintained channel profiles.

12This calculation can be done incrementally.

159

Channel 1 (C1) Channel 2 (C2) Average profile similarity Type of relationship
NY-TIMES.HEALTH.Fitness and Nutrition NY-TIMES.SCIENCE.Nutrition 0.98936 C1 ∼ C2
NY-TIMES.TECHNOLOGY.Circuits NY-TIMES.TECHNOLOGY 0.92181 C1 ⊂ C2
CNN.Top Stories CNN.Most Popular 0.4888 C1 ∼ C2
APPLE.New Software Articles.Mac OS X APPLE.New Software Articles.dot Mac 0.45744 C1 ∼ C2
BBC.UK BBC.News Front Page 0.43452 C1 ∼ C2
NY-TIMES.SPORTS.Pro Baseball NY-TIMES.SPORTS 0.28882 C1 ⊂ C2
WILEY.Business WILEY.Accounting 0.26385 C1 ∼ C2
WILEY.Chemistry WILEY.Engineering 0.21652 C1 ∼ C2

Table 2: The top average profile similarity values between different pairs of Web feed profiles as was measured between August to
October 2007.

Figure 9: The average quality obtained by the four different
policies with respect to different monitoring budget levels (dif-
ferent M values).

6.3 Evaluation
We now present an empirical evaluation of the different poli-

cies that were proposed in Section 6.1 using varied parameter set-
tings. In general, the two content-based policies dominated their
content-free counterparts. We then show that the monitoring rates
refinement scheme of Section 6.2 can further help to improve the
performance.

6.3.1 Content-based versus Content-free
Figure 9 reports the results of a simulation we conducted mon-

itoring the full set of 132 channels while using different monitor-
ing budgets (i.e., different M values). The graph shows the aver-
age profile quality obtained by the different policies for different
M values. The two content-free policies are represented by com-
plete lines, while the two content-based policies are represented by
dashed lines. We fixed the profile window size to be W = 20 and
further fixed β = 0 as the novelty filtering threshold for the content
based policies.

The obvious observation from Figure 9 is that the quality ob-
tained by the policies increases as the monitoring budget increases.
Furthermore, the empirical results reveal two interesting observa-
tions. First, both content-based policies dominate the content-free
policies at every budget level. These results support the empirical
observations made in Section 5 on single channel monitoring. The
results further suggest that considering the content for the deriva-
tion of channel monitoring rates and using them to determine the
relative channel importance can improve the quality obtained by
content-based policies.

Second, we observe that while fairness provides better quality
over greediness for the content-free policies, this is not the same
for the content-based policies. The content-based (greedy) pol-
icy dominates the other three policies. This observation implies

Figure 10: The average quality obtained by the four different
policies with respect to different profile window sizes (different
W values).

that when content is not considered, it is preferable to fairly share
the budget between the different channels and avoid making local
greedy decisions. On the other hand, these results further imply
that content-based policies may benefit from some greedy deci-
sions when the budget is spread more efficiently among the dif-
ferent channels. Nevertheless, fairness might still be the preferred
choice, for example when the policy monitors channels where most
of them have high novel content rates.

To explore the effect of profile window size on the four differ-
ent policies we fixed the monitoring budget to be M = 6 and ran
the simulation using different profile window size (W) values. Fig-
ure 10 reports on the average quality obtained by the four policies
for the different profile window sizes.

We observed that as we increase the profile window size, we
improve the quality obtained by all four policies; yet again, with
less remarkable improvement for the content-free (greedy) policy.
We also observed that the two content-based policies still dominate
the two other content-free policies, and manage to better utilize
the monitoring budget for every profile window size. Overall the
two content-based policies show almost similar performance, sug-
gesting that any type of content-based policy, whether fair, greedy,
or in between, may achieve better performance than any possible
content-free policy.

We further analyzed the effect of the novelty filtering threshold
β on the performance of the two content-based policies. We again
fixed the monitoring budget to M = 6 and fixed the profile window
size to W = 20. Figure 11 provides the results of this analysis, il-
lustrating an interesting observation. As β values increase, less up-
date events get filtered and the two content-based policies behave
differently. For β ≤ 0 (more novelty filtering) we observe that
overall the two policies keep their same performance level, where
the greedy policy further dominates the fair policy. On the other

160

Figure 11: The average quality obtained by the two content-
based policies with respect to different novelty filtering thresh-
old values (different β values).

hand, for β > 0 (less novelty filtering) we observe that the two
policies show opposite trends. While the fair policy remains quite
robust and even improves slightly with the increase in the filtering
threshold, the greedy policy performance completely deteriorates,
almost to the level of quality obtained by its content-free counter-
part greedy policy.

This can be explained as follows: as less update events are fil-
tered, the monitoring rates are less affected by the novelty filter
and the two policies behave similarly to their content-free counter-
part policies. Therefore, the content-based (fair) policy dominates
the content-based (greedy) policy in a similar way the content-free
(fair) dominates the content-free (greedy) policy in Figure 9.

To conclude, overall, the simulation results clearly show that
taking content into consideration, by the multi-channel monitor-
ing policies, improves the overall obtained quality of the channel
profiles.

6.3.2 Utilizing Inter-channel Profile Similarities
Finally, we evaluated the inter-channel profile similarities refine-

ment scheme that was presented in Section 6.2. For this purpose we
experimented with the content-based (fair) policy using different
levels of novelty filtering thresholds (β). For β > 0, the content-
based (fair) policy dominates the content-based (greedy) policy,
and therefore, we would like to improve its performance further-
more by utilizing inter-channel profile similarities. Figure 12 re-
ports on the average quality obtained by using the policy without
refinement (serving as a baseline) and with refinement for three dif-
ferent monitoring budget levels (M = 4, 6, 8). The profile window
size was fixed to W = 20. The upper part of Figure 12 has the re-
sults for β = 0.2 which corresponds to mild filtering, and the lower
part of Figure 12 has the results for β = 0 which corresponds to
more filtering.

We observe, that in general, the refinement scheme manages to
improve the baseline performance of the policy for all budget lev-
els, where the highest improvement is by 15%. Furthermore, we
observe that the improvement is much better when mild novelty fil-
tering is used (β = 0.2). To explain, a more aggressive novelty
filtering may result in lower inter-channel profile similarities, and
therefore, a channel’s monitoring rate is less effected by the other
channels’ monitoring rates.

We conclude, that indeed, inter-channel profile similarities can

Figure 12: The average quality obtained by the content-based
(fair) policy with and without applying the inter-channel profile
similarities refinement scheme. The upper and lower figures
correspond to usage of novelty filtering threshold β = 0.2 (mild
filtering) and β = 0 (more filtering) respectively.

be efficiently utilized to further refine the channel monitoring rates
and improve the overall performance.

7. SUMMARY
We presented a novel problem of maintaining channel profiles

on the Web. We discussed the benefit of maintaining such profiles
for new emerging Web 2.0 applications and current existing appli-
cations such as feed readers and personalized search services. We
described existing Web monitoring solutions and discussed their
main differences from our work and the new challenges involved
in monitoring channel profiles.

We then introduced some new measures of profile monitoring
quality. Using these measures, we demonstrated the necessity for
new methods for maintaining channel profiles. We discussed both
off-line and on-line monitoring cases and the challenges in moni-
toring profiles on-line. For the on-line case, we proposed a novel
monitoring scheme based on reinforcement learning for the deriva-
tion of channel monitoring rates. We further presented an exten-
sion of this monitoring scheme by considering the content that is
published on the channel. We suggested a novelty detection filter
that refines the monitoring rate according to the rate at which nov-
elty content is expected to be produced on the channel. We also
demonstrated how inter-channel profile similarities can be utilized
to refine more the monitoring rates.

Using real-world data of Web feeds, we studied the performance
of the on-line monitoring scheme for single and multi-channel mon-
itoring. Our empirical study showed that the monitoring rates learn-
ing, combined with the on-line novelty detection, can guarantee
high quality channel profiles, while significantly cutting down the
monitoring budget which in turn improve the overall performance.
Finally, we further showed that inter-channel profile similarities
can be utilized to improve more the performance.

8. FUTURE WORK

161

For future work we consider the following directions. Initially
we plan to improve the derivation of channel monitoring rates using
additional machine learning techniques. For example, we wish to
construct an automatic learning scheme for the filtering rule thresh-
old. Learning a threshold adaptively for each channel can result in
even better quality-budget trade-off performance.

A second direction is to extend the current channel profile model
to consider the dynamic information requirements of the different
applications that access the Web channels. This can be achieved,
for example, using the application user profiles. Using such dy-
namic user profiles will enable further adjustment of the channel
profile to adapt to the user needs by considering parameters such as
topic popularity and user data access patterns.

A third future direction involves the exploration of new tech-
niques, possibly based on utility based models, to automatically
select and discover relevant Web channels for a given client profile.
For this purpose we plan to utilize other reinforcement learning
techniques.

We also plan to integrate the proposed solutions of this work in a
real server-side Web feed aggregation system. In general, we plan
to expose advanced search capabilities over Web feeds and Web
channels. We further plan to add Web channel recommendation ca-
pabilities to this system so it can recommend relevant Web channels
given a client profile.

9. REFERENCES
[1] T. Brants and F. Chen. A system for new event detection. In SIGIR

’03: Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval,
pages 330–337, New York, NY, USA, 2003. ACM.

[2] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda,
M. Riedewald, M. Thatte, and W. White. Cayuga: a
high-performance event processing engine. In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 1100–1102, New York, NY, USA, 2007.
ACM.

[3] L. Bright, A. Gal, and L. Raschid. Adaptive pull-based policies for
wide area data delivery. ACM Transactions on Database Systems
(TODS), 31(2):631–671, 2006.

[4] D. Carmel and E. Amitay. Juru at TREC 2006: TAAT versus DAAT
in the terabyte track. In Proceedings of the 15th Text REtrieval
Conference (TREC2006). National Institute of Standards and
Technology. NIST, 2006.

[5] D. Carmel, E. Farchi, Y. Petruschka, and A. Soffer. Automatic query
refinement using lexical affinities with maximal information gain. In
SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval,
pages 283–290. ACM Press, 2002.

[6] J. Cho and H. Garcia-Molina. Synchronizing a database to improve
freshness. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pages 117–128,
New York, NY, USA, 2000. ACM.

[7] J. Cho and H. Garcia-Molina. Effective page refresh policies for web
crawlers. ACM Transactions on Database Systems (TODS),
28(4):390–426, 2003.

[8] J. Cho and H. Garcia-Molina. Estimating frequency of change. ACM
Transactions on Internet Technology, 3(3):256–290, 2003.

[9] J. Eckstein, A. Gal, and S. Reiner. Monitoring an information source
under a politeness constraint. INFORMS Journal on Computing,
2007.

[10] E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie: providing
personalized newsfeeds via analysis of information novelty. In WWW
’04: Proceedings of the 13th international conference on World Wide
Web, pages 482–490, New York, NY, USA, 2004. ACM.

[11] A. Gal and J. Eckstein. Managing periodically updated data in
relational databases: a stochastic modeling approach. Journal of the
ACM (JACM), 48(6):1141–1183, 2001.

[12] S. Garg, K. Ramamritham, and S. Chakrabarti. Web-cam: monitoring
the dynamic web to respond to continual queries. In SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 927–928, New York, NY, USA, 2004.
ACM.

[13] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research (JAIR),
cs.AI/9605103, 1996.

[14] R. kr. Majumdar, K. M. Moudgalya, and K. Ramamritham. Adaptive
coherency maintenance techniques for time-varying data. In RTSS
’03: Proceedings of the 24th IEEE International Real-Time Systems
Symposium, page 98, Washington, DC, USA, 2003. IEEE Computer
Society.

[15] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client behavior and
feed characteristics of RSS, a publish-subscribe system for web
micronews. In IMC’05: Proceedings of the Internet Measurement
Conference 2005 on Internet Measurement Conference, pages 3–3,
Berkeley, CA, USA, 2005. USENIX Association.

[16] G. Luo, C. Tang, and P. S. Yu. Resource-adaptive real-time new event
detection. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 497–508,
New York, NY, USA, 2007. ACM.

[17] A. Ntoulas, J. Cho, and C. Olston. What’s new on the web?: the
evolution of the web from a search engine perspective. In
Proceedings of the 13th international conference on World Wide Web
(WWW), pages 1–12, 2004.

[18] S. Pandey, K. Dhamdhere, and C. Olston. WIC: A general-purpose
algorithm for monitoring web information sources. In Proceedings of
the 30th International Conference on Very Large Data Bases
(VLDB), pages 360–371, 2004.

[19] S. Pandey and C. Olston. User-centric web crawling. In Proceedings
of the 14th international conference on World Wide Web (WWW),
pages 401–411, New York, NY, USA, 2005. ACM.

[20] R. K. Pon, A. F. Cardenas, D. Buttler, and T. Critchlow. Tracking
multiple topics for finding interesting articles. In KDD ’07:
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 560–569, New York,
NY, USA, 2007. ACM.

[21] D. Radev, J. Otterbacher, A. Winkel, and S. Blair-Goldensohn.
Newsinessence: summarizing online news topics. Communications
of the ACM, 48(10):95–98, 2005.

[22] H. Roitman, A. Gal, and L. Raschid. Profile based online data
delivery. In Proceedings of the VLDB ’06 Phd Workshop, Seoul, Rep.
of Korea, 2006.

[23] H. Roitman, A. Gal, and L. Raschid. Capturing approximated data
delivery tradeoffs. In ICDE’08: Proceedings of the 24th International
Conference on Data Engineering, pages 1471–1473, 2008.

[24] H. Roitman, A. Gal, and L. Raschid. Satisfying complex data needs
using pull-based online monitoring of volatile data sources. In
ICDE’08: Proceedings of the 24th International Conference on Data
Engineering, pages 1465–1467, 2008.

[25] G. Salton and C. Buckley. Term weighting approaches in automatic
text retrieval. Information Processing and Management,
24(5):513–523, 1988.

[26] K. C. Sia, J. Cho, and H.-K. Cho. Efficient monitoring algorithm for
fast news alerts. IEEE Transactions on Knowledge and Data
Engineering, 19(7):950–961, 2007.

[27] K. C. Sia, J. Cho, K. Hino, Y. Chi, S. Zhu, and B. L. Tseng.
Monitoring rss feeds based on user browsing pattern search. In
Proceedings of the International Conference on Weblogs and Social
Media, 2007.

[28] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream
databases: a control-based approach. In VLDB ’06: Proceedings of
the 32nd international conference on Very large data bases, pages
787–798. VLDB Endowment, 2006.

[29] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection
in adaptive filtering. In SIGIR ’02: Proceedings of the 25th annual
international ACM SIGIR conference on Research and development
in information retrieval, pages 81–88, New York, NY, USA, 2002.
ACM.

162

